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Abstract

We prove that every finite non-abelian group G such that Φ(G) = 1 satisfies the inequality |G′| >

[G : Z(G)]1/2.
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1. Introduction

All groups in this paper are finite. We use the standard notation Z(G), Φ(G) for the center
and the Frattini subgroup of G. We use further the notation F(G) for the Fitting subgroup of G

and U(G) for the nilpotent residual of G (i.e., U(G) is the smallest normal subgroup of G such
that the respective quotient is nilpotent).

Our main result is the following theorem, which was conjectured in [6] for a solvable group
G �= 1 such that Φ(G) = Z(G) = 1.

Theorem A. Let G be any non-abelian group such that Φ(G) = 1. Then

|G′| > [
G : Z(G)

]1/2
.
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Notice that the family of Frobenius groups of order p(p − 1), where p is a prime, shows that
the inequality in Theorem A cannot be improved to |G′| > [G : Z(G)](1/2)+ε , for any constant
ε > 0. Furthermore, as is shown in [6], Example A3 (see also [2]), the assumption Φ(G) = 1
cannot be omitted in Theorem A. We note that for proving Theorem A we needed to use the
well-known k(GV )-conjecture, whose proof was recently completed by Gluck, Magaard, Riese
and Schmid [9]. We note further that our proof includes a result on the solvable residual of a
group with a trivial Fitting subgroup (see Proposition 2.4).

In [6] we proved the inequality |G′| > |G|1/3 (see Corollary A1 there) for a solvable group
G �= 1 such that Φ(G) = Z(G) = 1. Moreover, as explained in [10], this result can be sharpened
(by an easy modification of the proof) by considering U(G) (which is, evidently, a subgroup
of G′):

Theorem 1.1. (See [10], end of Section 1.) Let G �= 1 be a solvable group such that Φ(G) =
Z(G) = 1. Then |U(G)| > |G|1/3.

The following example shows that the inequality in Theorem 1.1 cannot be improved to
|U(G)| > |G|1/2.

Example 1.2. Let H be the Sylow 2-subgroup of GL2(3). Then H is a non-abelian group of
order 16. Let V be the space of all row vectors of length 2 over the field Z3. Then H acts on
V by right multiplication and we consider the respective semi-direct product G = V H . Then
|G| = 16 · 9 = 144, Φ(G) = Z(G) = 1 and |U(G)| = |V | = 9 < |G|1/2.

However, we still have the following theorem with respect to U(G). We denote by M and F
the sets of Mersenne primes and Fermat primes, respectively.

Theorem B. Let G be a non-abelian group of order pαqβ , where p and q are primes, p < q ,
α,β � 1. Assume Φ(G) = 1. Then

∣∣U(G)
∣∣ � 21/2 · [G : Z(G)

]1/2
,

provided that (p, q) /∈ (2,M) ∪ (2,F).

Notice that Example 1.2 above shows that certain restrictions on the primes p, q in Theorem B
cannot be omitted. In view of Theorem B, we pose the following conjecture.

Conjecture 1.3. Let G be a non-abelian group of odd order such that Φ(G) = 1. Then |U(G)| >
[G : Z(G)]1/2 (maybe even |U(G)| � 21/2 · [G : Z(G)]1/2).

Note added in proof

Conjecture 1.3 was verified in the paper [5].

We conclude this section by mentioning briefly some other recent results on the size of the
commutator subgroup. It is proved in [11] (see Theorem A there), that any non-abelian group
G with all Sylow subgroups abelian (no condition on Φ(G)) satisfies the inequality |G′| > [G :
Z(G)]1/2. Notice that Example A3 in [6] shows that this is not valid for {p,q}-groups, when
one Sylow subgroup is abelian and the other is metabelian. Finally, in [10] there are results
(Theorems A and B there) ensuring that any non-nilpotent group G (no condition on Φ(G)) has
certain factors K/M , where K is subnormal in G and M is nilpotent, such that |U(K/M)| >

|K/M|1/2.
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2. Proof of Theorem A

In our proof we use the following result (see [9,12]). Throughout this section, k(G) denotes
the number of conjugacy classes of G.

The k(GV )-Theorem. Let p be a prime. Let G be a p′-group acting faithfully on an elementary
abelian p-group V . Then k(GV ) � |V | (where GV is the natural semi-direct product).

We shall use the following immediate corollary.

Corollary 2.1. Let p be a prime. Let G be a p′-group acting faithfully on a non-trivial elementary
abelian p-group V . Then k(G) < |V |.

Proof. It is enough to show that k(G) < k(GV ). Notice first that if x, y ∈ G are not conjugate
in G, then they are not conjugate in GV . Indeed, assume on the contrary xgv = y for g ∈ G,
v ∈ V . Then [xg, v] = (xg)−1y, implying (xg)−1y ∈ G ∩ V = 1 and xg = y, a contradiction.
Thus k(G) is equal to the number of GV -conjugacy classes which intersect G. Since GV has
also a conjugacy class outside G, we have k(G) < k(GV ). �

The following two lemmas are essential for the proof of Theorem A.

Lemma 2.2. Let G be a group with a minimal normal subgroup N , where N is a p-group for a
prime p. Suppose N � CG(U(G)). Then k(G/CG(N)) < |N |.

Proof. Since CG(N) � U(G), the group G/CG(N) is nilpotent. Moreover by [15, Exer-
cise 654(ii)], Op(G/CG(N)) = 1. Thus G/CG(N) is a p′-group acting faithfully on the ele-
mentary abelian p-group N , and the result follows by Corollary 2.1. �

For the proof of Theorem A the following lemma will be needed only in the case Φ(G) = 1.
However, for the sake of completeness, we provide a more general result.

Lemma 2.3. Let G �= 1 be a meta-nilpotent (i.e., nilpotent by nilpotent) group. Then

(i) k(G/F(G)) < |F(G)/Φ(G)|.
(ii) |F(G)| > |G|1/2·|Φ(G)|1/2

|(G/F(G))′|1/2 .

Proof. Assume first that Φ(G) = 1. Then F(G) is abelian. Moreover, by a result of Gaschütz
[7, Kapitel III, Satz 4.5], F(G) = Dr1�i�mNi , a direct product of minimal normal subgroups
of G. We have Ni � CG(F(G)). Since G is meta-nilpotent we have U(G) � F(G), and thus
Ni � CG(U(G)). Hence, by Lemma 2.2, k(G/CG(Ni)) < |Ni | for each i.

Denote L1 = N1,L2 = N1N2, . . . ,Lm = N1N2 · · ·Nm = F(G). We prove by induction that
k(G/CG(Li)) < |Li | for all 1 � i � m. This is already known for i = 1. Suppose it is proved for
j and we now obtain it for j + 1. We have

k
(
G/CG(Lj )

)
< |Lj |. (1)
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Notice that G/CG(Lj+1) = G/(CG(LjNj+1)) = G/(CG(Lj ) ∩ CG(Nj+1)). Now CG(Lj )/

(CG(Lj ) ∩ CG(Nj+1)) is a normal subgroup of G/(CG(Lj ) ∩ CG(Nj+1)) and the respective
quotient is isomorphic to G/CG(Lj ). Thus, by (3) in [8], we have

k
(
G/CG(Lj+1)

)
� k

(
G/CG(Lj )

) · k(
CG(Lj )/

(
CG(Lj ) ∩ CG(Nj+1)

))
. (2)

Notice further that CG(Lj )/(CG(Lj ) ∩ CG(Nj+1)) is isomorphic to CG(Lj )CG(Nj+1)/

CG(Nj+1). This last group acts coprimely (recall the proof of Lemma 2.2) and faithfully
on Nj+1, thus k(CG(Lj )CG(Nj+1)/CG(Nj+1)) < |Nj+1| by Corollary 2.1. Using this, we
obtain from (1) and (2) that k(G/CG(Lj+1)) < |Lj | · |Nj+1| = |Lj+1|, which completes the
inductive step. Now, since CG(Lm) = CG(F(G)) = F(G), part (i) of the theorem has been
proved for the case Φ(G) = 1.

Suppose now that Φ(G) > 1 and denote G∗ = G/Φ(G). Since F(G∗) = F(G)/Φ(G) [14,
5.2.15(ii)], we obtain that G∗/F (G∗) is isomorphic to G/F(G). Hence, by applying part (i)
to G∗ (which has a trivial Frattini subgroup), we obtain part (i) for G.

It remains to prove part (ii). Since [G : G′] � k(G) for any group G, part (i) im-
plies [(G/F(G)) : (G/F(G))′] < [F(G) : Φ(G)]. Thus |F(G)|2 >

|G|·|Φ(G)|
|(G/F(G))′| and the result

holds. �
The main part of the proof of Theorem A is absorbed in the following proposition.

Proposition A. Let G �= 1 be any group such that Φ(G) = Z(G) = 1. Then

|G′| > |G|1/2.

Proof. We apply induction on |G| (there are certain similarities between the current proof and
the proof of [6, Theorem A]). We consider first the case F := F(G) > 1. We put

F0/F = Φ(G/F), F1/F0 = Z(G/F0).

Since Φ(G/F0) = 1, we obtain by Lemma 7 in [6] that

Z(G/F1) = Φ(G/F1) = 1.

Now F1 is meta-nilpotent since (F1/F )/Φ(G/F) is abelian (the details are given in the proof
of [6, Theorem A]). Furthermore F is abelian and (by the mentioned above result of Gaschütz)
F = DrNi , where each Ni is minimal normal in G. Since Z(G) = 1, we have Ni � G′ for each
i and so F � G′.

Suppose first that F1 = G. Then G is meta-nilpotent and Lemma 2.3 is applicable to G.

Thus |F | >
|G|1/2

[G′:F ]1/2 , which implies |G′|1/2 · |F |1/2 > |G|1/2. From F � G′ it follows now that

|G′| > |G|1/2, as required.
Thus we may assume from now on that F1 < G. Applying the inductive hypothesis to the

group G/F1, we obtain

[G′ : G′ ∩ F1] = |G′F1/F1| =
∣∣(G/F1)

′∣∣ > |G/F1|1/2. (3)
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Furthermore,

|G′ ∩ F1| �
∣∣F ′

1F
∣∣ = |F | · ∣∣F ′

1F/F
∣∣ = |F | · ∣∣(F1/F )′

∣∣. (4)

Now since F = F(F1), Φ(F1) = 1 and F1 is meta-nilpotent, we deduce by Lemma 2.3 that

|F | > |F1|1/2

|(F1/F )′|1/2 . Combining this with (4) we have

|G′ ∩ F1| > |F1|1/2

|(F1/F )′|1/2
· ∣∣(F1/F )′

∣∣ = |F1|1/2 · ∣∣(F1/F )′
∣∣1/2 � |F1|1/2. (5)

From (3) and (5) follows now |G′| > |G|1/2, as required. This completes the inductive argu-
ment in the case F(G) > 1. Hence, the proof of Proposition A will be completed by proving the
following result. �
Proposition 2.4. Let G �= 1 be a group such that F(G) = 1. Let Res(G) denote the solvable
residual of G (i.e., the smallest normal subgroup of G such that the respective quotient is solv-
able; this is the minimal term in the derived series of G). Then

∣∣Res(G)
∣∣ > |G|1/2.

Proof. Apply induction on |G|. Let N be a minimal normal subgroup of G and let N1/N be
the maximal normal solvable subgroup of G/N . Then F(G/N1) = 1. Suppose first that N1 < G.
Then from F(N1) � F(G) = 1 it follows by induction that

∣∣Res(G) ∩ N1
∣∣ �

∣∣Res(N1)
∣∣ > |N1|1/2. (6)

By applying further the inductive hypothesis to G/N1, we obtain

[
Res(G) : Res(G) ∩ N1

] = ∣∣Res(G)N1/N1
∣∣ = ∣∣Res(G/N1)

∣∣ > |G/N1|1/2. (7)

Now from (6) and (7) follows |Res(G)| > |G|1/2, as claimed.
Thus we may assume from now on that N1 = G, i.e., G/N is solvable and Res(G) = N = T α ,

a direct product, where T is a simple non-abelian group (recall that F(G) = 1) and α � 1 is an
integer. We notice that N is the unique minimal normal subgroup of G. Indeed, suppose on the
contrary there exists another minimal normal subgroup, say M , of G. Then M ∩ N = 1 and M

is embedded in the solvable group G/N , contradicting F(G) = 1.
We deduce that CG(N) = 1 and N � G � Aut(N) = Aut(T ) wr Sα (see [15, Lemma 9.24]).

Thus G/N is a solvable group embedded in Out(T ) wr Sα . Any element of G/N has the
form (b, σ ), where b belongs to the base subgroup of Out(T ) wr Sα and σ ∈ Sα . Then the
function (b, σ ) �→ σ is a homomorphism from G/N into Sα . Denote the image of this homo-
morphism by D. Then D is a solvable subgroup of Sα and thus, by [4], Theorem 5.8B, |D| �
f (α) := 24(α−1)/3. Since |G/N | � |Out(T )|α · |D|, it follows that |G/N | � |Out(T )|α · f (α) <

|Out(T )|α · 3α . Since Res(G) = N , we want to show that |G/N | < |N | = |T |α . For that, it suf-
fices to check that |Out(T )| � |T |/3 for each simple non-abelian group T . Indeed, for T = An,
n � 5, and for T sporadic we have |Out(T )| � 4 (see [3, remark on p. ix and Table 1]). For the
Chevalley groups the inequality |Out(T )| � |T |/3 is verified by [3, Tables 5 and 6]. Thus the
proof is completed. �
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We are ready now for the final step.

Proof of Theorem A. Since Φ(G) = 1, the non-trivial group G/Z(G) satisfies Φ(G/Z(G)) =
Z(G/Z(G)) = 1 by [6, Lemma 7]. Hence, by Proposition A, we have |(G/Z(G))′| >

|G/Z(G)|1/2. Since |G′| � [G′Z(G) : Z(G)] = |(G/Z(G))′|, the theorem is now obtained. �
3. Proof of Theorem B

Like Lemma 2.3, the following lemma will be applied only in the case Φ(G) = 1. In its proof,
we use a result on coprime actions, in the case that both groups involved are of prime power
order [13, Theorem 3.3(b)].

Lemma 3.1. Let G �= 1 be a meta-nilpotent group of order pαqβ , where p and q are primes,
p < q , α,β � 1. Then |F(G)| � 21/2 · |G|1/2 · |Φ(G)|1/2, provided that (p, q) /∈ (2,M)∪ (2,F).

Proof. Suppose first that Φ(G) = 1. Then F := F(G) is abelian and F = DrNi , where each Ni

is minimal normal in G. Since G is meta-nilpotent, G/CG(Ni) is nilpotent. It follows by [15,
Exercise 654(ii)], that G/CG(Ni) acts coprimely and faithfully on Ni , for each i. Hence, for
each i, one of these groups is a p-group, while the other is a q-group.

Using now [13, Theorem 3.3(b)] and our assumptions on (p, q), we obtain |G/CG(Ni)| �
|Ni |/2, and so 2|G| � |Ni | · |CG(Ni)| for each i. Now, since F = Dr Ni , by repeated use of
[6, Lemma 4] (actually we deal here with a slightly different version of that lemma, since the
inequality is weak; however the reader can check that this version of the lemma is proved like
the original version) we have 2|G| � |F | · |CG(F)| = |F |2 and 21/2 · |G|1/2 � |F |, completing
the proof in the case Φ(G) = 1. The result for a general group G is easily obtained by using
F(G/Φ(G)) = F/Φ(G). �

Similarly to the proof of Theorem A, the main part of the current proof is contained in the
following claim.

Proposition B. Let G be a group of order pαqβ , where p and q are primes, p < q , α,β � 1.
Assume Φ(G) = Z(G) = 1. Then

∣∣U(G)
∣∣ � 21/2 · |G|1/2,

provided that (p, q) /∈ (2,M) ∪ (2,F).

Proof. Note first that G is solvable by Burnside’s theorem. We apply induction on |G| and
proceed similarly to the proof of [6], Theorem A and the proof of Proposition A in the current
paper. Let F := F(G) and put

F0/F = Φ(G/F), F1/F0 = Z(G/F0).

Then (see the proof of Theorem A)

Z(G/F1) = Φ(G/F1) = 1,
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and F1 is meta-nilpotent. Hence by Lemma 3.1

|F | = ∣∣F(F1)
∣∣ � 21/2 · |F1|1/2. (8)

As Φ(G) = 1, we have that F is abelian and F = DrNi , where each Ni is minimal normal in G.
Since Z(G) = 1, [G,Ni] = Ni for each i, and thus Ni � U(G) for each i (see [1, (9) on p. 36]).
Hence F � U(G). If G = F1 then the proposition follows by (8). Thus, we may suppose that
G > F1 and apply the inductive hypothesis to the group G/F1. Then

[
U(G) : U(G) ∩ F1

] = ∣∣U(G)F1/F1
∣∣ = ∣∣U(G/F1)

∣∣ � 21/2 · |G/F1|1/2. (9)

Furthermore by (8) we have

∣∣U(G) ∩ F1
∣∣ � |F | � 21/2 · |F1|1/2. (10)

By (9) and (10) we obtain |U(G)| � 21/2 · |G|1/2. �
The final step is done similarly to Section 1.

Proof of Theorem B. Since Φ(G) = 1, the non-trivial group G/Z(G) satisfies Φ(G/Z(G)) =
Z(G/Z(G)) = 1 by [6, Lemma 7]. Hence, |G/Z(G)| is divisible by both primes p and q and
Proposition B is applicable to G/Z(G). Consequently, |U(G/Z(G))| � 21/2 · |G/Z(G)|1/2.
Since |U(G)| � [U(G)Z(G) : Z(G)] = |U(G/Z(G))|, the theorem is proved. �
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