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0. Introduction

The chief objective of the representation theory of Artin algebras is to characteris
an algebra by properties of its module category. For this purpose, homological dime
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are useful invariants. They are meant to measure how much an algebra or a modu
ates from a situation considered to be “nice.” Among these invariants is the represe
dimension, introduced by Maurice Auslander in the early seventies, see [7]. It me
the least global dimension of all endomorphism rings of those finitely generated mo
which are both generators and cogenerators of the module category. The interes
representation dimension was recently revived by works of Xi [25,26] and also be
of its relationship with the finitistic and the Nakayama conjectures: it was shown by
and Todorov in [18] that if the representation dimension of an algebra is at most 3, th
finitistic dimension is finite. It was already proven by Auslander in [7] that an Artin alg
A is representation-finite if and only if its representation dimension rep.dim.A is at most
two and, also, that ifA is either hereditary or has radical square zero, then rep.dim.A � 3.
Many important classes of algebras have been shown to have representation dime
most 3, see, for instance, [14,15]. It was shown by Iyama that, for any Artin algebA,
rep.dim.A < ∞, see [19], and Rouquier has constructed examples of algebras with
sentation dimension larger than or equal to 4, see [23].

In this paper we consider two rather large classes of algebras which play an imp
role in representation theory, namely, the tilted algebras (see, for instance, [1,21
the laura algebras (see, for instance, [2,3,24]). We prove the following theorem,
generalises [14, (2.2), (2.3)].

Theorem. LetA be a tilted, or a strict laura algebra. Thenrep.dim.A � 3.

As a direct consequence, the weak representation dimension of any laura algeb
most three, and hence the finitistic dimension conjecture holds for laura algebras (
we recall, may have infinite global dimension and even infinitely many isomorp
classes of indecomposables with infinite projective dimension). We conjecture thaA

is quasi-tilted, in the sense of [16], then rep.dim.A � 3. We do not prove here this conje
ture, but we show that the representation dimension of a quasi-tilted algebra is at m

The paper is organised as follows. After a short preliminary section we prove in
tion 2 that the representation dimension of a tilted algebra is at most 3. Sections 3
are respectively devoted to the cases of quasi-tilted, and strict laura algebras.

1. Representation dimension of Artin algebras

1.1. Notation

Throughout this paper, all algebras are connected Artin algebras and all modu
finitely generated right modules. For an Artin algebraA, we denote by modA the category
of A-modules and by indA a full subcategory of modA containing exactly one represe
tative of each isomorphism class of indecomposableA-modules. We denote by gl.dim.A

the global dimension ofA and byD the standard duality between modA and modAop.
If C is a subcategory of modA, we sometimes writeX ∈ C to express thatX is an

object ofC. We denote by addC the full subcategory having as objects the direct sum
indecomposable summands of objects inC and, if M is a module, we abbreviate add{M}
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modulesX such that there is an epimorphismM0 → X (or a monomorphismX → M0,
respectively), withM0 ∈ addM . Finally, we denote the projective (or injective) dimens
of a moduleX by pdX (or idX, respectively).

Unexplained notions and facts needed on modA can be found in [8,21].

1.2. Representation dimension

We refer the reader to [7] for the original definition. We shall rather use the follow
characterisation, used in [7].

Definition. Let A be a nonsemisimple Artin algebra. The representation dimen
rep.dim.A of A is the infimum of the global dimensions of the algebras EndM , where
M is a generator and a cogenerator of modA.

The following language is useful when dealing with representation dimension. Giv
A-moduleM , a functorF from (addM)op to the categoryAb of abelian groups is calle
finitely presented(or coherent) if there exists a morphismf :M1 → M0 in addM inducing
an exact sequence of abelian groups

HomA(M,M1)
HomA(M,f )−−−−−−−→ HomA(M,M0) → F(M) → 0.

We denote byFM the category of all finitely presented functors from(addM)op to Ab.
Thus, a functorF : (addM)op → Ab is finitely presented if and only if there exists a m
phismf :M1 → M0 inducing an exact sequence of functors

HomA(−,M1)
HomA(−,f )−−−−−−−→ HomA(−,M0) → F → 0

from (addM)op to Ab. It was shown in [7] that the categoriesFM and mod(EndM) are
equivalent. The next lemma is well known [7,14,15,26].

Lemma. Let A be an Artin algebra,n be a positive integer, andM be a generator–
cogenerator ofmodA. Thengl.dim.EndM � n + 1 if and only if for eachA-moduleX,
there exists an exact sequence

0→ Mn → ·· · → M1 → X → 0

with Mi in addM for all i, such that the induced sequence of functors

0→ HomA(−,Mn) → ·· · → HomA(−,M1) → HomA(−,X) → 0

is exact inFM . In particular, rep.dim.A � n + 1.
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The above considerations may equivalently be expressed in the language of r
homological algebra, as developed by Auslander and Solberg in [10]: indeed, the
above says exactly that, for each moduleX, there exists an exact sequence

0→ Mn → ·· · → M1 → X → 0

(with Mi in addM for all i), which is addM-exact.

1.3. The following lemma is also well known and follows from the fact that, for
(finitely generated) moduleM over an Artin algebraA, anyA-moduleX admits an addM-
approximation. We include the proof because it is useful for our future consideration

Lemma. Let A be an Artin algebra andM be anyA-module. Then, for anyA-moduleX,
the functorHomA(−,X) : (addM)op → Ab is finitely presented.

Proof. Let {g1, . . . , gd} be a set of generators of the EndM-module HomA(M,X). The
morphismg0 = [g1, . . . , gd ] from M0 = Md to X has the property that the induced s
quence

HomA(−,M0)
HomA(−,g0)−−−−−−−→ HomA(−,X) → 0

is exact inFM . Considering the kernel ofg0 yields similarly a moduleM1 in addM , and a
morphismg1 :M1 → M0 such that the sequence

HomA(−,M1)
HomA(−,g1)−−−−−−−→ HomA(−,M0)

HomA(−,g0)−−−−−−−→ HomA(−,X) → 0

is exact inFM . �
We note that the displayed projective presentation of HomA(−,X) is usually not in-

duced by an exact sequence

M1 → M0 → X → 0.

This is however clearly the case when bothX and Ker(g0) are generated byM . In Section 2
we give conditions for this to be the case.

1.4. We have considered a projective presentation for the functor HomA(−,X). We
now look at a projective cover.

Lemma. Let A be an Artin algebra, andM be anyA-module. IfX ∈ GenM , then there
exists an epimorphismf0 :M0 → X, with M0 ∈ addM , and such that

HomA(−,M0)
HomA(−,f0)−−−−−−−→ HomA(−,X) → 0

is a projective cover inFM .
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Proof. Since X ∈ GenM , there exists, by the discussion in 1.3, an epimorph
f1 :M1 → X, with M1 ∈ addM such that

HomA(−,M1) → HomA(−,X) → 0

is exact inFM . SinceFM is equivalent to mod(EndM), we have a projective cover

HomA(−,M0)
π−→ HomA(−,X) → 0

in FM , with M0 ∈ addM . We now claim that there exists a morphismf0 :M0 → X such
that π = HomA(−, f0). The projectivity of HomA(−,M0) in FM yields a morphism
σ : HomA(−,M0) → HomA(−,M1) such thatπ = HomA(−, f1)σ . Since M0,M1 ∈
addM , Yoneda’s lemma gives a morphismh :M0 → M1 such thatσ = HomA(−, h).
Henceπ = HomA(−, f1)HomA(−, h) = HomA(−, f1h) and settingf0 = f1h establishes
our claim.

There remains to show thatf0 is surjective. SinceM1 ∈ addM , the morphismf0 in-
duces an exact sequence

HomA(M1,M0)
HomA(M1,f0)−−−−−−−−→ HomA(M1,X) → 0

in Ab. Thus, we findg :M1 → M0 such thatf0g = f1. Sincef1 is surjective, so isf0. �
1.5. We leave to the reader the straightforward proof of the following lemma.

Lemma. LetA be an Artin algebra andf0 :P0 → X be a projective cover inmodA. If we
have a commutative diagram

P0
f0

h

X

P

f

with P projective, thenh is a section.

2. Tilting and tilted algebras

2.1. Let A be an Artin algebra. AnA-moduleT is a tilting module if pdTA � 1,
Ext1A(T ,T ) = 0 and there exists a short exact sequence 0→ AA → T ′

A → T ′′
A → 0,

with T ′, T ′′ ∈ addT . It is well known that any tilting moduleTA induces a torsion pai
(T (T ),F(T )) in modA, whereT (T ) = GenT = {XA | Ext1A(T ,X) = 0} andF(T ) =
{XA | HomA(T ,X) = 0}. Thus, in particular,DA ∈ T (T ).

The endomorphism algebra of a tilting module over a hereditary algebra is said
tilted.
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We introduce some further terminology. LetA be an Artin algebra, apathin indA from
X to Y is a sequence of nonzero morphisms

X = X0 → X1 → ·· · → Xn = Y (∗)

with all theXi indecomposable. A setΣ of indecomposable modules isconvexif for any
X,Y ∈ Σ and any path(∗) from X to Y in indA, all theXi lie in Σ . A tilting moduleT

is convexprovided the setΣT = indA ∩ addT of all indecomposable summands ofT is
convex.

A class of pairwise nonisomorphic indecomposableA-modules is called acomplete
slice in modA (see [21,22]) if it satisfies the following conditions:

(1) U = ⊕
M∈Σ M is a sincere module (that is, HomA(P,U) �= 0 for every projective

A-moduleP ).
(2) Σ is convex.
(3) If 0 → L → M → N → 0 is an almost split sequence, then at most one ofL andN

lies onΣ . Furthermore, if an indecomposable summand ofM lies inΣ , then eitherL
or N lie in Σ .

It is shown in [21] (see also [1, (5.2)]) that an algebraA is tilted if and only if modA
contains a complete slice. Furthermore, in this caseU = ⊕

M∈Σ M is a tilting module with
EndU hereditary.

Lemma. An Artin algebraA is tilted if and only if there exists a convex tiltingA-moduleT .
In this case,(T (T ),F(T )) is a split torsion pair andΣT is a complete slice.

Proof. Assume thatA is tilted, and letT be the direct sum of the indecomposables ly
on a complete slice. ThenT is convex and EndT hereditary. Therefore, by [1, (3.6)],T is
separating hence(T (T ),F(T )) splits.

Since the necessity follows from the well-known properties of complete slices, we
the sufficiency using Bakke’s theorem (see [11] or [1, (5.3)]). LetT be a convex tilting
A-module. We define a torsion pair(T ,F) as follows: LetT be the full additive subcate
gory of modA having as indecomposable objects the modulesX such that there is a pa
T ′ → · · · → X, with T ′ ∈ ΣT , and letF be the full additive subcategory generated
the remaining indecomposables. Then(T ,F) is a split torsion pair. It is shown in [11
[1, (5.3)] that, ifU denotes the direct sum of a complete set of representatives of th
morphism classes of indecomposable Ext-projectives inT (in the sense of Auslander an
Smalø [9]), thenU is a tilting module andT = T (U), F = F(U). Moreover, EndU is
hereditary (so thatA is tilted).

In order to complete the proof, it suffices to show thatU = T . For this purpose, we claim
that T is Ext-projective inT : indeed, assume there existT ′ ∈ ΣT , an indecomposabl
moduleX′ in T and a nonsplit short exact sequence

0→ X′ → E → T ′ → 0.
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Then there exist an indecomposable summandE′ of E and a pathX′ → E′ → T ′ in
indA. On the other hand,X′ ∈ T , so there existT ′′ ∈ ΣT and a pathT ′′ → · · · → X′
in indA. Considering the composed pathT ′′ → · · · → X′ → E′ → T ′ and applying con-
vexity yieldsX′ ∈ ΣT . Therefore,X′ ∈ addT and the given short exact sequence sp
a contradiction which establishes our claim.

By [1, (1.8)] we get anA-moduleV such thatU = T ⊕V . However,T itself is a tilting
module. The definition ofU and Bongartz’ lemma [1, (2.6)] implyU = T . The proof is
now complete. �

2.2. Let A be an Artin algebra, andM be anA-module. It follows from 1.3 and 1.
that, forX ∈ GenM , there exists a short exact sequence

0→ K → M0
f0−→ X → 0

such that HomA(−, f0) : HomA(−,M0) → HomA(−,X) is a projective cover inFM . We
call such a sequence an addM-approximating sequence forX. In the following technica
proposition we collect some properties of approximating sequences.

Proposition. Let A be an Artin algebra,M = T ⊕ N be anA-module,X ∈ GenM and
0→ K → M0 → X → 0 be anaddM-approximating sequence forX.

(a) If Ext1A(T ,M) = 0, thenExt1A(T ,K) = 0.
(b) If TA is a tilting module andN ∈ T (T ), thenK ∈ T (T ).
(c) If N = 0 andM = T is a tilting module then, for every indecomposable summanK ′

of K , we haveHomA(K ′, T ) �= 0.
(d) If N = 0 andM = T is a convex tilting module, thenK ∈ addM .
(e) If N = DA and K ′ is an indecomposable summand ofK such thatidK ′ � 1, then

HomA(K ′, T ) �= 0.
(f) If N = DA andT is a convex tilting module, thenK ∈ addT .

Proof. (a) By hypothesis, the given approximating sequence is of the form

0→ K → T0 ⊕ N0 → X → 0

with T0 ∈ addT , N0 ∈ addN . Applying HomA(T ,−) yields an exact sequence

0→ Ext1A(T ,K) → Ext1A(T ,T0 ⊕ N0).

Since the assumption implies that Ext1
A(T ,T0 ⊕ N0) = 0, the statement follows.

(b) Clearly,N ∈ T (T ) impliesM ∈ T (T ) and soT (T ) = GenM . SinceT is a tilting
module, it follows from (a) that Ext1

A(T ,K) = 0. HenceK ∈ T (T ).
(c) This is trivial.
(d) Let K ′ be any indecomposable summand ofK . Since, by (b),K ∈ T (T ), we have

HomA(T ,K ′) �= 0. Also, by (c), HomA(K ′, T ) �= 0. Convexity yieldsK ′ ∈ addT . Thus
K ∈ addT .
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(e) We may write the given approximating sequence in the form

0→ K

[g1
g2

]

−−−→ T0 ⊕ I0
[f1f2]−−−→ X → 0

with T0 ∈ addT andI0 injective. AssumeK ′ is an indecomposable summand ofK such
that idK ′ � 1. Suppose also that HomA(K ′, T ) = 0. Thus, in particular,g1(K

′) = 0. Hence
we have a commutative diagram with exact rows

0 K ′ g2|K ′

i

I0

[0
1

]

f ′
I ′

h

0

0 K

[g1
g2

]

T0 ⊕ I0
[f1f2]

X 0

(∗)

wherei :K ′ → K is the inclusion map andh is induced by passing to cokernels. Sin
idK ′ � 1, the moduleI ′ is injective. Sincef2 = hf ′, we have a commutative diagram
modA

T0 ⊕ I ′
[f1h]

T0 ⊕ I0

[1 0
0 f ′

]

[f1f2]
X

which induces a commutative diagram inFM ,

HomA(−, T0 ⊕ I ′)
HomA(−,[f1h])

HomA(−, T0 ⊕ I0)

HomA(−,
[1 0
0 f ′

]
)

HomA(−,[f1f2])
HomA(−,X)

SinceI ′ is injective,T0 ⊕ I ′ ∈ addM , so that HomA(−, T0 ⊕ I ′) is projective. By 1.5,
HomA(−,

[ 1 0
0 f ′

]
) is a section. SinceT0 ⊕ I0, T0 ⊕ I ′ ∈ addM , then

[ 1 0
0 f ′

]
is a section. In

particular,f ′ is injective. But this impliesK ′ = 0, an absurdity.
(f) Let K ′ be any indecomposable summand ofK . By (b), the moduleK ′ is in T (T ),

so that Hom(T ,K ′) is nonzero, and idK ′ is less than or equal to one. Thus, by (
HomA(K ′, T ) �= 0. Convexity yieldsK ′ ∈ addT . HenceK ∈ addT . �

2.3. We are able to prove our first main theorem.

Theorem. Let A be a tilted algebra,Σ be a complete slice inmodA, T = ⊕
U∈Σ U and

M = A ⊕ T ⊕ DA. Thengl.dim.End(M) � 3. In particular, rep.dim.A � 3.
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Proof. By 1.2 it suffices to find, for each indecomposableA-moduleX, a short exac
sequence

0→ M1 → M0 → X → 0

with M0,M1 ∈ addM , such that the induced sequence

0→ HomA(−,M1) → HomA(−,M0) → HomA(−,X) → 0

is exact inFM .

Assume first thatX ∈F(T ). Then pdX � 1. Let 0→ P1 → P0
f0−→ X → 0 be a projec-

tive resolution ofX. SinceT ⊕DA ∈ T (T ) andX ∈ F(T ), we have HomA(T ⊕DA,X) =
0. Therefore HomA(M,X) = HomA(A,X) and

HomA(−,P0)
HomA(−,f0)−−−−−−−→ HomA(−,X) → 0

is exact inFM .
Let nowX ∈ T (T ). SinceX ∈ T (T ) = Gen(T ) = Gen(T ⊕ DA), there exists, by 1.4

an add(T ⊕ DA)-approximation ofX

0→ K → T0 ⊕ I0 → X → 0

with T0 ∈ add(T ) andI0 injective. Since, by 2.1,T is a convex tilting module, it follows
from 2.2(f) thatK ∈ addM . Since HomA(−, f0) is a projective cover inFT ⊕DA, invoking
1.2 concludes the proof.�

3. Quasi-tilted algebras

3.1. We refer to [16] for the original definition of quasi-tilted algebras. We
the following equivalent one: an Artin algebraA is quasi-tilted if gl .dim.A � 2
and, for everyX ∈ indA we have pdX � 1 or idX � 1, see [16]. Another charac
terisation is useful: letLA (or RA) be the full subcategory of indA having as ob-
jects all the modulesX such that, whenever there exists a pathY → ·· · → X (or
a path X → ·· · → Y ) in indA, then pdY � 1 (or idY � 1, respectively). ThenA
is quasi-tilted if and only ifAA ∈ addLA, or if and only if DAA ∈ addRA (see
[16, (II.1.4)]). Moreover,LA ∪RA = indA, see [16, (II.1.13)]. We conjecture that, ifA is
quasi-tilted, then rep.dim.A � 3. A first step in this direction is the following propositio

Proposition. Let A be a quasi-tilted algebra which is not tilted, and letM = A ⊕ DA.
Thengl.dim.EndA(M) � 4. In particular, rep.dim.A � 4.

Proof. It suffices to show that, for any indecomposable moduleX, we have pdHomA(M,

X)End (M) � 2.

A
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Assume firstX ∈ LA. Then pdX � 1. Let 0→ P1 → P0
f0−→ X → 0 be a projec-

tive resolution. Suppose HomA(DA,X) �= 0. SinceX ∈ LA and LA is closed unde
predecessors, there exists an injective inLA. But then A is tilted, by [16, (II.3.4)].

Hence HomA(DA,X) = 0, from which we deduce that HomA(−,P0)
HomA(−,f0)−−−−−−−→

HomA(−,X) → 0 is exact inFM . Therefore pd HomA(M,X)EndA(M) � 1.
If now X /∈ LA, thenX ∈ RA. Consider an addM-approximating sequence

0→ K → P0 ⊕ I0 → X → 0

with P0 projective andI0 injective. If K ∈ addLA then, by the first case considered abo
we have pdHomA(M,K)EndA(M) � 1. Therefore pd HomA(M,X)EndA(M) � 2 and we
have finished. Assume thus thatK has an indecomposable summandK ′ lying in RA \LA.
SinceP0 ∈ addLA andLA is closed under predecessors, we have HomA(K ′,P0) = 0. But
then 2.2(e) yields idK ′ � 2, a contradiction which completes the proof.�

3.2. We notice that, ifA is quasi-tilted but not tilted, then HomA(DA,A) = 0, hence
EndA(A⊕DA) 
 (

A 0
DA A

)
, where the algebra structure is induced from the bimodule s

ture ofDA. This is a (finite dimensional) quotient of the repetitive algebra ofA, known as
theduplicated algebraĀ of A (see, for instance, [5,6,17]). It is shown in [5, (1.1)] that,
any Artin algebraA, we have

gl.dim.A + 1� gl.dim. Ā � 2 gl.dim.A + 1.

Thus, ifA is quasi-tilted but not hereditary, then

3� gl.dim. Ā � 5.

The preceding proposition improves the upper bound of the preceding inequality
answering the question in [6, (5.2)]. We give an example of a (tame) quasi-tilted algeA

which is not tilted and such that gl.dim. Ā = 4.

Example. Let k be a field, andA be the finite-dimensionalk-algebra given by the quiver
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bound by the relationsα1β1γ1 + α2β2γ2 + α3β3γ3 = 0. This is a tubular algebra (se
[21, p. 268]). In this case the quiver ofĀ, constructed as shown in [17, (2.4)] is

and

ĀĀ = 1 ⊕ 2
1

⊕ 3
1

⊕ 4
1

⊕
5
2
1

⊕
6
3
1

⊕
7
4
1

⊕
8

5 6 7
2 3 4
1 1

⊕

1′
8 8
5 6 7
2 3 4

1

⊕

⊕

2′
1′
8
5
2

⊕

3′
1′
8
6
3

⊕

4′
1′
8
7
4

⊕

5′
2′
1
8
5

⊕

6′
3′
1′
8
6

⊕

7′
4′
1′
8
7

⊕

8′
5′ 6′ 7′
2′ 3′ 4′
1′ 1′

8

(where indecomposable projectives are represented by their Loewy series). It is e
see that, ifS is the simpleĀ-module corresponding to the point 8′, then pdSĀ = 4. Since
by 3.1, gl.dim. Ā � 4, we infer that gl.dim. Ā = 4.

4. Laura algebras

4.1. An Artin algebra is alaura algebraif LA ∪ RA is cofinite in indA, and it is a
strict laura algebraif it is laura but not quasi-tilted. We refer to [2–4,20,24] for propert
of laura algebras. We recall that, ifA is a strict laura algebra, then it isleft and right
supported[3, (4.4)]. In other words, ifE (or F ) denotes the direct sum of a complete se
representatives of the isomorphism classes of indecomposable Ext-injectives in addLA (or
Ext-projectives in addRA, respectively), then addLA = CogenE and addRA = GenF .
Moreover, if Aλ is the endomorphism algebra of the direct sum of all indecompos
projectives inLA, thenAλ is the direct product of tilted algebras, and the restriction oE

to each of the directed components ofAλ is a convex tilting module. One defines dua
Aρ , which is also a direct product of tilted algebras, and the restriction ofF to each of the
connected components ofAρ is a convex tilting module [3, (4.2), (5.1)].

Here, we letA be a strict laura algebra, and we letN be the direct sum of all indecom
posableA-modules not lying inLA ∪RA (this sum is finite, becauseA is laura).

We may now prove the main result of this section.
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Theorem. Let A be a strict laura algebra, and letM = A ⊕ E ⊕ N ⊕ F ⊕ DA, with
E,F,N as above. Thengl.dim.EndA(M) � 3. In particular, rep.dim.A � 3.

Proof. As in the proof of 2.3 it suffices to show that, for any indecomposableA-moduleX,
we have pdHomA(M,X)EndA(M) � 1.

Suppose first thatX ∈ LA \RA. Clearly, we may assume thatX /∈ addM and conside
a projective resolution 0→ P1 → P0 → X → 0. If HomA(DA,X) �= 0, thenX ∈ addE,
by [3, (3.1)], soX ∈ addM , a contradiction. Therefore HomA(DA,X) = 0. Moreover,
HomA(N,X) = 0, sinceN ∈ add(indA \ (LA ∪ RA)), with X ∈ LA, andLA is closed
under predecessors. On the other hand, HomA(F,X) �= 0 impliesX ∈ RA, contradicting
our assumption. This shows that HomA(F,X) = 0. Thus the sequence

0→ HomA(−,P1) → HomA(−,P0) → HomA(−,X) → 0

is exact inFM , and so pd HomA(M,X)EndA(M) � 1.
If X ∈ indA \ (LA ∪RA), thenX ∈ addN ⊆ addM and there is nothing to show.
Finally, letX ∈ RA. ThenX is anAρ -module. Moreover,X is generated byF . There-

fore, by 1.4, there exists an add(F ⊕ DAρ)-approximating sequence

0→ F1 → F0 ⊕ I0
f0−→ X → 0

with F0 ∈ addF andI0 injective, so that

HomA(−, f0) : HomA(−,F0 ⊕ I0) → HomA(−,X)

is a projective cover inFF⊕DAρ . SinceF is a convex tiltingAρ -module, it follows from
2.2(f) thatF1 ∈ addF . Moreover,F is a slice module in modAρ and addRA = GenF , so
that any morphism from a module in indA\RA to X factors throughF , and hence throug
F0 ⊕ I0. Therefore the sequence

0→ HomA(−,F1) → HomA(−,F0 ⊕ I0)
HomA(−,f0)−−−−−−−→ HomA(−,X) → 0

is exact inFM , and so pd HomA(M,X)EndA(M) � 1. The proof is now complete.�
As a direct consequence of this theorem, ifA is a strict shod algebra [12], or a stri

weakly shod algebra [13], then rep.dim.A � 3.

4.2. We recall that theweak representation dimensionw.rep.dim.A of an Artin algebra
A is the infimum of the global dimensions of the endomorphism algebras of the gene
of modA. Clearly, w.rep.dim.A � rep.dim.A and also w.rep.dim.A � gl.dim.A. Thus,
the next corollary follows immediately from our theorem in 4.1 and the fact that q
tilted algebras have global dimension at most 2.

Corollary. LetA be a laura algebra, thenw.rep.dim.A � 3.
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Remark. In the case whereA is a strict laura algebra, we can be more precise: letM =
A⊕N ⊕E ⊕F , whereE, F andN are as above. Then gl.dim.EndM is at most 3. Indeed
we may repeat in this case the proof of 4.1, since the existence of an addF -approximating
sequence 0→ F1 → F0 → X → 0 for X ∈ RA, with F0,F1 ∈ addF , is granted by 1.4
and 2.2(d).

4.3. We recall that the global dimension of a laura algebra may be infinite and,
such an algebra may have infinitely many isomorphism classes of indecomposable m
with infinite projective dimension, as is shown by the following example of [2, (2.3)].
k be a field, andA be the radical square zerok-algebra given by the quiver

It was shown in [18] that, if an Artin algebraA verifies rep.dim.A � 3 (or even
w.rep.dim.A � 3) then its finitistic dimension fin.dim.A is finite. We thus obtain the fol
lowing corollary.

Corollary. LetA be a laura algebra, thenfin.dim.A < ∞.

If, for instance,A is the radical square zero algebra above, then it is easily
that fin.dim.A � 2 (for instance, by computing the Auslander–Reiten quiver ofA, see
[2, (2.3)]).
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