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Abstract

We prove that every finite non-abelian group G such that ®(G) = 1 satisfies the inequality |G’| >
[G:Z(G)N'/2.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

All groups in this paper are finite. We use the standard notation Z(G), @ (G) for the center
and the Frattini subgroup of G. We use further the notation F'(G) for the Fitting subgroup of G
and U (G) for the nilpotent residual of G (i.e., U(G) is the smallest normal subgroup of G such
that the respective quotient is nilpotent).

Our main result is the following theorem, which was conjectured in [6] for a solvable group
G # 1 such that @(G) = Z(G) = 1.

Theorem A. Let G be any non-abelian group such that ® (G) = 1. Then

G| > [G: 2]
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Notice that the family of Frobenius groups of order p(p — 1), where p is a prime, shows that
the inequality in Theorem A cannot be improved to |G’| > [G : Z(G)]/?F€ for any constant
€ > (. Furthermore, as is shown in [6], Example A3 (see also [2]), the assumption @ (G) =1
cannot be omitted in Theorem A. We note that for proving Theorem A we needed to use the
well-known k(G V')-conjecture, whose proof was recently completed by Gluck, Magaard, Riese
and Schmid [9]. We note further that our proof includes a result on the solvable residual of a
group with a trivial Fitting subgroup (see Proposition 2.4).

In [6] we proved the inequality |G’| > |G|'/3 (see Corollary Al there) for a solvable group
G # 1 such that @(G) = Z(G) = 1. Moreover, as explained in [10], this result can be sharpened
(by an easy modification of the proof) by considering U (G) (which is, evidently, a subgroup
of G'):

Theorem 1.1. (See [10], end of Section 1.) Let G # 1 be a solvable group such that ®(G) =
Z(G)=1. Then |U(G)| > |G|'/3.

The following example shows that the inequality in Theorem 1.1 cannot be improved to
UG)| > |G|

Example 1.2. Let H be the Sylow 2-subgroup of GL;(3). Then H is a non-abelian group of
order 16. Let V be the space of all row vectors of length 2 over the field Z3. Then H acts on
V by right multiplication and we consider the respective semi-direct product G = V H. Then
IG|=16-9=144, ®(G)=Z(G)=1and |U(G)|=|V| =9 < |G|'/2.

However, we still have the following theorem with respect to U (G). We denote by M and F
the sets of Mersenne primes and Fermat primes, respectively.

Theorem B. Let G be a non-abelian group of order p*qP, where p and q are primes, p < q,
o, B > 1. Assume @ (G) = 1. Then

UG =22 [6:26)]",

provided that (p, q) ¢ (2, M) U (2, F).

Notice that Example 1.2 above shows that certain restrictions on the primes p, g in Theorem B
cannot be omitted. In view of Theorem B, we pose the following conjecture.

Conjecture 1.3. Let G be a non-abelian group of odd order such that ® (G) = 1. Then |U(G)| >
[G : Z(G)]'/? (maybe even |U(G)| =22 -[G : Z(G)]'/?).

Note added in proof
Conjecture 1.3 was verified in the paper [5].

We conclude this section by mentioning briefly some other recent results on the size of the
commutator subgroup. It is proved in [11] (see Theorem A there), that any non-abelian group
G with all Sylow subgroups abelian (no condition on @ (G)) satisfies the inequality |G’| > [G :
Z(G)]'/2. Notice that Example A3 in [6] shows that this is not valid for {p, g}-groups, when
one Sylow subgroup is abelian and the other is metabelian. Finally, in [10] there are results
(Theorems A and B there) ensuring that any non-nilpotent group G (no condition on @ (G)) has
certain factors K/M, where K is subnormal in G and M is nilpotent, such that |U(K/M)| >
|K/M|'2.
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2. Proof of Theorem A

In our proof we use the following result (see [9,12]). Throughout this section, k(G) denotes
the number of conjugacy classes of G.

The k(GV)-Theorem. Let p be a prime. Let G be a p’-group acting faithfully on an elementary
abelian p-group V. Then k(GV) < |V | (where GV is the natural semi-direct product).

We shall use the following immediate corollary.

Corollary 2.1. Let p be a prime. Let G be a p’-group acting faithfully on a non-trivial elementary
abelian p-group V. Then k(G) < |V|.

Proof. It is enough to show that k(G) < k(G V). Notice first that if x, y € G are not conjugate
in G, then they are not conjugate in GV. Indeed, assume on the contrary x8" =y for g € G,
v e V. Then [x8,v] = (x8)~ !y, implying (x¢)"'y e GNV =1 and x% = y, a contradiction.
Thus k(G) is equal to the number of GV -conjugacy classes which intersect G. Since GV has
also a conjugacy class outside G, we have k(G) < k(GV). O

The following two lemmas are essential for the proof of Theorem A.

Lemma 2.2. Let G be a group with a minimal normal subgroup N, where N is a p-group for a
prime p. Suppose N < Cg(U(G)). Then k(G/Cg(N)) < |N|.

Proof. Since Cg(N) > U(G), the group G/Cg(N) is nilpotent. Moreover by [15, Exer-
cise 654(ii)], 0,(G/Cg(N)) = 1. Thus G/Cg(N) is a p’-group acting faithfully on the ele-
mentary abelian p-group N, and the result follows by Corollary 2.1. O

For the proof of Theorem A the following lemma will be needed only in the case @(G) = 1.
However, for the sake of completeness, we provide a more general result.

Lemma 2.3. Let G # 1 be a meta-nilpotent (i.e., nilpotent by nilpotent) group. Then

(i) k(G/F(G)) T/ZIF(G)I//?(G)I-
o IGI'|®(G)|
(11) |F(G)| > \(G/F(G))/ll/z .
Proof. Assume first that @ (G) = 1. Then F(G) is abelian. Moreover, by a result of Gaschiitz
[7, Kapitel III, Satz 4.5], F(G) = Dri<i<mNi, a direct product of minimal normal subgroups
of G. We have N; < Cg(F(G)). Since G is meta-nilpotent we have U (G) < F(G), and thus
N; < Cg(U(G)). Hence, by Lemma 2.2, k(G/Cg(N;)) < |N;| for each i.

Denote Ly = Ny, Ly = N{Na,...,L, = N{Ny--- Ny, = F(G). We prove by induction that
k(G/Cg(L;)) < |L;| forall 1 <i < m. This is already known for i = 1. Suppose it is proved for
j and we now obtain it for j + 1. We have

k(G/Cg(Lj)) <ILjl. (1)
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Notice that G/Cg(Ljy1) = G/(C(LjNji1)) = G/(Cg(L;) N Cg(Njy1)). Now Cg(Lj)/
(Cg(Lj) N Cg(Njy1)) is a normal subgroup of G/(Cg(L;) N Cg(Nj41)) and the respective
quotient is isomorphic to G/Cg (L ). Thus, by (3) in [8], we have

k(G/Ca(Lj41) <k(G/Cg(Lj))-k(Ca(Lj)/(Co(Lj)NCG(Njt1))). (2)

Notice further that Cg(L;)/(Cg(Lj) N Cg(Nj41)) is isomorphic to Cg(L;)Cg(Njy1)/
CG(Nj41). This last group acts coprimely (recall the proof of Lemma 2.2) and faithfully
on Njyq, thus kK(Cg(L;j)Cc(Njt+1)/Cc(Njt1)) < [Njt1| by Corollary 2.1. Using this, we
obtain from (1) and (2) that k(G/Cg(Lj+1)) < |Ljl-INjt1] =|Lj4+1], which completes the
inductive step. Now, since Cg(L;,) = Cg(F(G)) = F(G), part (i) of the theorem has been
proved for the case @(G) = 1.

Suppose now that @(G) > 1 and denote G* = G/®(G). Since F(G*) = F(G)/®(G) [14,
5.2.15(ii)], we obtain that G*/F(G*) is isomorphic to G/F(G). Hence, by applying part (i)
to G* (which has a trivial Frattini subgroup), we obtain part (i) for G.

It remains to prove part (ii). Since [G : G'] < k(G) for any group G, part (i) im-

plies [(G/F(G)) : (G/F(G))] < [F(G) : ®(G)]. Thus |F(G)|* > % and the result
holds. O

The main part of the proof of Theorem A is absorbed in the following proposition.
Proposition A. Let G # 1 be any group such that ®(G) = Z(G) = 1. Then
G’ > |G|'2.

Proof. We apply induction on |G| (there are certain similarities between the current proof and
the proof of [6, Theorem A]). We consider first the case F := F(G) > 1. We put

Fo/F=d(G/F), Fy/Fy=Z(G/Fp).
Since @(G/Fpy) = 1, we obtain by Lemma 7 in [6] that
Z(G/F)=®(G/F)=1.

Now F is meta-nilpotent since (F1/F)/®(G/F) is abelian (the details are given in the proof
of [6, Theorem A]). Furthermore F is abelian and (by the mentioned above result of Gaschiitz)
F = DrN;, where each N; is minimal normal in G. Since Z(G) = 1, we have N; < G’ for each
iandso F < G'.

Suppose first that F1 = G. Then G is meta-nilpotent and Lemma 2.3 is applicable to G.

2
Thus |F| > % which implies IG'|V/2 . |F|Y/? > |G|'/2. From F < G’ it follows now that

|G'| > |G|'/?, as required.
Thus we may assume from now on that F; < G. Applying the inductive hypothesis to the
group G/ Fy, we obtain

[G':G'NF1=|GFi/F|=|(G/F)|>|G/F|'> 3)
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Furthermore,
|G'NF\| > |F{F|=|F|-|FF/F|=|F|-|(F\/F)|. 4)

Now since F = F(F1), @(F;) =1 and F; is meta-nilpotent, we deduce by Lemma 2.3 that

| F| % Combining this with (4) we have
|F1|1/? 12
IG' N Al > s | EY | = 1R |G Y PR )

From (3) and (5) follows now |G’| > |G|'/2, as required. This completes the inductive argu-
ment in the case F(G) > 1. Hence, the proof of Proposition A will be completed by proving the
following result. O

Proposition 2.4. Let G # 1 be a group such that F(G) = 1. Let Res(G) denote the solvable
residual of G (i.e., the smallest normal subgroup of G such that the respective quotient is solv-
able; this is the minimal term in the derived series of G). Then

|Res(G)| > |G|'/2.

Proof. Apply induction on |G|. Let N be a minimal normal subgroup of G and let N1/N be
the maximal normal solvable subgroup of G/N. Then F(G/Np) = 1. Suppose first that N1 < G.
Then from F(N1) < F(G) =1 it follows by induction that

|Res(G) N N1| > |Res(Ny)| > |N1|"/2. (6)
By applying further the inductive hypothesis to G/Nj, we obtain
[Res(G) : Res(G) N Ny] = |[Res(G)Ny/N1| = |Res(G/Ny)| > |G/Ny|'/2. (7

Now from (6) and (7) follows |Res(G)| > |G|'/2, as claimed.

Thus we may assume from now on that N; = G, i.e., G/N is solvable and Res(G) = N =T*?,
a direct product, where T is a simple non-abelian group (recall that F(G) = 1) and o > 1 is an
integer. We notice that N is the unique minimal normal subgroup of G. Indeed, suppose on the
contrary there exists another minimal normal subgroup, say M, of G. Then M NN =1 and M
is embedded in the solvable group G /N, contradicting F(G) = 1.

We deduce that CG(N) =1 and N < G < Aut(N) = Aut(T) wr S, (see [15, Lemma 9.24]).
Thus G/N is a solvable group embedded in Out(T) wr Sy. Any element of G/N has the
form (b, o), where b belongs to the base subgroup of Out(T) wr S, and o € S,. Then the
function (b, ) > o is a homomorphism from G/N into Sy. Denote the image of this homo-
morphism by D. Then D is a solvable subgroup of S, and thus, by [4], Theorem 5.8B, |D| <
f(a) :=24@=D/3 Since |G/N| < |Out(T)|% - | D], it follows that |G/N| < |Out(T)|* - f(a) <
|Out(T)|* - 3%. Since Res(G) = N, we want to show that |G/N| < |N|=|T|*. For that, it suf-
fices to check that |Out(T)| < |T'|/3 for each simple non-abelian group 7. Indeed, for T = A,,
n > 5, and for T sporadic we have |Out(T)| < 4 (see [3, remark on p. ix and Table 1]). For the
Chevalley groups the inequality |Out(T)| < |T|/3 is verified by [3, Tables 5 and 6]. Thus the
proof is completed. O
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We are ready now for the final step.

Proof of Theorem A. Since @ (G) = 1, the non-trivial group G/Z(G) satisfies @(G/Z(G)) =
Z(G/Z(G)) =1 by [6, Lemma 7]. Hence, by Proposition A, we have |(G/Z(G))| >
|G/Z(G)|Y/?. Since |G'| > [G'Z(G) : Z(G)] = |(G/Z(G))'|, the theorem is now obtained. O

3. Proof of Theorem B

Like Lemma 2.3, the following lemma will be applied only in the case @ (G) = 1. In its proof,
we use a result on coprime actions, in the case that both groups involved are of prime power
order [13, Theorem 3.3(b)].

Lemma 3.1. Let G # 1 be a meta-nilpotent group of order p®q®, where p and q are primes,
p<4q,a. B> 1.Then|F(G)| >22-|G|'/?-|®(G)|'?, provided that (p. q) ¢ (2, M)U (2, F).

Proof. Suppose first that @ (G) = 1. Then F := F(G) is abelian and F = Dr N;, where each N;
is minimal normal in G. Since G is meta-nilpotent, G/Cg(N;) is nilpotent. It follows by [15,
Exercise 654(ii)], that G/Cg(N;) acts coprimely and faithfully on N;, for each i. Hence, for
each i, one of these groups is a p-group, while the other is a g-group.

Using now [13, Theorem 3.3(b)] and our assumptions on (p, g), we obtain |G/Cg(N;)| <
[Nil/2, and so 2|G| < |N;| - |Cg(N;)| for each i. Now, since F = Dr N;, by repeated use of
[6, Lemma 4] (actually we deal here with a slightly different version of that lemma, since the
inequality is weak; however the reader can check that this version of the lemma is proved like
the original version) we have 2|G| < |F| - |Cg(F)| = |F|? and 2!/2 . |G|'/? < |F|, completing
the proof in the case @(G) = 1. The result for a general group G is easily obtained by using
F(G/®(G))=F/®(G). O

Similarly to the proof of Theorem A, the main part of the current proof is contained in the
following claim.

Proposition B. Let G be a group of order p®qP, where p and q are primes, p < q, a, B > 1.
Assume @ (G) =Z(G) = 1. Then

|UG)| =2"2-1G|'?,
provided that (p, q) & (2, M) U (2, F).
Proof. Note first that G is solvable by Burnside’s theorem. We apply induction on |G| and
proceed similarly to the proof of [6], Theorem A and the proof of Proposition A in the current
paper. Let F := F(G) and put
Fo/F=®(G/F), Fi/Fo=Z(G/Fo).

Then (see the proof of Theorem A)

Z(G/F)=®(G/F) =1,
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and F7 is meta-nilpotent. Hence by Lemma 3.1
|Fl = |F(Fp| =22 | |2, 8)

As @(G) =1, we have that F is abelian and F = Dr N;, where each N; is minimal normal in G.
Since Z(G) =1, [G, N;] = N, for each i, and thus N; < U(G) for each i (see [1, (9) on p. 36]).
Hence F < U(G). If G = F) then the proposition follows by (8). Thus, we may suppose that
G > Fj and apply the inductive hypothesis to the group G/ Fj. Then

[UG): UGN F]=|UG)Fi/Fi|=|UG/Fy)| =2 1G/Fi|'2. ©)
Furthermore by (8) we have
UGN Fi| > |F| =22 |Fy |2 (10)
By (9) and (10) we obtain |U(G)| >2'2.|G|'/2. 1
The final step is done similarly to Section 1.

Proof of Theorem B. Since @ (G) = 1, the non-trivial group G/Z(G) satisfies @(G/Z(G)) =
Z(G/Z(G)) =1 by [6, Lemma 7]. Hence, |G/Z(G)| is divisible by both primes p and g and
Proposition B is applicable to G/Z(G). Consequently, |U(G/Z(G))| > 2% . |G/Z(G)|'/>.
Since |U(G)| 2 [U(G)Z(G) : Z(G)] = |U(G/Z(G))|, the theorem is proved. O
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