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For a permutation group G acting on a finite set Ω and a point
α ∈ Ω , a suborbit �(α) is an orbit of the point stabilizer Gα

on Ω . The permutation group induced by Gα on �(α) is called
a subconstituent of G . Moreover, G is said to be uniprimitive if
G is primitive but not 2-transitive. In this paper we investigate
uniprimitive permutation groups which have a solvable 2-transitive
subconstituent. We determine all such groups G which have
a simple socle. The affine case, that is G has an elementary
abelian socle, are also discussed and an infinite family of affine
primitive groups with non-self-paired 2-transitive subconstituents
are presented.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a primitive permutation group acting on a finite set Ω . Consider the action of G on
Ω × Ω . If � �= {(α,α) | α ∈ Ω} is a non-trivial orbit of this action then, for a point α ∈ Ω , �(α) =
{β | (α,β) ∈ �} is an orbit of the point stabilizer Gα on Ω \ {α}, which is called a suborbit of G .
A subconstituent G�(α)

α of G is the permutation group on �(α) induced by Gα . The subconstituent
is said to be faithful if G�(α)

α
∼= Gα . Throughout this paper we assume that G is uniprimitive, which

means that G is primitive but not 2-transitive on Ω . So G has at least two suborbits.
For an orbit � of G on Ω × Ω , we can define an orbital graph Γ with vertex set V (Γ ) = Ω and

edge set E(Γ ) = �. Define �′ = {(β,α) | (α,β) ∈ �}, which is called the orbit paired to �. Then it is
clear that Γ is an indirected graph if and only if �′ = �. In this case � is said to be self-paired. The
corresponding suborbit �(α) and subconstituent G�(α)

α are also said to be self-paired. From the point
of view of the orbital graph Γ , the subconstituent G�(α)

α is the local action of Gα on the set of vertices
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adjacent to α. However, if G�(α)
α satisfies certain properties, the structure of Gα , or even G itself, will

be strongly restricted. For example, if |�(α)| = 2 then G is a Frobenius group of prime degree [44,
18.7]. Primitive permutation groups with a suborbit of lengths 3 and 4 are also determined (see
[45,37,41]). Since 1970’s, Cameron, Knapp and Praeger intensively studied the structure of Gα under
various assumptions on G�(α)

α [2–4,21–24,33,34]. One of these assumptions is G�(α)
α being 2-transitive

on �(α).
For a finite group G , its socle is the product of all minimal normal subgroups of G and denoted by

soc(G). If G is a primitive permutation group, soc(G) is a direct product of some isomorphic simple
groups. The O’Nan–Scott Theorem asserts that one of the following holds (see [26] for details):

(1) Affine type: soc(G) is abelian;
(2) Almost simple type: T = soc(G) � G � Aut(T ) for some non-abelian simple group T ;
(3) soc(G) = T k for some non-abelian simple group T and k > 1. In this case G can be further classi-

fied into three subcases:
(a) simple diagonal action;
(b) product action;
(c) twisted wreath action.

In [35] Praeger proved that, if G has a 2-transitive subconstituent, then it cannot be of simple diagonal
action (a) or product action (b).

The purpose of this paper is to investigate uniprimitive permutation groups which have a solvable
2-transitive subconstituent. In this case, G�(α)

α is solvable and, by [44, 18.3], Gα itself is solvable.
Thus G cannot be of twisted wreath action (c) because otherwise Gα is unsolvable (see [26, p. 391]).
If G is of affine type, it has a regular normal subgroup. Then, by [38, Lemma 9], G�(α)

α is faithful.
In [15], Ivanov and Praeger classified the primitive permutation groups of affine type with a self-
paired 2-transitive subconstituent. In this paper we give an infinite family of affine primitive groups
with non-self-paired solvable 2-transitive subconstituents (see Example 3.2). Some further discussion
on the affine type will be given in Section 3 as well.

If G is an almost simple group, then M = Gα is a solvable maximal subgroup of G . Almost all such
subgroups were known since the early 1990’s because at that time all maximal local subgroups of
G were known (see for example [1,5,27]), except for the maximal 2-local subgroups of the sporadic
simple groups Monster and Baby Monster. Ten years later, in [30], Meierfrankenfeld and Shpectorov
proved that the lists of the maximal 2-local subgroups of these two groups in the ATLAS [7] are
complete. In a recent paper [25], among other results, Li and Zhang determined all solvable maximal
subgroups of almost simple groups. All pairs (G0, M0) are explicitly listed, where G0 � G is minimal
such that M0 = M ∩ G0 is maximal in G0 [25, Theorem 1 and Tables 14–20].

Let G be a uniprimitive permutation group with a solvable 2-transitive subconstituent G�(α)
α of

degree d. By Huppert’s classification of solvable 2-transitive groups [13], d = pa for some prime p and
integer a � 1. Furthermore,

G�(α)
α � Γ

(
pa) = {

x �→ axα + b
∣∣ a �= 0, α ∈ Aut

(
GF

(
pa))}

is a subgroup of all semilinear transformations of GF(pa), except for d = 32, 52, 72, 112, 232 or 34.
If d � 4, all primitive groups with a suborbit of length d were determined (see [44, 18.7] for

d = 2, [45] for d = 3, [37] and [41] for d = 4). If d = p is prime and G has a solvable 2-transitive
subconstituent, then G�(α)

α is sharply 2-transitive. All such groups of almost simple type have also
been determined [42]. Therefore, for almost simple type, we may assume that d = pa � 8, a > 1 and
G�(α)

α is not sharply 2-transitive on �(α). Our main result is the following

Theorem 1.1. Let G be a uniprimitive permutation group with non-abelian simple socle. If G has a solvable
non-sharply 2-transitive subconstituent G�(α)

α of degree d = pa � 8 and a > 1, then G, Gα and d are one of
the entries in Tables 1 or 2.
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Table 1
soc(G) is a classical simple group.

G Gα d Remark

P SL(3,4).22 32:Q 8.2 9
P SL(3,4).23 32:Q 8.2 9
P SL(3,4).22 32:Q 8.2 × 2 9
P SL(3,4).3.22 32:2S4 9
P SL(3,4).3.23 32:2S4 9
P SL(3,4).6 32:2A4 × 2 9
Aut(P SL(3,4)) 32:2S4 × 2 9

P SL(3, t).2 32:Q 8.2 9 prime t ≡ 4,7 (mod 9)

P GL(3, t) 32:Q 8.3 9 as above
Aut(P SL(3, t)) 32:Q 8.S3 9 t ≡ 4,7 (mod 9) and t ≡ 1 (mod 4)

P SL(3, t) 32:2A4 9 prime t ≡ 1 (mod 9)

P SL(3, t).2 32:Q 8.S3 9 t ≡ 1 (mod 9) and t ≡ 1 (mod 4)

P SU(3,82) 32:2A4 9 three representations
P SU(3,82).2 32:2S4 9

P SU(3,22r).2 32:Q 8.2 9 prime r > 3
P GU(3,22r ) 32:Q 8.3 9 as above
P SU(3,22r).S3 32:Q 8.S3 9 as above

P SU(3, t2).2 32:Q 8.2 9 prime 5 < t ≡ −4,−7 (mod 9)

P GU(3, t2) 32:Q 8.3 9 as above
Aut(P SU(3, t2)) 32:Q 8.S3 9 t ≡ −4,−7 (mod 9) and t ≡ −1 (mod 4)

P SU(3, t2) 32:2A4 9 prime t ≡ −1 (mod 9)

P SU(3, t2).2 32:Q 8.S3 9 t ≡ −1 (mod 9) and t ≡ −1 (mod 4)

PΩ+(8,2).3 52:4A4 25
PΩ+(8,2).S3 52:4S4 25

Table 2
soc(G) is an alternating, sporadic or exceptional simple group.

G Gα d

J1 23:7:3 8

He 52:4A4 25
He.2 52:4S4 25

ON 34:21+4− .D10 81
ON.2 34:21+4− .D10.2 81

Th 72:(3 × 2S4) 49a

F4(2).2 72:(3 × 2S4) 49

a The existence of the subconstituent of degree 49 has not
been determined.

Conversely, in Tables 1 and 2, each group G has indeed a solvable 2-transitive subconstituent of degree d,
except for the Thompson sporadic simple group Th.

Remark 1. We are unable to determine whether Th has a 2-transitive subconstituent of degree 49.

Remark 2. In Table 1, the group P SU(3,82) has three conjugacy classes of maximal subgroups 32:2A4,
which yield three inequivalent permutation representations.

The paper is organized as follows. Some notation and preliminaries are collected in Section 2. In
particular, we give a series of lemmas describing the possible structure of Gα and G�(α)

α . These tools
enable us to check whether or not an almost simple group G has a required 2-transitive subcon-
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stituent of degree d. The affine case is discussed in Section 3. In Section 4 we treat the case where
soc(G) is an alternating group or a sporadic simple group. Section 5 is devoted to treating the case
where soc(G) is a classical simple group while Section 6 deals with the case of exceptional groups of
Lie type.

Many computations are done by using the computer package GAP [11]. The permutation or matrix
representations of the almost simple groups mentioned in this paper are taken from ATLAS of Group
Representations, version 3 (http://brauer.maths.qmul.ac.uk/Atlas/v3/).

2. Notation and preliminaries

The notation and terminology used in this paper are standard (see, for example, [7,20,44]). For
two groups K and H , K .H is an arbitrary extension of K by H while K :H stands for a split one.
K ◦ H is the central product of K and H . For a prime r and a positive e, denote re as an elementary
abelian group of that order and r1+2e as an extra-special r-group. In particular, if r is odd, denote
r1+2e+ as the extra-special r-group with exponent r and r1+2e− as that of exponent r2. For r = 2, the
notation 21+2e+ stands for a central product of even number of Q 8 while 21+2e− for a central product of
odd number of Q 8 together with a D8. For a positive integer g , the symbol [g] denotes an arbitrary
group of order g , while Z g stands for a cyclic group of that order. Sometimes, a single g is also used
to denote a cyclic group of that order. For a group H , we use π(H) to denote the set of all prime
divisors of |H|. A section of H is the quotient group A/B for some B � A � H . For a prime r, the
notation re −n means that re exactly divides n.

For a group H and a prime r, the maximal normal r-subgroup and the maximal normal r′-subgroup
of H are denoted by O r(H) and O r′ (H) respectively. A group H is called strongly r-constrained if
C H (O r(H)) � O r(H). In particular, O r′ (H) = 1 if H is strongly q-constrained.

For a Gα-orbit �(α), we use �′(α) to denote the orbit of Gα paired with �(α) (see [44, §16] for
details). In particular, a suborbit �(α) is said to be self-paired if �′(α) = �(α). Furthermore, denote
the kernel of Gα on �(α) as K (α), namely K (α) = G{α}∪�(α) . Similarly, denote K ′(α) = G{α}∪�′(α) .

Next we give some lemmas about the structure of Gα and G�(α)
α . Recall that |�(α)| = d = pa .

Lemma 2.1. Let G be a primitive group with a solvable 2-transitive subconstituent G�(α)
α of degree d � 3.

Suppose that |G�(α)
α | = d(d − 1)l and K = K (α) is the kernel of Gα on �(α). Then:

(1) If K �= 1, then there exists a subgroup E � K such that K/E is isomorphic to a non-trivial normal subgroup
of G�(α)

αβ for β ∈ �(α).
(2) If E �= 1 then E is a q-group for some prime q | d − 1. Furthermore, Gα , Gβ and Gαβ are all strongly

q-constrained.
(3) |Gα :E| divides d(d − 1)2l2 .

Proof. For β ∈ �(α), by [21, 3.2], G�′(β)
β

∼= G�(β)
β

∼= G�(α)
α . It is clear that α ∈ �′(β) and K acts on

�′(β) since K < Gαβ < Gβ and �′(β) is a Gβ -orbit. Now G�(β)
β is also solvable 2-transitive. So by [21,

4.10] K ′(β) = K (β). The kernel of K on �′(β) is E = K ∩ K ′(β) = K ∩ K (β). Hence K/E = K �′(β) is a

normal subgroup of G�′(β)
αβ

∼= G�(α)
αβ . By [21, 4.11], E is a proper subgroup of K . Thus K/E �= 1 and (1)

is proved. Statement (2) follows from [21, 4.12].
If |G�(α)

α | = |Gα :K | = d(d−1)l, then |G�(α)
αβ | = (d−1)l which is divisible by |K/E|. Hence statement

(3) holds. �
Lemma 2.2. Let G be a primitive permutation group with a solvable 2-transitive subconstituent G�(α)

α of
degree pa � 8, where p is a prime. If |Gα | = 2b · 3c , then pa = 9 and c � 4.

Proof. Clearly now p = 2 or 3 because pa(pa − 1) | |Gα |. Since pa � 8, we have a � 2 when p = 3
and a � 3 when p = 2. If a > 2 and pa �= 26, then by a result of Zsigmondy [47], there exists a prime

http://brauer.maths.qmul.ac.uk/Atlas/v3/
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divisor r of pa − 1 such that r � pi − 1 for 0 < i < a. In particular r � 5, contradicting the fact that
pa − 1 | |Gα | = 2b · 3c . If pa = 26, then 7 is a divisor of pa − 1, a contradiction. Hence we have a = 2
and p = 3. By [13], |G�(α)

αβ | | 24 · 3. Following from Lemma 2.1, Gα contains a 2-subgroup E such that

|Gα :E| divides |G�(α)
α | · |G�(α)

αβ |, which divides 28 · 34. �
Lemma 2.3. Let G be a primitive group with a solvable 2-transitive subconstituent G�(α)

α of degree pa and
K = K (α) the kernel of Gα on �(α). If p � a then either p � |K | or pa = 32 .

Proof. Suppose that p | |K |. By Lemma 2.1, if the kernel E of K on �′(β) is non-trivial, then E is a q-
group with q | pa − 1. It follows from Lemma 2.1 that p divides |G�(α)

αβ | = (pa − 1)l for some integer l.

Thus p | l. Now G�(α)
α is a solvable 2-transitive group. If G�(α)

α � Γ (pa), then l | a and hence p | a,
a contradiction. Therefore G�(α)

α is one of the exceptional groups determined by Huppert [13]. It is
easy to check that the only possibility is pa = 32. �
Lemma 2.4. Let p be a prime and a > 1 an integer. If pa � 8 and pa − 1 | 2b · 3c , then a = 2.

Proof. It is clear that pa �= 26. So if a > 2, then by [47] there exists a prime divisor r of pa − 1 such
that r � pi − 1 for 0 < i < a. Clearly r = 2 or 3. If p = 2 then r = 3. But 3 | 22 − 1, a contradiction. If
p is an odd prime, then r = 3 for otherwise 2 | p − 1. Therefore p �≡ 1 (mod 3). We also have p �= 3
because r = 3 is a divisor of pa −1. It follows that p ≡ −1 (mod 3) and hence 3 | p2 −1, contradicting
the assumption that a > 2. �
Lemma 2.5. (See [41, Lemma 2.6].) Let G0 � G and M a maximal subgroup of G. Suppose that M0 = M ∩ G0
is maximal in G0 . If there exists an element x ∈ G such that |M:M ∩ Mx| = d > 1, then there exists an element
h ∈ G0 such that 1 �= |M0:M0 ∩ Mh

0| divides d.

The following theorem gives a set of criterions for a primitive permutation group G to have a
primitive non-regular subconstituent of degree d.

Theorem 2.6. (See [36, Theorem 2.6].) Let G be a primitive permutation group acting on a finite set Ω . Suppose
that, for α ∈ Ω , the point stabilizer Gα has a maximal subgroup H of index d which is not normal in Gα . Then
the following hold:

(i) G has a self-paired suborbit �(α) of length d such that Gαβ = H for some β ∈ �(α) if and only if
|NG(H):H| is even.

(ii) If 1 < |NG(H):H| is odd, then G has a non-self-paired suborbit �(α) of length d with Gαβ = H for some
β ∈ �(α).

(iii) If NG(H) = H, then G has a non-self-paired suborbit �(α) of length d with Gαβ = H for some β ∈ �(α)

if and only if there exists an element x ∈ G such that Hx < Gα but Hx and H are not conjugate in Gα . �
Corollary 2.7. Let G, Gα , H and d be as in Theorem 2.6. Suppose that G has a normal subgroup T of in-
dex 2. Denote G1 = Gα ∩ T and H1 = H ∩ T . If NG1(H1) = H1 and |NT (H1):H1| = 2, then NG(H) > H. In
particular, G has a suborbit �(α) of length d such that Gαβ = H for some β ∈ �(α).

Proof. It is clear that NGα (H) = H for H is maximal and not normal in Gα . Since |NT (H1):H1| = 2,
there exists t ∈ T \ G1 such that Ht

1 = H1. Suppose H = 〈H1,a〉 for some a ∈ H . Then ta ∈ T and
Hta

1 = H1 because H1 � H . It follows that ta ∈ NT (H1) = H1 ∪ H1t . It is evident that ta /∈ H1. So we
have a−1ta = xt for some x ∈ H1, which implies that tat−1 = ax ∈ H . Therefore t ∈ NG(H)\ H and thus
NG(H) > H . It follows from Theorem 2.6 that G has a suborbit �(α) of length d with Gαβ = H . �
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Lemma 2.8. Let G be a primitive group with a solvable 2-transitive subconstituent G�(α)
α of degree d = pa

and K = K (α) the kernel of Gα on �(α). For any normal subgroup Q � Gα , either Q � K , or pa | |Q |.
Furthermore, if Q � K , then Q = Q K/K ∼= pa when one of the following holds.

(1) Q is a q-group for some prime q. In this case p = q.
(2) Q is abelian.

Proof. Denote P = soc(G�(α)
α ) ∼= pa . Then if Q � K , Q = Q K/K must contain P , which implies that

pa | |Q |. Furthermore, if (1) holds, then Q is a q-group. So p = q. Now 1 �= Z(Q ) � G�(α)
α . It follows

that P � Z(Q ) because P is the unique minimal normal subgroup of G�(α)
α . Hence Q � C

G�(α)
α

(P ) =
P ∼= pa . If (2) holds, then Q can be written as the direct product of its Hall p and p′-subgroups
Q = Q p × Q p′ . It follows that Q p is a normal p-subgroup of G�(α)

α , hence Q p = P by the same
argument in (1). Therefore, Q p′ � C

G�(α)
α

(P ) = P , which implies that Q p′ = 1. �

Lemma 2.9. Let G be a primitive group with a solvable 2-transitive subconstituent G�(α)
α of degree d = pa

and K = K (α) the kernel of Gα on �(α). Suppose that Gα = Q :H where Q is the direct product of s cyclic
groups Zl and Q K/K �= 1. Then Q K/K ∼= pa with a = s and p− l.

Proof. Suppose that l = pu · m, (p,m) = 1. If u > 1, then there exists an x ∈ Q of order pu . By
Lemma 2.8, Q K/K ∼= pa . Consider x ∈ Q K/K , which has order at most p. It follows that 1 �= xp ∈ K .
Write Q as the direct product of its Hall p and p′-subgroups Q = Q p × Q p′ . Then Q p char Q � Gα

and Q p ∩ K �= 1 is the Sylow p-subgroup of K , which implies that Q p ∩ K char K . By Lemma 2.1, there

is a normal subgroup E � K such that K/E is isomorphic to a normal subgroup of G�(α)
αβ . If E �= 1

then E is an r-group with r | pa − 1. Hence

Q p ∩ K ∼= (Q p ∩ K )E/E char K/E � G�′(β)
αβ

∼= G�(α)
αβ .

Thus G�(α)
αβ has a normal p-subgroup, contradicting [14, II 3.2]. So we have u = 1. It is clear that a � s.

If a < s, then the same method can be used to prove that Q p ∩ K �= 1, a contradiction again. �
3. Affine case

In this section we discuss the case of affine type. Let G be a uniprimitive permutation group
with an elementary abelian socle Zn

r for some prime r and integer n � 1. Then G = Zn
r :Gα , where

Gα � GL(n, r) is the point stabilizer of α = 0 ∈ Zn
r . In this case, Gα is an irreducible subgroup of

GL(n, r). In addition, if Gα has a solvable 2-transitive quotient group G�(α)
α then, by [38, Lemma 9],

Gα itself is solvable and acts faithfully on �(α). It follows that G is a solvable primitive permutation
group. Moreover, |�(α)| = d = pa with prime p �= r and Gα has a unique minimal normal subgroup
K = Za

p . Write Gα = K � L. Then d − 1 | |L| since Gα
∼= G�(α)

α is 2-transitive of degree d.
It is well-known that there is a 1-1 correspondence between solvable primitive permutation groups

G of degree rn and the irreducible solvable subgroups Gα of GL(n, r). Therefore, if we can determine
all irreducible solvable subgroups of GL(n, r), we will be able to check which of them has a 2-transitive
action on some set. However, the determination of irreducible solvable subgroups of GL(n, r) is essen-
tially recursive: it depends on the determination of subgroups of GL(m, r) for all divisors m | n and
solvable transitive subgroups of symmetric group Sn/m . Thus we can hardly give a uniform description
of the irreducible solvable subgroups of GL(n, r) for general n. On the other hand, in [39], among many
other results, Suprunenko determined all maximal irreducible solvable subgroups of GL(q, r), where
the dimension q is a prime. This enables us to exclude the case for some small n. Since all such
groups G are determined for d � 5 (see [45,37,41,43]), we assume d � 7 in the following proposition.
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Proposition 3.1. Let G be a uniprimitive permutation group such that soc(G) = Zn
r . If G has a solvable 2-

transitive subconstituent G�(α)
α of length d � 7 then n � 4.

Proof. If n = 1, Gα � GL(1, r) = Zr−1 is cyclic. Thus Gα cannot act 2-transitively on any set. If n = 2
then, by [39, Theorem 21.6], three cases should be considered. Recall that Gα = K :L, where K = Za

p
and |�(α)| = d = pa .

(1) Gα � Z 2
r−1:2. If K ∩ Z 2

r−1 = 1 then |K | | 2, a contradiction. Thus 1 �= K ∩ Z 2
r−1 � Gα . The min-

imality of K implies that K � Z 2
r−1. Further, if Gα ∩ Z 2

r−1 > K then CGα (K ) > K , contradicting [14, II
3.2]. So we have Gα ∩ Z 2

r−1 = K , which implies that

L ∼= Gα/K = Gα/
(
Gα ∩ Z 2

r−1

)
� Z2,

a contradiction.
(2) Gα � Zr2−1:2. The same argument can be applied to exclude this case.
(3) Gα � (Zr−1 ◦ Q 8).S3. In this case, Zr−1 = Z(GL(2, r)) is the subgroup of scalers. If K ∩ Zr−1 = 1

then |K | | 24. The only possibility is |K | = d = 8, and thus K = Z 3
2 . On the other hand, K ∼= K Zr−1/Zr−1

is isomorphic to a subgroup of (Zr−1 ◦ Q 8).S3/Zr−1 ∼= Z 2
2 .S3, which contains no subgroup isomorphic

to Z 3
2 . So we have K = K ∩ Zr−1, which implies that K � Z(GL(2, r)), a contradiction.

Similarly, if n = 3 then, by [39, Theorem 21.6], three cases should be considered.
(1) Gα � Z 3

r−1:S3. The same argument as in case of n = 2 can be used to prove that Gα ∩ Z 3
r−1 = K ,

which implies that L is isomorphic to a subgroup of S3. Since d − 1 = pa − 1 | |L|, we have d = 7. Thus
K = Z7 and, as a point stabilizer of 2-transitive group of degree 7, L must be Z6, a contradiction.

(2) Gα � Zr3−1:3. Similarly we can yield a contradiction as in case (1).
(3) Gα � (Zr−1 ◦ E).2A4, where E is an extra-special group of order 33 with exponent 3 and r ≡

1 (mod 3). Moreover, Zr−1 = Z(GL(3, r)). Therefore K ∩ Zr−1 = 1. So we have Gα ∩ Zr−1 = 1 because
otherwise CGα (K ) > K . It follows that Gα is isomorphic to a subgroup of Gα Zr−1/Zr−1 � 32:2A4.
Thus d = 32 and Gα = 32:Q 8 or 32:2A4. Write M = Zr−1Gα . If Gα = 32:2A4 then M = Zr−1 × Gα =
(Zr−1 ◦ E).2A4, a contradiction. If Gα = 32:Q 8 then the Sylow 3-subgroup of M must be elementary
abelian since Zr−1 is the center of the group and Zr−1 ∩Gα = 1. On the other hand, M = (Zr−1 ◦ E).Q 8
has extra-special Sylow 3-subgroup E , a contradiction. �

For n � 4, there exist many examples of the affine primitive groups with a solvable 2-transitive
subconstituent. The GAP package IRREDSOL [12] provides a library of all irreducible solvable sub-
groups of GL(n, r), up to conjugacy, for rn < 216 and the library of the corresponding affine primitive
solvable groups. It enables us to go through these groups and to look for examples of G which has
solvable 2-transitive subconstituent. Most of the examples we found satisfy G = Z p−1

r � (Z p :Z p−1) for
some prime p with suborbit of length p. Next we give the construction of the infinite family of such
groups.

Example 3.2. Let p � 5 be a prime and group

H = 〈
a,b

∣∣ ap = bp−1 = 1, b−1ab = as〉,
where sp−1 ≡ 1 (mod p) and si �≡ 1 (mod p) for 1 � i < p − 1. So H = Z p :Z p−1. For any prime r
satisfying r ≡ 1 (mod p(p − 1)), F = GF(r) is a splitting field for H . Therefore, H has p − 1 linear
representations and a unique faithful irreducible representation T of degree p − 1 over F (see, for
example, [9, §47] and [31]). Let ζ be a primitive p-th root of unit in F . Then T can be written as
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T (a) =

⎛
⎜⎜⎜⎜⎝

ζ

ζ s

ζ s2

. . .

ζ sp−2

⎞
⎟⎟⎟⎟⎠ , T (b) =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0

1
. . .

0 . . . 1 0

⎞
⎟⎟⎟⎟⎠ .

Denote V = V (p −1, r) as the (p −1)-dimensional vector space over F . Then G = V � T (H) is a prim-
itive group of degree r p . For the zero vector 0 ∈ V , the stabilizer G0 = T (H). Let v = (1,1, . . . ,1) ∈ V .
Then it is easy to verify that � = v T (H) has length p and the action of T (H) on � is 2-transitive.

Furthermore, for any prime r �= p, H is p-solvable. It follows from the Fong–Swan–Rukolaine Theo-
rem [10, §22] that H has a unique faithful irreducible representation of degree p − 1 over field GF(r).
Therefore we obtain an infinite family of primitive permutation groups F = {Z p−1

r � (Z p :Z p−1)} with
degree r p−1 and the point stabilizer G0 ∼= Z p :Z p−1. G has a suborbit � of length p and the corre-
sponding subconstituent G�

0 is sharply 2-transitive. In addition, if r > 2, then |NG(Z p−1):Z p−1| = r is
odd. It follows from Theorem 2.6(ii) that the suborbit is not self-paired. In fact, G has exactly r − 1
suborbits of length p, forming (r − 1)/2 pairs of mutually paired suborbits.

Remark 3. If r = 2, then G = Z p−1
2 � T (H) is contained in the automorphism group of the folded

p-cube �p (see [15] for details). The full automorphism group of �p is Z p−1
2 � S p . In this case, the

unique suborbit of G with length p is self-paired.

Example 3.3. The group GL(7,3) contains an irreducible solvable subgroup H ∼= Z 3
2 :Z7:Z3. Thus we

obtain a primitive permutation group G = Z 7
3 � H of degree 37 with point stabilizer G0 = H . Compu-

tation shows that G has 2 mutually paired suborbits of length 8 and, on each of them, the action of
H is faithful and 2-transitive.

In the remainder of the paper we will treat the case that G is almost simple. So in what follows
we always assume the following hypothesis:

G is a uniprimitive permutation group with a solvable and non-sharply 2-transitive
subconstituent G�(α)

α of degree d = pa � 8 (a > 1). Its socle soc(G) = T is a non-
abelian simple group.

(∗)

In this case, G has a solvable maximal subgroup M ∼= Gα . Suppose G0 � G is minimal such that
M0 = M ∩ G0 is maximal in G0. Then all such pairs (G0, M0) are listed in [25, Theorem 1 and Ta-
bles 14–20]. In order to prove our Theorem 1.1, we will treat these pairs and their overgroups (G, M)

by the methods developed in Section 2, to determine if they have a non-sharply 2-transitive suborbit
on the right cosets of M in G .

4. Alternating and sporadic groups

In this section, we first assume that T = soc(G) = An (n � 5) is an alternating group. In [36], all
primitive groups with a solvable 2-transitive subconstituent are determined if its socle is an alternat-
ing group (see also [25, Table 14]). It follows that

Proposition 4.1. If G satisfies hypothesis (∗), then soc(G) �= An. �
Next we consider the sporadic case. Suppose that T � G � Aut(T ) where T is a sporadic simple

group and G contains a maximal subgroup M = Gα which has a solvable and non-sharply 2-transitive
constituent G�(α)

α on the set of all cosets of M in G . It follows that (G, M) must be one of the entries
of [25, Table 15] (see also [7,19,28,30]).
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Table 3

G M = Gα d

He 52:4A4 25
He.2 52:4S4 25

J1 23:7:3 8

ON 34:21+4− D10 81
ON.2 34:21+4− D10.2 81

Th 72:(3 × 2S4) 49

Proposition 4.2. Let G be a uniprimitive permutation group satisfying hypothesis (∗). If T = soc(G) is a
sporadic simple group, then G, Gα and d are one of the entries in Table 3. Conversely, all these M have indeed
a solvable 2-transitive constituent except for (G, M) = (Th,72:(3 × 2S4)).

Proof. Recall that K = K (α) is the kernel of M acting on �(α) and E is the kernel of K acting on
�′(β) for β ∈ �(α) (cf. Lemma 2.1).

If (G, M) = (He,52:4A4), let L = 4A4 < M , then computation shows that |NG(L)| = 96 while
|NM(L)| = 48. Hence by Theorem 2.6, G has indeed a subconstituent G�(α)

α of degree 25. It is easy to
show that this subconstituent is 2-transitive.

If G = He.2, write T = He and M1 = 52:L1 < M = 52:L, where L1 = 4A4 and L = 4S4. Computation
shows that NM1 (L1) = L1 and |NT (L1):L1| = 2. It follows from Corollary 2.7 that G has indeed a

suborbit of length 25. It is clear that G�(α)
α is faithful and hence non-sharply 2-transitive.

Computation shows that G = J1 has indeed a 2-transitive subconstituent of degree 8, with Gα =
23:7:3.

For the case (G, M) = (ON,34:21+4− D10), take L = 21+4− .D10 and z the unique involution in the
center of L. Since all involutions of ON are conjugate, we may assume that z = x2 where x is in the
conjugacy class 4A by the notation of ATLAS [7]. By [32, Lemma 4.8],

Z4.P SL(3,4) = CG(x) � CG(z) = Z4.P SL(3,4).2.

Hence 〈x〉 = Z(CG (x)) char CG(x) � CG (z), which implies that NG(L) normalizes 〈x〉 since NG(L) �
CG (z). It follows that, for any y ∈ L, xy = xi for some i = 1 or 3. Thus

x−1 y−1x = xi−1 y−1 = y−1 or x2 y−1 ∈ L

as x2 = z ∈ L. This shows that x ∈ NG(L). If NM(L) > L, then there exists a 3-subgroup P such that
NM(L) = L × P . However, by [46, Lemma 2.6], L contains an element of order 4 which acts fixed
point freely on 34 � P , a contradiction. Therefore NM(L) = L. If x ∈ L then L contains 〈x〉 as a normal
subgroup of order 4, a contradiction. It follows that x ∈ NG(L) \ NM(L). Hence by Theorem 2.6, ON has
a suborbit of length 81. It is not hard to show that the corresponding subconstituent is faithful and
non-sharply 2-transitive. The existence of 2-transitive subconstituent for case ON.2 can be proved by
the same argument.

If (G, M) = (Th,72:(3 × 2S4)), then by Lemmas 2.1 and 2.2, we get d = 49. However, the existence
of a 2-transitive subconstituent of degree 49 is unsettled.

If (G, M) = (B, (22 × 72:(3 × 2A4)).2) and d = 49, then 22 � K since it acts trivially on 72. There-
fore, by [13], G�(α)

αβ = (3 × Q 8):S3 and hence K = 22. On the other hand, if E is a 2-group, then
by Lemma 2.1, Gα is strongly 2-constrained, contradicting the fact that O 7(Gα) �= 1. Thus E = 1 and
22 ∼= K/E is isomorphic to a normal subgroup of G�(α)

αβ , a contradiction.

If (G, M) = (Co3,22.[27.32].S3) then, by Lemma 2.2, d = 9. It follows from [13] that G�(α)
α

∼= 32:2A4
or 32:2S4. Hence the kernel K has order 26 or 27. Computation shows that M has no such normal
subgroup.
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If (G, M) = ( J4,111+2+ :(5 × 2S4)) then p = 2 or 11. If p = 2 then d = 8 or 16. However, by

Lemma 2.1 |G�(α)
αβ | must be divisible by 113, a contradiction. If p = 11 then d = 112 and by [13],

G�(α)
α = 112:(5 × 2S4). It follows from Lemma 2.1 that G�(α)

αβ has a normal subgroup of order 11,
contradicting [14, II 3.2].

Similarly, by applying Lemmas 2.1 and 2.2 and [13] and combining with computation, one can
exclude all other entries of [25, Table 15]. �
5. Classical groups

In this section we deal with the case where T = soc(G) is a simple classical group. Let G be a
uniprimitive permutation group satisfying hypothesis (∗). Assume that T = soc(G) is defined over the
finite field F = GF(q) and V is the natural projective GF(q)-module for T of dimension n. Suppose
that M = Gα is maximal in G . Then M is a maximal local subgroup of G and thus, following from
Aschbacher [1], belongs to one of the eight subgroup collections Ci of G . The detailed description
of these eight collections can be found in [1] and [20]. Furthermore, denote G0 � G as the minimal
normal subgroup of G such that M0 = M ∩ G0 is maximal in G0. Then all such pairs (G0, M0) are
listed in [25, Tables 16–19].

We first give some examples of G which has a solvable non-sharply 2-transitive subconstituent.
Then we prove that there exists no other group satisfying hypothesis (∗). We always assume that
K = K (α) is the kernel of Gα acting on �(α) and E � K is the kernel of K acting on �′(β) for a
fixed β ∈ �(α) (cf. Lemma 2.1).

Lemma 5.1. Suppose T = P SL(3, t) for some prime t ≡ 1 (mod 3). Let M be a maximal subgroup of G such
that

M ∩ T =
{

32:Q 8, if t ≡ 4,7 (mod 9),

32.2A4, otherwise.

Then G has a non-sharply 2-transitive subconstituent of degree 9 with Gα
∼= M, if and only if

(1) t ≡ 4,7 (mod 9), (G, M) = (P SL(3, t).2,32:Q 8.2) or (P GL(3, t),32:Q 8.3);
(2) t ≡ 4,7 (mod 9) and t ≡ 1 (mod 4), G = Aut(P SL(3, t)), M = 32:Q 8.S3;
(3) t ≡ 1 (mod 9), G = P SL(3, t), M = 32:2A4; or
(4) t ≡ 1 (mod 9) and t ≡ 1 (mod 4), G = P SL(3, t).2, M = 32:Q 8.S3 .

Proof. It follows from [1] that M is now the normalizer of an extra-special 3-group. Denote the
preimage of M in GL(3, t) by M . Then M = 32.Sp(2,3).

It is well-known that, if t ≡ 1 (mod 4) and 2s − t − 1, then the Sylow 2-subgroup of P SL(3, t)
is a wreath product Z2s � Z2. And if t ≡ 3 (mod 4) and 2s − t2 − 1, then the Sylow 2-subgroup is a
semi-dihedral group of order 2s+1. It follows that P SL(3, t) has only one conjugacy class of subgroups
isomorphic to Q 8. Let ζ be a primitive element of GF(t) and η an element of order 3 satisfying
1 + η + η2 = 0. Define matrices

X = η − 1

3

(
η2 η 1
η η η
1 η η2

)
, Y = 1 − η

3

( 1 η2 η2

1 η 1
η2 η2 1

)
.

It is clear that X, Y ∈ SL(3, t) and one can check that 〈X, Y 〉C/C ∼= Q 8 < T where C is the center of
GL(3, t). Furthermore, define matrix

Z =
⎛
⎝

1
2 (ζ + ζ−2) 0 1

2 (ζ − ζ−2)

0 ζ 0
1 −2 1 −2

⎞
⎠ .
2 (ζ − ζ ) 0 2 (ζ + ζ )
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Then Z ∈ SL(3, t) has order t − 1. It is not difficult to verify that 〈Z〉C/C ∼= Z(t−1)/3 = CT (Q 8) and
NT (Q 8)/CT (Q 8) ∼= Aut(Q 8) = S4. It follows that NT (Q 8) = Z(t−1)/3.S4 and its center Z(NT (Q 8)) =
Z(t−1)/3. For any matrix S ∈ GL(3, t), denote γ as the inverse transpose mapping γ : S �→ (S ′)−1. Then
we have

〈X, Y 〉γ = 〈X, Y 〉 and Zγ = Z−1. (1)

Notice that now Out(T ) = S3. If t ≡ 1 (mod 9) then G = T , T .2, T .3 or Aut(T ) with Gα = 32:2A4,
32:Q 8.S3, 32:2A4.3 or 32:2A4.S3 respectively. In the latter two cases, |Gα | is divisible by 34. It follows
from [13] and Lemma 2.1 that G�(α)

α = 32:Q 8.3 or 32:Q 8.S3. However, by Lemma 2.1, this implies that
G�(α)

αβ = 2A4.3 or 2A4.S3 has a normal subgroup of order 3, a contradiction.

The former two cases are listed in Table 1. Write Gα = 32:L. Then, in both cases, it is clear that
Q 8 = O 2(L) is characteristic in L. Thus we have Q 8 � NG(L) which leads to L � NG(L) � NG(Q 8). If
G = T and L = Q 8.3 < NT (Q 8), then any element x ∈ Z(NT (Q 8)) = Z(t−1)/3 with odd order belongs
to NG(L) \ L, which implies the existence of a subconstituent of degree 9 by Theorem 2.6.

If G = T .2, then it is an extension of T by an outer automorphism of order 2 which can be
induced by γ . It follows from (1) that there exists g ∈ G \ T such that g2 ∈ T and g ∈ NG(Q 8).
Notice that now NT (Q 8) = Z(t−1)/3.S4, |NG(Q 8):NT (Q 8)| = 2 and NG(Q 8)/CG(Q 8) ∼= S4. So we have
NG(Q 8) = 〈NT (Q 8), g〉 and, by (1), CG(Q 8) is a dihedral group of order 2(t −1)/3. On the other hand,
we still have

Q 8.S3 = L � NG(L) � NG(Q 8).

Let L0 = L ∩ T = Q 8.3 � NT (Q 8) = Z(t−1)/3.S4. Then we can assume L = 〈L0, g〉 such that Lg
0 = L0

and g2 ∈ L0. Moreover, let z be the generator of the cyclic normal subgroup of order (t − 1)/3 in
CG (Q 8). Then zg = z−1. We will prove that NG(L) > L if and only if t ≡ 1 (mod 4). Notice that
L0 ∩ 〈z〉 = 〈z(t−1)/6〉 has order 2. If 4 | o(z) then 〈z〉 contains an element z1 of order 4. It is clear
that Lz1

0 = L0 and zg
1 = z−1

1 , which leads to z−1
1 g−1z1 = z−2

1 g−1 ∈ L. This shows that z1 ∈ NG(L) \ L.
Conversely, assume o(z) = 2k for some odd k. If zi ∈ NG(L) \ L for some 1 � i < k, then g−1zi g = z−i ,
which implies that gz2i = gzi ∈ L = L0 ∪ L0 g . It follows that the odd order element z2i or z4i ∈ L0,
contradicting the fact that |L0 ∩ 〈z〉| = 2. Thus we have NG(L) ∩ 〈z〉 = 〈zk〉 ∈ L0, which implies that
NG(L) = 〈L0, g〉 = L. Therefore we have proved that, when G = T .2, the 2-transitive subconstituent of
degree 9 exists if and only if t ≡ 1 (mod 4).

If t ≡ 4,7 (mod 9), then G > T since G�(α)
α is non-sharply 2-transitive. It follows that G = T .2,

T .3 or Aut(T ) with Gα = 32:Q 8.2, 32:Q 8.3 or 32:Q 8.S3 respectively. All of them are listed in Table 1.
Moreover, if G = T .2 and Gα = 32:Q 8.2, then take L = Q 8.2 < Gα . Now the Sylow 2-subgroup of G
has order > 16, so |NG(L)| > 16 = |NGα (L)|. Thus by Theorem 2.6, G has indeed a suborbit of length 9.

It is evident that G�(α)
α is faithful and non-sharply 2-transitive. If G = T .3 = P GL(3, t) and L = Q 8.3 <

Gα then, as in the case that t ≡ 1 (mod 9) and G = T , one can prove that Z(NG(Q 8)) = Zt−1 which
implies that NG(L) > L. The existence of a subconstituent of degree 9 follows from Theorem 2.6.
Finally, if G = Aut(T ) = P GL(3, t).2 then, as in the case that t ≡ 1 (mod 9) and G = T .2, the same
argument can be used to prove that G has a 2-transitive subconstituent of degree 9 if and only if
t ≡ 1 (mod 4). �
Lemma 5.2. (1) Suppose P SL(3,4) = T � G � Aut(P SL(3,4)) and M is a maximal subgroup of G such that
M ∩ T = 32:Q 8 . Then all these groups have a solvable non-sharply 2-transitive subconstituent of degree 9
except for G = P SL(3,4).2, in which case G�(α)

α is sharply 2-transitive.
(2) Suppose P SU(3,82) = T � G � Aut(P SU(3,82)) and M is a maximal subgroup of G such that M ∩T =

32:2A4 . Then G has a solvable non-sharply 2-transitive subconstituent of degree 9 if and only if (G, M) =
(T ,32:2A4) and (T .2,32:2S4).
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Proof. (1) It follows from ATLAS [7] and computation.
(2) Computation shows that, for (G, M) = (T ,32:2A4) and (T .2,32:2S4), G has indeed a solvable

non-sharply 2-transitive subconstituent of degree 9. For the case that G = T .3 or T .6, computation
shows that G has no suborbit of length 9. �
Lemma 5.3. Let T = P SU(3,22r) for some prime r > 3 and M be a maximal subgroup of G such that M ∩ T ∼=
32:Q 8 . Then G has a non-sharply 2-transitive subconstituent of degree 9 with Gα

∼= M, if and only if T < G.

Proof. Now G = T , T .2, T .3 or T .S3 and the corresponding maximal subgroup M = 32:L where L =
Q 8, Q 8.2, Q 8.3 or Q 8.S3 respectively. Let t be the unique involution contained in Q 8 � L. Then

〈t〉 char Q 8 = O 2(L) char L � NG(L),

which implies that NG(L) � CG(t). Assume that S is a Sylow 2-subgroup of T containing Q 8. It is
well-known that S is a Suzuki 2-group of order q3 which has the property that Z(S) = S ′ = Ω1(S)

has order q. Moreover, for t ∈ S , it is not hard to show that CG (t) = S.Z(q+1)/3, S.D2(q+1)/3, S.Zq+1
and S.D2(q+1) when G = T , T .2, T .3 and T .S3 respectively (see for example [14, II 10.12] and [6]).
In all these cases, Z(CG (t)) = Z(S). Recall that NG(L) � CG(t). So any involution u ∈ Z(S) = Z(CG (t))
other than t belongs to NG(L) \ L. It follows from Theorem 2.6 that G has indeed a 2-transitive
subconstituent of degree 9. However, when G = T , the subconstituent is sharply 2-transitive while
the other three cases are listed in Table 1. �
Lemma 5.4. Suppose T = P SU(3, t2) for some prime t ≡ −1 (mod 3). Let M be a maximal subgroup of G
such that

M ∩ T =
{

32:Q 8, if t ≡ −4,−7 (mod 9),

32.2A4, otherwise.

Then G has a non-sharply 2-transitive subconstituent of degree 9 with Gα
∼= M, if and only if

(1) 5 < t ≡ −4,−7 (mod 9), (G, M) = (P SU(3, t2).2,32:Q 8.2) or (P GU(3, t2), 32:Q 8.3);
(2) t ≡ −4,−7 (mod 9) and t ≡ −1 (mod 4), G = Aut(P SU(3, t2)), M = 32:Q 8.S3;
(3) t ≡ −1 (mod 9), G = P SU(3, t2), M = 32:2A4; or
(4) t ≡ −1 (mod 9) and t ≡ −1 (mod 4), G = P SU(3, t2).2, M = 32:Q 8.S3 .

Proof. In this case, for t ≡ ±1 (mod 4), the Sylow 2-subgroups of T is the same as that of P SL(3, t)
for t ≡ ∓1 (mod 4). So T also has only one conjugacy class of subgroups isomorphic to Q 8. Let ζ be
an element of order t + 1 in GF(t2)× and η an element of order 3 satisfying 1 + η + η2 = 0. Define
matrices

X = η − 1

3

⎛
⎝η2 η 1

η η η

1 η η2

⎞
⎠ , Y = 1 − η

3

⎛
⎝ 1 η2 η2

1 η 1

η2 η2 1

⎞
⎠ .

It is clear that X, Y ∈ SU(3, t2) and one can check that 〈X, Y 〉C/C ∼= Q 8 < T where C is the center of
GU(3, t2). Furthermore, define matrix

Z =
⎛
⎝

1
2 (ζ + ζ−2) 0 1

2 (ζ − ζ−2)

0 ζ 0
1 −2 1 −2

⎞
⎠ .
2 (ζ − ζ ) 0 2 (ζ + ζ )
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Then Z ∈ SU(3, t2) has order t + 1. It is not difficult to verify that 〈Z〉C/C ∼= Z(t+1)/3 = CT (Q 8) and
NT (Q 8)/CT (Q 8) ∼= Aut(Q 8) = S4. It follows that NT (Q 8) = Z(t+1)/3.S4 and its center Z(NT (Q 8)) =
Z(t+1)/3.

For any x ∈ GF(t2), let τ : x �→ xt be the field automorphism of order 2. For any matrix A = (aij) ∈
GU(3, t2), denote Aτ = (aτ

i j) = (at
i j). Then τ becomes an automorphism of GU(3, t2) and we have

〈X, Y 〉τ = 〈X, Y 〉 and Zτ = Z−1. (2)

As in the case of Lemma 5.1, if t ≡ −1 (mod 9), then G = T or T .2, and if t ≡ −4, −7 (mod 9),
then G = T .2, T .3 = P GU(3, t2) or Aut(T ) with Gα = 32:Q 8.2, 32:Q 8.3 or 32:Q 8.S3 respectively. All of
them are listed in Table 1.

If t ≡ −1 (mod 9), then write Gα = 32:L for G = T or T .2. Then, as in Lemma 5.1, we still have
NG(L) � NG(Q 8). For G = T and L = Q 8.3 < Gα , any element x ∈ Z(NT (Q 8)) = Z(t+1)/3 with odd or-
der belongs to NG(L) \ L, which implies the existence of a subconstituent of degree 9 by Theorem 2.6.

If G = T .2, then it is an extension of T by an outer automorphism of order 2 which can be induced
by τ . It follows from (2) that there exists g ∈ G \ T such that g2 ∈ T and g ∈ NG(Q 8). Similar to the
linear case in Lemma 5.1, now NT (Q 8) = Z(t+1)/3.S4, |NG(Q 8):NT (Q 8)| = 2 and NG(Q 8)/CG(Q 8) ∼=
S4. So we have NG(Q 8) = 〈NT (Q 8), g〉 and, by (2), CG(Q 8) is a dihedral group of order 2(t + 1)/3.
The same argument in the proof of Lemma 5.1 can be applied to prove that G has a 2-transitive
subconstituent of degree 9 if and only if t ≡ −1 (mod 4).

If t ≡ 4,7 (mod 9) and G = T .2 then Gα = 32:Q 8.2. Write L = Q 8.2 < Gα . Now the Sylow
2-subgroup of G has order > 16 which implies that NG(L) > L. The existence of a 2-transitive sub-
constituent of degree 9 follows from Theorem 2.6. If G = T .3 = P GL(3, t) and L = Q 8.3 < Gα then, as
in the case that t ≡ −1 (mod 9) and G = T , one can prove that Z(NG(Q 8)) = Zt+1 which implies that
NG(L) > L. Finally, if G = Aut(T ) = P GL(3, t).2 then, as in the case that t ≡ −1 (mod 9) and G = T .2,
the same argument can be used to prove that G has a 2-transitive subconstituent of degree 9 if and
only if t ≡ −1 (mod 4). �

Next we consider the case where T = soc(G) = PΩ+(8,q) and G contains a graph automorphism
of order 3.

Lemma 5.5. Suppose T = PΩ+(8,q) and G contains a graph automorphism of order 3. Then G satisfies
hypothesis (∗) if and only if G = PΩ+(8,2).3 or PΩ+(8,2).S3 and M = 52:4A4 or 52:4S4 respectively, with
a subconstituent of degree 25.

Proof. In this case all maximal subgroups of G are determined by Kleidman [16] (see also [25, Ta-
ble 19]). The solvability of M leads to either q = 2 or 3, or

|M ∩ T | = 16

(2,q − 1)2

(
q2 + 1

)2
or

192

(2,q − 1)2
(q ± 1)4

(see [16, 4.2.1 and Table III]).
If q = 2 then, by [7], we get G = PΩ+(8,2).3 or PΩ+(8,2).S3 and M = 52:4A4 or 52:4S4.

All of them are listed in Table 1. Moreover, write M = 52:L. Then computation shows that
|NG(L):NGα (L)| = 2. Thus by Theorem 2.6, G has indeed a suborbit of length 25 and the corresponding
subconstituent is non-sharply 2-transitive.

If q = 3, we get G = PΩ+(8,3).A4 or PΩ+(8,3).S4 with M = 102:4A4 or 102:4S4. We constructed
a permutation representation of degree 3360 for G = PΩ+(8,3).S4 and Gα = 102:4S4. Denote L
as 5-complement of Gα . Computation shows that NG(L) = L and all subgroups of order |L| = 384
in Gα are conjugate. It follows from Theorem 2.6 that G has no subconstituent of degree 25. For
G = PΩ+(8,3).A4 and Gα = 102:4A4, the same result was obtained by computation. Thus it is also
excluded.
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Next suppose that q � 4. If |M ∩ T | = 16(q2 + 1)2/((2,q − 1)2), then by [16] M ∩ T ∼= (D2h ×
D2h).22 = Z 2

h .[4].22 where h = (q2 + 1)/(2,q − 1). Notice that

Out(T ) =
{

Z f × S3, if q is even,

Z f × S4, if q is odd.

First suppose that Z 2
h � K . It follows from Lemmas 2.8 and 2.9 that Z 2

h K/K ∼= p2. If q is even then we
get

(
4 f + 1

)2 � 162 · 62 · f 2.

Hence f � 4. Similarly, if q is odd then

(
t2 f + 1

)2 � 162 · 242 · 4 f ,

where q = t f for some prime t . Elementary calculation shows that, in both cases, G does not satisfy
hypothesis (∗).

Next suppose that Z 2
h � K but Z 2

h .[4].22 � K . It follows from Lemma 2.8 that (Z 2
h .[4].22)K/K ∼= pa .

Hence p = 2 and a = 3 or 4. However, [4].22 is non-abelian, which forces d = pa = 8. By Lemma 2.1,
now E is not a 2-group and hence 2 divides |K/E|. This contradicting the fact that |G�(α)

αβ | = 21.

Finally suppose that Z 2
h .[4].22 � K . Then G�(α)

α is a section of Out(T ). It is easy to show that G�(α)
α

now cannot be a non-sharply 2-transitive group of degree d � 8.
If |M ∩ T | = 192(q ± 1)4/((2,q − 1)2) then, by the similar argument as above, one can prove that

G cannot satisfy hypothesis (∗). �
In order to complete the investigation for classical groups, we prove the following proposition.

Proposition 5.6. There is no other classical group satisfying hypothesis (∗) except for those in Lemmas 5.1–5.5.

Proof. Let T = soc(G) be a classical simple group and M a solvable maximal subgroup of G . Then
there exists a minimal normal subgroup G0 � G such that M0 = M ∩ G0 is maximal in G0. All such
pairs (G0, M0) are listed in [25, Tables 16–19]). Except for those listed in Lemmas 5.1–5.5, one can
exclude all other entries of [25, Tables 16–19]) by applying lemmas in Section 2 and combining with
computation. We take three cases as examples. Recall that K = K (α) is the kernel of M acting on
�(α) and E is the kernel of K acting on �′(β) for β ∈ �(α) (cf. Lemma 2.1).

Case 1. T = P Sp(4,q) where q = 2 f for some f � 2. G contains a graph automorphism and M ∩T =
[q4] : Z 2

q−1.
In this case M = NG(X) for X ∈ Syl2(T ). Choose a basis {ε1, ε2, ε3, ε4} of V satisfying

V = 〈ε1, ε4〉 ⊥ 〈ε2, ε3〉,

where 〈ε1, ε4〉 and 〈ε2, ε3〉 are both hyperbolic planes. Then X can be written as

X =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 t u v
0 1 w x
0 0 1 t
0 0 0 1

⎞
⎟⎠ ∣∣∣ t, u, v, w, x ∈ GF(q),

t w + u + x = 0

⎫⎪⎬
⎪⎭ .

It is not hard to verify that NT (X) = X :H , where
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H =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

y
z

z−1

y−1

⎞
⎟⎠ ∣∣∣ y, z ∈ GF(q)×

⎫⎪⎬
⎪⎭ .

Hence |M| | q4(q − 1)2 · 2 f .
If X K/K �= 1 then by Lemma 2.8, d = 2a and X K/K ∼= 2a . Suppose that E is an r-group. Then by

Lemma 2.1, r | 2a − 1 and hence r �= 2. Write D = X ∩ K . Then D �= 1 because X is non-abelian. Thus
D is the normal Sylow 2-subgroup of K . It follows that

1 �= D E/E char K/E � G�′(β)
αβ

∼= G�(α)
αβ .

However, by [14, II 3.2], G�(α)
αβ cannot have normal 2-subgroup. This contradiction shows that X � K .

Now if E �= 1 is an r-subgroup and r �= 2, then by Lemma 2.1, Gα is strongly r-constrained and
hence O 2(Gα) = 1, a contradiction. Therefore, either E = 1 or E is a 2-group. Furthermore, if X :H � K
then G�(α)

α � Z f .Z2, which is impossible. Hence by Lemmas 2.8 and 2.9 we have (X :H)K/K ∼= pa ,
a = 2 and p | q − 1. It follows that

(q − 1)2

p2

∣∣ |K/E| ∣∣ ∣∣G�(α)
αβ

∣∣ ∣∣ 2 f

and (p2 − 1) � f for G�(α)
α is non-sharply 2-transitive. Hence we get (2 f − 1)2 � 2 f ( f + 1), which

forces f = 2, excluded by [7].
Case 2. T = P SU(4,q2) and M ∩ T = Q .S4 where

Q ∼= Z 2
q+1 × Z q+1

(q+1,4)

is abelian.
Let P � G�(α)

α be the unique normal subgroup of order pa and S = S4 K/K . If S �= 1, then P � S ,
which is impossible because pa � 8. It follows that S4 � K . If Q � K , then Q .S4 � K . It follows that
G�(α)

α is a homomorphism image of Z(q+1,4).Z f .Z2, which cannot be a 2-transitive group of degree
d � 8. This implies that Q � K and hence Q K/K ∼= pa , which leads to

(q + 1)3 � 4 f 2(4,q + 1)3 · (4!)2,

where q = t f for some prime t . It follows that t f is a divisor of 25, 33, 52, 7, . . . ,47. Elementary
calculation shows that the only possible values for q = t f are 5, 11, 23 and 47. If q = 5 and T =
P SU(4,52), then

(
Z 2

6 × Z3
)
.S4 � M �

(
Z 2

6 × Z3
)
.S4.[4]

because |Out(T )| = 4. It follows from Lemma 2.2 and [13] that d = 9 and G�(α)
αβ = Q 8.3 or Q 8.S3.

If E �= 1 then by Lemma 2.1 it is a 2-group and M is strongly 2-constrained, contradicting the fact
that O 3(M) > 1. Thus E = 1 and K is isomorphic to a normal subgroup of G�(α)

αβ . If G = T , then

G�(α)
αβ = Q 8.3 and |K | = 12. However, Q 8.3 has no normal subgroup of order 12. If G = T .2 and

G�(α)
αβ = Q 8.3, then |K | = 24, which leads to a contradiction that (22 × 3).2 = K ∼= Q 8.3. If G = T .2

and G�(α)
αβ = Q 8.S3 then |K | = 12. But now G�(α)

αβ contains no normal subgroup of order 12. Similarly
one can prove that G = T .4 does not satisfy hypothesis (∗). For q = 11, 23 or 47, one can prove that
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π(M) = {2,3} and O 2′ (M) �= 1. Hence d = 9 and E = 1. However, it follows that |K | = |K/E| > |G�(α)
αβ |,

contradicting Lemma 2.1.
Case 3. T = PΩ+(8,q), M has a section isomorphic to PΩε(2,q) � S4 (ε = ±1) and G contains no

graph automorphism of order 3.
In this case M is the stabilizer of {V 1, . . . , V 4} for an orthogonal decomposition V = V 1 ⊥ · · · ⊥ V 4,

where V i are isomorphic non-degenerate subspaces of dimension 2.
First assume that q = 2 f . By [16] and the assumption that G contains no graph automorphism of

order 3, we have

Q .23.S4 � M � Q .23.S4.Z f .Z2,

where Q = Z 4
(q−ε) . If Q K/K �= 1, then by Lemma 2.8, Q K/K ∼= pa . If E �= 1 is an r1-subgroup such

that r1 divides |Q |, then Q = Q r1 × Q r′
1

where Q r1 is the Sylow r1-subgroup of Q and Q r′
1

the
Hall-r′

1-subgroup of Q . Thus we have Q r′
1

char Q � Gα . It follows that O r′
1
(Gα) �= 1, contradicting

Lemma 2.1. Therefore either E = 1 or (|E|,q − ε) = 1. It follows that

(q − ε)4

pa

∣∣ |K/E| ∣∣ (
pa − 1

)
l
∣∣ 8 · 24 · 2 f

for some l � 2. Thus

(q − ε)4 = (
2 f − ε

)4 � pa(pa − 1
)
l �

(
pa − 1

)2 · l2 � 147456 f 2.

Hence we have f � 5. Furthermore, by [20, Table 3.5.E], ε = −1 when f � 2. It is not hard to show
that none of them satisfies hypothesis (∗). Therefore we assume that Q � K . If Q .23 � K , then G�(α)

α

is a section of S4.Z f .Z2, which cannot be a 2-transitive group of degree d � 8. So by Lemma 2.8,

(Q .23)K/K ∼= 23 and |G�(α)
αβ | = 21. Thus we have 8 | |K |. On the other hand, by Lemma 2.1, either

E = 1 or it is a 7-group, which leads to a contradiction that 8 is divides |G�(α)
αβ |.

Next assume that q = t f is odd. It follows from [16] that M ∩ T = Q .[26].S4, where Q is an
abelian subgroup of order (q − ε)4/25 with ε = ±1. If Q K/K �= 1 then by Lemmas 2.8 and 2.9 we
get a = 4, p | q − ε and p > 2. Similarly as in the above paragraph, we can prove that either E = 1 or
(|E|, |Q |) = 1. It follows that

(q − ε)4

32p4

∣∣ |K/E| ∣∣ ∣∣G�(α)
αβ

∣∣ ∣∣ 26 · 24 · 8 f ,

as G contains no graph automorphism of order 3. Elementary calculation shows that q = t f is a
divisor of 35, 53, 73, 112, . . . ,192, 23, . . . ,173. If q = 35, then p = 61 and 31 | p4 − 1 = d − 1 should
be a divisor of |M|, a contradiction. For the other values of q, π(G�(α)

αβ ) = {2,3}. It follows from

Lemma 2.4 that a = 2, a contradiction. So next we assume that Q � K . If Q .[26] � K , then G�(α)
α is a

section of S4.Z4.Z f .Z2. It is not difficult to show that G�(α)
α cannot be a 2-transitive group of degree

d � 8. Thus by Lemma 2.8 we have (Q .[26])K/K ∼= pa , which implies that p = 2 and 3 � a � 6. By
[13], if G�(α)

α is a non-sharply 2-transitive group of degree 2a , then 8 � |G�(α)
αβ |. However, it is clear

that E is not a 2-group and hence 8 divides |K/E| which is a divisor of |G�(α)
αβ |.

Similarly, one can prove that all other entries of [25, Tables 16–19]) do not satisfy hypothe-
sis (∗). �
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6. The exceptional groups

In this section we treat the case where T = soc(G) is an exceptional simple group of Lie type
over GF(q), where q = t f for some prime t . Suppose that G has a solvable maximal subgroup M such
that (G, M) satisfies hypothesis (∗). If T = 2 B2(q), 3 D4(q), 2 F4(q), G2(q) and 2G2(q), all maximal
subgroups of G are determined (see [8,17,18,29,40]).

For the cases that T = F4(q), Ei(q) (i = 6,7,8) or 2 E6(q), where q = t f for some prime t , write A
as a minimal normal subgroup of M and Inndiag(T ) the group generated by all inner and diagonal
automorphisms of T . Then A is elementary abelian and M = NG(A). Since M is solvable, it follows
from [5] that there are three cases to be considered:

(1) t | |A|, i.e. M is a maximal parabolic subgroup of G;
(2) A < Inndiag(T ) and M is of maximal rank (see [5,27] for details);
(3) A < Inndiag(T ) but M is not of maximal rank.

In addition, denote G0 � G as the minimal normal subgroup of G such that M0 = M ∩ G0 is maximal
in G0. Then all such pairs (G0, M0) are listed in [25, Table 20]).

In what follows, we first give an example of (G, M) that satisfies hypothesis (∗). Then we prove
there exist no other entries of [25, Table 20]) satisfying (∗), which concludes the proof of Theorem 1.1.
As in Section 5, we always assume that K = K (α) is the kernel of Gα acting on �(α) and E � K is
the kernel of K acting on �′(β) for a fixed β ∈ �(α) (cf. Lemma 2.1).

Lemma 6.1. Suppose T = F4(q) (q = 2 f ) and G contains a graph automorphism. Then G satisfies hypothesis
(∗) if and only if G = F4(2).2 and M = 72:(3 × 2S4) with d = 49.

Proof. All the possible pairs (G0, M0) are listed in [25, Table 20]. First assume that G = F4(2).2 and
M = [222].(S3 × S3):2. It follows from Lemma 2.2 that d = 9 and [222] � K . Thus we have |G�(α)

α | � 72,
which cannot be a non-sharply 2-transitive group of degree 9.

Next consider the case that G = F4(q).2 for some q = 2 f and M ∩ T = (q ± 1)4.W (F4). Notice that
now the Weyl group W (F4) ∼= 23:S4:S3 and |Out(T )| = 2 f . It is not hard to prove that Z 4

q±1 K/K ∼= pa .

Therefore (2 f ± 1)2 � 28 · 32 f . Calculation shows that f � 8 and no case satisfies hypothesis (∗).
Next consider the case that M ∩ T = (q2 ±q +1)2.(3×SL(2,3)). Similarly one can get 4 f ±2 f +1 �

144 f . Therefore either G = F4(2).2 with M = 72:(3 × 2S4), which is listed in Table 2, or d = 49,
G = F4(4).2 and M = Z 2

21.(3 × 2A4).2. In the latter case, if E is a 3-group, then by Lemma 2.1 M = Gα

is strongly 3-constrained. This contradicts the fact that O 7(M) �= 1. Thus 3 is not a divisor of |E|.
It follows that, if |G�(α)

αβ | = 48 · 2, then 33 should be a divisor of |G�(α)
αβ |. This contradiction forces

|G�(α)
αβ | = 144 and G�(α)

αβ
∼= (Z3 × Q 8):S3. Hence Z 2

3 is a characteristic subgroup of K , which implies

that G�(α)
αβ contains a normal subgroup isomorphic to Z 2

3 , a contradiction.

In the former case, F4(2) = T � G = F4(2).2 and M = 72:(3 × 2S4). Let M1 = M ∩ T = 72:(3 × 2A4),
L = Z3 × 2S4 and L1 = L ∩ T = Z3 × 2A4. Computation by using the permutation representation of
T of degree 69 888 shows that L1 is maximal in M1, |NT (L1)| = 144 and |NM1 (L1)| = |L1| = 72. It
follows from Corollary 2.7 that G has indeed a suborbit �(α) of length 49 with L = Gαβ . It is not
hard to show that M = Gα is 2-transitive on �(α).

Similar arguments can be applied to the remained cases to prove that no other entries of [25,
Table 20] satisfy hypothesis (∗). �
Proposition 6.2. There are no almost simple groups of exceptional Lie type satisfying hypothesis (∗) except for
G = F4(2).2, M = 72:(3 × 2S4) with d = 49.

Proof. It is sufficient to prove that all other pairs (G0, M0) in [25, Table 20] do not satisfy hypothe-
sis (∗). We take the case that T = 3 D4(q) as example. Now three classes of maximal subgroups have
to be considered.
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(1) The parabolic subgroup M � [q11]:(Zq3−1 ◦ SL(2,q)).Z(2,q−1) . It follows that q = 2 or 3. If q = 2

then by [7, p. 89], M � 22.[29]:(7 × S3).3. Let Q = 22.[29]. Then it is easy to show that Q � K . It
follows from Lemma 2.1 that p = 2 and 3 � a � 10 as Q is non-abelian. It is clear that pa − 1 must
be a divisor of 14 · 9. This implies that a = 3 or 6, excluded by elementary calculation. The case q = 3
can be excluded similarly.

(2) M ∩ T = (Zq2−q+1) ◦ SU(3,q2).Z(q2−q+1,3).Z2, which leads to q = 2. Hence we have G = 3 D4(2)

with M = 31+2+ .2S4. It follows form Lemmas 2.1, 2.2 and [13] that d = 9 and G�(α)
αβ = Q 8:3 or Q 8:S3.

However, it implies that |K | = 3 or 6 and

Z3 char K/E � G�′(β)
αβ

∼= G�(α)
αβ ,

a contradiction.
(3) M ∩ T = Z 2

q2±q+1
.SL(2,3). Therefore p | q2 ± q + 1 and a = 2 by Lemma 2.9. Thus we have

(q2 ± q + 1)2

p2

∣∣ |K/E| ∣∣ 24 · 3 f ,

where q = t f . Calculation shows that q = 2 or 4. If q = 2 then G = 3 D4(2) or 3 D4(2).3 with d = 9.
In the former case, Gα = 32:2A4. By using a permutation representation of G with degree 819, com-
putation shows that Gα has 4604 suborbits with lengths 1, 8, 12, 24, 27, 36, 54, 72, 108 and 216
but has no 2-transitive action on these suborbits. In the latter case, Gα = 32:2A4 × 3 = E:L. Take the
24 dimension representation of G over GF(2). Computation shows that NG(L) = L and there is only
one conjugacy class of subgroups of order 72 in Gα . It follows from Theorem 2.6 that G has no 2-
transitive subconstituent of degree 9. If q = 4 then G = 3 D4(4).[6], d = 49 and G�(α)

α = 72:(3 × Q 8).S3
since it is non-sharply 2-transitive on �(α). Now M = Gα = (Z21 × Z21).2A4.[6]. Thus K ∼= Z 2

3 . If
E �= 1 is a 3-group, then by Lemma 2.1, Gα is strongly 3-constrained, which yields a contradiction
that Z 2

7 � O 3′ (Gα) = 1. Therefore, E = 1 and Z 2
3

∼= K/E is a normal subgroup of G�(α)
αβ = (3 × Q 8).S3.

However, G�(α)
αβ has no normal subgroup of order 9, a contradiction.

Other cases can be excluded similarly. This completes the proof of the proposition and the proof
of Theorem 1.1 as well. �
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