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Abstract

We prove that the representation dimension of a tilted, or of a strict laura algebra, is at most three.
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0. Introduction

The chief objective of the representation theory of Artin algebras is to characterise such
an algebra by properties of its module category. For this purpose, homological dimensions
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are useful invariants. They are meant to measure how much an algebra or a module devi-
ates from a situation considered to be “nice.” Among these invariants is the representation
dimension, introduced by Maurice Auslander in the early seventies, see [7]. It measures
the least global dimension of all endomorphism rings of those finitely generated modules
which are both generators and cogenerators of the module category. The interest in the
representation dimension was recently revived by works of Xi [25,26] and also because
of its relationship with the finitistic and the Nakayama conjectures: it was shown by Igusa
and Todorov in [18] that if the representation dimension of an algebra is at most 3, then its
finitistic dimension is finite. It was already proven by Auslander in [7] that an Artin algebra

A is representation-finite if and only if its representation dimensiordiepA is at most

two and, also, that ifp is either hereditary or has radical square zero, themimpA < 3.

Many important classes of algebras have been shown to have representation dimension at
most 3, see, for instance, [14,15]. It was shown by lyama that, for any Artin algebra
repdim. A < oo, see [19], and Rouquier has constructed examples of algebras with repre-
sentation dimension larger than or equal to 4, see [23].

In this paper we consider two rather large classes of algebras which play an important
role in representation theory, namely, the tilted algebras (see, for instance, [1,21]) and
the laura algebras (see, for instance, [2,3,24]). We prove the following theorem, which
generalises [14, (2.2), (2.3)].

Theorem. Let A be a tilted, or a strict laura algebra. Theepdim. A < 3.

As a direct consequence, the weak representation dimension of any laura algebra is at
most three, and hence the finitistic dimension conjecture holds for laura algebras (which,
we recall, may have infinite global dimension and even infinitely many isomorphism
classes of indecomposables with infinite projective dimension). We conjecture tHat, if
is quasi-tilted, in the sense of [16], then rim. A < 3. We do not prove here this conjec-
ture, but we show that the representation dimension of a quasi-tilted algebra is at most 4.

The paper is organised as follows. After a short preliminary section we prove in Sec-
tion 2 that the representation dimension of a tilted algebra is at most 3. Sections 3 and 4
are respectively devoted to the cases of quasi-tilted, and strict laura algebras.

1. Representation dimension of Artin algebras
1.1. Notation

Throughout this paper, all algebras are connected Artin algebras and all modules are
finitely generated right modules. For an Artin algeldrave denote by mod the category
of A-modules and by ind a full subcategory of mod containing exactly one represen-
tative of each isomorphism class of indecomposabtimodules. We denote by .gim. A
the global dimension oft and byD the standard duality between madind modA°P.

If C is a subcategory of madl, we sometimes write € C to express thak is an
object ofC. We denote by add the full subcategory having as objects the direct sums of
indecomposable summands of object€iand, if M is a module, we abbreviate ajdd}
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as addv. We denote by GeM (or CogenVf) the full subcategory having as objects those
modulesX such that there is an epimorphisifiy — X (or a monomorphisnX — Mp,
respectively), withMo € addM . Finally, we denote the projective (or injective) dimension
of a moduleX by pdX (or id X, respectively).

Unexplained notions and facts needed on marhn be found in [8,21].

1.2. Representation dimension

We refer the reader to [7] for the original definition. We shall rather use the following
characterisation, used in [7].

Definition. Let A be a nonsemisimple Artin algebra. The representation dimension
repdim. A of A is the infimum of the global dimensions of the algebras Ehdvhere
M is a generator and a cogenerator of rdod

The following language is useful when dealing with representation dimension. Given an
A-moduleM, a functorF from (addM)°P to the categorydb of abelian groups is called
finitely presentedor cohereny if there exists a morphisnfi : My — Mg in addM inducing
an exact sequence of abelian groups

Homyu (M, f)
_

Homy (M, M7) Homy (M, Mg) — F(M) — 0.

We denote byFy, the category of all finitely presented functors frgaddM)°P to 4b.

Thus, a functor : (addM)°P — Ab is finitely presented if and only if there exists a mor-
phism f : M1 — Mg inducing an exact sequence of functors

Homy (—

Homy (—, My) P Homy(—, M) — F — 0

from (addM)°P to Ab. It was shown in [7] that the categori¢s, and modEndM) are
equivalent. The next lemma is well known [7,14,15,26].

Lemma. Let A be an Artin algebrays be a positive integer, and/ be a generator—
cogenerator oinodA. Thengl.dim.EndM < n + 1 if and only if for eachA-moduleX,
there exists an exact sequence

O->M,—---—> M —X—>0
with M; in addM for all i, such that the induced sequence of functors
0— Homy(—, M;)) —» --- - Homy (—, M1) - Homy(—, X) - 0

is exact inFy,. In particular,repdim. A <n + 1.
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The above considerations may equivalently be expressed in the language of relative
homological algebra, as developed by Auslander and Solberg in [10]: indeed, the lemma
above says exactly that, for each modX¥lgthere exists an exact sequence

O—->M,—>---—> M —>X—>0
(with M; in addM for all i), which is addV/-exact.

1.3. The following lemma is also well known and follows from the fact that, for any
(finitely generated) modul® over an Artin algebrai, any A-moduleX admits an add/ -
approximation. We include the proof because it is useful for our future considerations.

Lemma. Let A be an Artin algebra and/ be anyA-module. Then, for any-moduleX,
the functorHomy (—, X) : (addM)°P — Ab is finitely presented.

Proof. Let {g1,..., g4} be a set of generators of the EMdmodule Hom, (M, X). The
morphismgo = [g1, ..., ga] from Mo = M“ to X has the property that the induced se-
qguence

oM 9, Homy (—, X) — 0

is exact inFy;. Considering the kernel gf yields similarly a modulé/; in addM, and a
morphismgy : My — Mg such that the sequence

Homy (—

H —
,81) Homy (—, Mo) omy (

Homy (—, M7) HOMA(=-80). Hom, (=, X) — 0

isexactinFy. O

We note that the displayed projective presentation of Hom X) is usually not in-
duced by an exact sequence

Mi— Mg— X — 0.

This is however clearly the case when batland KeKgp) are generated byf. In Section 2
we give conditions for this to be the case.

1.4. We have considered a projective presentation for the functor HemX). We
now look at a projective cover.

Lemma. Let A be an Artin algebra, and¥ be anyA-module. IfX € GenM, then there
exists an epimorphisnfy : Mg — X, with My € addM, and such that

Homy (—

Homyu (—, Mop) —’f°>> Homuy(—, X) — 0

is a projective cover irFyy.
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Proof. Since X € GenM, there exists, by the discussion in 1.3, an epimorphism
f1:M1— X, with My € addM such that

Homy (—, M1) — Homy(—, X) — 0
is exact inF,,. SinceF), is equivalent to moEndM), we have a projective cover
Homy (—, Mo) - Homy(—, X) — O

in Fyr, with Mg € addM. We now claim that there exists a morphigfiag: Mo — X such
that = = Homu (—, fo). The projectivity of Hom (—, Mp) in F, yields a morphism
o :Homy (—, Mg) — Homu(—, M1) such thatr = Homy(—, f1)o. Since Mg, M1 €
addM, Yoneda’'s lemma gives a morphisin My — M1 such thatec = Homy(—, k).
Hencer = Homy (—, f1) Homy(—, k) = Homy (—, f1h) and settingfo = f1h establishes
our claim.

There remains to show thgb is surjective. Sincé/; € addM, the morphismfy in-
duces an exact sequence

Homy (M1, Mo) Homa (M1, fo), Homy (M1, X) —> 0
in Ab. Thus, we finde : M1 — Mg such thatfpg = f1. Sincef; is surjective, soisp. O
1.5. We leave to the reader the straightforward proof of the following lemma.

Lemma. Let A be an Artin algebra andp: Pp — X be a projective cover imodA. If we
have a commutative diagram

fi
P040>X

v

P

with P projective, therh is a section.

2. Tilting and tilted algebras

2.1. Let A be an Artin algebra. AmM-module T is atilting moduleif pd T4 < 1,
Extl (7, T) = 0 and there exists a short exact sequence Oty — T; — T, — 0,
with 7/, T” € addT . It is well known that any tilting moduld’s induces a torsion pair
(T(T), F(T)) in modA, where7 (T) = GenT = {X,4 | Ext%(T, X) =0} and A/(T) =
{X 4 |HOM4 (T, X) =0}. Thus, in particularDA € 7(T).

The endomorphism algebra of a tilting module over a hereditary algebra is said to be
tilted.
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We introduce some further terminology. L&tbe an Artin algebra, pathin ind A from
X to Y is a sequence of honzero morphisms

X=X90—>X1—> ---— X, =Y ()

with all the X; indecomposable. A se&f of indecomposable modulesdsnvexf for any
X,Y € ¥ and any pathx) from X to Y in ind A, all the X; lie in X'. A tilting module T
is convexprovided the sef’; = ind A NaddT of all indecomposable summands Bfis
convex.

A class of pairwise nonisomorphic indecomposalAlenodules is called @omplete
slicein modA (see [21,22]) if it satisfies the following conditions:

(1) U =@ M is a sincere module (that is, HoraP, U) # O for every projective
A-moduleP).

(2) X is convex.

(3) If0— L —~ M — N — 0is an almost split sequence, then at most ong ahd N
lies onX. Furthermore, if an indecomposable summand/dies in X, then eitherL
or N liein X.

It is shown in [21] (see also [1, (5.2)]) that an algebras tilted if and only if modA
contains a complete slice. Furthermore, in this dése ,,. 5 M is a tilting module with
EndU hereditary.

Lemma. An Artin algebraA is tilted if and only if there exists a convex tiltilgmoduleT .
In this case(7 (T), F(T)) is a split torsion pair and¥y is a complete slice.

Proof. Assume that is tilted, and letl’ be the direct sum of the indecomposables lying
on a complete slice. TheR is convex and En@ hereditary. Therefore, by [1, (3.6)]; is
separating henc€ (T, F(T)) splits.

Since the necessity follows from the well-known properties of complete slices, we prove
the sufficiency using Bakke’s theorem (see [11] or [1, (5.3)]). Ldbe a convex tilting
A-module. We define a torsion paif’, F) as follows: Let7 be the full additive subcate-
gory of modA having as indecomposable objects the modiXlesich that there is a path
T'— ... — X, with T’ € X7, and letF be the full additive subcategory generated by
the remaining indecomposables. Thegh, F) is a split torsion pair. It is shown in [11],

[1, (5.3)] that, if U denotes the direct sum of a complete set of representatives of the iso-
morphism classes of indecomposable Ext-projectives {in the sense of Auslander and
Smalg [9]), thenU is a tilting module andl” = 7 (U), F = F(U). Moreover, End’/ is
hereditary (so that is tilted).

In order to complete the proof, it suffices to show thiat: T'. For this purpose, we claim
that T is Ext-projective in7: indeed, assume there exiét € X1, an indecomposable
moduleX’ in 7 and a nonsplit short exact sequence

0O X >E—->T —0.
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Then there exist an indecomposable summahdf E and a pathX’ — E' — T’ in
indA. On the other hand¥X’ € 7, so there exisT” € ¥ and a pathl”’ — .- — X’
in ind A. Considering the composed paff — --- — X’ — E’ — T’ and applying con-
vexity yields X’ € Xr. Therefore,X’ € addT and the given short exact sequence splits,
a contradiction which establishes our claim.

By [1, (1.8)] we get am-moduleV such thaty/ = T @ V. However,T itself is a tilting
module. The definition ot/ and Bongartz’ lemma [1, (2.6)] implyy = T. The proof is
now complete. O

2.2. Let A be an Artin algebra, an#? be anA-module. It follows from 1.3 and 1.4
that, for X € GenM, there exists a short exact sequence

O—>K—>Moﬁ>X—>O

such that Hom(—, fo) : Homy (—, M) — Homy (—, X) is a projective cover itfFy,. We
call such a sequence an addapproximating sequence fdf. In the following technical
proposition we collect some properties of approximating sequences.

Proposition. Let A be an Artin algebraM =T & N be anA-module,X € GenM and
0— K — My — X — 0 be anaddM -approximating sequence fof.

() If Ext} (T, M) =0, thenExt} (T, K) = 0.

(b) If T4 is a tilting module andV € 7(T), thenK € 7(T).

(c) If N=0andM =T is a tilting module then, for every indecomposable sumnihd
of K, we haveHomyu (K’, T) #£ 0.

(d) If N=0andM =T is a convex tilting module, theki € addM .

(e) If N =DA and K’ is an indecomposable summandofsuch thatid K’ < 1, then
Homy (K', T) # 0.

(f) If N=DA andT is a convex tilting module, theki € addT .

Proof. (a) By hypothesis, the given approximating sequence is of the form
0>K—->TpdNo— X—0
with Tp € addT, Ng € addN . Applying Homy (7', —) yields an exact sequence
0— Exti (T, K) — Exti(T, To ® No).

Since the assumption implies that EKT, To @ Ng) = 0, the statement follows.

(b) Clearly,N € T(T) impliesM € 7(T) and so7 (T) = GenM. SinceT is a tilting
module, it follows from (a) that E%\t(T, K)=0.HenceK € 7(T).

(c) This is trivial.

(d) Let K’ be any indecomposable summandkbf Since, by (b),K € 7(T), we have
Homyu (T, K’) # 0. Also, by (c), Hom (K’, T) # 0. Convexity yieldsk’ € addT. Thus
K e addr.
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(e) We may write the given approximating sequence in the form

81
0—)K@To@]o%){—)0

with Tp € addT and Iy injective. AssumeK’ is an indecomposable summandifsuch
thatidK’ < 1. Suppose also that HomK’, T) = 0. Thus, in particularg1 (K’) = 0. Hence
we have a commutative diagram with exact rows

g2IK’ 1
0 K’ Io 14 0

g 1L
[g2] [f1f2]

82
0——=K——=To®lpb —=X—>0

wherei : K’ — K is the inclusion map and is induced by passing to cokernels. Since
id K’ < 1, the modulel’ is injective. Sincef, = hf’, we have a commutative diagram in
modA

To® I’

10
NG
[f1/2]
X

To® Io

which induces a commutative diagramy,

1o Homu(—, To® I')

Homy (—,[0 f/]) Homy (—,[ f1h])
Homyu (—,[f1/2D

Homy (—, To @ Ip) Homy (—, X)

Sincel!’ is injective,To @ I’ € addM, so that Hom (—, Tp & I) is projective. By 1.5,
Homu (—, [ § fo-,]) is a section. Sincé @ lo, To ® I’ € addM, then|[ 5 J9,] is a section. In
particular, /' is injective. But this impliek’ = 0, an absurdity.

(f) Let K’ be any indecomposable summandkbfBy (b), the moduleX”’ is in 7(T),
so that Hon(T, K') is nonzero, and i&’ is less than or equal to one. Thus, by (e),
Homy (K’, T) # 0. Convexity yieldsk’ € addT. HenceK € addT. O

2.3. We are able to prove our first main theorem.

Theorem. Let A be a tilted algebra X’ be a complete slice imodA, T = . U and
M=A®T® DA. Thengl.dim.End M) < 3. In particular, repdim. A < 3.
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Proof. By 1.2 it suffices to find, for each indecomposallenodule X, a short exact
sequence

O—- M — Myg— X—0
with Mo, M1 € addM, such that the induced sequence
0 — Homy (—, M1) - Homy (—, Mg) - Homuy(—, X) — 0

is exact inFy,.

Assume firstthak € 7(T). ThenpdX <1.Let0— Py — Pp ﬁ> X — 0be aprojec-
tive resolution ofX . SinceT @ DA € T (T) andX € F(T), we have Hom(T @ DA, X) =
0. Therefore Hom(M, X) = Homy (A, X) and

Homy (—, Po) Homa(—.fo), Homy(—, X) — 0

is exact inFy.
Letnow X € 7(T). SinceX € 7(T) = GenT) = GenT & DA), there exists, by 1.4,
an add7 @ DA)-approximation ofX

O-K—>Tg®dIlp— X—0

with Tp € add T') and Iy injective. Since, by 2.17T is a convex tilting module, it follows
from 2.2(f) thatK € addM. Since Hom (—, fp) is a projective cover itFrgpa, invoking
1.2 concludes the proof.O

3. Quasi-tilted algebras

3.1. We refer to [16] for the original definition of quasi-tilted algebras. We use
the following equivalent one: an Artin algebra is quasi-tilted if gl.dim. A < 2
and, for everyX € indA we have pd& < 1 or idX < 1, see [16]. Another charac-
terisation is useful: letC4 (or R4) be the full subcategory of ind having as ob-
jects all the modulesX such that, whenever there exists a path-» --- — X (or
apathX — --- - Y) in indA, then pdr <1 (or idY < 1, respectively). Them
is quasi-tilted if and only ifA4 € addC,4, or if and only if DAy, € addR, (see
[16, (11.1.4)]). Moreover,Ls UR4 =ind A, see [16, (11.1.13)]. We conjecture that,Afis
quasi-tilted, then regim. A < 3. A first step in this direction is the following proposition.

Proposition. Let A be a quasi-tilted algebra which is not tilted, and et = A & DA.
Thengl.dim.End, (M) < 4. In particular, repdim. A < 4.

Proof. It suffices to show that, for any indecomposable moddleve have pd Hom(M,
X)End, (M) < 2.
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Assume firstX € £4. Then pdX < 1. Let 0— P;1 — Py fo, X — 0 be a projec-
tive resolution. Suppose HomiDA, X) # 0. SinceX € L4 and L4 is closed under
predecessors, there exists an injectivelin. But then A is tilted, by [16, (11.3.4)].
Hence Hom (DA, X) = 0, from which we deduce that Hopi—, Pp) Homa (= fo),
Homy (—, X) — 0 is exact inFy,. Therefore pd Hom(M, X)end, (m) < 1.

Ifnow X ¢ L4, thenX € R4. Consider an adf -approximating sequence

O—->K—>P®lp—X—0

with Pp projective and injective. If K € addL 4 then, by the first case considered above,
we have pdHom(M, K)end,(m) < 1. Therefore pdHom(M, X)end,(m) < 2 and we
have finished. Assume thus thidthas an indecomposable summaadying in R4 \ L4.
SincePy € addL 4 andL 4 is closed under predecessors, we have klgkii, Py) = 0. But
then 2.2(e) yields i&’ > 2, a contradiction which completes the proofa

3.2. We notice that, ifA is quasi-tilted but not tilted, then HondD A, A) = 0, hence
Enda(A® DA) ~ (4, 9), where the algebra structure is induced from the bimodule struc-
ture of DA. This is a (finite dimensional) quotient of the repetitive algebrd gknown as
theduplicated algebrai of A (see, for instance, [5,6,17]). It is shown in [5, (1.1)] that, for
any Artin algebrad, we have

gl.dim. A +1<gl.dim A <2gldim. A+ 1.
Thus, if A is quasi-tilted but not hereditary, then
3<gl.dim A <5.

The preceding proposition improves the upper bound of the preceding inequality, thus
answering the question in [6, (5.2)]. We give an example of a (tame) quasi-tilted algebra
which is not tilted and such that.dim. A = 4.

Example. Let k be a field, andA be the finite-dimensional-algebra given by the quiver

2 By 5
L L 4
V1 A 0!\1
1,y 3 2 6 a8
. . )
T ay "

e
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bound by the relations11y1 + a2B2y2 + asfzys = 0. This is a tubular algebra (see
[21, p. 268]). In this case the quiver df constructed as shown in [17, (2.4)] is

2 [51 5 2! [-}"1 5’
e — O ’ ® @
11 oy 11 o'y
1 v, 3 B2 © a, .8 ' v N R
[ [ ] L L L] L

and
!/
5 6 7 8 818
i} 2 3 4 567
Aj=le®e, ® . ® ., ® 2 ® 3 & 4 & ® 567@
1 1 1 234
1 1 1 234
11
1
2/ 3/ 4/ 5/ 6/ 7/ 8/
1/ 1/ 1/ 2/ 3/ 4/ 5/ 6/ 7/
® 8 & 8 & e 1l @l ¢ 234

8
5 6 7 8 8 8 r v
4 5 6 7 8

(where indecomposable projectives are represented by their Loewy series). It is easy to
see that, ifS is the simpleA-module corresponding to the poirit &en pdS; = 4. Since
by 3.1, gldim. A < 4, we infer that gdim. A = 4.

4. Lauraalgebras

4.1. An Artin algebra is daura algebraif £4 U R4 is cofinite in indA, and it is a
strict laura algebraif it is laura but not quasi-tilted. We refer to [2—4,20,24] for properties
of laura algebras. We recall that, i is a strict laura algebra, then it ieft and right
supported3, (4.4)]. In other words, i (or F) denotes the direct sum of a complete set of
representatives of the isomorphism classes of indecomposable Ext-injective<in éatd
Ext-projectives in ad® 4, respectively), then adfly = CogenE and addR 4 = GenF.
Moreover, if A, is the endomorphism algebra of the direct sum of all indecomposable
projectives inL 4, then A, is the direct product of tilted algebras, and the restrictio of
to each of the directed componentsAf is a convex tilting module. One defines dually
A,, which is also a direct product of tilted algebras, and the restrictidn wf each of the
connected components 4f, is a convex tilting module [3, (4.2), (5.1)].

Here, we letA be a strict laura algebra, and we Ftbe the direct sum of all indecom-
posableA-modules not lying inC4 U R 4 (this sum is finite, becauséis laura).

We may now prove the main result of this section.
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Theorem. Let A be a strict laura algebra, and leM = A® E® N @& F @ DA, with
E, F, N as above. Thegl.dim.End, (M) < 3. In particular, repdim. A < 3.

Proof. As inthe proof of 2.3 it suffices to show that, for any indecomposabiteoduleX,
we have pd Hom(M, X)end, m) < 1.

Suppose first thaX € L4 \ R4. Clearly, we may assume that¢ addM and consider
a projective resolution 8> Py — Pp— X — 0. If Homs (DA, X) # 0, thenX € addE,
by [3, (3.1)], soX € addM, a contradiction. Therefore HopiD A, X) = 0. Moreover,
Homyu (N, X) =0, sinceN € addindA \ (L4 U R4)), with X € L4, and L4 is closed
under predecessors. On the other hand, ki@ X) # 0 implies X € R 4, contradicting
our assumption. This shows that Hei#, X) = 0. Thus the sequence

0— Homy(—, P1) - Homy (—, Pg) > Homy(—, X) — 0

is exact inFy, and so pd Hom(M, X)end, (i) < 1.
If XeindA\ (L4 UR,),thenX € addN C addM and there is nothing to show.
Finally, letX € R4. ThenX is anA,-module. MoreoverX is generated by. There-
fore, by 1.4, there exists an add® DA ,)-approximating sequence

0— FL— Fod Ip2% X -0
with Fp € addF and Iy injective, so that
Homy (—, fo) :Homyu (—, Fo @ Ip) — Homyu (—, X)

is a projective cover iFrgpa,- SINCEF is a convex tiltingA ,-module, it follows from
2.2(f) thatF1 € addF. Moreover,F is a slice module in mod, and addk 4 = GenF, so
that any morphism from a module in idd\ R 4 to X factors through¥, and hence through
Fo @ Ip. Therefore the sequence

0— Homyu (=, F1) — Homy (—, Fo @ Io) ™0, Hom, (—, X) — 0

is exact inFy, and so pd Hom(M, X)end, (») < 1. The proof is now complete.O

As a direct consequence of this theoremAiis a strict shod algebra [12], or a strict
weakly shod algebra [13], then rejm. A < 3.

4.2. We recall that theveak representation dimensianrepdim. A of an Artin algebra
A is the infimum of the global dimensions of the endomorphism algebras of the generators
of modA. Clearly, wrepdim. A < repdim. A and also wepdim. A < gl.dim. A. Thus,
the next corollary follows immediately from our theorem in 4.1 and the fact that quasi-
tilted algebras have global dimension at most 2.

Corollary. Let A be a laura algebra, thew.repdim. A < 3.
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Remark. In the case wherd is a strict laura algebra, we can be more preciseMet
A®N®E @ F,whereE, F andN are as above. Then.dim.EndM is at most 3. Indeed,
we may repeat in this case the proof of 4.1, since the existence of an-agproximating
sequence 6> F; - Fp — X — 0 for X € R4, with Fp, F1 € addF, is granted by 1.4
and 2.2(d).

4.3. We recall that the global dimension of a laura algebra may be infinite and, even,
such an algebra may have infinitely many isomorphism classes of indecomposable modules
with infinite projective dimension, as is shown by the following example of [2, (2.3)]. Let
k be afield, andA be the radical square zekealgebra given by the quiver

R O

. e . .
-— —

It was shown in [18] that, if an Artin algebrd verifies repdim. A < 3 (or even
w.repdim. A < 3) then its finitistic dimension fidim. A is finite. We thus obtain the fol-
lowing corollary.

Corollary. Let A be a laura algebra, thefin.dim. A < co.

If, for instance, A is the radical square zero algebra above, then it is easily seen
that findim. A < 2 (for instance, by computing the Auslander—Reiten quived pkee

[2, (2.3)]).
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