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We compute the rank of the group of central units in the integral
group ring ZG of a finite strongly monomial group G . The formula
obtained is in terms of the strong Shoda pairs of G . Next we
construct a virtual basis of the group of central units of ZG
for a class of groups G properly contained in the finite strongly
monomial groups. Furthermore, for another class of groups G
inside the finite strongly monomial groups, we give an explicit
construction of a complete set of orthogonal primitive idempotents
of QG .
Finally, we apply these results to describe finitely many generators
of a subgroup of finite index in the group of units of ZG , this
for metacyclic groups G of the form G = Cqm � C pn with p and
q different primes and the cyclic group C pn of order pn acting
faithfully on the cyclic group Cqm of order qm .
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1. Introduction

For a finite group G we denote by U(ZG) the unit group of the integral group ring ZG . Its group
of central units is denoted by Z(U(ZG)). It is well known that Z(U(ZG)) = ±Z(G)× T , where T is a
finitely generated free abelian group (see for example [1, Corollary 7.3.3]). In [2] it is proved that the
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rank of the subgroup T of Z(U(ZG)) is the difference between the number of simple components
of RG and the number of simple components of QG . For a finite strongly monomial group G , we
will give a description of this rank in terms of the strong Shoda pairs of G (Theorem 3.1). Examples
of strongly monomial groups are abelian-by-supersolvable groups [3]. All monomial groups of order
smaller than 1000 are strongly monomial and the smallest monomial non-strongly-monomial group
is a group of order 1000, the 86-th one in the library of the GAP system [4,5].

Bass proved that if C is a finite cyclic group, then the so-called Bass (cyclic) units generate a
subgroup of finite index in U(ZC) [6]. Using the Bass Independence Lemma, he also described a
virtual basis for U(ZC), i.e. an independent set of generators for a subgroup of finite index in U(ZC).
In these investigations the cyclotomic units show up and therefore the Bass units are a natural choice
since they project to powers of cyclotomic units in each simple component of QC . Next Bass and
Milnor proved this result for finite abelian groups. Their proof makes use of K-theory in order to
reduce to group rings of cyclic groups. However, for arbitrary finite abelian groups, they did not
describe an independent set of generators. Only recently such a virtual basis was described in [7]. Its
constructive proof is based on a delicate induction argument and hence avoids the use of K-theory
and the Bass Independence Lemma.

In [8] we have proved that the group generated by the so-called generalized Bass units contains a
subgroup of finite index in Z(U(ZG)) for any arbitrary finite strongly monomial group G . Note that
no multiplicatively independent set for such a subgroup was obtained. However, we obtained an ex-
plicit description of a virtual basis of Z(U(ZG)) when G is a finite abelian-by-supersolvable group
(and thus a strongly monomial group) such that every cyclic subgroup of order not a divisor of 4 or 6
is subnormal in G . Note that the latter does not apply to all finite split metacyclic groups Cm � Cn , for
example if n is a prime number and Cm � Cn is not abelian then Cn is not subnormal in Cm � Cn . On
the other hand, Ferraz and Simón did construct in [9] a virtual basis of Z(U(Z(Cq � C p))) for p and
q odd and different primes. In our second main result (Theorem 3.5) we extend these results on the
construction of a virtual basis of Z(U(ZG)) to a class of finite strongly monomial groups containing
the metacyclic groups G = Cqm � C pn with p and q different primes and C pn acting faithfully on Cqm .
Our proof makes again use of strong Shoda pairs and the description of the Wedderburn decompo-
sition of QG obtained by Olivieri, del Río and Simón in [3]. Our approach is thus different from the
one used in [9].

In [10] a complete set of matrix units (and in particular, of orthogonal primitive idempotents) of
each simple component in the rational group algebra QG is described for finite nilpotent groups G .
The same is done in [11] for semisimple group algebras F G of finite nilpotent groups G over finite
fields F . As an application one obtains a factorization of a subgroup of finite index of U(ZG) into
a product of three nilpotent groups, and one explicitly constructs finitely many generators for each
of these factors. Examples were given to show that the construction of the orthogonal idempotents
cannot be extended to, for example, arbitrary finite metacyclic groups. In this paper, we are able to
describe a complete set of matrix units for a class of finite strongly monomial groups containing the
finite metacyclic groups Cqm � C pn with C pn acting faithfully on Cqm (Theorem 4.1). For the latter
groups we obtain as an application of these results (and the earlier results on central units) again an
explicit construction of finitely many generators of three nilpotent subgroups that together generate
a subgroup of finite index in U(ZG) (Theorem 5.4).

2. Preliminaries

Throughout, G will be a finite group. Let g be an element of G of order n and k and m positive
integers such that km ≡ 1 mod n. Then

uk,m(g) = (1 + g + · · · + gk−1)m + 1 − km

n

(
1 + g + · · · + gn−1)

is a unit of the integral group ring ZG; called a Bass unit. The units of this form were introduced in
[6] and satisfy the following equalities [12, Lemma 3.1]:
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uk,m(g) = uk1,m(g), if k ≡ k1 mod n, (1)

uk,m(g)uk,m1(g) = uk,m+m1(g), (2)

uk,m(g)uk1,m
(

gk)= ukk1,m(g) and (3)

u1,m(g) = 1 (4)

for g ∈ G , n = |g| and km ≡ km
1 ≡ km1 ≡ 1 mod n. Moreover,

un−1,m(g) = (−g)−m. (5)

By (2) we have, for r a positive integer,

uk,m(g)r = uk,mr(g) (6)

and from (1), (3) and (5) we deduce

un−k,m(g) = uk(n−1),m(g) = uk,m(g)un−1,m
(

gk)= uk,m(g)g−km (7)

provided (−1)m ≡ 1 mod n.
Let N be a normal subgroup of G . Using Eqs. (1) and (6) together with the Chinese Remainder

Theorem, it is easy to verify that some power of a given Bass unit in Z(G/N) is the natural image of
a Bass unit in ZG .

If R is a unital associative ring and G is a group then R ∗α
τ G denotes a crossed product with action

α : G → Aut(R) and twisting (a two-cocycle) τ : G × G → U(R) (see for example [13]), i.e. R ∗α
τ G is

the associative ring
⊕

g∈G Rug with multiplication given by the following rules: uga = αg(a)ug and
ug uh = τ (g,h)ugh , for a ∈ R and g,h ∈ G . In case G is cyclic, say generated by g of order n, then
the crossed product R ∗α

τ G is completely determined by σ = αg and a = un
g . In this case, as in [14],

the crossed product is simply denoted (R, σ ,a). Recall that a classical crossed product is a crossed
product L ∗α

τ G , where L/F is a finite Galois extension, G = Gal(L/F ) is the Galois group of the field
extension L/F and α is the natural action of G on L. A classical crossed product L ∗α

τ G is denoted
by (L/F , τ ) [14]. If the twisting τ is cohomologically trivial, then the classical crossed product is
isomorphic to a matrix algebra over its center. Moreover, when τ = 1 we get an explicit isomorphism.
More precisely, denoting the matrix associated to an endomorphism f in a basis B as [ f ]B , we have

Theorem 2.1. (See [14, Corollary 29.8].) Let L/F be a finite Galois extension and n = [L : F ]. The classical
crossed product (L/F ,1) is isomorphic (as F -algebra) to Mn(F ). Moreover, an isomorphism is given by

ψ : (L/F ,1) → EndF (L) → Mn(F )

xuσ �→ x′ ◦ σ �→ [
x′ ◦ σ

]
B ,

for x ∈ L, σ ∈ Gal(L/F ), B an F -basis of L and where x′ denotes multiplication by x on L.

Our approach is making use of the description of the Wedderburn decomposition of the rational
group algebra QG . We shortly recall the character-free method of Olivieri, del Río and Simón [3] to
describe these simple components.

If H is a subgroup of G then NG(H) denotes the normalizer of H in G . We use the exponential
notation for conjugation: ab = b−1ab. For each α ∈QG , CG(α) denotes the centralizer of α in G .

For a subgroup H of G , let Ĥ = 1
|H |
∑

h∈H h. Clearly, Ĥ is an idempotent of QG which is central if
and only if H is normal in G . If K � H � G and K 	= H then let
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ε(H, K ) =
∏

(K̂ − M̂) = K̂
∏

(1 − M̂),

where M runs through the set of all minimal normal subgroups of H containing K properly. We ex-
tend this notation by setting ε(H, H) = Ĥ . Clearly ε(H, K ) is an idempotent of the group algebra QG .
Let e(G, H, K ) be the sum of the distinct G-conjugates of ε(H, K ), that is, if T is a right transversal
of CG (ε(H, K )) in G , then

e(G, H, K ) =
∑
t∈T

ε(H, K )t .

Clearly, e(G, H, K ) is a central element of QG and if the G-conjugates of ε(H, K ) are orthogonal, then
e(G, H, K ) is a central idempotent of QG .

A strong Shoda pair of G is a pair (H, K ) of subgroups of G with the properties that K � H �

NG(K ), H/K is cyclic and a maximal abelian subgroup of NG(K )/K and the different G-conjugates of
ε(H, K ) are orthogonal. In this case CG (ε(H, K )) = NG(K ).

Let χ be an irreducible (complex) character of G . One says that χ is strongly monomial if there
is a strong Shoda pair (H, K ) of G and a linear character θ of H with kernel K such that χ = θG ,
the induced character of G . The group G is strongly monomial if every irreducible character of G is
strongly monomial.

For finite strongly monomial groups, including finite abelian-by-supersolvable groups, all primitive
central idempotents are of the form e(G, H, K ) with (H, K ) a strong Shoda pair of G . Note that differ-
ent strong Shoda pairs can determine the same primitive central idempotent. Indeed, let (H1, K1) and
(H2, K2) be two strong Shoda pairs of a finite group G . Then e(G, H1, K1) = e(G, H2, K2) if and only
if there is a g ∈ G such that H g

1 ∩ K2 = K g
1 ∩ H2 [15]. In that case we say that (H1, K1) and (H2, K2)

are equivalent as strong Shoda pairs of G . In particular, to calculate the primitive central idempotents
of G it is enough to consider only one strong Shoda pair in each equivalence class. We express this
by saying that we take a complete and non-redundant set of strong Shoda pairs.

In [3] more information was obtained on the strong Shoda pairs needed to describe the prim-
itive central idempotents of the rational group algebra of a finite metabelian group. We recall the
statement.

Theorem 2.2. Let G be a metabelian finite group and let A be a maximal abelian subgroup of G containing the
commutator subgroup G ′ . The primitive central idempotents of QG are the elements of the form e(G, H, K ),
where (H, K ) is a pair of subgroups of G satisfying the following conditions:

1. H is a maximal element in the set {B � G | A � B and B ′ � K � B};
2. H/K is cyclic.

For finite metacyclic groups, a more precise description of the primitive central idempotents of QG
in terms of the numerical information describing the group is given in [15].

The structure of the simple component QGe(G, H, K ), with (H, K ) a strong Shoda pair of G , is
given in the following proposition.

Proposition 2.3. (See [3, Proposition 3.4].) Let (H, K ) be a strong Shoda pair of a finite group G and let
k = [H : K ], N = NG(K ), n = [G : N], yK a generator of H/K and φ : N/H → N/K a left inverse of the
canonical projection N/K → N/H. Then QGe(G, H, K ) is isomorphic to Mn(Q(ζk) ∗α

τ N/H) and the action
and twisting are given by

αnH (ζk) = ζ i
k, if yK φ(nH) = yi K and

τ
(
nH,n′H

)= ζ
j

k , if φ
(
nn′H

)−1
φ(nH)φ

(
n′H
)= y j K ,

for nH,n′H ∈ N/H, integers i and j and ζk a complex primitive k-th root of unity.
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Let n be a positive integer, Cn = 〈g〉, a cyclic group of order n and ζn a complex primitive n-th root
of unity. Then there are isomorphisms

Gal
(
Q(ζn)/Q

)→ U(Z/nZ) → Aut(Cn)(
ζn �→ ζ r

n

) �→ r �→ (
φr : g → gr).

Throughout the paper we will abuse the notation and consider these isomorphisms as equalities
so that, e.g. a subgroup H of a cyclic group of order ϕ(n) will be identified with a subgroup of
U(Z/nZ) and with Gal(Q(ζn)/Q(ζn)H ). In particular, with the notation of Proposition 2.3, the action
α of the crossed product Q(ζk) ∗α

τ N/H in Proposition 2.3 is faithful. Therefore the crossed product
Q(ζk) ∗α

τ N/H can be described as a classical crossed product (Q(ζk)/F , τ ), where F is the center
of the algebra and α is determined by the action of N/H on H/K . In this way the Galois group
Gal(Q(ζk)/F ) can be identified with N/H and with this identification F = Q(ζk)

N/H .
Theorem 2.2 and Proposition 2.3 allow one to easily compute the primitive central idempotents

and the Wedderburn components of the rational group algebra of a finite metacyclic group. Recall
this is a group S having a normal cyclic subgroup N = 〈a〉 such that S/N = 〈bN〉 is cyclic. Every finite
metacyclic group S has a presentation of the form

S = 〈a,b
∣∣am = 1, bn = at, ab = ar 〉,

where m,n, t, r are integers satisfying the conditions rn ≡ 1 mod m and m | t(r − 1). Define σ ∈
Aut(〈a〉) as σ(a) = ab = ar . Let u be the order of σ . Then, u | n.

We finish this section with recalling some well-known results on orders. A subring O of a fi-
nite-dimensional semisimple Q-algebra A is called an order if it is a finitely generated Z-module
such that QO = A. For example if G is a finite group then ZG is an order in QG and Z(ZG) is an
order in Z(QG). The intersection of two orders in A is again an order in A and if O1 ⊆O2 are orders
in A then the index of their unit groups [U(O2) : U(O1)] is finite (see [16, Lemmas 4.2 and 4.6]).
Moreover, the unit group of an order in A is finitely generated [17]. Finally recall that in a finitely
generated abelian group replacing generators by powers of themselves yields a subgroup of finite
index. We will use these properties several times in the proofs without explicit reference.

3. The group of central units of ZZZG for a finite strongly monomial group G

In this section we will focus on strongly monomial groups G such that there is a complete and
non-redundant set of strong Shoda pairs (H, K ) of G with the property that [H : K ] is a prime power.
For this class of strongly monomial groups, we construct a virtual basis for the group Z(U(ZG)).
A virtual basis of an abelian group A is a set of multiplicatively independent elements of A which
generate a subgroup of finite index in A. It will be clear that the construction of units in the basis is
inspired by the construction of Bass units.

As it will be shown in Section 5, the conditions in the statement of Theorem 3.5 on the strong
Shoda pairs of the group G are fulfilled when G is a metacyclic group of the type Cqm � C pn with C pn

acting faithfully on Cqm . However, the class of strongly monomial groups such that there is a complete
and non-redundant set of strong Shoda pairs (H, K ) of G with the property that [H : K ] is a prime
power, is a wider class. For example the alternating group A4 of degree 4 satisfies the condition and
it is not metacyclic (and not nilpotent). Although, not all strongly monomial groups have only strong
Shoda pairs with prime power index. It can be shown that all strong Shoda pairs of the dihedral group
D2n = 〈a,b | an = b2 = 1, ab = a−1〉 (respectively, the quaternion group Q 4n = 〈x, y | x2n = y4 = 1,

xn = y2, xy = x−1〉) have prime power index if and only if n is a power of a prime (respectively, n is
a power of 2).

We begin by determining the number of elements of a virtual basis, i.e. the rank, of Z(U(ZG)).
Let G be a finite group and let g,h ∈ G . Recall that g and h are said to be R-conjugate (respectively,
Q-conjugate) if g is conjugate to either h or h−1 (respectively, to hr for some integer r coprime with
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the order of h). This defines two equivalence relations on G and their equivalence classes are called
real and rational conjugacy classes of G , respectively. Using a theorem of Berman and Witt and Dirich-
let’s Unit Theorem one can prove that the rank of Z(U(ZG)) for G a finite group is the difference
between the number of real conjugacy classes and rational conjugacy classes of G . Furthermore the
number of real (respectively, rational) conjugacy classes of G coincides with the number of simple
components of the Wedderburn decomposition of RG (respectively, QG) (see [18, Theorem 42.8], [2]
and [19]).

Let G be a finite strongly monomial group. Then, by Proposition 2.3, one obtains the following
description of the Wedderburn decomposition of QG:⊕

(H,K )

M[G:N]
(
Q(ζ[H :K ]) ∗ N/H

)
,

with (H, K ) running through a complete and non-redundant set of strong Shoda pairs of G and
N = NG(K ) (we use notations as in Proposition 2.3).

Using the properties of the group of units of orders one deduces that the rank of Z(U(ZG)) is the
sum of the ranks of the groups of central units in orders of the simple components, and these are the
ranks of the groups of units of the fixed rings Z[ζ[H :K ]]N/H .

Consider the center F =Q(ζ[H :K ])N/H of the simple component M[G:N](Q(ζ[H :K ]) ∗ N/H). Clearly,

[F : Q] = [Q(ζ[H :K ]) :Q]
[Q(ζ[H :K ]) : F ] = ϕ([H : K ])

[N : H] .

Since F is a Galois extension of Q, we know that F is either totally real or totally complex. If F
is totally real, then F is contained in the maximal real subfield Q(ζ[H :K ] + ζ−1

[H :K ]) of Q(ζ[H :K ]). This
happens if and only if the Galois group N/H contains complex conjugation, which means that hhn ∈ K
for some n ∈ N and h such that H = 〈h, K 〉. Now using the Dirichlet Unit Theorem, we obtain at once
an appropriate rank computation.

Theorem 3.1. Let G be a finite strongly monomial group. Then the rank of Z(U(ZG)) equals

∑
(H,K )

(
ϕ([H : K ])

k(H,K )[N : H] − 1

)
,

where (H, K ) runs through a complete and non-redundant set of strong Shoda pairs of G, h is such that H =
〈h, K 〉 and

k(H,K ) =
{

1, if hhn ∈ K for some n ∈ NG(K );
2, otherwise.

In order to describe a virtual basis for Z(U(ZG)) we need to construct some units.
Let R be an associative ring with identity. Let x ∈ R be a torsion unit of order n. Let Cn = 〈g〉,

a cyclic group of order n. Then the map g �→ x induces a ring homomorphism Z〈g〉 → R . If k and m
are positive integers with km ≡ 1 mod n, then the element

uk,m(x) = (1 + x + · · · + xk−1)m + 1 − km

n

(
1 + x + · · · + xn−1)

is a unit in R since it is the image of a Bass unit in Z〈g〉. In particular, if G is a finite group, M a nor-
mal subgroup of G , g ∈ G and k and m positive integers such that gcd(k, |g|) = 1 and km ≡ 1 mod |g|.
Then we have
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uk,m(1 − M̂ + gM̂) = 1 − M̂ + uk,m(g)M̂.

Observe that any element b = uk,m(1− M̂ + gM̂) is an invertible element of ZG(1− M̂)+ZGM̂ . As this
is an order in QG , there is a positive integer n such that bn ∈ U(ZG). Let nG,M denote the minimal
positive integer satisfying this condition for all g ∈ G . Then we call the element

uk,m(1 − M̂ + gM̂)nG,M = uk,mnG,M (1 − M̂ + gM̂)

a generalized Bass unit based on g and M with parameters k and m. Note that we obtain the classical
Bass units of ZG when M is the trivial group.

Bass units of Z〈g〉 project to powers of cyclotomic units in the simple components of Q〈g〉. Hence
we need to state some facts on these units. Let ζn denote a complex root of unity of order n. If n > 1
and k is an integer coprime with n then

ηk(ζn) = 1 − ζ k
n

1 − ζn
= 1 + ζn + ζ 2

n + · · · + ζ k−1
n

is a unit of Z[ζn]. We extend this notation by setting

ηk(1) = 1.

The units of the form ηk(ζ
j

n ), with j, k and n integers such that gcd(k,n) = 1, are called the cyclotomic
units of Q(ζn).

It is easy to verify that the cyclotomic units satisfy the following equalities:

ηk(ζn) = ηk1(ζn), if k ≡ k1 mod n, (8)

ηkk1(ζn) = ηk(ζn)ηk1

(
ζ k

n

)
, (9)

η1(ζn) = 1, (10)

ηn−k(ζn) = −ζ−k
n ηk(ζn), (11)

for n > 1 and both k and k1 coprime with n.
In order to compute a virtual basis of Z(U(ZG)), we will “cover” the central integral units in the

different simple components by using generalized Bass units. This will lead to a final description of
the central units up to finite index. Indeed, take an arbitrary central unit u in Z(U(ZG)). Then we
can write this element as follows

u =
∑

(H,K )

ue(G, H, K ) =
∏

(H,K )

(
1 − e(G, H, K ) + ue(G, H, K )

)
,

where (H, K ) runs through a complete and non-redundant set of strong Shoda pairs of G . Hence it is
necessary and sufficient to construct a set of multiplicatively independent units in the center of each
order ZGe(G, H, K ) +Z(1 − e(G, H, K )).

The center of ZGe(G, H, K ) +Z(1 − e(G, H, K )) and Z[ζ[H :K ]]NG (K )/H +Z(1 − e(G, H, K )) are both
orders in the center of QGe(G, H, K ) + Q(1 − e(G, H, K )) and therefore their unit groups are com-
mensurable, i.e. their intersection has finite index in both of them. Hence, we are interested in the
units of Z[ζ[H :K ]]NG (K )/H and furthermore in the units of ZG projecting to units in Z[ζ[H :K ]]NG (K )/H

and trivially in the other components.
It is known that the set {ηk(ζpn ) | 1 < k <

pn

2 , p � k} generates a free abelian subgroup of finite in-
dex in U(Z[ζpn ]) when p is prime [20, Theorem 8.2]. For a subgroup A of Aut(〈ζpn 〉) � Gal(Q(ζpn )/Q)



106 E. Jespers et al. / Journal of Algebra 387 (2013) 99–116
and u ∈ Q(ζpn ), we define πA(u) to be
∏

σ∈A σ(u). Since, by assumption, [H : K ] equals a prime
power, say pn , it is well known that Aut(H/K ) is cyclic, unless p = 2 and n � 3 in which case
Aut(H/K ) = 〈φ5〉 × 〈φ−1〉. Since the Galois group NG(K )/H of Q(ζpn )/Q(ζpn )NG (K )/H is a subgroup
of Aut(H/K ), it follows that NG(K )/H is either 〈φr〉 for some r or 〈φr〉× 〈φ−1〉 for some r ≡ 1 mod 4.
We simply denote πNG (K )/H by π and have

π(u) = NQ(ζpn )/Q(ζpn )NG (K )/H (u) =
∏

σ∈NG (K )/H

σ(u) =
∏

i∈NG (K )/H

ui

for u ∈ Q(ζpn ). Observe that we are making use of the abuse of notation to identify NG(K )/H with
Gal(Q(ζpn )/Q(ζpn )NG (K )/H ) and with a subgroup of U(Z/[H : K ]Z). We will also need the following
lemma.

Lemma 3.2. Let A be a subgroup of Aut(〈ζpn 〉). Let I be a set of coset representatives of U(Z/pnZ) modulo
〈A, φ−1〉 containing 1. Then the set

{
πA
(
ηk(ζpn )

) ∣∣k ∈ I \ {1}}
is a virtual basis of U(Z[ζpn ]A).

Proof. Assume A = 〈φr〉 or A = 〈φr〉 × 〈φ−1〉. In both cases, we set l = |〈φr〉|.
The arguments in the paragraph before Theorem 3.1 show that the unit group U(Z[ζpn ]A) has rank

pn−1(p−1)
ld − 1 = |I| − 1, where d = 2 if −1 /∈ 〈r〉 and d = 1 otherwise. Moreover ld = |〈A, φ−1〉|.

We noticed before that the cyclotomic units of the form ηk(ζpn ) generate a subgroup of finite

index in U(Z[ζpn ]). Therefore, for every unit u of Z[ζpn ]A , um = ∏h
i=1 ηki (ζpn ) for some integers

m,k1, . . . ,kh . Then, um|A| = πA(u) =∏h
i=1 πA(ηki (ζpn )). Hence, it is clear that

{
πA
(
ηk(ζpn )

) ∣∣k ∈ U
(
Z/pnZ

)}
generates a subgroup of finite index in U(Z[ζpn ]A).

First consider the case when d = 1 (i.e. −1 ∈ 〈r〉). Because of (9), we have

ηrt i(ζpn ) = ηi(ζpn )ηrt
(
ζ i

pn

)
,

for i ∈ I and 0 � t � l − 1. Note that πA(ηrt (ζ i
pn )) = πA(ηrt (ζ irt

pn )), for 0 � t � l − 1. Again by (9), we
deduce that

(
πA
(
ηrt
(
ζ i

pn

)))2 = πA
(
ηrt
(
ζ i

pn

))
πA
(
ηrt
(
ζ irt

pn

))= πA
(
ηr2t

(
ζ i

pn

))
,

and hence it follows by induction and Eqs. (8) and (10) that πA(ηrt (ζ i
pn )) is torsion. Hence

{
πA
(
ηi(ζpn )

) ∣∣ i ∈ I
}

still generates a subgroup of finite index in U(Z[ζpn ]A).
Now consider the case when d = 2 (i.e. −1 /∈ 〈r〉). Let J = I ∪ −I . Then J is a set of coset repre-

sentatives of U(Z/pnZ) modulo 〈r〉. By the same arguments as above, we can deduce that

{
πA
(
ηk(ζpn )

) ∣∣k ∈ J
}
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generates a subgroup of finite index in U(Z[ζpn ]A). If i ∈ I then, by Eq. (11), we have that
πA(η−i(ζpn )) = πA(−ζ−i

pn )πA(ηi(ζpn )) and πA(−ζ−i
pn ) is of finite order. Thus

{
πA
(
ηi(ζpn )

) ∣∣ i ∈ I
}

still generates a subgroup of finite index in U(Z[ζpn ]A).
Now, in both cases, by Eq. (10), we can exclude k = 1. And since the size now coincides with the

rank, the set

{
πA
(
ηk(ζpn )

) ∣∣k ∈ I \ {1}}
is a virtual basis of U(Z[ζpn ]A). �

The next lemma and proposition give a link with generalized Bass units. It is a translation of
Proposition 4.2 in [7] to the language of generalized Bass units. For the formulation we need some
notation.

Let H be a finite group, K a subgroup of H and g ∈ H such that H/K = 〈g K 〉. Put H = {L � H |
K � L}. For every L ∈ H, we fix a linear representation ρL of H with kernel L. Note that ρL(QH) =
Q(ζ[H :L]) and ρL(g) = ζ[H :L] .

The following lemma is a direct consequence of [7, Lemma 2.1] and the natural isomorphism
Q(H/K ) � QH K̂ .

Lemma 3.3. Let K and g ∈ H be as above, L ∈H and M an arbitrary subgroup of H. Let l = |L ∩ M|, t = [M :
L ∩ M] and let k and m be positive integers such that (k, t) = 1 and km ≡ 1 mod |gu| for every u ∈ M. Then

∏
u∈M

ρL
(
uk,mnH,K (guK̂ + 1 − K̂ )

)= ηk
(
ρL(g)t)lmnH,K

.

Let H be a finite group and K a subgroup of H such that H/K = 〈g K 〉 is a cyclic group of order pn .
It follows that the subgroups of H/K form a chain, hence H = {L | K � L � H} = {H j = 〈g pn− j

, K 〉 |
0 � j � n}. A crucial property to prove the next result.

Let k be a positive integer coprime with p and let r be an arbitrary integer. For every 0 � j � s � n
we construct recursively the following products of generalized Bass units of ZH :

cs
s(H, K ,k, r) = 1,

and, for 0 � j � s − 1,

cs
j(H, K ,k, r) =

( ∏
h∈H j

uk,O pn (k)nH,K

(
grpn−s

hK̂ + 1 − K̂
))ps− j−1

×
(

s−1∏
l= j+1

cs
l (H, K ,k, r)−1

)( j−1∏
l=0

cs+l− j
l (H, K ,k, r)−1

)
.

Here, for each positive integer l, and each k coprime to l, we denote by O l(k) the multiplicative order
of k modulo l. We also agree that by definition an empty product equals 1.

The proof of the following statement is identical to that of Proposition 4.2 in [7].



108 E. Jespers et al. / Journal of Algebra 387 (2013) 99–116
Proposition 3.4. Let H be a finite group and K a subgroup of H such that H/K = 〈g K 〉 is cyclic of order pn.

Let H = {L � H | K � L} = {H j = 〈g pn− j
, K 〉 | 0 � j � n}. Let k be a positive integer coprime with p and let r

be an arbitrary integer. Then

ρH j1

(
cs

j(H, K ,k, r)
)= {ηk(ζ

r
ps− j )

O pn (k)ps−1nH,K , if j = j1;
1, if j 	= j1,

(12)

for every 0 � j, j1 � s � n.

We are now in a position to state our main theorem on central units. Observe that we are again
identifying NG(K )/H with a subgroup of U(Z/[H : K ]Z) for a strong Shoda pair (H, K ) of G .

Theorem 3.5. Let G be a strongly monomial group such that there is a complete and non-redundant set S of
strong Shoda pairs (H, K ) of G with the property that each [H : K ] is a prime power. For every (H, K ) ∈ S ,
let T K be a right transversal of NG(K ) in G, let I(H,K ) be a set of representatives of U(Z/[H : K ]Z) modulo

〈NG (K )/H,−1〉 containing 1 and let [H : K ] = p
n(H,K )

(H,K ) , with p(H,K ) prime. Then

{ ∏
t∈T K

∏
x∈NG (K )/H

c
n(H,K )

0 (H, K ,k, x)t : (H, K ) ∈ S, k ∈ I(H,K ) \ {1}
}

is a virtual basis of Z(U(ZG)).

Proof. It is sufficient to prove for every (H, K ) ∈ S that{∏
t∈T

∏
x∈N/H

cn
0(H, K ,k, x)t : k ∈ I \ {1}

}

is a virtual basis of the center of 1 − e(G, H, K ) + U(ZGe(G, H, K )), with N = NG(K ), T = T K , I =
I(H,K ) and n = n(H,K ) . To prove this, we may assume without loss of generality that K is normal
in G (i.e. N = G). Indeed, assume we can compute a virtual basis {u1, . . . , us} of the center of 1 −
ε(H, K )+U(ZNε(H, K )). Each ui is of the form 1 −ε(H, K )+ viε(H, K ) for some vi ∈ ZN and u−1

i =
1 − ε(H, K ) + v ′

iε(H, K ) for some v ′
i ∈ ZN . Then, wi =∏t∈T ut

i = 1 − e(G, H, K ) +∑t∈T vt
iε(H, K )t

is a unit in the center of 1 − e(G, H, K ) + ZGe(G, H, K ) since the ε(H, K )t are mutually orthogonal
idempotents and they also are orthogonal to 1−e(G, H, K ). Then w1, . . . , ws are independent because
so are u1, . . . , us and they form a virtual basis of the center of 1 − e(G, H, K ) +ZGe(G, H, K ).

From now on we thus will assume that K is normal in G and [H : K ] = pn with p prime. Thus
N = G and T = {1}. We have to prove that{ ∏

x∈G/H

cn
0(H, K ,k, x): k ∈ I \ {1}

}

is a virtual basis of the center of 1 − e(G, H, K ) +U(ZGe(G, H, K )).
Assume first that H = G . Then QGe(G, G, K ) � Q(ζpn ). Consider the algebra QGe(G, G, K )+Q(1 −

e(G, G, K )) inside the algebra QG K̂ +Q(1 − K̂ ). By Proposition 3.4, the elements cn
0(G, K ,k,1) project

to ηk(ζpn )O pn (k)pn−1nG,K in the simple component Q(ζpn ) and trivially in all other components. Since
we know that the set {ηk(ζpn ) | k ∈ I \ {1}} is a virtual basis of U(Z[ζpn ]) (Lemma 3.2), it follows that
{cn

0(G, K ,k,1) | k ∈ I \ {1}} is a virtual basis of 1 − e(G, G, K ) +U(ZGe(G, G, K )).
Now, assume that G 	= H and consider the non-commutative simple component QGe(G, H, K ) �

QHε(H, K ) ∗ G/H with center (QHε(H, K ))G/H � Q(ζpn )G/H . Consider the commutative algebra
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(QHε(H, K ))G/H +Q(1−ε(H, K )) inside the algebra QH K̂ +Q(1− K̂ ). Since H/K is a cyclic p-group,
G/H = 〈φr〉 or G/H = 〈φr〉 × 〈φ−1〉 for some r. Say |〈φr〉| = l. By Lemma 3.2, the set

{
π
(
ηk(ζpn )

) ∣∣k ∈ I \ {1}}
is a virtual basis of U(Z[ζpn ]G/H ).

If G/H is cyclic, by Proposition 3.4 the elements

cn
0(H, K ,k,1)cn

0(H, K ,k, r) · · · cn
0

(
H, K ,k, rl−1)

project to π(ηk(ζpn ))O pn (k)pn−1nH,K in the component Q(ζpn )G/H and trivially in all other components
of QH . Hence the set

{
cn

0(H, K ,k,1)cn
0(H, K ,k, r) · · · cn

0

(
H, K ,k, rl−1) ∣∣k ∈ I \ {1}}

is a virtual basis of Z(U(ZGe(G, H, K ) +Z(1 − e(G, H, K )))).
If G/H is not cyclic, then the elements

l−1∏
i=0

1∏
j=0

cn
0

(
H, K ,k, ri(−1) j)

project to a power of π(ηk(ζpn )) in the component Q(ζpn )G/H and trivially in all other components
of QH . Hence also in this case we find a set{

l−1∏
i=0

1∏
j=0

cn
0

(
H, K ,k, ri(−1) j) ∣∣∣k ∈ I \ {1}

}

which is a virtual basis of Z(U(ZGe(G, H, K ) +Z(1 − e(G, H, K )))).
This finishes the proof, since we have now constructed a virtual basis in the center of each order

ZGe(G, H, K ) +Z(1 − e(G, H, K )), with (H, K ) ∈ S . �
4. A complete set of orthogonal primitive idempotents in QQQG

In this section we will focus on simple components of QG of a finite group G which are deter-
mined by a strong Shoda pair (H, K ) such that τ (nH,n′H) = 1 for all n,n′ ∈ NG(K ) (with notation
as in Proposition 2.3). For such a component, we describe a complete set of orthogonal primitive
idempotents (and a complete set of matrix units). This construction is based on the isomorphism of
Theorem 2.1 on classical crossed products with trivial twisting. Such a description, together with the
description of the primitive central idempotent e = e(G, H, K ) determining the simple component,
yields a complete set of irreducible modules. It also will allow us to construct units in Section 5 that
determine a large subgroup of the full unit group U(ZG).

Before we do so, we need a basis of Q(ζ[H :K ])/Q(ζ[H :K ])NG (K )/H of the form {wx | x ∈ NG(K )/H}
with w ∈ Q(ζ[H :K ]). That such a basis exists follows from the well-known Normal Basis Theorem
which states that if E/F is a finite Galois extension, then there exists an element w ∈ E such that
{σ(w) | σ ∈ Gal(E/F )} is an F -basis of E , a so-called normal basis, whence w is called normal in E/F .

Theorem 4.1. Let (H, K ) be a strong Shoda pair of a finite group G such that τ (nH,n′H) = 1 for all n,n′ ∈
NG(K ). Let ε = ε(H, K ) and e = e(G, H, K ). Let F denote the fixed subfield of QHε under the natural action
of NG(K )/H and [NG(K ) : H] = n. Let w be a normal element of QHε/F and B the normal basis determined
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by w. Let ψ be the isomorphism between QNG(K )ε and the matrix algebra Mn(F ) with respect to the basis B
as stated in Theorem 2.1. Let P , A ∈ Mn(F ) be the matrices

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
1 −1 0 · · · 0 0
1 0 −1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · −1 0
1 0 0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then

{
xT̂1εx−1

∣∣ x ∈ T2〈xe〉
}

is a complete set of orthogonal primitive idempotents of QGe where xe = ψ−1(P A P−1), T1 is a transversal of
H in NG(K ) and T2 is a right transversal of NG(K ) in G. By T̂1 we denote the element 1

|T1|
∑

t∈T1
t in QG.

Proof. Consider the simple component

QGe � M[G:N](QNε) � M[G:N]
(
(QHε/F ,1)

)
of QG with N = NG(K ). Without loss of generality we may assume that K is normal in G and hence
N = G . Indeed, if we obtain a complete set of orthogonal primitive idempotents of QNε, then the con-
jugates by the transversal T2 of N in G will give a complete set of orthogonal primitive idempotents
of QGe since e =∑t∈T2

εt and different εt ’s are orthogonal.

From now on we assume that N = G and e = ε. Then B = {w g H : g ∈ T1}. Since G/H acts on QHe
via the induced conjugation action on H/K it easily is seen that the action of G/H on B is regular.
Hence it is readily verified that for each g ∈ T1, ψ(ge) is a permutation matrix, and

ψ(T̂1e) = 1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
1 1 · · · 1 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly ψ(T̂1e) has eigenvalues 1 and 0, with respective eigenspaces V 1 = vect{(1,1, . . . ,1)} and V 0 =
vect{(1,−1,0, . . . ,0), (1,0,−1, . . . ,0), . . . , (1,0,0, . . . ,−1)}, where vect(S) denotes the vector space
generated by the set S . Hence

ψ(T̂1e) = P E11 P−1,

where we denote by Eij ∈ Mn(F ) the matrices whose entries are all 0 except in the (i, j)-spot, where
it is 1. One knows that {E11, E22, . . . , Enn} and hence also

{
ψ(T̂1e) = P E11 P−1, P E22 P−1, . . . , P Enn P−1}

forms a complete set of orthogonal primitive idempotents of Mn(F ). Let y = ψ(xe) = P A P−1. As
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E22 = AE11 A−1, . . . , Enn = An−1 E11 A−n+1

we obtain that {
ψ(T̂1e), yψ(T̂1e)y−1, . . . , yn−1ψ(T̂1e)y−n+1}

forms a complete set of orthogonal primitive idempotents of Mn(F ). Hence, applying ψ−1 gives us a
complete set of orthogonal primitive idempotents of QGe. �

Next we will describe a complete set of matrix units in a simple component QGe(G, H, K ) for a
strong Shoda pair (H, K ) of a finite group G .

Corollary 4.2. Let (H, K ) be a strong Shoda pair of a finite group G such that τ (nH,n′H) = 1 for all n,n′ ∈ N.
We use the notation of Theorem 4.1 and for every x, x′ ∈ T2〈xe〉, let

Exx′ = xT̂1εx′ −1.

Then {Exx′ | x, x′ ∈ T2〈xe〉} is a complete set of matrix units in QGe, i.e. e =∑x∈T2〈xe〉 Exx and Exy Ezw =
δyz Exw , for every x, y, z, w ∈ T2〈xe〉.

Moreover ExxQG Exx � F , where F is the fixed subfield of QHε under the natural action of N/H.

Proof. This follows at once from Theorem 4.1 and the fact that QGe � M[G:H](F ). �
In order to obtain an internal description within the group algebra QG , one would like to write

the element xe = ψ−1(P A P−1) of Theorem 4.1 in terms of group elements of QG . It might be
a hard problem to obtain a generic formula. One of the reasons being that we first need to de-
scribe a normal basis of Q(ζ[H :K ])/Q(ζ[H :K ])N/H . In general this is difficult to do. However, one can
find some partial results in the literature. For example Hachenberger [21] studied normal bases
for cyclotomic fields Q(ζqm ) with q an odd prime. Once this obstacle is overcome one can deter-
mine xe as follows. Denote by � : CN → C the trace map

∑
g∈N ag g �→ a1. It is easy to see and

well known that �(α) = 1
|N|χreg(α) = 1

|N|
∑

χ∈Irr(N) χ(1)χ(α), where we denote by χreg the reg-
ular character of N and by Irr(N) the set of irreducible complex characters of N . It follows that
xe =∑g∈N �(xe g−1)g = 1

|N|
∑

g∈N

∑
χ∈Irr(N) χ(1)χ(xe g−1)g . Because ψ can be seen as the represen-

tation induced to N by a linear character H with kernel K , ψ is an irreducible complex representation
of N . As we know that xe belongs to a simple component of QN , namely the only one on which ψ

does not vanish, and the primitive central idempotent of QN of such component is the sum of the
primitive central idempotents of CN associated to the irreducible characters of the form σ ◦ T ◦ ψ ,
with σ ∈ Gal(F/Q), we deduce that χ(xe g−1) vanishes in all the irreducible characters different
from σ ◦ T ◦ ψ with σ ∈ Gal(F/Q), where T is the map associating a matrix with its trace. Thus
xe = 1

|N|
∑

g∈N

∑
σ∈Gal(F/Q)(σ ◦ T ◦ ψ)(1)(σ ◦ T ◦ ψ)(xe g−1)g = 1

|H |
∑

g∈N trF/Q(T (P A P−1ψ(g−1)))g .
In case G is a finite nilpotent group then these problems can be overcome using the structure of the
group; and so one can deal with arbitrary finite nilpotent groups, even in the case when τ is not
trivial.

We now give an example, of a finite metacyclic group, to show that sometimes these problems
also can be overcome using only basic linear algebra.

Example 4.3. Let G = C7 �C3 = 〈a,b | a7 = 1 = b3, ab = a2〉. Consider the primitive central idempotent
e = e(G, 〈a〉,1) = ε(〈a〉,1) and the non-commutative simple component QGe = Q〈a〉e ∗ 〈b〉 with trivial
twisting. Consider the algebra isomorphism ψ : Q〈a〉e ∗ 〈b〉 � M3(Q(ae + a2e + a4e)) with respect to
B = {ae,a2e,a4e}, a normal basis of Q(ae) over Q(ae + a2e + a4e). Now we have A = ψ(be) and in
order to describe xe = ψ−1(P A P−1) in terms of elements of QG , it is sufficient to write ψ−1(P ) in
terms of group ring elements. Write ψ−1(P ) = α0 +α1b +α2b2 with αi ∈ Q〈a〉e and solve the system
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⎧⎪⎪⎨⎪⎪⎩
(
α′

0 + α′
1 ◦ b + α′

2 ◦ b2)(ae) = (a + a2 + a4)e,(
α′

0 + α′
1 ◦ b + α′

2 ◦ b2)(a2e
)= (a − a2)e,(

α′
0 + α′

1 ◦ b + α′
2 ◦ b2)(a4e

)= (a − a4)e.
This can be done by writing each αi = (xi,0 + xi,1a + xi,2a2 + xi,3a3 + xi,4a4 + xi,5a5)e with xi, j ∈ Q and
using the equality (1 + a + a2 + a3 + a4 + a5 + a6)e = 0. This leads to a system of 18 linear equations
in 18 variables. It can be verified that

ψ−1(P ) =
(

−4

7
− 1

14
a − 1

2
a2 − 5

14
a3 − 1

7
a4 − 5

14
a5
)

e

+
(

2

7
− 11

14
a − 3

14
a2 − 1

2
a3 − 1

7
a4 − 9

14
a5
)

be

+
(

2

7
− 9

14
a − 11

14
a2 − 9

14
a3 + 2

7
a4 − 1

2
a5
)

b2e.

However, it is crucial that the twistings appearing in the simple components are trivial in order to
make use of Theorem 2.1. The following example shows that our methods cannot be extended to, for
example, Cq � C p2 with non-faithful action.

Example 4.4. Consider the group G = C19 � C9 = 〈a,b | a19 = b9 = 1, ab = a7〉 and the strong Shoda
pair (〈a,b3〉,1). Let ε = ε(〈ab3〉,1). The elements 1, b, b2 are coset representatives for 〈ab3〉 = 〈a,b3〉
in G . Since b2〈a,b3〉b2〈a,b3〉 = b〈a,b3〉 and b3 = (ab3)19, we get that τb2〈a,b3〉,b2〈a,b3〉 = ζ 19

57 	= 1. Hence
the twisting is not trivial, although it is cohomologically trivial.

This method yields a detailed description of a complete set of orthogonal primitive idempotents
of QG when G is a strongly monomial group such that there exists a complete and non-redundant
set of strong Shoda pairs (H, K ) satisfying τ (nH,n′H) = 1 for all n,n′ ∈ NG(K ). As we will show in
the next section on metacyclic groups, the groups of the form Cqm � C pn with C pn acting faithfully
on Cqm do satisfy this condition on the strong Shoda pairs. However not all groups satisfying this
condition on the twistings are metacyclic, for example the symmetric group S4 and the alternating
group A4 of degree 4 have a trivial twisting in all Wedderburn components of their rational group
rings and are not metacyclic (and not nilpotent). Trivially all abelian groups are included and it is also
easy to prove that for all dihedral groups D2n = 〈a,b | an = b2 = 1, ab = a−1〉 there exists a complete
and non-redundant set of strong Shoda pairs with trivial twisting since the group action involved has
order 2 and hence is faithful. On the other hand for quaternion groups Q 4n = 〈x, y | x2n = y4 = 1,

xn = y2, xy = x−1〉, one can verify that the strong Shoda pair (〈x〉,1) yields a non-trivial twisting.

5. Application: generators of a subgroup of finite index in U(ZZZCqm ��� C pn )

In this section, we first describe the Wedderburn decomposition of QG , for the metacyclic groups
of the form Cqm � C pn with C pn acting faithfully on Cqm and p and q different primes. Next we
construct a virtual basis of the group Z(U(ZG)). This generalizes results from [9] where the case m =
n = 1 is handled. As an application we describe finitely many generators of three nilpotent subgroups
of U(Z(Cqm � C pn )) that together generate a subgroup of finite index. If p = q then such a result was
obtained in [10], even for arbitrary finite nilpotent groups.

Throughout this section p and q are different primes, m and n are positive integers and G = 〈a〉�
〈b〉 with |a| = qm , |b| = pn and 〈b〉 acts faithfully on 〈a〉 (i.e. C〈b〉(a) = 1). Let σ be the automorphism
of 〈a〉 given by σ(a) = ab and assume that σ(a) = ar with r ∈ Z. As the kernel of the restriction map
Aut(〈a〉) → Aut(〈aqm−1 〉) has order qm−1 it intersects 〈σ 〉 trivially and therefore the restriction of σ

to 〈aqm−1 〉 also has order pn . This implies that q ≡ 1 mod pn and thus q is odd. Therefore, Aut(〈aq j 〉)
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(= Gal(Q(ζq j )/Q) = U(Z/q jZ)) is cyclic for every j = 0,1, . . . ,m and 〈σ 〉 is the unique subgroup of

Aut(〈a〉) of order pn . So, for every i = 1, . . . ,m, the image of r in Z/qiZ generates the unique subgroup
of U(Z/qiZ) of order pn . In particular r pn ≡ 1 mod qm and r p j 	≡ 1 mod q for every j = 0, . . . ,n − 1.
Therefore, r 	≡ 1 mod q and hence G ′ = 〈ar−1〉 = 〈a〉. Using the description of strong Shoda pairs of G
given in Theorem 2.2, we get a complete and non-redundant set of strong Shoda pairs of G consisting
of two types:

(i) (G, Li := 〈a,bpi 〉), i = 0, . . . ,n,
(ii) (〈a〉, K j := 〈aq j 〉), j = 1, . . . ,m.

Using the description of the associated simple algebra given in Proposition 2.3, we obtain the follow-
ing description of the simple components of QG:

(I) QGε(G, Li) � Q(ζpi ), i = 0, . . . ,n,
(II) QGε(〈a〉, K j) � Q(ζq j ) ∗ C pn , j = 1, . . . ,m.

It is easy to verify that the twisting of the crossed product in (II) is trivial and hence, by Theo-
rem 2.1, this simple component is isomorphic to

Mpn
((
Q〈a〉ε(〈a〉, K j

))〈b〉)� Mpn (F j),

where F j = Q(ζq j )
C pn , the fixed field of Q(ζq j ) by the action of C pn . Furthermore F j is the unique

subfield of index pn in Q(ζq j ).
We first compute the rank of Z(U(ZG)) using the formula from Theorem 3.1 and the description

of the strong Shoda pairs (i), (ii). When p is odd, an easy computation shows that the rank equals

n∑
i=1

(
pi−1(p − 1)

2
− 1

)
+

m∑
j=1

(
q j−1(q − 1)

2pn
− 1

)
= pn − 1

2
+ qm − 1

2pn
− n − m,

because r has odd order modulo qm .
When p = 2, the rank equals

n∑
i=2

(
2i−2 − 1

)+ m∑
j=1

(
q j−1(q − 1)

2n
− 1

)
= 2n−1 + qm − 1

2n
− n − m,

since ab2n−1 = a−1 because r has even order modulo qm .
Now we use Theorem 3.5 to obtain a virtual basis of Z(U(ZG)):{

ci
0(G, Li,k,1)

∣∣∣ i = 1, . . . ,n, 1 < k <
pi

2
, p � k

}

∪
{pn−1∏

x=0

c j
0

(〈a〉, K j,k, rx) ∣∣∣ j = 1, . . . ,m, k ∈ I j \ {1}
}

where I j is a set of coset representatives of U(Z/q jZ) modulo 〈r,−1〉 containing 1. We claim

that the units c j
0(〈a〉, K j,k, rx), which are products of generalized Bass units, can be replaced by

cm
m− j(〈a〉,1,k, rx), which are products of Bass units. Indeed, these units project trivially on the com-

mutative algebra QGâ. Moreover, by Proposition 3.4, they project to the unit
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π
(
ηk(ζq j )

)O qm (k)qm−1

in the simple component QGε(〈a〉, K j) ∼= Q(ζq j ) and trivially in all other components of QG(1 − â).
By Lemma 3.2 the set

{
π
(
ηk(ζq j )

) ∣∣k ∈ I j \ {1}}
is a virtual basis of U(Z[ζq j ]C pn ). This proves the claim.

We summarize these results in the following theorem.

Theorem 5.1. Let G = Cqm � C pn be a finite metacyclic group with C pn = 〈b〉 acting faithfully on Cqm = 〈a〉
and with p and q different primes. Let r be such that ab = ar . For each j = 1, . . . ,m, let I j be a set of coset
representatives of U(Z/q jZ) modulo 〈r,−1〉.

If p = 2, then

U = {ci
0

(
G,
〈
a,b2i 〉

,k,1
) ∣∣1 < k < 2i−1, 2 � k, i = 2, . . . ,n

}
∪ {cm

m− j

(〈a〉,1,k,1
)
cm

m− j

(〈a〉,1,k, r
) · · · cm

m− j

(〈a〉,1,k, r2n−1) ∣∣k ∈ I j \ {1}, j = 1, . . . ,m
}

is a virtual basis of Z(U(ZG)), consisting of 2n−1 + qm−1
2n − n − m units.

If p is odd, then

U =
{

ci
0

(
G,
〈
a,bpi 〉

,k,1
) ∣∣∣1 < k <

pi

2
, p � k, i = 1, . . . ,n

}
∪ {cm

m− j

(〈a〉,1,k,1
)
cm

m− j

(〈a〉,1,k, r
) · · · cm

m− j

(〈a〉,1,k, rpn−1) ∣∣k ∈ I j \ {1}, j = 1, . . . ,m
}

is a virtual basis of Z(U(ZG)), consisting of pn−1
2 + qm−1

2pn − n − m units.

As an example we will apply our result to the metacyclic group Cq � C p to deduce a result of [9].

Example 5.2. Let G = Cq � C p = 〈a,b | aq = 1 = bp, ab = ar〉 be a metacyclic group of order pq, for p
and q different odd primes. Let I be a set of coset representatives of U(Z/qZ) modulo 〈r,−1〉. Then{

c1
0

(
G, 〈a〉,k,1

) ∣∣∣1 < k <
p

2

}
∪ {c1

0

(〈a〉,1,k,1
)
c1

0

(〈a〉,1,k, r
) · · · c1

0

(〈a〉,1,k, rp−1) ∣∣k ∈ I \ {1}}
=
{

uk,O p(k)nG,〈a〉(1 − â + bâ)q
∣∣∣1 < k <

p

2

}
∪ {uk,O q(k)(a)uk,O q(k)

(
ar) · · · uk,O q(k)

(
ar p−1) ∣∣k ∈ I \ {1}}

is a virtual basis of Z(U(ZG)), consisting of

p − 1

2
+ (q − 1)

2p
− 2

units.
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We will now describe a complete set of orthogonal primitive idempotents in each simple compo-
nent of QG .

The non-commutative simple components of QG are QGε(〈a〉, K j) ∼= Mpn (F j) for j = 1, . . . ,m.
Fix a normal element w j of Q(ζq j )/F j and let B j be the normal basis determined by w j . Let
ψ j : QGε(〈a〉, K j) → Mpn (F j) be the isomorphism given by Theorem 2.1 with respect to B j . Then
ψ j(bε(〈a〉, K j)) is the permutation matrix A of Theorem 4.1 and 〈b〉 is a transversal of 〈a〉 in G . By
Corollary 4.2 we know that

{
xh

j b̂x−k
j : 1 � h,k � pn}

is a complete set of matrix units of QGε(〈a〉, K j), where x j = ψ−1
j (P )bε(〈a〉, K j)ψ

−1
j (P )−1.

As application of the description of the matrix units in each simple component QGe and of the
description of the central units in ZG , we construct explicitly generators for three nilpotent subgroups
of U(ZG) that together generate a subgroup of finite index.

Let O be an order in a division algebra D and denote by GLn(O) the group of invertible matrices
in Mn(O) and by SLn(O) its subgroup consisting of matrices of reduced norm 1. For an ideal Q
of O we denote by E(Q ) the subgroup of SLn(O) generated by all Q -elementary matrices, that is
E(Q ) = 〈I +qEij | q ∈ Q , 1 � i, j � n, i 	= j, Eij a matrix unit〉. We summarize the following theorems
[22, Theorem 21.1, Corollary 21.4], [23, Theorem 2.4, Lemma 2.6], [24, Theorem 24] and [25, Theorem].

Theorem 5.3 (Bass–Vaseršteı̆n–Liehl–Venkataramana). If n � 3 then [SLn(O) : E(Q )] < ∞. If U(O) is infinite
then [SL2(O) : E(Q )] < ∞.

In order to state the next theorem, it is convenient to introduce the notation of class sum. Let
G be a finite group, X a normal subgroup and Y a subgroup such that Y acts faithfully on X by
conjugation. Consider the orbit xY of an element x ∈ X , then we will call x̃Y =∑y∈Y xy ∈ ZX the

orbit sum of x. By X̃ Y we will denote the set of all different orbit sums x̃Y for x ∈ X .

Theorem 5.4. Let G = Cqm � C pn be a finite metacyclic group with C pn = 〈b〉 acting faithfully on Cqm = 〈a〉
and with p and q different primes. Assume that either q 	= 3, or n 	= 1 or p 	= 2. For every j = 1, . . . ,m let
K j and x j be as above and let t j be a positive integer such that t j xk

j ∈ ZG for all k with 1 � k � pn. Then the
following two groups are finitely generated nilpotent subgroups of U(ZG):

V +
j = 〈1 + pnt2

j yxh
j b̂x−k

j

∣∣ y ∈ 〈̃a〉〈b〉, h,k ∈ {1, . . . , pn}, h < k
〉
,

V −
j = 〈1 + pnt2

j yxh
j b̂x−k

j

∣∣ y ∈ 〈̃a〉〈b〉, h,k ∈ {1, . . . , pn}, h > k
〉
.

Hence V + =∏m
j=1 V +

j and V − =∏m
j=1 V −

j are nilpotent subgroups of U(ZG). Furthermore, the group

〈
U , V +, V −〉,

with U as in Theorem 5.1, is of finite index in U(ZG).

Proof. Since the units of the commutative components are central, we only have to consider the
non-commutative components QGe, for j = 1, . . . ,m, of type (II) with e = ε(〈a〉, K j). Whereas the
center of QGe coincides with the field of character values of the rational character afforded by the
primitive central idempotent e and as this character is induced from a linear character on 〈a〉, it

follows that QGe � Mpn (Q(〈̃a〉〈b〉)e). Let O = Z[ae]〈b〉 = Z[〈̃a〉〈b〉]e, which is as a Z-module finitely

generated by 〈̃a〉〈b〉e. Clearly, the elements of the form (1 − e) + (1 + pnt2
j yxh

j b̂xk
j) are in ZG and
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project trivially to QG(1 − e) and by the comments given before the theorem the group 〈V +
j , V −

j 〉,
generated by these elements, projects to the group〈

I + z j Ehk
∣∣ z j ∈ pnt2

jO, 1 � h,k � pn, i 	= j, Ehk a matrix unit
〉

of elementary matrices of Mpn (O).
If p 	= 2 or n 	= 1, then the conditions of Theorem 5.3 are clearly satisfied. Also if p = 2, n = 1

and q 	= 3, the conditions are satisfied since U(O) is finite if and only if j = 1 and q = 3. Hence in
all cases 〈V +

j , V −
j 〉 ⊆ U(ZG) is a subgroup of finite index in Z(1 − e) + SLpn (O). By Theorem 5.1,

U has finite index in Z(U(ZG)) and therefore it contains a subgroup of finite index in the center
of Z(1 − e) + GLpn (O). Since the center of GLpn (O) together with SLpn (O) generates a subgroup of
finite index in GLpn (O), it follows that 〈U , V +, V −〉 contains a subgroup of finite index in the group
of units of Z(1 − e) + ZGe. Now the statement follows, since V +

j and V −
j correspond to upper and

lower triangular matrices. �
Remark 5.5. By well-known results, the hypothesis on q if p = 2 and n = 1 can be dropped if we
add some more units to the set of generators. Indeed, in this case G = D2·3m and there is only one
“exceptional” component M2(Q). By [16, Lemma 22.10], the only additional thing to prove is that the
set of generators of U(ZG) project to a set of generators of SL2(Z). This is satisfied if we add the
bicyclic units 1 − (1 − b)a(1 + b), (1 − (1 − b)a(1 + b))ba,1 + (1 − ba)a(1 + ba) to the generating set
(see proof of [16, Theorem 23.1] for more details).
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