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1. Introduction

Let us denote by R = C[x] = C[x1, . . . , xn] the polynomial ring, by An = C〈x1, . . . , xn, ∂1, . . . , ∂n〉 the
complex Weyl algebra of order n and by (Ω•

R ,d) (or simply (Ω•,d)) the complex of polynomial (or
regular) differential forms (i.e. the complex of differential forms with polynomial coefficients) where
d is the exterior derivative.

The elements of An are called linear differential operators with polynomial coefficients. An element
P (x, ∂) in An can be written as a finite sum P (x, ∂) = ∑

α aα(x)∂α where α = (α1, . . . ,αn) ∈ N
n ,

aα(x) ∈ R and ∂α = ∂
α1
1 · · ·∂αn

n . Here ∂i stands for the partial derivative ∂
∂xi

.
For a non-zero polynomial f ∈ R we denote by R f the ring of rational functions

R f =
{

g

f m

∣∣∣ g ∈ R, m ∈ N

}
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and by (Ω•
f ,d) := (R f ⊗R Ω•

R ,d) the complex of rational differential forms with coefficients in R f

where d is the corresponding exterior derivative.
Let us denote by DerC(R) the free R-module of polynomial vector fields (or equivalently of

C-linear derivations of R). Following K. Saito [19] we will denote by DerR(− log f ) (or simply
Der(− log f ) if no confusion is possible) the R-module of logarithmic vector fields with respect to f ,
i.e.

DerR(− log f ) =
{

δ =
n∑

i=1

ai(x)∂i ∈ DerC(R)

∣∣∣ δ( f ) ∈ R · f

}
.

DerR(− log f ) is canonically isomorphic to the R-module SyzR(∂1( f ), . . . , ∂n( f ), f ) of syzygies among
(∂1( f ), . . . , ∂n( f ), f ). This isomorphism associates the logarithmic vector field δ = ∑

i ai(x)∂i with the

syzygy (a1(x), . . . ,an(x),− δ( f )
f ).

If f is a non-zero constant, then Der(− log f ) = DerC(R). So we will assume from now that f is a
non-constant polynomial in R .

It is clear that

f DerC(R) ⊂ Der(− log f ) ⊂ DerC(R)

and then Der(− log f ) has rank n as R-module. The R-module Der(− log f ) does not depend on the
polynomial f but only on the hypersurface D = V ( f ) := {a ∈ C

n | f (a) = 0} ⊂ C
n .

Assume f is reduced (i.e. f is square-free). According to K. Saito [19] a rational differential p-
form ω ∈ Ω

p
f is said to be logarithmic with respect to f (or with respect to the hypersurface

D = V ( f ) ⊂ C
n) if both f ω and f dω are regular (i.e. f ω ∈ Ω

p
R and f dω ∈ Ω

p+1
R ). We denote by

Ω
p
R (log f ) (or simply Ω p(log f )) the R-module of logarithmic differential p-forms with respect to f .

K. Saito [19, Corollary 1.6] proved that Der(− log f ) is a reflexive R-module whose dual is Ω1(log f ).
We denote by (Ω•(log f ),d) the complex

0 → Ω0(log f ) d−→ Ω1(log f ) d−→ · · · d−→ Ωn(log f ) → 0

which will be called the logarithmic de Rham complex and is also, for simple notation, denoted by
Ω•(log f ) if no confusion arises.

Algorithms of computing dimensions and bases of the de Rham cohomology groups Hi(Ω•
f ) are

given by T. Oaku and N. Takayama [15,17] and U. Walther [22]. Here, f is any non-zero polynomial
in n variables. The purpose of this paper is to give algorithms of computing dimensions and bases
of the logarithmic de Rham cohomology groups Hi(Ω•(log f )) as C-vector spaces in the case of two
variables.

1.1. Logarithmic comparison theorem

The rings R and R f have natural structures of left An-module where ∂i acts on a polynomial g
and on a rational function g

f m as the partial derivative with respect to xi .
The de Rham complex of a left An-module M , denoted by DR(M), is by definition the complex of

C-vector spaces (M ⊗R Ω•
R ,∇•) where

∇ p : M ⊗R Ω
p
R → M ⊗R Ω

p+1
R

is defined, for p � 1, by ∇ p(m ⊗ ω) = ∇0(m) ∧ ω + m ⊗ dω and ∇0(m) = ∑
i ∂i(m) ⊗ dxi . Notice

that am ⊗ ω = m ⊗ aω for m ∈ M , ω ∈ Ω p and a ∈ R . The complexes Ω•
f and DR(R f ) are naturally

isomorphic.
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For any non-zero f ∈ R , the inclusion i f is a natural morphism of complexes

i f : Ω•(log f ) → Ω•
f .

We say (see [3]) that f satisfies the (global) logarithmic comparison theorem if the morphism i f is a
quasi-isomorphism (i.e. if i f induces an isomorphism H p(Ω•(log f )) → H p(Ω•

f ) for any p).
If n = 2 and f is a quasi-homogeneous polynomial such that the origin is the only singular point of

the plane curve defined by f , then i f is a quasi-isomorphism ([3, Corollary 2.7] and [2, Theorem 1.3]).

1.2. The case n = 2. Bases for Der(− log f )

If n = 2, any finitely generated reflexive R-module is projective and then, by the Quillen–Suslin
theorem, this R-module is free. So, if n = 2, the R-module Der(− log f ) is free of rank 2. In this case,
we would like to compute a basis of Der(− log f ) by taking the polynomial f = f (x1, x2) as input. By
using the isomorphism

Der(− log f ) � SyzR
(
∂1( f ), ∂2( f ), f

)
and using Gröbner basis computation, a system of generators of Der(− log f ) can be calculated. Then
we can apply Quillen–Suslin algorithm (as presented for example in [9] and implemented in [7]) to
compute such a basis. Known Quillen–Suslin algorithms use Gröbner bases computation. Nevertheless,
in some cases, for a big family of polynomials f (x1, x2) we will use an easier way to compute a basis
of Der(− log f ).

First of all, we can assume f to be a reduced polynomial since Der(− log f ) depends only on the
affine plane curve D = V ( f ) = {(a1,a2) ∈ C

2 | f (a1,a2) = 0} ⊂ C
2.

Assume the plane curve D = V ( f ) is not smooth. The singular points of the plane curve D = V ( f )
(i.e. the affine algebraic set

Sing(D) := V( f , f1, f2) = {
a = (a1,a2) ∈ C

2
∣∣ f (a) = f1(a) = f2(a) = 0

}
),

where f1 = ∂1( f ), f2 = ∂2( f ) – consists of a finite number of points (and it is not the empty set).
We will consider the affine plane C

2 as a Zariski open subset of the projective plane P2(C), the
affine point (a1,a2) is mapped into the point with homogeneous coordinates (1 : a1 : a2). Coordinates
in P2(C) will be denoted by (x0 : x1 : x2) and then the line at infinity is defined by x0 = 0.

Let us denote h = H( f ),h1 = H( f1) and h2 = H( f2) where H(−) denotes homogenization with
respect to the variable x0. Denote by S = C[x0, x1, x2] the polynomial ring graded by the degree of
the polynomials. If J = (h,h1,h2) denotes the ideal in S generated by h,h1,h2 then the quotient ring
S/ J has Krull dimension 1. Let us denote by S+ the irrelevant ideal in S , i.e. the ideal generated by
x0, x1, x2. The following result is well known (see e.g. [10, Theorem 17.6, p. 136]).

Proposition 1.1. The graded ring S/ J is Cohen–Macaulay if and only if S+ is not an embedded prime associ-
ated with J .

If S/ J is Cohen–Macaulay then the projective dimension of S/ J is 2 and J satisfies the Hilbert–
Burch theorem [6], i.e. there exists an exact sequence

0 → S2 φ2−→ S3 φ1−→ J → 0,

where φ1(g0, g1, g2) = g0h + g1h1 + g2h2 and φ2 is defined by a syzygy matrix of φ1. In par-
ticular, since ker(φ1) = SyzS (h,h1,h2) is a graded free S-module of rank 2 we can compute
{s(1) = (s10, s11, s12), s(2) = (s20, s21, s22)} a minimal system of generators and this system is in fact a
basis of ker(φ1). By dehomogenization (i.e. by setting x0 = 1), we obtain a system {s(1)|x0=1, s(2)|x0=1}
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of generators of SyzR( f , f1, f2) � Der(− log f ) and since this R-module is free of rank 2, this last
system is in fact a basis.

If S/ J is not Cohen–Macaulay we cannot apply, in general, the Hilbert–Burch theorem and the
previous procedure fails to compute a basis of Der(− log f ).

Example 1.2. (a) Consider the polynomial f = (x3 + y4 + xy3)(x2 − y2). With the notations as before
(and writing x1 = x, x2 = y, x0 = t) we can use Macaulay 2 to prove that the corresponding S/ J is
Cohen–Macaulay and to compute a minimal system of generators of SyzS(h,h1,h2) and then a basis
of Der(− log f ).

Macaulay 2, version 1.1 with packages: Classic, Core, Elimination,
IntegralClosure, LLLBases, Parsing,

PrimaryDecomposition, SchurRings, TangentCone

i1 : R=QQ[t,x,y];
i2 : f=(x^3+y^4+x*y^3)*(x^2-y^2);
i3 : f1=diff(x,f),f2=diff(y,f),h=homogenize(f,t),h1=homogenize(f1,t),h2=homogenize(f2,t);
i4 : Jf=ideal(h,h1,h2);
i5 : pdim coker gens Jf
o5 = 2
i6 : Syzf=kernel matrix({{h1,h2,h}});
i7 : mingens Syzf
o7 = {5} | 3x3+x2y-4xy2 -tx2+4txy+3x2y+4xy2-y3 |

{5} | 2x2y+xy2-3y3 tx2-txy+3ty2+2xy2+4y3 |
{6} | -15x2-5xy+18y2 5tx-18ty-15xy-23y2 |

3 2
o7 : Matrix R <--- R

Then a basis of Der(− log f ) is

{(
x3 + 1

3
x2 y − 4

3
xy2

)
∂x +

(
2

3
x2 y + 1

3
xy2 − y3

)
∂y,

(−x2 + 4xy + 3x2 y + 4xy2 − y3)∂x + (
x2 − xy + 3y2 + 2xy2 + 4y3)∂y

}
.

(b) Consider the polynomial g = (x3 + y4 +xy3)(x2 + y2). With the notations as before (and writing
x1 = x, x2 = y, x0 = t) we can use Macaulay 2 to prove that the corresponding S/ J is not Cohen–
Macaulay and the minimal number of generators of SyzS (h,h1,h2) is 3. We can continue the last
Macaulay 2 session:

i8 : g=(x^3+y^4+x*y^3)*(x^2+y^2);
i9 : g1=diff(x,g),g2=diff(y,g),h=homogenize(g,t),h1=homogenize(g1,t),h2=homogenize(g2,t);
i10 : Jg=ideal(h,h1,h2);
i11 : pdim coker gens Jg
o11 = 3
i12 : Syzg=kernel matrix({{h1,h2,h}});
i13 : mingens Syzg
o13 =
{5} | 3tx2-15x3-12txy-20x2y-6xy2-5y3 3x4+4x3y+3x2y2+4xy3 3tx3-3tx2y+12x3y+12txy2+16x2y2+6xy3+4y4 |
{5} | 3tx2+3txy-10x2y-9ty2-15xy2-y3 2x3y+3x2y2+2xy3+3y4 -3txy2+8x2y2+9ty3+12xy3+2y4 |
{6} | -15tx+75x2+54ty+100xy+11y2 -15x3-20x2y-13xy2-18y3 -15tx2+15txy-60x2y-54ty2-80xy2-16y3 |

3 3
o13 : Matrix R <--- R

We will revisit this example in Example 4.1.
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2. Logarithmic An-modules

Let us denote by M log f the quotient An-module M log f = An
AnDer(− log f ) . Moreover, we denote by

D̃er(− log f ) the set

D̃er(− log f ) =
{
δ + δ( f )

f

∣∣∣ δ ∈ Der(− log f )

}
and by M̃ log f the quotient An-module

M̃ log f = An

AnD̃er(− log f )
.

As quoted in Section 1.2, for n = 2 the R-module Der(− log f ) (and hence Ω1(log f )) is free of
rank 2. Moreover, by [19, 1.8] there exists an R-basis {δ1, δ2} of Der(− log f ) satisfying det(A) = f
where

δi = ai1∂1 + ai2∂2, i = 1,2,

and A is the matrix (aij). Then the dual basis of {δ1, δ2} is {ω1,ω2} with

ω1 = 1

f
(a22 dx1 − a21 dx2), ω2 = 1

f
(−a12 dx1 + a11 dx2).

The R-module Ω2(log f ) is free of rank 1 and ω1 ∧ω2 is a basis of it. Moreover we have ω1 ∧ω2 =
dx1∧dx2

f .

Theorem 2.1. (See [1, Theorem 4.2.1].) Let f ∈ R = C[x, y] be a non-zero reduced polynomial. There exists a
natural isomorphism in the corresponding derived category

Ω•(log f ) �−→ R HomA2

(
M log f , R

)
,

where the last complex is the solution complex of M log f with values in R.

Remark 2.2. This theorem is proved in [1] in the setting of analytic D-modules, using the notion of
V 0-module and the logarithmic Spencer resolution of M log f . In our case, once a basis {δ1, δ2} is fixed
in Der(− log f ), the logarithmic Spencer resolution of M log f is nothing but

0 → A
ε2−→ A2 ε1−→ A π−→ M log f → 0, (1)

where A stands for A2, the morphism π is the natural projection, the A-module morphism ε1 is
defined by ε1(P1, P2) = P1δ1 + P2δ2 (for Pi ∈ A) and ε2 is defined by ε2(Q ) = Q (−δ2 − b1, δ1 − b2)

for Q ∈ A where the polynomials bi are defined by the equality [δ1, δ2] = δ1δ2 − δ2δ1 =
b1δ1 + b2δ2.

Using the previous free resolution the solution complex R HomA(M log f , R) is represented by the
complex of C-vector spaces

0 → R
ε∗

1−→ R2 ε∗
2−→ R → 0,

where ε∗
1 (g) = (δ1(g), δ2(g)) for g ∈ R and ε∗

2 (h1,h2) = δ1(h2) − δ2(h1) − b1h1 − b2h2 for hi ∈ R .
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The natural morphism of Theorem 2.1 is described as the morphism of complexes

Ω0(log f ) = R d−→ Ω1(log f ) d−→ Ω2(log f )

η0 ↓ η1 ↓ η2 ↓
R

ε∗
1−→ R2 ε∗

2−→ R

where η0 = id, η1(h1ω1 +h2ω2) = (h1,h2) and η2(gω1 ∧ω2) = g for h1,h2, g ∈ R and where {ω1,ω2}
is the dual basis in Ω1(log f ) of the basis {δ1, δ2} in Der(− log f ). It is easy to check by com-
putation that this morphism η• of complexes of vector spaces is in fact an isomorphism of com-
plexes.

To each finitely generated left An-module M we associate the complex of finitely generated right
An-modules R HomAn (M, An). To this one we associate the complex of finitely generated left An-
modules HomR(Ωn

R ,R HomAn (M, An)) which is by definition the dual M∗ of the left An-module M
(see e.g. [11, Déf. 4.1.6]).

If M is holonomic (i.e. if the dimension of the characteristic variety is n) then it can be shown that
Exti

An
(M, An) = 0 for i 
= n and then M∗ is the left holonomic An-module HomR(Ωn

R ,Extn
An

(M, An))

(see e.g. [11, p. 41]). Assume Extn
An

(M, An) = An
J for some right ideal J ⊂ An . Then HomR(Ωn

R , An/ J )

is naturally isomorphic to the left An-module An
J T where J T is the left ideal J T = {P T | P ∈ J } and P T

is the formal adjoint of the operator P .
If N1, N2 are finitely generated left An-modules there exists a natural isomorphism of complexes

in the corresponding derived category (see e.g. [11, pp. 40–41])

R HomAn (N1, N2) → R HomAn

(
R HomAn (N2, An),R HomAn (N1, An)

)
and then a natural isomorphism

R HomAn (N1, N2) → R HomAn

(
N∗

2, N∗
1

)
.

In particular, if N2 = R = C[x1, . . . , xn] then there exists a natural isomorphism from
R HomAn (N1, R) (i.e. the solution complex of N1) to

R HomAn

(
R∗, N∗

1

)
.

As the complex R HomAn (R, An) is naturally isomorphic to Ωn
R we can identify R and R∗ and then we

have a natural isomorphism

R HomAn(N1, R)
�−→ R HomAn

(
R, N∗

1

) �−→ DR
(
N∗

1

)
. (2)

The following theorem will be used later.

Theorem 2.3. (See [4, Theorem 3.1].) Let f ∈ C[x, y] be a non-zero reduced polynomial. Then there exists a
natural isomorphism (M log f )∗ � M̃ log f .

The following corollary is an obvious consequence of Theorems 2.1 and 2.3 using also isomor-
phism (2).

Corollary 2.4. For any non-zero reduced polynomial f ∈ C[x, y], the complexes Ω•(log f ) and DR(M̃ log f )

are naturally isomorphic in the derived category.
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As a consequence of Corollary 2.4 and by [15,17,22], the cohomology of the complex Ω•(log f ) can
be computed from a given polynomial f , since a system of generators of the R-module D̃er(− log f )
can be computed by using the R-syzygies of (∂1( f ), ∂2( f ), f ) and we have algorithms of computing
DR(M) for holonomic modules M . We note that M̃ log f is shown to be holonomic [1, Corollary 4.2.2].

In order to compute bases of Hi(Ω•(log f )), we give the explicit form

τ • : Ω•(log f ) → DR(M̃)

of the quasi-isomorphism of complexes (regarded as objects in the abelian category) given in Corol-
lary 2.4. In general, this quasi-isomorphism is not an isomorphism between the chosen representatives
of the two complexes of vector spaces. This morphism is given as follows.

τ 0 : R = Ω0(log f ) → M̃ is defined by τ 0(g) = g f where ( ) means the equivalence class modulo
the ideal A2D̃er(− log f ).

τ 1 : Ω1(log f ) → M̃ ⊗R Ω1
R is defined by

τ 1(g1ω1 + g2ω2) =
∑

i

gi ⊗ f ωi .

τ 2 : Ω2(log f ) → M̃ ⊗R Ω2
R is defined by τ 2(gω1 ∧ ω2) = g ⊗ f ω1 ∧ ω2.

It is derived by a diagram chase of the double complex constructed from the Spencer resolution
and the Koszul resolution of R (see [21, Example 3.1] and [4]).

3. Algorithm

Let us summarize our algorithm of computing logarithmic cohomology groups in the two-
dimensional case. Most tensor products ⊗ in the sequel are over A2. If we omit the subscript A2
for ⊗, it means that the tensor product is over A2.

Algorithm 3.1.
Input: a non-zero reduced polynomial f (x, y)

Output: dimensions and bases of Hi(Ω•(log f )).

1. Compute a free basis {s = (s0, s1, s2), t = (t0, t1, t2)} of the syzygy module of f , fx, f y over the
polynomial ring C[x, y]. This step can be performed by the following way.
(a) Compute the minimal syzygy of h( f ), h( fx), h( f y). Here, h(g) is the homogenization of g . If

the number of generators is 2, then the dehomogenizations of these generators are s and t .
(b) If we fail on the first step, apply an algorithm for the Quillen–Suslin theorem to obtain s and

t (call the procedure Quillen–Suslin).
2. Define a left ideal in A2 by

I = A2 · {−s0 + s1∂x + s2∂y,−t0 + t1∂x + t2∂y}. (3)

Compute the dimensions and bases of the de Rham cohomology groups for M̃ = A2/I with the
algorithm in [15,17]. In other words, replace the A2-module C[x, y,1/ f ] by A2/I of (3) in Algo-
rithm 1.2 in [15].

3. The bases of the previous step are given in A2/(∂x A2 + ∂y A2)⊗ M̃• where M̃• is a (1,1,−1,−1)-
adapted free resolution of M̃ . Here, M̃• = (Ani

2 ,di) is called a (1,1,−1,−1)-adapted free resolu-
tion when (gr Ani

2 ,gr di) is exact with a suitable degree shift where gr Ani
2 is the graded module

with the grading deg x = deg y = 1 and deg ∂x = deg ∂y = −1 (see [17,18] as to details). Bases of
de Rham cohomology groups in Ω• ⊗ M̃ �q.is DR(M̃) are determined by the transfer algorithm of
U. Walther [22, Theorem 2.5 (Transfer Theorem)]. Here, Ω• is the Koszul resolution of the right
A2-module A2/(∂x A2 + ∂y A2).
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4. Bases of cohomology groups in Ω•(log f ) is obtained by computing the preimage of τ i given in
Corollary 2.4; Ω•(log f ) �τ

q.is DR(M̃). A procedure of computing the preimage is given at the end
of this section.

In the first step, we should firstly try to find the minimal syzygy. Because, usually it is faster than
applying implementations and algorithms for the Quillen–Suslin theorem.

The following example will illustrate how our algorithm works.

Example 3.2. We consider the case of f = xy(x − y). Two canonical generators of I = A2D̃er(− log f )
are

�1 = 3 + x∂x + y∂y, �2 = −(2x − y) + (−x2 + xy
)
∂x.

The associated canonical logarithmic forms are

ω1 = 1

f
x(x − y)dy, ω2 = 1

f
(−y dx + x dy).

Let us proceed on the step 2. We apply the procedure of computing the de Rham cohomology groups
[15,18] for A2/I . The maximal integral root of the b function for I = A2 · {�1, �2} with respect to the
weight (1,1,−1,−1) is 1. The dehomogenization of the (1,1,−1,−1)-minimal filtered free resolution
of A2/I , which is adapted, is

C•: A2[0] a−2−−→ A2[1] ⊕ A2[0] a−1−−→ A2[1], (4)

where

a−2(c) = c(−�2, �1 − 1) for c ∈ A2,

a−1(c,d) = (c,d)

(
�1
�2

)
for (c,d) ∈ A2[1] ⊕ A2[0].

Put Ω(2) = A2/(∂x A2 + ∂y A2) which is the right A2-module and is isomorphic to Ω2
R . Following

[15, Procedure 1.8], we truncate the complex Ω(2) ⊗A2 C• to the forms of (1,1,−1,−1)-degree at
most 1 since the maximal integral root of the b-function is 1. The truncated complex is the following
complex of finite-dimensional vector spaces

C
ā−2−−→ (C + Cx + Cy) ⊕ C

ā−1−−→ (C + Cx + Cy)
ā0−→ 0. (5)

Here,

ā−2(1) = (−�2, �1 − 1) mod ∂x A2 + ∂y A2 = (0,0),

ā−1(a + bx + cy,d) = (a + bx + cy)�1 + d�2 mod ∂x A2 + ∂y A2 = a.

Therefore, the cohomology groups are H0(Ω(2) ⊗ C•) = Ker ā−2 = C, H1(Ω(2) ⊗ C•) =
Ker ā−1/ Im ā−2 = (Cx + Cy) ⊕ C, H2(Ω(2) ⊗ C•) = Ker ā0/ Im ā−1 = Cx + Cy.

Finally, we perform the step 3 and 4. Put M̃ = A2/I . In order to give bases of the cohomology
groups in M̃ ⊗R Ω i

R , we apply the transfer theorem (algorithm) of Uli Walther [22]. We consider the
double complex Ω• ⊗ C• constructed from Ω(2) ⊗ C• and Ω• ⊗ M̃ . The transfer algorithm translates
cohomology classes in the complex Ω(2)⊗ C• into those in the complex Ω• ⊗ M̃ . This translation can
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be performed by a diagram chase in the double complex with Gröbner basis computations. See 2.4
of [22].

Two cohomology classes 1 ⊗ x and 1 ⊗ y in H2(Ω(2) ⊗ C•) are transfered to 1 ⊗ x and 1 ⊗ y in
H2(Ω• ⊗ M̃) respectively. It follows from the definition of τ 2, xω1 ∧ ω2 and yω1 ∧ ω2 is the basis of
H2(Ω•(log f )).

Let us compute transfers of bases of H1(Ω(2) ⊗ C•). The cohomology class 1 ⊗ (x,0) in
H1(Ω(2) ⊗ C•) is transfered to (xy dx − x2 dy) ⊗ 1 in H1(Ω• ⊗ M̃). Let us compute the preimage
by τ 1. Solving c1 f ω1 + c2 f ω2 = xy dx − x2 dy (as cohomology class), we obtain c1 = 0, c2 = −x.
Therefore, 1 ⊗ (x,0) stands for −xω2. Analogously, 1 ⊗ (y,0) is transfered to −y2 dx + xy dy and
stands for −yω2 and 1 ⊗ (0,1) is transfered to x(y − x)dy and stands for ω1. In summary,

H1(Ω•(log f )
) = C(−x)ω2 + C(−y)ω2 + Cω1.

The base 1 ⊗ 1 in H0(Ω(2) ⊗ C•) is transfered to xy(x − y) ⊗ 1 ∈ H0(Ω• ⊗ M̃) which is equal to
τ 0(1). Hence, H0(Ω•(log f )) = C · 1.

Before presenting implementations and larger examples, we explain about a procedure (step 4) to
find a preimage of τ i in general. The transfer algorithm gives an element in Ω i ⊗A2 M̃ where Ω•
is the Koszul resolution of Ω(2) � Ω2

R as the right A2-module. This element can be identified with
a differential form with coefficients in M̃ . We need to find the preimage of it by τ i which lies in
Ω i(log f ). This can be performed by the method of undetermined coefficients.

Consider the case of τ 1. Take an element c1ω1 + c2ω2 in Ω1(log f ) where ci ∈ R . We have seen in
Corollary 2.4 that

τ 1(c1ω1 + c2ω2) = f ω̄1 ⊗A2 c̄1 + f ω̄2 ⊗A2 c̄2 ∈
( A2

⊕
A2

)
⊗A2 M̃ mod dM̃. (6)

Here, we identify
( 1

0

) ⊗A2 m1 with m1 ⊗R dx and
( 0

1

) ⊗A2 m2 with m2 ⊗R dy, mi ∈ M̃ and when

ωi = ai dx + bi dy, we denote
( ai

bi

)
by ω̄i . We are given an element of the form m1 dx + m2 dy, mi ∈ M̃

as the output of the transfer algorithm. We regard mi as an element in A2 in the sequel. We rewrite
f ωi as f ω1 = A dx+ B dy and f ω2 = C dx+ D dy. Assume I is generated by �1 and �2. Then, it follows
from the definition of τ 1 and Corollary 2.4 that there exist ci ∈ R , d j

i , e ∈ A2 such that

Ac1 + Cc2 = m1 +
2∑

j=1

d j
1� j + ∂xe, (7)

Bc1 + Dc2 = m2 +
2∑

j=1

d j
2� j + ∂ye. (8)

To find the preimage c1ω1 + c2ω2 by τ 1, we may solve (7) and (8). Fix a degree bound m for ci,d j
i , e

and determine these elements by the method of unknown coefficients. The identities (7) and (8)
induce a system of linear equations over C for the coefficients. Increasing the degree bound and
solving the system, we will be able to obtain c1 and c2 in finite steps by virtue of the existence claim.

Consider the case of τ 2. Since our basis in H2(Ω• ⊗ M̃) is given in terms of x and y and
f ω1 ∧ ω2 = dx ∧ dy, we need no computation to find the preimage by τ 2.

Let us consider the case of τ 0. Let m be an output of the transfer algorithm. It lies in A2 in general.
Finding the preimage g of τ 0 can be done by solving g f = m + ∑2

j=1 d j� j where g ∈ R and d j ∈ A2.



3848 F.-J. Castro-Jiménez, N. Takayama / Journal of Algebra 322 (2009) 3839–3851
4. Implementation and examples

The second and third steps of Algorithm 3.1 can be performed with the help of the D-module pack-
age on Macaulay2 1.1 or later. Our code is merged to the D-module package [8] with the command
name logCohomology. Unfortunately, this implementation has not installed an efficient algorithm
of computing b-function by Noro [12] to get the truncated complex in [15,17]. Then, only relatively
small examples are feasible. Example 4.1 is computed by our Macaulay2 program. Example 4.2 is com-
puted by our implementation on kan/k0 (logc2.k, http://www.openxm.org) and Risa/Asir with
an implementation of [12] (the transfer algorithm has not been implemented yet for kan/k0). Our im-
plementation does not contain that for the Quillen–Suslin theorem. We utilize the implementation by
A. Fabianska on Maple [7] when the step 1(a) fails.

Example 4.1 (Continued from Example 1.2(b)). We will determine bases of Hi(Ω•(log f )) where f =
(x3 + y4 + xy3)(x2 + y2). We firstly use Fabianska’s program for the Quillen–Suslin theorem to find
the 2 free generators of the syzygies of f , fx, f y . The two rows of the matrix S = ( S11 S12 S13

S21 S22 S23

)
are

generators where

S11 =
(

115

6
y − 5/2

)
x − 6y3 − 43

6
y2 + 9y,

S12 =
(

−23

6
y + 1/2

)
x2 + (

y3 + y2 − 2y
)
x − 5

6
y3,

S13 =
(

1

3
y + 1/2

)
x2 +

(
−3y2 + 1

2
y

)
x + y4 + 4

3
y3 − 3

2
y2,

S21 = 46

15
x2 +

(
−24

25
y2 + 22

75
y

)
x + 12

5
y2,

S22 = −46

75
x3 +

(
4

25
y2 − 2

25
y

)
x2 − 8

15
y2x,

S23 = 4

75
x3 − 12

25
yx2 +

(
4

25
y3 − 2

75
y2

)
x − 2

5
y3.

The determinant of
( S12 S13

S22 S23

)
is 1

3 f . We put ω1 = 1
f (S23 dx − S22 dy) and ω2 = 1

f (−S13 dx + S12 dy).

(
√

3ωi agrees with the ωi in Theorem 2.4.)
We apply the integration algorithm and the transfer algorithm for M̃ . We obtain the following

result. (1) H0(DR(M̃)) is spanned by 1 ⊗ f and then we have H0(Ω•(log f )) � C · 1. (2) H2(DR(M̃))

is spanned by 1 ⊗ a where a runs over

3 3 2 3 4
o9 = {{1}, {-x}, {y }, {-x*y }, {x*y }, {x y}, {y }}

(We have pasted the output of our Macaulay 2 program.) Then, we have

H2(Ω•(log f )
) � (

C · 1 + C · (−x) + · · · + C · y4)ω1 ∧ ω2.

(3) H1(DR(M̃)) is spanned by 3 differential forms m1 dx + m2 dy where m1, m2 are elements in A2, of
which explicit expressions are a little lengthy. We solve the identities (7) and (8) to find c1 and c2.
In other words, we need to compute preimages of m1 dx + m2 dy by τ 1. As we explained, this can be
done by the method of undetermined coefficients degree by degree. We can find solutions when the
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Table 1

p q Dimensions Timing in seconds

10 11 (8,1,1) 3.5
10 12 (9,1,1) 4.6
10 13 (10,1,1) 6.9
10 14 (11,1,1) 9.4
10 20 (17,1,1) 55.0
10 21 (18,1,1) 86.8

degree of ci,d j
i , e with respect to x, y is 6 and that with respect to ∂x, ∂y is 0. Here is a basis of the

3-dimensional vector space H1(Ω•(log f )) obtained by this method.

• −yxω1 − 4

25
x2ω2,

•
((

215

28
y − 1101

280

)
x − 367

56
y2

)
ω1 +

(
43

35
x2 − 367

350
yx

)
ω2,

•
((

y − 11

30

)
x − 28

9
y3 − 13

6
y2 + 14

3
y

)
ω1 +

(
4

25
x2 +

(
−112

225
y2 + 2

5
y

)
x + 56

45
y2

)
ω2.

All programs and session logs to find this answer are obtainable from http://www.math.kobe-
u.ac.jp/OpenXM/Math/LogCohomology/readme.html. The logarithmic comparison theorem
does not hold for this example. In fact, the dimensions of the de Rham cohomology groups Hi(Ω•

f )

(i = 2,1,0) are 5,3,1 respectively.

Example 4.2. We apply a part of our algorithm to compute the dimensions of the cohomology groups
Hi(Ω•(log f )) for f = xp + yq + xyq−1. Here is Table 1 of p, q and the dimensions of H2, H1, H0 and
timing data. The program is executed on a machine with 2G RAM and Pentium III (1G Hz).

The homogenization of f , fx , f y generates an ideal that is Cohen–Macaulay. These examples do
not need to call the subprocedure Quillen–Suslin. However, the logarithmic comparison theorem does
not hold for these examples (see [2]). Computation of de Rham cohomology groups is not feasible by
our implementation.

5. Another algorithm

In the previous sections, we have presented an algorithm of computing a basis of the logarithmic
cohomology groups for plane curves with respect to the canonical basis w1 and w2. However, this
algorithm relies on algorithms for the Quillen–Suslin theorem and they are sometimes slow. We will
present another algorithm, which is independent of the Quillen–Suslin theorem, but it does not give
a basis with respect to the canonical basis.

Let f be a reduced polynomial in two variables. We denote by Ωk
f the set of k-forms with co-

efficients in C[x, y,1/ f ]. The k form ω ∈ Ωk
f is called logarithmic k-form iff both of f ω and df ∧ ω

have polynomial coefficients. The space of logarithmic k-forms is denoted by Ωk(log f ). It is easy to
see that Ω2(log f ) = C[x,y]dx∧dy

f . Let us determine all the logarithmic 1-forms. Let (p,q, r) a triple of
polynomials such that

f y p − fxq + f r = 0 (syzygy equation). (9)

Note that (0, f , fx), ( f ,0,− f y), ( fx, f y,0) are trivial solutions of the syzygy equation. For a solu-

tion (p,q, r) of the syzygy equation, ω = p dx+q dy
f belongs to Ω1(log f ). Conversely, any logarithmic
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1-form can be expressed in this way. In fact, the condition that df ∧ω has a polynomial coefficient is
equivalent to that f y p − fxq is a multiple of f .

Put ω = p dx+q dy
f . Let e(x, y) be any polynomial. Then, d(eω) = (Le) dx∧dy

f where

L = q∂x − p∂y + qx − p y + f y p − fxq

f
.

We denote the Weyl algebra A2 by D for simplicity in the sequel. Suppose that Li (i = 1, . . . ,m),
stands for a set of generators of the solution space of the syzygy equation, which is a C[x, y]-module.
Then dΩ1(log f ) = ∑

LiC[x, y]dx∧dy/ f . Therefore, the computation of H2(Ω•(log f )) is nothing but
the computation of C[x, y]/∑m

i=1 Li • C[x, y] (see Oaku’s book [14] on the same question in the one
variable case). Put I∗ = D · {L∗

1, . . . , L∗
m}, which is a left D ideal. We denote by Fk the C-subvector

space of D ∩ C[x, y] of which (1,1,−1,−1)-order is less than or equal to k [20, pp. 14, 203]. Here,
(1,1) is the weight for (x, y) and (−1,−1) is that for (∂x, ∂y).

Algorithm 5.1. H2(Ω•(log f )).

Step 1. Find generators of the syzygy equation and obtain explicit expressions of Li .
Step 2. Compute a (1,1,−1,−1)-Gröbner basis (standard basis) of I . We denote the elements of the

Gröbner basis by Li
∗ (renaming).

Step 3. Find the monic generator b(−∂xx − ∂y y) of in(1,1,−1,−1)(I) ∩ C[−∂xx − ∂y y].
Step 4. Let k0 be the maximal non-negative root of b(s) = 0. Then, return C-vector space basis {ci} of

Fk0/
∑

i

Li · Fk0−ord(1,1,−1,−1)(Li).

{ci dx ∧ dy/ f } is a basis of H2.

The steps 2–4 can also be done by computing D/(I∗ + ∂x D + ∂y D) (0th integral module) where I∗
is the formal adjoint of I . (As to details for the steps 2–4, see [16].)

The left ideal generated by L∗
i is nothing but D · D̃er(− log f ).

Theorem 5.2. If dim V ( f , fx, f y) � 0, dim V ( f , fx) � 1, dim V ( f , f y) � 1, then Algorithm 5.1 is correct.

We note that when f is reduced, the assumption of the correctness holds.

Proof. Let I be the left ideal in D generated by L1, . . . , Lm . We may assume that I contains f ∂x ,
f ∂y and f y∂x − fx∂y . Therefore, the characteristic variety of I is contained in V ( f (x, y)ξ, f (x, y)η,

f y(x, y)ξ − fx(x, y)η), of which dimension is less than or equal to 2 from the assumption. In
fact, assume (a,b) ∈ V ( f , fx, f y). Then, ξ and η are free and then the dimension of the charac-
teristic variety is less than or equal to 2. Assume (a,b) ∈ V ( f , fx) \ V ( f , fx, f y). Then, we have
f (a,b) = 0, fx(a,b) = 0 and f y(a,b) 
= 0. Then, η is free and ξ = 0, then the dimension of the char-
acteristic variety is less than or equal to 2. The rest cases can be shown analogously. Therefore, D/I
is a holonomic D-module and hence a non-trivial b exists [20, Chapter 5, Theorem 5.1.2]. The rest
of the correctness proof is analogous with that of the 0th integration algorithm of D-modules [13],
[20, Chapter 5, Theorems 5.2.6 and 5.5.1]. �
Example 5.3. For f = (x3 + y4 + xy3)(x2 + y2), we have dim H2(Ω•(log f )) = 7 with Algorithm 5.1.
The execution time is 1.9 s.

Let ω̃1, . . . , ω̃m be a set of generators of C[x, y]-module Ω1(log f ). Define τ̃0(g) = g f ,
τ̃1(

∑m
i=1 giω̃i) = ∑m

i=1 ḡi ⊗ f ω̃i , and τ̃2(g dx∧dy
f ) = g ⊗ dx ∧ dy. Then, it is easy to show that τi = τ̃i
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by expressing ω̃i in terms of the canonical basis ω1,ω2. Therefore, τ̃i gives the quasi-isomorphism of
Corollary 2.4. Hence, we have the following algorithm.

Algorithm 5.4.
Input: a non-zero reduced polynomial f .
Output: the dimension and bases of Hi(Ω•(log f )), i = 0,1.
Replace the free basis in step 1 of Algorithm 3.1 by a set of generators of the syzygy module and

perform the steps 2 and 3.
In step 4, use τ̃0, τ̃1 to find preimages.

We close this paper with a remark for future study. Comparison theorems for logarithmic coho-
mology groups in the n variable case are studied under some conditions (see, e.g., [1,5] and their
references). It is an interesting problem to generalize our result to the n-variable case based on these
theorems and the algorithm given by Tsai and Walther [21].
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