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1. Introduction

Let G be a primitive permutation group acting on a finite set 2. Consider the action of G on
2 x 2. 1f A% {(x,) | @ € 2} is a non-trivial orbit of this action then, for a point o € 2, A(x) =
{B | (o, B) € A} is an orbit of the point stabilizer G, on £2 \ {«}, which is called a suborbit of G.
A subconstituent GoAl @ of G is the permutation group on A(w) induced by G,. The subconstituent
is said to be faithful if Gﬁ(a) = Gy. Throughout this paper we assume that G is uniprimitive, which
means that G is primitive but not 2-transitive on £2. So G has at least two suborbits.

For an orbit A of G on £ x £, we can define an orbital graph I" with vertex set V(I") = £2 and
edge set E(I") = A. Define A’ = {(B, @) | («, B) € A}, which is called the orbit paired to A. Then it is
clear that I" is an indirected graph if and only if A’ = A. In this case A is said to be self-paired. The

corresponding suborbit A(a) and subconstituent Gé‘,(o‘) are also said to be self-paired. From the point

of view of the orbital graph I', the subconstituent Gﬁ(w is the local action of G4 on the set of vertices
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adjacent to «. However, if Gﬁ(a) satisfies certain properties, the structure of G, or even G itself, will

be strongly restricted. For example, if |A(@)| =2 then G is a Frobenius group of prime degree [44,
18.7]. Primitive permutation groups with a suborbit of lengths 3 and 4 are also determined (see
[45,37,41]). Since 1970’s, Cameron, Knapp and Praeger intensively studied the structure of G, under
various assumptions on Gﬁ(o‘) [2-4,21-24,33,34]. One of these assumptions is Gﬁ(“) being 2-transitive
on A(x).

For a finite group G, its socle is the product of all minimal normal subgroups of G and denoted by
soc(G). If G is a primitive permutation group, soc(G) is a direct product of some isomorphic simple
groups. The O’Nan-Scott Theorem asserts that one of the following holds (see [26] for details):

(1) Affine type: soc(G) is abelian;
(2) Almost simple type: T = soc(G) < G < Aut(T) for some non-abelian simple group T;
(3) soc(G) = T* for some non-abelian simple group T and k > 1. In this case G can be further classi-
fied into three subcases:
(a) simple diagonal action;
(b) product action;
(c) twisted wreath action.

In [35] Praeger proved that, if G has a 2-transitive subconstituent, then it cannot be of simple diagonal
action (a) or product action (b).

The purpose of this paper is to investigate uniprimitive permutation groups which have a solvable
2-transitive subconstituent. In this case, Gﬁ(“) is solvable and, by [44, 18.3], G, itself is solvable.
Thus G cannot be of twisted wreath action (c) because otherwise G, is unsolvable (see [26, p. 391]).
If G is of affine type, it has a regular normal subgroup. Then, by [38, Lemma 9], GOA,(“) is faithful.
In [15], Ivanov and Praeger classified the primitive permutation groups of affine type with a self-
paired 2-transitive subconstituent. In this paper we give an infinite family of affine primitive groups
with non-self-paired solvable 2-transitive subconstituents (see Example 3.2). Some further discussion
on the affine type will be given in Section 3 as well.

If G is an almost simple group, then M = G, is a solvable maximal subgroup of G. Almost all such
subgroups were known since the early 1990’s because at that time all maximal local subgroups of
G were known (see for example [1,5,27]), except for the maximal 2-local subgroups of the sporadic
simple groups Monster and Baby Monster. Ten years later, in [30], Meierfrankenfeld and Shpectorov
proved that the lists of the maximal 2-local subgroups of these two groups in the ATLAS [7] are
complete. In a recent paper [25], among other results, Li and Zhang determined all solvable maximal
subgroups of almost simple groups. All pairs (Go, Mg) are explicitly listed, where Gp < G is minimal
such that Mg = M N Gg is maximal in Gg [25, Theorem 1 and Tables 14-20].

Let G be a uniprimitive permutation group with a solvable 2-transitive subconstituent Gé‘,(“) of
degree d. By Huppert's classification of solvable 2-transitive groups [13], d = p® for some prime p and
integer a > 1. Furthermore,

GA® < r(p*)={x—ax*+b|a+#0, a € Aut(GF(p?))}

is a subgroup of all semilinear transformations of GF(p®), except for d = 32, 52, 72, 112, 232 or 3%.

If d <4, all primitive groups with a suborbit of length d were determined (see [44, 18.7] for
d =2, [45] for d =3, [37] and [41] for d =4). If d = p is prime and G has a solvable 2-transitive
subconstituent, then Gﬁ @ s sharply 2-transitive. All such groups of almost simple type have also
been determined [42]. Therefore, for almost simple type, we may assume that d = p? > 8, a > 1 and

Gﬁ(“) is not sharply 2-transitive on A(«). Our main result is the following

Theorem 1.1. Let G be a uniprimitive permutation group with non-abelian simple socle. If G has a solvable

non-sharply 2-transitive subconstituent Gﬁm of degree d = p* > 8 and a > 1, then G, G, and d are one of

the entries in Tables 1 or 2.
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Table 1
soc(G) is a classical simple group.
G Gy d Remark
PSL(3,4).2, 32:Q5.2 9
PSL(3,4).23 32:Qg.2 9
PSL(3,4).22 32:Q5.2 x 2 9
PSL(3,4).3.2; 32:25, 9
PSL(3,4).3.23 32:25, 9
PSL(3,4).6 32:2A4 x 2 9
Aut(PSL(3, 4)) 32:25, x 2 9
PSL(3,t).2 32:Q5.2 9 prime t =4, 7 (mod 9)
PGL(3,t) 32:Q5.3 9 as above
Aut(PSL(3, t)) 32:Q5.53 9 t=4,7 (mod 9) and t =1 (mod 4)
PSL(3,¢t) 32:2A4 9 prime t =1 (mod 9)
PSL(3,t).2 32:Q5.53 9 t=1 (mod 9) and t =1 (mod 4)
PSU(3, 8%) 32:2A4 9 three representations
PSU(3,8%).2 32:28,4 9
PSU(3,2%).2 32:Q5.2 9 prime r > 3
PGU(3,2%7) 32:Q5.3 9 as above
PSU(3,2%").53 32:Q5.53 9 as above
PSU(3, t2).2 32:Q5.2 9 prime 5 <t = —4, —7 (mod 9)
PGU(3, t%) 32:Q3.3 9 as above
Aut(PSU(3, %)) 32:Q3.53 9 =—4,—7 (mod 9) and t = —1 (mod 4)
PSU(3,t2) 32:2A4 9 prime t = —1 (mod 9)
PSU(3,t%).2 32:Q4.53 9 =—1 (mod 9) and t = —1 (mod 4)
P21 (8,2).3 52:4A, 25
P27 (8,2).53 52:4S, 25
Table 2
soc(G) is an alternating, sporadic or exceptional simple group.

G Ga d

J 23.7:3 3

He 52:4A, 25

He.2 52:45, 25

ON 342144 pyg 81

ON.2 342174 Dyg.2 81

Th 72:(3 x 254) 492

F4(2).2 72:(3 x 254) 49

2 The existence of the subconstituent of degree 49 has not
been determined.

Conversely, in Tables 1 and 2, each group G has indeed a solvable 2-transitive subconstituent of degree d,
except for the Thompson sporadic simple group Th.

Remark 1. We are unable to determine whether Th has a 2-transitive subconstituent of degree 49.

Remark 2. In Table 1, the group PSU(3, 82) has three conjugacy classes of maximal subgroups 32:2A4,
which yield three inequivalent permutation representations.

The paper is organized as follows. Some notation and preliminaries are collected in Section 2. In
particular, we give a series of lemmas describing the possible structure of G, and Gﬁ(“). These tools
enable us to check whether or not an almost simple group G has a required 2-transitive subcon-
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stituent of degree d. The affine case is discussed in Section 3. In Section 4 we treat the case where
soc(G) is an alternating group or a sporadic simple group. Section 5 is devoted to treating the case
where soc(G) is a classical simple group while Section 6 deals with the case of exceptional groups of
Lie type.

Many computations are done by using the computer package GAP [11]. The permutation or matrix
representations of the almost simple groups mentioned in this paper are taken from ATLAS of Group
Representations, version 3 (http://brauer.maths.qmul.ac.uk/Atlas/v3/).

2. Notation and preliminaries

The notation and terminology used in this paper are standard (see, for example, [7,20,44]). For
two groups K and H, K.H is an arbitrary extension of K by H while K:H stands for a split one.
K o H is the central product of K and H. For a prime r and a positive e, denote r® as an elementary
abelian group of that order and r'*2¢ as an extra-special r-group. In particular, if r is odd, denote
rfze as the extra-special r-group with exponent r and r1+2¢ as that of exponent r2, For r = 2, the

notation 2?2" stands for a central product of even number of Qg while 21+2¢ for a central product of
odd number of Qg together with a Dg. For a positive integer g, the symbol [g] denotes an arbitrary
group of order g, while Z; stands for a cyclic group of that order. Sometimes, a single g is also used
to denote a cyclic group of that order. For a group H, we use 7 (H) to denote the set of all prime
divisors of |H|. A section of H is the quotient group A/B for some B << A < H. For a prime r, the
notation r® T n means that ¢ exactly divides n.

For a group H and a prime r, the maximal normal r-subgroup and the maximal normal r’-subgroup
of H are denoted by O.(H) and O, (H) respectively. A group H is called strongly r-constrained if
Cy(0,(H)) < O(H). In particular, O,+(H) =1 if H is strongly g-constrained.

For a Gy-orbit A(a), we use A’(«) to denote the orbit of G, paired with A(x) (see [44, §16] for
details). In particular, a suborbit A(«) is said to be self-paired if A’(«) = A(«). Furthermore, denote
the kernel of Gy on A(x) as K(«), namely K(«) = Giyjua(w)- Similarly, denote K’(ct) = Giojun’(a)-

Next we give some lemmas about the structure of G, and GOA((O‘). Recall that |A(a)| =d = p°.
Lemma 2.1. Let G be a primitive group with a solvable 2-transitive subconstituent Gﬁ(a) of degree d > 3.

Suppose that |G§(a)| =d(d — 1)l and K = K () is the kernel of G, on A(c). Then:

(1) IfK # 1, then there exists a subgroup E <1 K such that K /E is isomorphic to a non-trivial normal subgroup
ofcsé“)forﬁ € Aw).

(2) If E # 1 then E is a q-group for some prime q | d — 1. Furthermore, G, Gg and Gyg are all strongly
q-constrained.

(3) |Go:E| divides d(d — 1)212.

Proof. For 8 € A(x), by [21, 3.2], G?l(ﬁ) = Gﬁ(ﬁ) = Gg‘,(o‘). It is clear that @ € A’(B) and K acts on
A’(B) since K < Ggp < Gg and A’(B) is a Gg-orbit. Now Gé(ﬁ) is also solvable 2-transitive. So by [21,
4.10] K'(B) = K(B). The kernel of K on A'(B) is E=K NK'(8) = K N K(B). Hence K/E =K~'® is a
normal subgroup of Gs,;(ﬂ) = Gi‘f}w. By [21, 4.11], E is a proper subgroup of K. Thus K/E # 1 and (1)
is proved. Statement (2) follows from [21, 4.12].

If |Go' ™| = |Ga:K| =d(d— D), then |G| = (d— 1)I which is divisible by K /E|. Hence statement
(3) holds. O

Lemma 2.2. Let G be a primitive permutation group with a solvable 2-transitive subconstituent Gﬁw of
degree p® > 8, where p is a prime. If |G| = 2P - 3¢, then p® =9 and ¢ < 4.

Proof. Clearly now p =2 or 3 because p?(p® — 1) | |Gg|. Since p% > 8, we have a > 2 when p =3
and a >3 when p=2.If a > 2 and p® + 25, then by a result of Zsigmondy [47], there exists a prime
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divisor r of p® — 1 such that rfpi — 1 for 0 <i < a. In particular r > 5, contradicting the fact that
P —1]|Ggl =203 If p?=2° then 7 is a divisor of p? — 1, a contradiction. Hence we have a =2
and p =3. By [13], \Gﬁé“)l | 24 . 3. Following from Lemma 2.1, G, contains a 2-subgroup E such that

|Go:E| divides |G| - 1G5 |, which divides 28 3%, O

Lemma 2.3. Let G be a primitive group with a solvable 2-transitive subconstituent Gé(a) of degree p® and

K = K (@) the kernel of G, on A(c). If p {a then either p {|K| or p® = 32.

Proof. Suppose that p | |K|. By Lemma 2.1, if the kernel E of K on A’(8) is non-trivial, then E is a g-
A@)

group with q | p® — 1. It follows from Lemma 2.1 that p divides ‘Gaﬁ | = (p® — 1)l for some integer .
Thus p | I. Now Gﬁ(“) is a solvable 2-transitive group. If Gé(a) < I'(p%), then I | a and hence p | q,

a contradiction. Therefore Gé @) is one of the exceptional groups determined by Huppert [13]. It is

easy to check that the only possibility is p? =32. O
Lemma 2.4. Let p be a prime and a > 1 an integer. If p® > 8 and p® — 1| 2" - 3¢, thena = 2.

Proof. It is clear that p? 28, So if a > 2, then by [47] there exists a prime divisor r of p% — 1 such
that r{p' —1 for 0 <i <a. Clearly r =2 or 3. If p=2 then r =3. But 3 | 22 — 1, a contradiction. If
p is an odd prime, then r =3 for otherwise 2 | p — 1. Therefore p £ 1 (mod 3). We also have p # 3
because r = 3 is a divisor of p®— 1. It follows that p = —1 (mod 3) and hence 3| p2 — 1, contradicting
the assumption that a > 2. 0O

Lemma 2.5. (See [41, Lemma 2.6].) Let Gy <1 G and M a maximal subgroup of G. Suppose that My = M N Gg
is maximal in Gg. If there exists an element x € G such that [M:M N M*| =d > 1, then there exists an element
h € Gg such that 1% |Mo:Mo N MA| divides d.

The following theorem gives a set of criterions for a primitive permutation group G to have a
primitive non-regular subconstituent of degree d.

Theorem 2.6. (See [36, Theorem 2.6].) Let G be a primitive permutation group acting on a finite set §2. Suppose
that, for o € 2, the point stabilizer G, has a maximal subgroup H of index d which is not normal in G. Then
the following hold:

(i) G has a self-paired suborbit A(a) of length d such that G = H for some g € A() if and only if
INg(H):H| is even.
(ii) If 1 < |[Ng(H):H| is odd, then G has a non-self-paired suborbit A(«) of length d with Gyg = H for some
B e Ax).
(iii) If Ng(H) = H, then G has a non-self-paired suborbit A(a) of length d with Gyg = H for some g € A(x)
if and only if there exists an element x € G such that H* < G,, but H* and H are not conjugate in Go. O

Corollary 2.7. Let G, Gy, H and d be as in Theorem 2.6. Suppose that G has a normal subgroup T of in-
dex 2. Denote G1 =Gy NT and Hy =HNT.If Ng,(H1) = Hy and [Nt(H1):H1| =2, then Ng(H) > H. In
particular, G has a suborbit A(w) of length d such that Gog = H for some g € A(w).

Proof. It is clear that Ng,(H) = H for H is maximal and not normal in G. Since |[N7(H1):H1| =2,
there exists t € T \ G1 such that H% = Hy. Suppose H = (Hq,a) for some a € H. Then t* € T and
Hﬁa = H; because Hy <1 H. It follows that t € Nr(H1) = Hy U Hit. It is evident that t? ¢ Hy. So we
have a~'ta = xt for some x € Hy, which implies that tat~! = ax € H. Therefore t € Ng(H) \ H and thus
Ng(H) > H. It follows from Theorem 2.6 that G has a suborbit A(x) of length d with Gog =H. O
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Lemma 2.8. Let G be a primitive group with a solvable 2-transitive subconstituent GOA((‘Y) of degree d = p*®

and K = K(«) the kernel of Gy on A(w). For any normal subgroup Q < Gg, either Q < K, or p?11Q]
Furthermore, if Q £ K, then Q = Q K/K = p® when one of the following holds.

(1) Q is a gq-group for some prime q. In this case p = q.
(2) Q is abelian.

Proof. Denote P = soc(G5®) = p¢. Then if Q £ K, Q = QK/K must contain P, which implies that
p°||Q|. Furthermore, if (1) holds, then Q is a g-group. So p=q. Now 1# Z(Q) < GOA,(“). It follows
that P < Z(Q) because P is the unique minimal normal subgroup of G5®. Hence Q < CGA(Q)(I_’) =

P = pY If (2) holds, then Q can be written as the direct product of its Hall p and p’-subgroups
Q =Qp x Qp. It follows that Q, is a normal p-subgroup of G5®, hence Qp = P by the same
argument in (1). Therefore, Q ,y < Coam (P) = P, which implies that Q y =1. O

Lemma 2.9. Let G be a primitive group with a solvable 2-transitive subconstituent Gé(a) of degree d = p*

and K = K(«) the kernel of Gy on A(c). Suppose that G, = Q :H where Q is the direct product of s cyclic
groups Zyand QK /K # 1. Then QK /K = p® witha=sand pT L

Proof. Suppose that [ = p" -m, (p,m) =1. If u > 1, then there exists an x € Q of order p“. By
Lemma 2.8, Q K/K = p“. Consider x € Q K/K, which has order at most p. It follows that 1 # xP € K.
Write Q as the direct product of its Hall p and p’-subgroups Q = Qp x Qp. Then QpcharQ <Gy
and QpNK # 1 is the Sylow p-subgroup of K, which implies that Q, N K char K. By Lemma 2.1, there

is a normal subgroup E < K such that K/E is isomorphic to a normal subgroup of Gﬁé"‘). If E#£1
then E is an r-group with r | p® — 1. Hence

Qp NK = (QpNK)E/Echark/E < G5,P = G5\

Thus Gﬁ(w has a normal p-subgroup, contradicting [14, II 3.2]. So we have u = 1. It is clear that a <s.
If a < s, then the same method can be used to prove that Q, N K # 1, a contradiction again. O

3. Affine case

In this section we discuss the case of affine type. Let G be a uniprimitive permutation group
with an elementary abelian socle Z] for some prime r and integer n > 1. Then G = Z!:G,, where
Gy < GL(n,r) is the point stabilizer of @ =0 € ZJ'. In this case, G, is an irreducible subgroup of

GL(n,r). In addition, if G, has a solvable 2-transitive quotient group Gf{(“) then, by [38, Lemma 9],
G itself is solvable and acts faithfully on A(«). It follows that G is a solvable primitive permutation
group. Moreover, |A(x)| =d = p® with prime p #r and G, has a unique minimal normal subgroup
K = Z§. Write Go = K > L. Then d — 1 |L| since Gy = Gg'® is 2-transitive of degree d.

It is well-known that there is a 1-1 correspondence between solvable primitive permutation groups
G of degree ™ and the irreducible solvable subgroups Gy of GL(n,r). Therefore, if we can determine
all irreducible solvable subgroups of GL(n, ), we will be able to check which of them has a 2-transitive
action on some set. However, the determination of irreducible solvable subgroups of GL(n,r) is essen-
tially recursive: it depends on the determination of subgroups of GL(m,r) for all divisors m | n and
solvable transitive subgroups of symmetric group Sp/m. Thus we can hardly give a uniform description
of the irreducible solvable subgroups of GL(n, r) for general n. On the other hand, in [39], among many
other results, Suprunenko determined all maximal irreducible solvable subgroups of GL(q,r), where
the dimension q is a prime. This enables us to exclude the case for some small n. Since all such
groups G are determined for d <5 (see [45,37,41,43]), we assume d > 7 in the following proposition.
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Proposition 3.1. Let G be a uniprimitive permutation group such that soc(G) = Z}. If G has a solvable 2-
transitive subconstituent GQ(O‘) of lengthd > 7 thenn > 4.

Proof. If n=1, G, < GL(1,r) = Z;_1 is cyclic. Thus G, cannot act 2-transitively on any set. If n =2
then, by [39, Theorem 21.6], three cases should be considered. Recall that G, = K:L, where K = Zg
and |A(x)| =d = p“.

(1) Go < Z2 ;2. 1f KNZ2 | =1 then |K| |2, a contradiction. Thus 1% K N Z2 | < G4. The min-
imality of K implies that K < Z2 ,. Further, if Go N Z2 | > K then Cg, (K) > K, contradicting [14, II
3.2]. So we have G N Z2 1 = K, which implies that

r—

L=Ga/K =Go/(Ga NZE ) < 2o,

a contradiction.

(2) Gg < Z;2_1:2. The same argument can be applied to exclude this case.

(3) Go < (Zy_10Qg).S3. In this case, Z,_1 = Z(GL(2, r)) is the subgroup of scalers. If KNZ,_1=1
then |K| | 24. The only possibility is |[K| =d = 8, and thus K = Z%. On the other hand, K = KZ,_1/Z;_1
is isomorphic to a subgroup of (Z;_1 0 Qg).S3/Z;-1 = Z%.Sg, which contains no subgroup isomorphic
to Z;’. So we have K = K N Z,_1, which implies that K < Z(GL(2,r)), a contradiction.

Similarly, if n =3 then, by [39, Theorem 21.6], three cases should be considered.

(1) Gy < Zr{]:Sg. The same argument as in case of n =2 can be used to prove that G4 r’\ZfL1 =K,
which implies that L is isomorphic to a subgroup of Ss3. Since d —1 = p%—1|L|, we have d = 7. Thus
K = Z7 and, as a point stabilizer of 2-transitive group of degree 7, L must be Zg, a contradiction.

(2) G < Z;3_¢:3. Similarly we can yield a contradiction as in case (1).

(3) Go < (Zy_1 0 E).2A4, where E is an extra-special group of order 3% with exponent 3 and r =
1 (mod 3). Moreover, Z,_1 = Z(GL(3,1)). Therefore K N Z,_1 = 1. So we have G, N Z,_1 =1 because
otherwise Cg,(K) > K. It follows that G, is isomorphic to a subgroup of GyZ;—1/Z;—1 < 32:2A4.
Thus d =32 and Gy = 32:Qg or 3%2:2A4. Write M = Z;_1Gg. If G4 = 3%:2A4 then M = Z,_1 X Go =
(Zr_1 0 E).2A4, a contradiction. If G4 = 32:Qg then the Sylow 3-subgroup of M must be elementary
abelian since Z,_q is the center of the group and Z,_1 NGy = 1. On the other hand, M = (Z,_10E).Qg
has extra-special Sylow 3-subgroup E, a contradiction. O

For n > 4, there exist many examples of the affine primitive groups with a solvable 2-transitive
subconstituent. The GAP package IRREDSOL [12] provides a library of all irreducible solvable sub-
groups of GL(n,r), up to conjugacy, for " < 216 and the library of the corresponding affine primitive
solvable groups. It enables us to go through these groups and to look for examples of G which has
solvable 2-transitive subconstituent. Most of the examples we found satisfy G = fol X (Zp:Zp—1) for
some prime p with suborbit of length p. Next we give the construction of the infinite family of such
groups.

Example 3.2. Let p > 5 be a prime and group

H=(a,b|a? =bP"" =1, b 'ab=0d"),

where sP"1 =1 (mod p) and s' #1 (mod p) for 1 <i<p—1.50 H= Zyp:Zp_q. For any prime r
satisfying r =1 (mod p(p — 1)), F = GF(r) is a splitting field for H. Therefore, H has p — 1 linear
representations and a unique faithful irreducible representation T of degree p — 1 over F (see, for
example, [9, §47] and [31]). Let ¢ be a primitive p-th root of unit in F. Then T can be written as
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¢ 0 o
1 0

T(@)= & . Ty=[ 1
i 0 ... 10

Denote V =V (p—1,r) as the (p —1)-dimensional vector space over F. Then G =V x T(H) is a prim-
itive group of degree rP. For the zero vector 0 € V, the stabilizer Go =T(H). Let v=(1,1,...,1) e V.
Then it is easy to verify that A = vT#) has length p and the action of T(H) on A is 2-transitive.

Furthermore, for any prime r # p, H is p-solvable. It follows from the Fong-Swan-Rukolaine Theo-
rem [10, §22] that H has a unique faithful irreducible representation of degree p — 1 over field GF(r).
Therefore we obtain an infinite family of primitive permutation groups .% = {qu X (Zp:Zp-1)} with
degree rP~1 and the point stabilizer Go = Zp:Zp_1. G has a suborbit A of length p and the corre-
sponding subconstituent G@ is sharply 2-transitive. In addition, if r > 2, then [Ng(Zp_1):Zp_1| =T is
odd. It follows from Theorem 2.6(ii) that the suborbit is not self-paired. In fact, G has exactly r — 1
suborbits of length p, forming (r — 1)/2 pairs of mutually paired suborbits.

Remark 3. If r =2, then G = 2571 x T(H) is contained in the automorphism group of the folded

p-cube O, (see [15] for details). The full automorphism group of [J, is Zé’*] x Sp. In this case, the
unique suborbit of G with length p is self-paired.

Example 3.3. The group GL(7,3) contains an irreducible solvable subgroup H = 23:27:23. Thus we
obtain a primitive permutation group G = Z; x H of degree 37 with point stabilizer Go = H. Compu-
tation shows that G has 2 mutually paired suborbits of length 8 and, on each of them, the action of
H is faithful and 2-transitive.

In the remainder of the paper we will treat the case that G is almost simple. So in what follows
we always assume the following hypothesis:

G is a uniprimitive permutation group with a solvable and non-sharply 2-transitive
subconstituent GOA,(O’) of degree d = p® > 8 (a > 1). Its socle soc(G) = T is a non- (%)

abelian simple group.

In this case, G has a solvable maximal subgroup M = G. Suppose Go < G is minimal such that
My = M N Gg is maximal in Gg. Then all such pairs (Gg, Mg) are listed in [25, Theorem 1 and Ta-
bles 14-20]. In order to prove our Theorem 1.1, we will treat these pairs and their overgroups (G, M)
by the methods developed in Section 2, to determine if they have a non-sharply 2-transitive suborbit
on the right cosets of M in G.

4. Alternating and sporadic groups

In this section, we first assume that T = soc(G) = A, (n > 5) is an alternating group. In [36], all
primitive groups with a solvable 2-transitive subconstituent are determined if its socle is an alternat-
ing group (see also [25, Table 14]). It follows that

Proposition 4.1. If G satisfies hypothesis (x), then soc(G) # Ay. O

Next we consider the sporadic case. Suppose that T <{ G < Aut(T) where T is a sporadic simple
group and G contains a maximal subgroup M = G, which has a solvable and non-sharply 2-transitive
constituent GOA((O” on the set of all cosets of M in G. It follows that (G, M) must be one of the entries

of [25, Table 15] (see also [7,19,28,30]).
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Table 3
G M =Gy d
He 52:4A, 25
He.2 52:45, 25
I 23.7:3 8
ON 34:21+4p ., 81
ON.2 34:21+4p .2 81
Th 72:(3 x 2S4) 49

Proposition 4.2. Let G be a uniprimitive permutation group satisfying hypothesis (x). If T = soc(G) is a
sporadic simple group, then G, G, and d are one of the entries in Table 3. Conversely, all these M have indeed
a solvable 2-transitive constituent except for (G, M) = (Th, 72:(3 x 254)).

Proof. Recall that K = K(«) is the kernel of M acting on A(x) and E is the kernel of K acting on
A'(B) for B € A(x) (cf. Lemma 2.1).

If (G,M) = (He,5%:4A4), let L = 4A4 < M, then computation shows that |[N¢(L)| = 96 while
[Nym(L)| = 48. Hence by Theorem 2.6, G has indeed a subconstituent Gﬁ(a) of degree 25. It is easy to
show that this subconstituent is 2-transitive.

If G = He.2, write T = He and My = 5%:L1 < M =5%:L, where L; = 4A4 and L = 4S4. Computation
shows that Ny, (L1) = L1 and [N7(L1):L1] = 2. It follows from Corollary 2.7 that G has indeed a
suborbit of length 25. It is clear that Gé @) is faithful and hence non-sharply 2-transitive.

, Computation shows that G = J; has indeed a 2-transitive subconstituent of degree 8, with Gy =
2°:7:3.

For the case (G, M) = (ON,3%:217%Dy), take L =21*4.D;y and z the unique involution in the
center of L. Since all involutions of ON are conjugate, we may assume that z=x? where x is in the
conjugacy class 4A by the notation of ATLAS [7]. By [32, Lemma 4.8],

Z4.PSL(3,4) = C¢(x) <1 Cc(2) = Z4.PSL(3, 4).2.

Hence (x) = Z(C¢(x)) char Cc(x) < C¢(2), which implies that Nc(L) normalizes (x) since N¢(L) <
Cc(2). It follows that, for any y € L, xX¥ =x' for some i =1 or 3. Thus

xlyTIx=x"ly ' =y™1 or ¥y lel

as x> = z € L. This shows that x € Ng(L). If Ny (L) > L, then there exists a 3-subgroup P such that
Np(L) =L x P. However, by [46, Lemma 2.6], L contains an element of order 4 which acts fixed
point freely on 34 > P, a contradiction. Therefore Ny;(L) = L. If x € L then L contains (x) as a normal
subgroup of order 4, a contradiction. It follows that x € Ng(L) \ Ny (L). Hence by Theorem 2.6, ON has
a suborbit of length 81. It is not hard to show that the corresponding subconstituent is faithful and
non-sharply 2-transitive. The existence of 2-transitive subconstituent for case ON.2 can be proved by
the same argument.

If (G, M) = (Th, 7%:(3 x 2S4)), then by Lemmas 2.1 and 2.2, we get d = 49. However, the existence
of a 2-transitive subconstituent of degree 49 is unsettled.

If (G, M) = (B, (22 x 7%:(3 x 2A4)).2) and d = 49, then 22 < K since it acts trivially on 72. There-
fore, by [13], GA;;") = (3 x Qg):S3 and hence K = 22. On the other hand, if E is a 2-group, then

o
by Lemma 2.1, G4 is strongly 2-constrained, contradicting the fact that 07(Gy) # 1. Thus E =1 and

22 =~ K /E is isomorphic to a normal subgroup of GOA(;;O‘), a contradiction.

If (G, M) = (Cos, 22.[27.32].S3) then, by Lemma 2.2, d = 9. It follows from [13] that G5 ® =32:24,4
or 32:2S4. Hence the kernel K has order 26 or 27. Computation shows that M has no such normal
subgroup.
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If (G,M) = (Ja,11}7%:(5 x 2S4)) then p =2 or 11. If p =2 then d =8 or 16. However, by

Lemma 2.1 |GOA(;;")| must be divisible by 113, a contradiction. If p = 11 then d = 112 and by [13],

G4 = 112:(5 x 2S4). It follows from Lemma 2.1 that Gﬁé”)
contradicting [14, II 3.2].

Similarly, by applying Lemmas 2.1 and 2.2 and [13] and combining with computation, one can
exclude all other entries of [25, Table 15]. O

has a normal subgroup of order 11,

5. Classical groups

In this section we deal with the case where T = soc(G) is a simple classical group. Let G be a
uniprimitive permutation group satisfying hypothesis (x). Assume that T = soc(G) is defined over the
finite field F = GF(q) and V is the natural projective GF(q)-module for T of dimension n. Suppose
that M = G is maximal in G. Then M is a maximal local subgroup of G and thus, following from
Aschbacher [1], belongs to one of the eight subgroup collections %; of G. The detailed description
of these eight collections can be found in [1] and [20]. Furthermore, denote Go < G as the minimal
normal subgroup of G such that Mg = M N Gp is maximal in Gg. Then all such pairs (Go, Mg) are
listed in [25, Tables 16-19].

We first give some examples of G which has a solvable non-sharply 2-transitive subconstituent.
Then we prove that there exists no other group satisfying hypothesis (x). We always assume that
K = K(a) is the kernel of G, acting on A(x) and E < K is the kernel of K acting on A’(B) for a
fixed 8 € A() (cf. Lemma 2.1).

Lemma 5.1. Suppose T = PSL(3, t) for some prime t =1 (mod 3). Let M be a maximal subgroup of G such
that

2. oL
MmT:{3 :Qg, ift=4,7(mod9),
32.2A4, otherwise.

Then G has a non-sharply 2-transitive subconstituent of degree 9 with G, = M, if and only if

,7 (mod 9), (G, M) = (PSL(3, t).2,3%:Q5.2) or (PGL(3,t), 3%:Q3.3);
,7 (mod 9) and t =1 (mod 4), G = Aut(PSL(3, t)), M = 32:Q3.S3;
(mod 9), G = PSL(3,t), M = 3%2:2A4; or

(mod 9) and t = 1 (mod 4), G = PSL(3,t).2, M = 3%:Q3.S3.

NS

Proof. It follows from [1] that M is now the normalizer of an extra-special 3-group. Denote the
preimage of M in GL(3,t) by M. Then M = 32.5p(2, 3).

It is well-known that, if t =1 (mod 4) and 2°T t — 1, then the Sylow 2-subgroup of PSL(3,t)
is a wreath product Z»s : Z. And if t =3 (mod 4) and 25T t2 — 1, then the Sylow 2-subgroup is a
semi-dihedral group of order 251, It follows that PSL(3,t) has only one conjugacy class of subgroups
isomorphic to Qg. Let ¢ be a primitive element of GF(t) and n an element of order 3 satisfying
1+ 1+ n* =0. Define matrices

n—1 n” n 1 _— 72
X:T n n nj, Y:T 1 n 1.
1 o1

It is clear that X,Y € SL(3,t) and one can check that (X,Y)C/C = Qg < T where C is the center of
GL(3,t). Furthermore, define matrix

e+ 0 te-¢H
Z= 0 c 0
-2 0 Ye+¢
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Then Z € SL(3,t) has order t — 1. It is not difficult to verify that (Z)C/C = Z¢_1);3 = C7(Qg) and
N7(Qg)/Cr(Qg) = Aut(Qg) = S4. It follows that N7 (Qg) = Z(tfl)/3.54 and its center Z(N7(Qs)) =
Z—1),3. For any matrix S € GL(3, t), denote y as the inverse transpose mapping y : S (§")~1. Then
we have

(X,Y)Y =(X,Y) and Z¥ =2z (1)

Notice that now Out(T) = S3. If t=1 (mod 9) then G =T, T.2, T.3 or Aut(T) with G, = 3%:2A4,
32:Q35.53, 3%:2A4.3 or 3%:2A4.53 respectively. In the latter two cases, |G| is divisible by 3%. It follows
from [13] and Lemma 2.1 that GA(OO 32:Q5.3 or 32:Qg.S3. However, by Lemma 2.1, this implies that

Gﬁé‘x =2A4.3 or 2A4.53 has a normal subgroup of order 3, a contradiction.

The former two cases are listed in Table 1. Write G, = 32:L. Then, in both cases, it is clear that
Qg = 03(L) is characteristic in L. Thus we have Qg <1 Ng(L) which leads to L < Ng(L) < Ng(Qg). If
G=T and L= Qg.3 < N7(Qg), then any element x € Z(N7(Qg)) = Z¢—1y/3 with odd order belongs
to Ng(L) \ L, which implies the existence of a subconstituent of degree 9 by Theorem 2.6.

If G =T.2, then it is an extension of T by an outer automorphism of order 2 which can be
induced by y. It follows from (1) that there exists g € G\ T such that g2 € T and g € Ng(Qs).
Notice that now N7(Qg) = Z¢—1)/3.54, INc(Qg):NT(Qg)| =2 and N¢(Qg)/Cc(Qg) = S4. So we have
N¢(Qs) =(Nt(Qs), g) and, by (1), Cc(Qs) is a dihedral group of order 2(t —1)/3. On the other hand,
we still have

Qs.53 =L < Ng(L) < Ng(Qs).

Let Lo=LNT=Qg.3 <N71(Qs)=Z¢-1)/3-S4. Then we can assume L = (Lg, g) such that Lg =1Ly
and g2 € Ly. Moreover, let z be the generator of the cyclic normal subgroup of order (t — 1)/3 in
Cc(Qg). Then z& = z~!. We will prove that Ng(L) > L if and only if t =1 (mod 4). Notice that
Lo N (z) = (z"~V/6) has order 2. If 4| o(z) then (z) contams an element z; of order 4. It is clear
that Lél = Lo and zf = z( , which leads to z lg=1z =z 2g=1 ¢ L. This shows that z; € N(;(L) \ L.
Conversely, assume 0(z) = 2k for some odd k. If 7' e Ng(L)\ L for some 1< i <k, then g 1z g =z =i
which implies that gz% = g? € L = Ly U Log. It follows that the odd order element z2! or z% € Lo,
contradicting the fact that |Lo N (z)| = 2. Thus we have Ng(L) N (z) = (z) € Lo, which implies that
N¢(L) = (Lo, g) = L. Therefore we have proved that, when G = T.2, the 2-transitive subconstituent of
degree 9 exists if and only if t =1 (mod 4).

If t=4,7 (mod 9), then G > T since Gé‘,(“) is non-sharply 2-transitive. It follows that G =T.2,
T.3 or Aut(T) with Gy =32:Q3g.2, 3%:Qg.3 or 32:Qg.53 respectively. All of them are listed in Table 1.
Moreover, if G =T.2 and G4 = 32:Q3.2, then take L = Q3.2 < G. Now the Sylow 2-subgroup of G
has order > 16, so |[Ng(L)| > 16 = |Ng, (L)|. Thus by Theorem 2.6, G has indeed a suborbit of length 9.
It is evident that GA(O‘) is faithful and non-sharply 2-transitive. If G = T.3 = PGL(3,t) and L = Qg.3 <
G, then, as in the case that t =1 (mod 9) and G =T, one can prove that Z(N¢(Qg)) = Z;—1 which
implies that Ng(L) > L. The existence of a subconstituent of degree 9 follows from Theorem 2.6.
Finally, if G = Aut(T) = PGL(3,t).2 then, as in the case that t =1 (mod 9) and G = T.2, the same
argument can be used to prove that G has a 2-transitive subconstituent of degree 9 if and only if
t=1 (mod 4). O

Lemma 5.2. (1) Suppose PSL(3,4) =T < G < Aut(PSL(3,4)) and M is a maximal subgroup of G such that
M NT = 3%:Qg. Then all these groups have a solvable non-sharply 2-transitive subconstituent of degree 9
except for G = PSL(3, 4).2, in which case GOA((“) is sharply 2-transitive.

(2) Suppose PSU(3, 82) = T < G < Aut(PSU(3, 82)) and M is a maximal subgroup of G such that MNT =
32:2A4. Then G has a solvable non-sharply 2-transitive subconstituent of degree 9 if and only if (G, M) =
(T,32%:2A4) and (T.2,32:2S4).
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Proof. (1) It follows from ATLAS [7] and computation.

(2) Computation shows that, for (G, M) = (T, 3%:2A4) and (T.2,3%:254), G has indeed a solvable
non-sharply 2-transitive subconstituent of degree 9. For the case that G = T.3 or T.6, computation
shows that G has no suborbit of length 9. O

Lemma 5.3. Let T = PSU(3, 22") for some prime r > 3 and M be a maximal subgroup of G such that M N T =
32:Qg. Then G has a non-sharply 2-transitive subconstituent of degree 9 with Go = M, if and only if T < G.

Proof. Now G =T, T.2, T.3 or T.S3 and the corresponding maximal subgroup M = 32:L where L =
Qs, Qs.2, Qg.3 or Qg.S3 respectively. Let t be the unique involution contained in Qg < L. Then

(t)char Qg = O (L) char L < Ng(L),

which implies that Ng(L) < Cg(t). Assume that S is a Sylow 2-subgroup of T containing Qg. It is
well-known that S is a Suzuki 2-group of order g which has the property that Z(S) = S’ = £2;(S)
has order q. Moreover, for t € S, it is not hard to show that C¢(t) = S.Zg+1)/3, S-D2g+1)/3, S-Zg+1
and S.Dyg+1) when G =T, T.2, T.3 and T.S3 respectively (see for example [14, 11 10.12] and [6]).
In all these cases, Z(C¢(t)) = Z(S). Recall that Ng(L) < Cg(t). So any involution u € Z(S) = Z(Cg(t))
other than t belongs to Ng(L) \ L. It follows from Theorem 2.6 that G has indeed a 2-transitive
subconstituent of degree 9. However, when G = T, the subconstituent is sharply 2-transitive while
the other three cases are listed in Table 1. O

Lemma 5.4. Suppose T = PSU(3, t?) for some prime t = —1 (mod 3). Let M be a maximal subgroup of G
such that

2. e — A
Mm={3 :Qg, ift= .4, 7 (mod 9),
32.2A4, otherwise.

Then G has a non-sharply 2-transitive subconstituent of degree 9 with G, = M, if and only if

= —4, -7 (mod 9), (G, M) = (PSU(3, t2).2,3%2:Qg.2) or (PGU(3, t?), 32:Q03.3);
—4,—7 (mod 9) and t = —1 (mod 4), G = Aut(PSU(3, t2)), M = 3%2:Q35.53;
—1(mod 9), G = PSU3, t2), M = 32:2A4; or
—1 (mod 9) and t = —1 (mod 4), G = PSU(3,t?).2, M = 3%:Q3g.S3.

~ = = U
M A

(1)
(2)
(3)
(4)

Proof. In this case, for t = &1 (mod 4), the Sylow 2-subgroups of T is the same as that of PSL(3,t)
for t =1 (mod 4). So T also has only one conjugacy class of subgroups isomorphic to Qg. Let ¢ be
an element of order t 4+ 1 in GF(t?)* and n an element of order 3 satisfying 1+ 1 + 1% = 0. Define
matrices

no1 n” n o1 - >’
1 2 2 2 1
nn n-n

It is clear that X, Y € SU(3,t?) and one can check that (X, Y)C/C = Qg < T where C is the center of
GU(3, t2). Furthermore, define matrix

e+ 0 te-¢H
Z= 0 c 0
-2 0 Ye+¢
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Then Z € SU(3,t2) has order t + 1. It is not difficult to verify that (Z)C/C = Z¢41),3 = Cr(Qsg) and
N7(Qg)/Cr(Qg) = Aut(Qg) = S4. It follows that N1(Qg) = Z(+1y/3.S4 and its center Z(N7(Qg)) =
Z(t+1)/3-

For any x € GF(t?), let 7 : x — x' be the field automorphism of order 2. For any matrix A = (a;;) €
GU(3, t?), denote AT = (ai’j) = (agj). Then T becomes an automorphism of GU(3,t?) and we have

(X, Y)"=(X,Y) and Z'=2z"l. (2)

As in the case of Lemma 5.1, if t = —1 (mod 9), then G=T or T.2, and if t = —4, —7 (mod 9),
then G =T.2, T.3 = PGU(3, t2) or Aut(T) with Gy = 3%:Qg.2, 3%:Q3.3 or 32:Q3.S3 respectively. All of
them are listed in Table 1.

If t=—1 (mod 9), then write G, = 32:L for G=T or T.2. Then, as in Lemma 5.1, we still have
Ng(L) < Ng(Qg). For G=T and L = Qg.3 < Gg, any element x € Z(N1(Qg)) = Z(4+1),3 with odd or-
der belongs to N¢ (L) \ L, which implies the existence of a subconstituent of degree 9 by Theorem 2.6.

If G =T.2, then it is an extension of T by an outer automorphism of order 2 which can be induced
by . It follows from (2) that there exists g € G\ T such that g2 € T and g € N¢(Qg). Similar to the
linear case in Lemma 5.1, now Nt(Qg) = Z¢+1);3-S4, INc(Qg):N71(Qg)| =2 and Ng(Qg)/Cc(Qg) =
S4. So we have Ng(Qs) = (N1(Qsg), g) and, by (2), Cc(Qg) is a dihedral group of order 2(t + 1)/3.
The same argument in the proof of Lemma 5.1 can be applied to prove that G has a 2-transitive
subconstituent of degree 9 if and only if t = —1 (mod 4).

If t=4,7 (mod 9) and G = T.2 then G, = 3%:Qg.2. Write L = Qg.2 < G,. Now the Sylow
2-subgroup of G has order > 16 which implies that Ng(L) > L. The existence of a 2-transitive sub-
constituent of degree 9 follows from Theorem 2.6. If G =T.3 = PGL(3,t) and L = Qg.3 < G then, as
in the case that t = —1 (mod 9) and G =T, one can prove that Z(Ng(Qg)) = Z;+1 which implies that
N¢(L) > L. Finally, if G = Aut(T) = PGL(3, t).2 then, as in the case that t=—1 (mod 9) and G =T.2,
the same argument can be used to prove that G has a 2-transitive subconstituent of degree 9 if and
only if t=—1 (mod 4). O

Next we consider the case where T =soc(G) = P27 (8,q) and G contains a graph automorphism
of order 3.

Lemma 5.5. Suppose T = P21 (8,q) and G contains a graph automorphism of order 3. Then G satisfies
hypothesis (x) if and only if G = P$2%(8,2).3 or P§21(8,2).S3 and M = 52:4A4 or 52:4S 4 respectively, with
a subconstituent of degree 25.

Proof. In this case all maximal subgroups of G are determined by Kleidman [16] (see also [25, Ta-
ble 19]). The solvability of M leads to either ¢ =2 or 3, or

192
2.q—1)2 0

(¢* + 1)2 or (

IMNAT| = ——
(2,9 —1)?

(see [16, 4.2.1 and Table III]).

If g =2 then, by [7], we get G = P2%(8,2).3 or P2%(8,2).S3 and M = 5%:4A4 or 5%:4S4.
All of them are listed in Table 1. Moreover, write M = 52:L. Then computation shows that
ING(L):Ng, (L)| = 2. Thus by Theorem 2.6, G has indeed a suborbit of length 25 and the corresponding
subconstituent is non-sharply 2-transitive.

If g=3, we get G = P27%(8,3).A4 or P2%(8,3).54 with M = 10%:4A4 or 10%:4S4. We constructed
a permutation representation of degree 3360 for G = P£27(8,3).S4 and G, = 102:4S,. Denote L
as 5-complement of G,. Computation shows that Ng(L) =L and all subgroups of order |L| = 384
in Gy are conjugate. It follows from Theorem 2.6 that G has no subconstituent of degree 25. For
G=PR7(8,3).As and Gy = 10%:4A4, the same result was obtained by computation. Thus it is also
excluded.
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Next suppose that q > 4. If |[M N T| = 16(q> + 1)2/((2,q — 1)?), then by [16] M N T = (Dyy X
Dop).2% = Z?2.[41.22 where h = (¢* + 1)/(2,q — 1). Notice that

Zf x S3, ifqiseven,
Out(T) = e

Zg x S4, ifgisodd.
First suppose that Z? & K. It follows from Lemmas 2.8 and 2.9 that Z?K /K = p2. If q is even then we
get

@ +1)’ <16%-6%- .
Hence f < 4. Similarly, if q is odd then
(2 +1)° <16%. 242 . 4f,

where g =t for some prime t. Elementary calculation shows that, in both cases, G does not satisfy
hypothesis (x).

Next suppose that Z2 < K but Z2.[4].2? & K. It follows from Lemma 2.8 that (Z?.[4].2%)K /K = p°.
Hence p =2 and a =3 or 4. However, [4].2% is non-abelian, which forces d = p® = 8. By Lemma 2.1,
now E is not a 2-group and hence 2 divides |K/E|. This contradicting the fact that |G§f§a)| =21.

Finally suppose that Zﬁ.[4].22 < K. Then Gﬁ(o‘) is a section of Out(T). It is easy to show that GOA((O‘)

now cannot be a non-sharply 2-transitive group of degree d > 8.
If IMNT|=192(q+ 1)*/((2,q — 1)?) then, by the similar argument as above, one can prove that
G cannot satisfy hypothesis (x). O

In order to complete the investigation for classical groups, we prove the following proposition.
Proposition 5.6. There is no other classical group satisfying hypothesis (x) except for those in Lemmas 5.1-5.5.

Proof. Let T = soc(G) be a classical simple group and M a solvable maximal subgroup of G. Then
there exists a minimal normal subgroup Go <t G such that Mg = M N Gp is maximal in Gg. All such
pairs (Go, Mp) are listed in [25, Tables 16-19]). Except for those listed in Lemmas 5.1-5.5, one can
exclude all other entries of [25, Tables 16-19]) by applying lemmas in Section 2 and combining with
computation. We take three cases as examples. Recall that K = K(«) is the kernel of M acting on
A(a) and E is the kernel of K acting on A’(B) for 8 € A(a) (cf. Lemma 2.1).

Case 1. T = PSp(4, q) where q = 2f for some f > 2. G contains a graph automorphism and MNT =
q%): Zg_;.

In this case M = N¢(X) for X € Syl,(T). Choose a basis {1, €3, €3, €4} of V satisfying

V = (e1,€4) L (€2, €3),
where (€1, &4) and (&7, €3) are both hyperbolic planes. Then X can be written as

t,u,v,w,x e GF(q),

X= tw+u+x=0

OO = =
o= 3s =
_— X<

1
0
0
0

It is not hard to verify that Ny (X) = X:H, where



204 J. Wang / Journal of Algebra 386 (2013) 190-208

y
H= -1 y.z e GF(q)™

Hence |M||q%(q —1)%- 2f.

If XK/K # 1 then by Lemma 2.8, d =2% and XK /K = 2% Suppose that E is an r-group. Then by
Lemma 2.1, r | 2% — 1 and hence r # 2. Write D = X N K. Then D # 1 because X is non-abelian. Thus
D is the normal Sylow 2-subgroup of K. It follows that

17 DE/EcharK/E < Goy” = G4

However, by [14, 11 3.2], GA(OO cannot have normal 2-subgroup. This contradiction shows that X < K.

Now if E #1 is an r- subgroup and r # 2, then by Lemma 2.1, G, is strongly r-constrained and
hence 0,(Gy) =1, a contradiction. Therefore, either E =1 or E is a 2-group. Furthermore, if X:H < K
then Gg‘,(“) < Zj5.Z,, which is impossible. Hence by Lemmas 2.8 and 2.9 we have (X:H)K/K = p?,
a=2 and p|q— 1. It follows that

@D ke | 626 | 21

and (p2 — 1) < f for G4® is non-sharply 2-transitive. Hence we get 2/ — 1)2 < 2f(f + 1), which
forces f =2, excluded by [7].
Case 2. T = PSU(4, qz) and MNT = Q.S4 where

Q=272 1xz P

F1.4)

is abelian.
Let P <1 G5 be the unique normal subgroup of order p® and S = S4K/K.If S # 1, then P < S,
which is impossible because p® > 8. It follows that S4 < K. If Q <K, then Q.S4 < K. It follows that

Gﬁ(“) is a homomorphism image of Z1,4).Zf.Z2, which cannot be a 2-transitive group of degree
d > 8. This implies that Q & K and hence Q K/K = p“, which leads to

@+1)° <4f2@,q9+1)° - @)%

where g =t/ for some prime t. It follows that t/ is a divisor of 2°, 33, 52, 7,...,47. Elementary
calculation shows that the only possible values for q =t/ are 5, 11, 23 and 47. If g=5 and T =
PSU(4, 5%), then

(22 x Z3).S4 AM < (22 x Z3).54.14]

because |Out(T)| = 4. It follows from Lemma 2.2 and [13] that d =9 and GAéa) Qg.3 or Qg.S3.
If E#1 then by Lemma 2.1 it is a 2-group and M is strongly 2-constrained, contradicting the fact
that O3(M) > 1. Thus E =1 and K is isomorphic to a normal subgroup of GA(Q) If G=T, then
Gééa) Qs.3 and |K| = 12. However, Qg.3 has no normal subgroup of order 12. If G =T.2 and
GA(“) Q3g.3, then |K| = 24, which leads to a contradiction that (22 x 3).2 =K = Qg.3. If G =T.2

and GA(O‘) Q3g.S3 then |K| = 12. But now GA(“) contains no normal subgroup of order 12. Similarly
one can prove that G = T.4 does not satisfy hypothesis (x). For ¢ =11, 23 or 47, one can prove that



J. Wang / Journal of Algebra 386 (2013) 190-208 205

(M) ={2,3} and 0 (M) # 1. Hence d =9 and E = 1. However, it follows that |K| = |K/E| > |G, 5",
contradicting Lemma 2.1.

Case3. T = PR1(8,q), M has a section isomorphic to P£2¢(2,q):S4 (¢ ==+1) and G contains no
graph automorphism of order 3.

In this case M is the stabilizer of {V1, ..., V4} for an orthogonal decomposition V =V L --- 1L Vg4,
where V; are isomorphic non-degenerate subspaces of dimension 2.

First assume that ¢ = 2f. By [16] and the assumption that G contains no graph automorphism of
order 3, we have

Q22.5,<M<Q.22.54.25.25,

where Q = Z? _eyr If QK/K # 1, then by Lemma 2.8, QK/K = p®. If E # 1 is an ry-subgroup such
that r; divides |Q|, then Q = Q;, x Qr; where Q;, is the Sylow ri-subgroup of Q and Qr; the
Hall-rﬁ—subgroup of Q. Thus we have Qr; char Q <1 Gg. It follows that Ori (Gg) # 1, contradicting

Lemma 2.1. Therefore either E =1 or (|E|,q — ¢) = 1. It follows that

N4
OO kel | (p* —1)1]8-24-2f

for some [ > 2. Thus

@-o*=0"—&) <p'(p* —1)I< (p° — 1) 1> < 147456 2.

Hence we have f < 5. Furthermore, by [20, Table 3.5.E], ¢ = —1 when f < 2. It is not hard to show
that none of them satisfies hypothesis («). Therefore we assume that Q < K. If Q.23 < K, then Gﬁ(a)
is a section of S4.Z¢.Z>, which cannot be a 2-transitive group of degree d > 8. So by Lemma 2.8,

(Q2%)K/K = 2% and |G,,;""| =21. Thus we have 8| |K|. On the other hand, by Lemma 2.1, either

E =1 or it is a 7-group, which leads to a contradiction that 8 is divides \GA(O‘)l

Next assume that g =t/ is odd. It follows from [16] that M N T = Q.[ZG].S4, where Q is an
abelian subgroup of order (q — £)*/2° with ¢ = +1. If QK/K # 1 then by Lemmas 2.8 and 2.9 we
geta=4, p|q—¢ and p > 2. Similarly as in the above paragraph, we can prove that either E =1 or
(|El, |Q]) =1. It follows that

@ o3| - 24-81.

as G contains no graph automorphism of order 3. Elementary calculation shows that g =t/ is a
divisor of 3°, 53, 73, 112,...,192, 23,...,173. If ¢ =3°, then p =61 and 31| p*—1=d — 1 should
be a divisor of |M]|, a contradlctlon For the other values of g, ﬂ(GA(a)) = {2,3}. It follows from

Lemma 2.4 that a = 2, a contradiction. So next we assume that Q < K. If Q.[25] < K, then Gé(a) is a
section of S4.Z4.Z¢.Z5. It is not difficult to show that GA(Q) cannot be a 2-transitive group of degree
d > 8. Thus by Lemma 2.8 we have (Q.[26])K/K = p® which implies that p =2 and 3 <a <6. By

[13], if GM") is a non-sharply 2-transitive group of degree 29, then 8¢ |GA(°‘)| However, it is clear

that E is not a 2-group and hence 8 divides |K/E| which is a divisor of |GA(“>|

Similarly, one can prove that all other entries of [25, Tables 16- 19]) do not satisfy hypothe-
sis (x). O
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6. The exceptional groups

In this section we treat the case where T = soc(G) is an exceptional simple group of Lie type
over GF(q), where g =tf for some prime t. Suppose that G has a solvable maximal subgroup M such
that (G, M) satisfies hypothesis (x). If T =2B2(q), 3D4(q), 2Fa(q), G2(q) and %G»(q), all maximal
subgroups of G are determined (see [8,17,18,29,40]).

For the cases that T = F4(q), Ei(q) (i=6,7,8) or 2E¢(q), where g =t/ for some prime t, write A
as a minimal normal subgroup of M and Inndiag(T) the group generated by all inner and diagonal
automorphisms of T. Then A is elementary abelian and M = Ng(A). Since M is solvable, it follows
from [5] that there are three cases to be considered:

(1) t]]Al, i.e. M is a maximal parabolic subgroup of G;
(2) A <Inndiag(T) and M is of maximal rank (see [5,27] for details);
(3) A <Inndiag(T) but M is not of maximal rank.

In addition, denote Go <0 G as the minimal normal subgroup of G such that My = M N Gg is maximal
in Go. Then all such pairs (Gg, Mp) are listed in [25, Table 20]).

In what follows, we first give an example of (G, M) that satisfies hypothesis (x). Then we prove
there exist no other entries of [25, Table 20]) satisfying (x), which concludes the proof of Theorem 1.1.
As in Section 5, we always assume that K = K(«) is the kernel of G, acting on A(«) and E < K is
the kernel of K acting on A’(B) for a fixed B € A(«) (cf. Lemma 2.1).

Lemma 6.1. Suppose T = F4(q) (q =2%) and G contains a graph automorphism. Then G satisfies hypothesis
(%) ifand only if G = F4(2).2 and M = 7%:(3 x 2S4) with d = 49.

Proof. All the possible pairs (Gg, M) are listed in [25, Table 20]. First assume that G = F4(2).2 and
M = [222].(S3 x S3):2. It follows from Lemma 2.2 that d =9 and [222] < K. Thus we have |G5®| < 72,
which cannot be a non-sharply 2-transitive group of degree 9.

Next consider the case that G = F4(q).2 for some g =2 and MN T = (q & 1)*.W (F4). Notice that
now the Weyl group W (F4) =23:54:S3 and | Out(T)| = 2f. It is not hard to prove that Z3,, K /K = p°.
Therefore (2f & 1)2 < 28 .32 f. Calculation shows that f < 8 and no case satisfies hypothesis (x).

Next consider the case that MNT = (g% £q+1)2.(3 x SL(2, 3)). Similarly one can get 4/ £2/ +1 <
144 f. Therefore either G = F4(2).2 with M = 72:(3 x 2S4), which is listed in Table 2, or d = 49,
G=F4(4).2and M = Z%l.(3 x 2A4).2. In the latter case, if E is a 3-group, then by Lemma 2.1 M = G,
is strongly 3-constrained. This contradicts the fact that O7(M) # 1. Thus 3 is not a divisor of |E|.
It follows that, if |G$;3“)| =48 .2, then 33 should be a divisor of |G§;3“)|. This contradiction forces
|GOA(;;°‘)| =144 and Gft;f‘) = (Z3 x Qg):S3. Hence Z2 is a characteristic subgroup of K, which implies
Aa)

that G, P contains a normal subgroup isomorphic to ZZ, a contradiction.

In the former case, F4(2) =T <1G = F4(2).2 and M =7%:(3 x 254). Let M1 = MNT = 72:(3 x 2A4),
L=173x2S4 and L1 =L NT = Z3 x 2A4. Computation by using the permutation representation of
T of degree 69888 shows that L; is maximal in My, [N7(L1)| = 144 and |Ny, (L) = |L1| =72. It
follows from Corollary 2.7 that G has indeed a suborbit A(x) of length 49 with L = Gyg. It is not
hard to show that M = G, is 2-transitive on A(x).

Similar arguments can be applied to the remained cases to prove that no other entries of [25,
Table 20] satisfy hypothesis (x). O

Proposition 6.2. There are no almost simple groups of exceptional Lie type satisfying hypothesis (x) except for
G =F4(2).2, M =7%:(3 x 254) with d = 49.

Proof. It is sufficient to prove that all other pairs (Gg, Mp) in [25, Table 20] do not satisfy hypothe-
sis (x). We take the case that T =3D4(q) as example. Now three classes of maximal subgroups have
to be considered.
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(1) The parabolic subgroup M > [q”]:(ZqL1 oSL(2,q)).Z,q—1). It follows that g=2 or 3. If g =2
then by [7, p. 89], M < 22.[2°]:(7 x S3).3. Let Q =22.[2°]. Then it is easy to show that Q £ K. It
follows from Lemma 2.1 that p=2 and 3 <a < 10 as Q is non-abelian. It is clear that p% — 1 must
be a divisor of 14 -9. This implies that a =3 or 6, excluded by elementary calculation. The case ¢ =3
can be excluded similarly.

(2) MNT =(Zp_g41) 0SUB,q*).Z(g2_g41.3)-Z2, Which leads to g =2. Hence we have G =>D4(2)

with M = 3172.25,. It follows form Lemmas 2.1, 2.2 and [13] that d =9 and GM") Qs:3 or Qg:Ss.
However, it 1mp11es that |[K| =3 or 6 and

Z3charK/E < G2, 3 =Gl

a contradiction.

B)YMNT = 72

2igi1 .SL(2, 3). Therefore p | g> + g+ 1 and a =2 by Lemma 2.9. Thus we have

@ +q+1)°
————— | IK/E| | 24-3f,

where g =tf. Calculation shows that g =2 or 4. If g =2 then G =3D4(2) or 3D4(2).3 with d =9.
In the former case, G, = 32:2A4. By using a permutation representation of G with degree 819, com-
putation shows that G, has 4604 suborbits with lengths 1, 8, 12, 24, 27, 36, 54, 72, 108 and 216
but has no 2-transitive action on these suborbits. In the latter case, G, = 32:2A4 x 3 = E:L. Take the
24 dimension representation of G over GF(2). Computation shows that N¢g(L) =L and there is only
one conjugacy class of subgroups of order 72 in G. It follows from Theorem 2.6 that G has no 2-

transitive subconstituent of degree 9. If ¢ =4 then G = 3D4(4).[6], d = 49 and G5® =72:(3 x Qg).S3
since it is non-sharply 2-transitive on A(x). Now M = Gy = (Z31 X Z21).2A4.[6]. Thus K = Z%. If
E #1 is a 3-group, then by Lemma 2.1, G is strongly 3-constrained, which yields a contradiction

that Z2 < 03(Gy) = 1. Therefore, E =1 and Z3 = K/E is a normal subgroup of GA<°‘) (3 x Qg).S3.

However, G, 2@ has no normal subgroup of order 9, a contradiction.
Other cases can be excluded similarly. This completes the proof of the proposition and the proof
of Theorem 1.1 as well. O
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