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We introduce the quasi-partition algebra QPk(n) as a central-
izer algebra of the symmetric group. This algebra is a sub-
algebra of the partition algebra and inherits many similar
combinatorial properties. We construct a basis for QPk(n),
give a formula for its dimension in terms of the Bell numbers,
and describe a set of generators for QPk(n) as a complex
algebra. In addition, we give the dimensions and indexing set
of its irreducible representations. We also provide the Bratteli
diagram for the tower of quasi-partition algebras (constructed
by letting k range over the positive integers).
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Introduction

We introduce the centralizer algebra QPk(n), the quasi-partition algebra. This algebra
arises as a subalgebra of the partition algebra, Pk(n), which was introduced indepen-
dently by Jones [9] and Martin [10] as a generalization of the Temperley–Lieb algebra
and the Potts model in statistical mechanics. Jones defined Pk(n) as a centralizer alge-
bra and explicitly described the Schur–Weyl duality between Pk(n) and the symmetric
group Sn. Specifically, Pk(n) generically centralizes the action of the symmetric group
on the k-fold tensor product of the permutation representation V of Sn, i.e.
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Pk(n) ∼= EndSn

(
V ⊗k

)
when n � 2k.

The partition algebra has a basis indexed by set partitions. These set partitions can
be encoded into graphs that make the partition algebra into a diagram algebra with
multiplication given by concatenation of diagrams.

The permutation representation V decomposes into a direct sum of the trivial rep-
resentation S(n) and the irreducible reflection representation W = S(n−1,1). We define
QPk(n) as the centralizer

QPk(n) = EndSn

(
W⊗k

)
.

We describe a basis for QPk(n), which is indexed by set partitions of 2k elements without
sets of size one. The dimension is therefore the number of such partitions, given by a
formula in terms of the Bell numbers.

From our construction, QPk(n) is a subalgebra of Pk(n). In addition we show that
QPk(n) is also isomorphic to a subalgebra of Pk(n − 1); we exploit this relationship to
provide a set of generators for QPk(n) and find relations satisfied by these generators.
We give a formula for the product in QPk(n) and show that it is dominated by the
relations in Pk(n − 1). Using the rule for decomposing the tensor product of W with
any other irreducible representation Sλ of the symmetric group, we show that for k � 2
the irreducible representations of QPk(n) are indexed by the set of integer partitions of
0, 1, 2, . . . , k. We construct the Bratteli diagram, which encodes inclusion and restriction
rules between QPk−1(n) and QPk(n). We also give a formula for the dimensions of the
irreducible representations for QPk(n).

While the study of rook algebras often follows from the study of a pre-existing cen-
tralizer algebra, in our case, it is the partition algebra that can be interpreted as the rook
algebra of our quasi-partition algebra. If A centralizes B on V ⊗k, the rook version of A
centralizes B on U⊗k, where U is the direct sum of V and the trivial B-module. There
has been a lot of work related to rook monoid algebras in recent years. The Motzkin
algebra of Benkart and Halverson is the rook version of the Temperley–Lieb algebra [1];
the rook Brauer algebra studied in [6] generalizes the classical Brauer algebra; and the
rook partition algebra studied in [7] generalizes the classical partition algebra. However,
the partition algebra centralizes the action of the symmetric group on the k-fold ten-
sor product of the permutation representation, which itself decomposes into the direct
sum of the trivial module and the irreducible reflection representation. As we will see in
the remark following Corollary 2.6, for example, our dimension formula agrees with this
point of view.

We also expect some results in the representation theory of QPk(n) to correspond
to results about the Kronecker product. Similar as in [2], this comes from the duality
between the symmetric group and the quasi-partition algebra. However, in order to apply
similar results to those obtained in [2], we first need to understand the non-semisimple
representation theory of QPk(n) more deeply. We plan to further explore the structure of
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this new algebra and seek applications to symmetric functions and to the representation
theory of the symmetric group.

1. The partition algebra

The structure of the quasi-partition algebra QPk(n) is understood through the struc-
ture of the partition algebra Pk(n). A basis for each algebra is encoded both as set
partitions and as diagrams, and actions of both algebras on tensor space are calcu-
lated from those diagrams. Combinatorial results about the irreducible representations
of QPk(n) will resemble those for the partition algebra as well. In this section we set the
stage by describing the general partition algebra Pk(x) in terms of the partition diagrams
and describing its action on tensor space.

1.1. Set partitions and partition diagrams

A set partition of a set S is a set of pairwise disjoint subsets of S, called blocks, whose
union is S. Fix k ∈ Z>0, and denote

[k] = {1, . . . , k} and
[
k′
]

=
{
1′, . . . , k′

}
,

so that [k] ∪ [k′] = {1, . . . , k, 1′, . . . , k′} is formally a set with 2k elements.
For each set partition of [k]∪ [k′], we associate a diagram as follows. Consider the set

of simple graphs with 2k vertices labeled from [k]∪ [k′], and draw the graph so that the
vertices appear in two rows, 1, . . . , k on the top and 1′, . . . , k′ on the bottom. Any two
vertices in the same block of a set partition are connected by a path. In particular, the
connected components of the graph correspond to the blocks in the set partition. Define
two graphs to be equivalent if their connected components partition the 2k (labeled)
vertices in the same way. Then we define a k-partition diagram or simply diagram as
the equivalence class of graphs corresponding to the same set partition of [k] ∪ [k′]. For
example,

1

1′

2

2′

3

3′

4

4′

and

1

1′

2

2′

3

3′

4

4′

are equivalent, and both represent diagrams for the set partition {{1, 2, 1′}, {3}, {2′, 3′,
4′, 4}}.

Let C(x) be the field of rational functions with complex coefficients in an indetermi-
nate x. We define the product d1 · d2 of two diagrams d1 and d2 using the concatenation
of d1 above d2, where we identify the southern vertices of d1 with the northern vertices
of d2. If there are c connected components consisting only of middle vertices, then the
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product is set equal to xc times the diagram with the middle components removed.
Extending this linearly defines a multiplication on Pk(x).

For example,

· = x · .

This product is associative and independent of the representative graphs.
The partition algebra Pk(x) is the C(x)-span of the k-partition diagrams with this

product (with P0(x) = C(x)). Under this product, Pk(x) is an associative algebra with
identity given by the diagram corresponding to {{1, 1′}, . . . , {k, k′}}. The dimension of
Pk(x) is the number of set partitions of 2k elements, i.e. the Bell number B(2k).

1.2. Generators and relations of Pk(x)

A presentation for Pk(n) has been given in [8] and in [4]. Let

bi = · · · · · ·
i

,

pi = · · · · · ·
i

and si = · · · · · ·
i

.

Theorem 1.1. (See Theorem 1.11 of [8].) Fix k ∈ Z>0. The partition algebra Pk(x) is the
unital associative C-algebra presented by the generators bi, si, and pj for 1 � i � k−1 and
1 � j � k, together with Coxeter, idempotent, commutation, and contraction relations
(see (15)).

It is often useful to additionally distinguish the element

ei = bipipi+1bi = · · · · · ·
i

for 1 � i � k − 1. Using subsets of {si, ei | 1 � i � k − 1}, one can generate the
Temperley–Lieb algebra TLk(x), the group algebra of the symmetric group C(x)Sk, and
the Brauer algebra Bk(x) all as subalgebras of the partition algebra Pk(x).

1.3. Pk(n) as a centralizer algebra of Sn

Let V denote the n-dimensional permutation representation of the symmetric
group Sn. That is, V = C-span{vi | 1 � i � n}, where
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σ · vi = vσ(i) for σ ∈ Sn. (1)

Let Sn act diagonally on the basis of simple tensors in V ⊗k:

σ · (vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ik),

and extend this action linearly to V ⊗k. This defines a Sn-module structure for V ⊗k.
As in Section 1.1, number the vertices of a k-partition diagram 1, . . . , k from left

to right in the top row and 1′, . . . , k′ from left to right on the bottom row. For each
k-partition diagram d and each integer sequence i1 . . . , ik, i1′ , . . . , ik′ with 1 � ir � n,
define

δ(d)i1,...,iki1′ ,...,ik′ =
{

1 if it = is whenever vertices t and s are connected in d,

0 otherwise.
(2)

Define an action of a partition diagram d ∈ Pk(n) on V ⊗k by

d · (vi1′ ⊗ vi2′ ⊗ · · · ⊗ vik′ ) =
∑

1�i1,...,ik�n

δ(d)i1,...,iki1′ ,...,ik′ vi1 ⊗ vi2 ⊗ · · · ⊗ vik ,

and extending linearly. For example, the action of P2(n) on V ⊗2 is determined by

b · (vi ⊗ vj) = δijvi ⊗ vi, e · (vi ⊗ vj) = δij

n∑
�=1

v� ⊗ v�,

s · (vi ⊗ vj) = vj ⊗ vi, and p⊗ id · (vi ⊗ vj) =
(

n∑
�=1

v�

)
⊗ vj , (3)

where

b = , e = , s = , and p = .
(4)

Then si, ei, and bi, for i = 1, . . . , k − 1 can be identified with the maps in End(V ⊗k)
given by

di = id⊗i−1 ⊗ d⊗ id⊗k−i+1, where d = s, e, or b;

the elements pi for i = 1, . . . , k can be identified with the maps in End(V ⊗k) given by

pi = id⊗i−1 ⊗ p⊗ id⊗k−i.

Theorem 1.2. (See [9].) Sn and Pk(n) generate full centralizers of each other in
End(V ⊗k). In particular,

(a) Pk(n) generates EndSn
(V ⊗k), and when n � 2k, Pk(n) ∼= EndSn

(V ⊗k);
(b) Sn generates EndPk(n)(V ⊗k).
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For the remainder of the paper, we identify the elements of Pk(n) (with n � 2k
integers) with endomorphisms of V ⊗k.

2. The quasi-partition algebra

In this section we are interested in studying the centralizer algebra

QPk(n) = EndSn

(
W⊗k

)
, where W = S(n−1,1)

is the irreducible representation of Sn indexed by the partition (n − 1, 1). With V as
in (1), it is known that V decomposes as V = T⊕W , where T is the trivial representation
(indexed by the partition (n)).

2.1. Action of Sn on W = S(n−1,1)

Using the same basis {v1, . . . , vn} for V as in Section 1.3, we fix a basis {w2, . . . , wn}
for W , where wi = vi − v1. The permutation action of Sn on V in (1) induces an action
of Sn on W given by

σ · wi = wσ(i), for σ ∈ S{2,...,n} and s1 · wi =
{
wi − w2 for i �= 2,
−w2 for i = 2.

With Sn acting diagonally on W⊗k, we define the quasi-partition algebra as the central-
izer algebra

QPk(n) = EndSn
(W⊗k) =

{
g :W⊗k → W⊗k

∣∣ gσ = σg ∀σ ∈ Sn

}
.

The partition algebra Pk(n− 1) can be recognized as a subalgebra of End(W⊗k) via
the following change of basis. Define

f : {v1, . . . , vn−1} → {w2, . . . , wn} by f : vi 
→ wi+1, (5)

and extend linearly. Then if d is a diagram in Pk(n− 1), set

[d] = f ◦ d ◦ f−1. (6)

Hence, the action of [d] on W⊗k is the same as the action of d on V ⊗k in one fewer
dimension, i.e. n has decreased by 1. Specifically, since the map d 
→ [d] is a homomor-
phism, we have the property that if d1, d2 ∈ Pk(n−1), then [d1][d2] = [d1d2]. We remark
that the maps [d] :W⊗k → W⊗k are not necessarily elements in the centralizer algebra
QPk(n). We will, however, use them to construct the elements of QPk(n).
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2.2. Projections

Since V = W ⊕ T , we have

V ⊗k ∼= W⊗k ⊕
(

k⊕
i=1

(
k

i

)(
W⊗k−i ⊗ T⊗k

))
.

In this section, we construct the maps in QPk(n) by applying maps in Pk(n) on W⊗k

and then projecting the result (which have their images in the whole of V ⊗k) back onto
W⊗k.

To this end, first define the projection � :V → T to be a projection of V onto T .
Hence,

�(vi) = 1
n

(v1 + · · · + vn) for i = 1, . . . , n.

The matrix representation of n� is the matrix of all 1’s, i.e. nϕ =
∑

1�i,j,�n Eij , were
Eij is the i, j-matrix unit. Now define �� = 1⊗�−1⊗�⊗1⊗k−�. The endomorphism ring
End(V ⊗k) has basis Ei1,...,ik

j1,...,jk
, and as a matrix �� is given by

n�� =
∑

1�i,j�n
1�am�n for m�=�

E
a1,...,a�−1,i,a�+1,...,ak

a1,...,a�−1,j,a�+1,...,ak
.

So as an operator on V ⊗k, n�� = p�, the element of Pk(n) with isolated vertices at �

and �′, and all other blocks of the form {i, i′} for i �= � (see diagram at the beginning of
Section 1.2). We will show that a basis of QPk(n) is given by diagrams that do not have
isolated vertices. As we will see in Lemma 2.1, this is a result of the fact that isolated
vertices occur when d = p�d

′ or d = d′p� for some diagram d′ and some 1 � � � k.
Now we can define the projection π :V → W by

π = id −� = id − 1
n
p, so that π⊗k = π ⊗ π ⊗ · · · ⊗ π

projects V ⊗k onto W⊗k. To simplify computations, we transform bases of V from
{v1, . . . , vn} to {v, w2, . . . , wn}, where

v =
n∑

i=1
vi and wj = vj − v1.

So

π(v) = 0, π(wi) = wi, and π(vi) = wi −
1
n
w, where w1 = 0 and w =

n∑
i=2

wi.
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Lemma 2.1. For all diagrams d ∈ Pk(n), the projection π⊗k ◦d is an element of QPk(n).
Furthermore, if d is a diagram with one or more isolated vertices, then π⊗k ◦ d = 0.

Proof. Since π = id − 1
np is an operator on V (with p as in (4)), π commutes with the

action of Sn. So π⊗k ◦d ∈ EndSn
(V ⊗k) = Pk(n). Now considering W⊗k ⊂ V ⊗k, we have

π⊗k ◦ d :W⊗k d−→ V ⊗k π⊗k−−−→ W⊗k.

So π⊗k ◦ d is also an element of EndSn
(W⊗k) = QPk(n).

Now suppose that d is a diagram with an isolated vertex. If the isolated vertex occurs
in the bottom row of the diagram on the ith vertex, then d = d′pi for some diagram d′.
But p = n� as operators on V , so p acts as 0 on W . So (π⊗k ◦ d) · (wi1 ⊗ · · · ⊗wik) = 0.

If instead, the isolated vertex occurs in the top of the diagram on the ith vertex, then
d = pid

′. So again since p = n� as operators on V , we have

π⊗k(pid′) = n
(
π⊗i−1 ⊗ (π ◦�) ⊗ π⊗(k−i))d′ = 0, since π ◦� = 0. �

2.3. Basis for the quasi-partition algebra

In Lemma 2.1 we found a spanning set for QPk(n). We now show that the set of
projections of the diagrams without singleton vertices will form a basis. That is,

QPk(n) = C-span{d̄ | d ∈ D}, where D = {diagrams d without isolated vertices},

and d̄ = π⊗k ◦ d. In order to prove this, we will show that if d is a diagram without
isolated vertices, then one can write π⊗k ◦ d as a linear combination of the operator [d]
(as defined in (6)) and operators [d′] with isolated vertices.

Recall from (6) that for any diagram d, the operator [d] = f ◦ d ◦ f−1 ∈ End(W⊗k)
acts on W⊗k the same way that the diagram d acts on (Cn−1)⊗k. Notice that [d] is an
element of EndS{2,...,k}(W⊗k). However, [d] is in general not an element of EndSn

(W⊗k).
Considering d as a set partition,

d · (vi1′ ⊗ · · · ⊗ vik′ ) =

⎧⎨
⎩

vi1 ⊗ · · · ⊗ vik if for each B ∈ d,

i� = im for all �,m ∈ B ⊆ [k] ∪ [k′],
0 otherwise.

(7)

Let B be a block in d, and define

Bt := B ∩ [k] and Bb := B ∩
[
k′
]
,

so that Bt (resp. Bb) is the set of vertices in block B which are on the top (resp. bottom)
of the diagram. Then let

dt =
{
B ∈ d

∣∣ Bb = ∅
}

and db =
{
B ∈ d

∣∣ Bt = ∅
}
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be the sets of blocks containing vertices only on the top or bottom of the diagram,
respectively. See, for example, Example 2.4.

If X is a subset of [k] ∪ [k′], define the isolation of d (at X) as

dX , the diagram constructed from d by isolating all vertices in X.

For example, if k = 4, X = {1′, 4′} and d = {{1, 1′, 2′}, {2, 3, 4}, {3′, 4′}}, then dX =
{{1, 2′}, {1′}, {2, 3, 4}, {3′}, {4′}}. In pictures,

d =

1

1′

2

2′

3

3′

4

4′

, dX =
1

1′

2

2′

3

3′

4

4′

.

Notice that two different sets X1 and X2 can lead to the same isolation of d. In the above
example, the set X2 = {1′, 3′, 4′} and X1 = {1′, 4′} give dX2 = dX1 .

Lemma 2.2. The action of d̄ := π⊗k ◦ d on W⊗k is equal to the action of a linear
combination of [d] and diagrams [d′], where d′ is an isolation of d. That is,

d̄ = [d] +
∑
U

cU [dU ], cU ∈ C(n), (8)

where the sum is over non-empty sets U of vertices satisfying

if U ∩Bb �= ∅ for any block B ∈ d, then B ⊆ U.

Proof. The first step is to understand how d acts on an arbitrary element w ∈ W⊗k,

w = wi1′ ⊗ · · · ⊗ wik′ = (vi1′ − v1) ⊗ · · · ⊗ (vik′ − v1).

Note that w is the sum of terms v with factors vi� or −v1. The collection of blocks
B in d \ dt (blocks containing bottom vertices) checks for equality of factors in each v
corresponding to vertices in those blocks—d ·v is zero if factors corresponding to vertices
in the same block are not equal. Since i� �= 1, there are only two types of terms when
d does not act by zero: (1) terms v where for each block B, for all � ∈ Bb, the i�’s take
on the same value and these factors are all equal vi� and (2) terms where all factors
corresponding to vertices in Bb are all −v1.

We now carry out the computation (π⊗k ◦ d) · w. Let S ⊆ d \ dt, and for i =
(i1, . . . , ik, i1′ , . . . , ik′) let δS,i be the characteristic function

δS,i =

⎧⎨
⎩

1 if for each B /∈ S, i� = im for all �,m ∈ B, and
for each B ∈ S, i� = 1 for all � ∈ Bt,
0 otherwise.
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Setting w1 = 0,
(
π⊗k ◦ d

)
· w = π⊗k ·

∑
S⊆d\dt

(−1)
∑

B∈S |Bb|
∑

i1,...,ik∈[n]

δS,i(vi1 ⊗ · · · ⊗ vik)

=
∑

S⊆d\dt

(−1)
∑

B∈S |Bb|
∑

i1,...,ik∈[n]

δS,i

((
wi1 −

1
n
w

)
⊗ · · · ⊗

(
wik − 1

n
w

))
.

(9)

If dt = ∅, then this implies that as operators on w,

π⊗k ◦ d =
∑

X=
⋃
B∈S B

S⊆d\dt

(−1)|X∩[k′]|
∑

Y⊆[k]\X

(
− 1
n

)|Y ∪(X∩[k])|
[dX∪Y ]

=
∑
X,Y

U=X∪Y

(−1)|U | 1
n|U∩[k]| [dU ],

where the last sum is a double sum over sets X and Y of vertices satisfying

X =
⋃
B∈S

B with S ⊆ d \ dt, and Y ⊆ [k] \X. (10)

However, if B = {j1, . . . , jr} ⊆ [k] is a top block, then isolating the factors in positions
j1, . . . , jr in (π⊗k ◦ d) · w yields

π⊗k ·
n∑

�=1

v⊗r
� =

(
−1
n

)r

w⊗r +
n∑

�=2

(
w� −

1
n
w

)⊗r

= n

(
−1
n

)r

w⊗r

+
r−1∑
a=0

∑
σ∈Sr/(Sa×Sr−a)

σ ·
((

−1
n

)a

w⊗a ⊗
(

n∑
�=2

w
⊗(r−a)
�

))
,

where σ ∈ Sr/(Sa × Sr−a) acts by permuting the r factors, stabilizing the relative
positions of the factors of w⊗a and the factors of w⊗(r−a)

� . So the term w⊗r appears with
an extra factor of n.

Thus, in general

π⊗k ◦ d =
∑
X,Y

U=X∪Y

(−1)|U | 1
n|U∩[k]|−N(Y ) [dU ], (11)

where

N(Y ) =
∣∣{B ∈ dt

∣∣ B ⊆ Y
}∣∣. �
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As noted before Lemma 2.2, a diagram dU may arise non-uniquely as a function
of U , and so Lemma 2.2 does not necessarily combine like-terms in d̄. Our next lemma
addresses this issue. To that end, define a viable isolation d̂ of a diagram d as an isolation
that may appear in the expansion of d̄ with non-zero coefficient, i.e. if any vertex of Bb

is isolated in d̂, then all vertices of B are isolated in d̂.

Lemma 2.3. Suppose d̂ is a viable isolation of d with maximal set of isolated vertices U ,
and let c be the coefficient of [d̂] after collecting like-terms in (8). Then c falls into one
of the following cases:

1. Non-unique terms, i.e. c is the sum of multiple terms:
(a) If B ∈ d has exactly one vertex in [k′], and the vertices of B are isolated in d̂,

then c = 0.
(b) Assume there is no block as in (a) completely isolated in d̂, and that dt is

non-empty.
If B = {B1, . . . , B�} ⊆ dt, and all blocks in B but no other blocks of dt are
completely isolated in d̂, then

c = (−1)|U |
(

1
n|U∩[k]|−�

)( ∑
B′⊆{B1,...,B�}

(
(−1)|B

′|
∏

B∈B′

|B|
))

where
∏

B∈B′ |B| = 1 when B′ = ∅.
2. Unique terms: If d̂ is not one of the cases in 1, then d̂ appears uniquely with coefficient

c = (−1)|U | 1
n|U∩[k]| where U is the set of isolated vertices of d̂. In particular, if the

isolated vertices of d̂ are all in [k′], then c = (−1)#{isolated vertices}.

If U ∩ [k] �= ∅, then limn→∞ c = 0.

Proof. Use the same notation as in Lemma 2.2, and continue from its proof.
In case 1 note that a diagram [dU ] can appear multiple times, if selecting different

sets X and Y breaks up an entire block in different ways. This can happen in two cases.

(a) If some B ∈ d \ dt has the property that Bb has a single element, then including B

in X or including Bt in Y result in the same dU .
In this case, pair each (X,Y ) such that B ⊂ X, and (X ′, Y ′) given by

X ′ = X \ {B}, and Y ′ = Y ∪Bt

yield [dX∪Y ] = [dX′∪Y ′ ]. These terms occur with equal but opposite coefficients,
since ∣∣(X ∪ Y ) ∩ [k]

∣∣ =
∣∣(X ′ ∪ Y ′) ∩ [k]

∣∣ but
∣∣X ′ ∪ Y ′∣∣ = |X ∪ Y | − 1.

Thus the [dX∪Y ] and [dX′∪Y ′ ] terms cancel.
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(b) If B ∈ dt, then the diagrams with B ⊆ Y are exactly equal to those with one vertex
of B removed from Y (Y ′ = Y \ {j} for some j ∈ B).
Fix a collection of blocks B1, . . . , B� in dt, and let U be some set of the form U =
X ∪ Y as in (10), such that

⋃
1�i��

Bi ⊆ U, but dU has no other blocks in dt completely broken up.

Then [dU ] will appear with coefficient

c = (−1)|U |( 1
n|U∩[k]|−�

) for the set U,(
(−1)|B

′|
∏

B∈B′

|B|
)
c for each non-empty B′ ⊆ {B1, . . . , B�},

where the second value counts the cases U = X ∪Y ′, where Y ′ removes one element
from each B ∈ B from Y : for each B, there are |B| ways to accomplish this, and each
resulting Y ′ has N(Y ′) = N(Y )−|B′|, |U ′| = |U |−|B′|, and |U ′∩[k]| = |U∩[k]|−|B′|.
So, collecting like-terms, the coefficient on [dU ] is

cU = (−1)|U |
(

1
n|U∩[k]|−�

)( ∑
B′⊆{B1,...,B�}

(
(−1)|B

′|
∏

B∈B′

|B|
))

,

where
∏

B∈B′ |B| = 1 when B′ = ∅.

If U ⊆ [k′], the term [dU ] appears exactly once; the isolated vertices are unions of
blocks in db, and so the coefficient is (−1)|U |. Otherwise, [dU ] appears exactly once, with
coefficient (−1)|U | 1

n|U∩[k]| . One can check that in each of these cases, if U ∩ [k] �= ∅, then
limn→∞ cU = 0. �
Example 2.4. Let d be the diagram

B1

B2 B3

B5B4

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

.

So, for example,

d{3}∪B3∪B5 =

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

.
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Since

Bt
1 = {1, 2}, Bb

1 =
{
1′
}
, Bt

2 = B2, Bb
2 = ∅, Bt

3 = B3, Bb
3 = ∅,

Bt
4 = ∅, Bb

4 = B4, Bt
5 = ∅, and Bb

5 = B5,

we have dt = {B2, B3} and db = {B4, B5}. Then the sum in (9) is over the sets

S = ∅, {B1}, {B4}, {B5}, {B1, B4}, {B1, B5}, {B4, B5}, or {B1, B4, B5}.

Notice that d{6}, d{7}, and dB3 are all the same diagram. In Lemma 2.3, to avoid these
redundancies, set U = {6, 7} and consolidate du = d{6} = d{7} = dB3 into a single term.

An example of case 1(a) is any isolation of B1. So the (simplified) coefficients on [dB1 ],
[dB1∪B2 ], [dB1∪{3}∪B3∪B5 ], or any other term isolating B1, will all be 0. For 2(b), consider
[dB2 ]. In this case, B = {B2} and the coefficient is

(−1)3
(

1
n3−1

)(
(−1)0 ∗ 1 + (−1) ∗ 3

)
= 2

n2 .

This case also covers, for example, [d{1,5}∪B3∪B4 ]. Even though one vertex of B2 is
isolated, B2 is not completely isolated, and so B = {B3} and the coefficient is

(−1)7
(

1
n4−1

)(
(−1)0 ∗ 1 + (−1)2 ∗ 2

)
= 3

n3 .

The terms where U ⊆ [k′] are when S = ∅, {B4}, {B5}, {B4, B5}, and expand to

(−1)0[d] + (−1)3[dB4 ] + (−1)3[dB5 ] + (−1)6[dB4∪B5 ].

For another example, a complete expansion of ē1 is given in (14).

Theorem 2.5. A basis for QPk(n) is given by

{d̄ | d ∈ D} where D = {diagrams d without isolated vertices}

as before.

Proof. We have already established {d̄ | d ∈ D} as a spanning set. It remains to show
that it is also linearly independent. By Lemma 2.2, for each diagram d without singletons,
there is exactly one element d̄ which has [d] with non-zero coefficient the expansion of
its projection (namely, d itself). Since the diagrams form a basis of Pk(n − 1) when
n− 1 > 2k, and the elements [d] ∈ End(W⊗k) generate an isomorphic subalgebra when
n− 1 > 2k, this implies that {d̄ | d ∈ D} is linearly independent. �

We obtain as easy consequences of this theorem both dimension formulas and a result
concerning diagram multiplication.
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Corollary 2.6. If n > 2k+1, then the dimension of QPk(n) is the number of set partitions
of 2k without blocks of size one. This number is given by

2k∑
j=1

(−1)j−1B(2k − j) + 1,

where B(r) is the Bell number and B(0) = 1.

This can be easily checked by noticing that the number of set partitions without
singletons, a(r), satisfies the recurrence a(r + 1) + a(r) = B(r) subject to a(1) = 0
and a(2) = 1, and then that the formula satisfies this recurrence. These values a(r) can
alternately be described with the exponential generating function exp(exp(x) − 1 − x),
which follows from the above recurrence relation for a(r) and the exponential generating
function for the Bell numbers, exp(exp(x)−1). For reference, the values of a(2k) expand
to 1, 1, 4, 41, 715, 17722, . . . (A000296)—we are only interested in the even terms of the
sequence a(r) since our diagrams have r = 2k vertices.

Remark. We notice that the formula in Corollary 2.6 is the inverse binomial transform of
the Bell numbers. Hence, we can write the Bell numbers as a binomial transform of the
dimensions of the quasi-partition algebra, i.e., B(n) =

∑n
i=1

(
n
i

)
a(i). This is consistent

with the interpretation that the partition algebra is the rook version of QPk(n).

We give the following Corollary as a statement of which terms can appear with non-
zero coefficient in a product, not as a calculation of the exact values of those coefficients.
To compute the exact values, one begins by using Lemma 2.3, together with the fact
that diagrams [d] multiply by concatenation; then Lemma 2.2 allows for a straightfor-
ward transition back into diagrams d̄, as we explain in the following proof. We do this
in certain cases in Section 3.

Corollary 2.7. Given any two diagrams d1 and d2 without singleton vertices, we have

d̄1d̄2 =
∑
d∈D

d�d1d2

cdd1,d2
d̄, cdd1,d2

∈ C(n),

where d � d′ if every block of d′ is the union of blocks of d, i.e. d is a refinement of d′.

Proof. If d1, d2 ∈ D, and d′1, d
′
2 are isolations of d1, d2, then d′1d

′
2 � d1d2. By Lemma 2.2

d̄1 = [d1] +
∑
U

aU
[
(d1)U

]
and d̄2 = [d2] +

∑
V

bV
[
(d2)V

]

where sets U and V determine viable isolations of d1 and d2, and coefficients aU , bV are
determined in Lemma 2.3. So since f in (5) is a homomorphism,
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d̄1d̄2 =
∑

d�d1d2

cdd1,d2
[d]. (12)

Since QPk(n) is closed under composition, we can also expand d̄1d̄2 in the basis {d̄ | d ∈
D}. Again by Lemma 2.2, for each d ∈ D, [d] appears with non-zero coefficient in the
bracket expansions of the elements of this basis: it appears with coefficient 1 in d̄ and
with coefficient 0 in d̄′ for all d �= d′ ∈ D. Therefore,

d̄1d̄2 =
∑
d∈D

d�d1d2

cdd1,d2
d̄

(where cdd1,d2
takes the same value as in (12)). �

2.4. The generic quasi-partition algebra

By Lemma 2.3 and the multiplication rules for Pk(n − 1), the coefficients cdd1,d2
=

cdd1,d2
(n) are well-defined rational functions of n (with poles only at n = 0). Now fix

a non-zero indeterminant x. Using the multiplication determined in Corollary (2.7) (by
way of Lemmas 2.2 and 2.3), define the general quasi-partition algebra QPk(x) formally
as

QPk(x) = C(x)-span D with multiplication d1d2 =
∑
d∈D

d�d1d2

cdd1,d2
(x)d.

Note that when you specialize x to an integer greater than 2k+1, QPk(x) is isomorphic
both the centralizer of Sx in End(W⊗k) and to a subalgebra of Pk(x− 1).

3. Generators and relations

In this section we give a set of generators for QPk(n). We first give a set of generators
for the partition diagrams that do not have singleton vertices. We then proceed to show
that the image of π⊗k of these generators form a generating set for QPk(n).

It was shown in [12, Lemma 3.1] and [11, Lemma 5.2] that the generators si, ei,
and bi, for i = 1, . . . , k − 1, generate those diagrams where all blocks contain an even
number of vertices. The quasi-partition algebra additionally contains diagrams which has
blocks with an odd number of vertices (and therefore an even number of odd blocks). To
generate these additional diagrams, we will also need the generators

ti = bipi+1bi+1 = · · · · · ·
i

and

hi = biei+1pibi = · · · · · ·
i

.
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In fact, we only need h1 when k = 3, since we have that h1 = t2e1(s2s3t2s2s3) for
k � 4.

Theorem 3.1. In Pk(n), all diagrams in D (i.e. all diagrams without isolated vertices)
are generated by

G = {s1, . . . , sk−1, e1, b1, t1, h1}. (13)

Proof. Note that by conjugating b1 or e1 by words in {si | i = 1, . . . , k − 1}, one
can generate ei and bi for i = 1, . . . , k − 1, and therefore, by [12, Lemma 3.1] and [11,
Lemma 5.2], one can generate all diagrams with even-sized blocks. For any diagram d with
an odd-sized block I (and therefore at least one more, J), we will build d from a diagram
with two fewer odd blocks with the distinguished generators, showing d is generated by G
by induction on the number of odd-sized blocks. The generators t1, s1, . . . , sk−1 generate
all set partitions of the form

ti1,i2,i3 =
{
i1, i2, i

′
1
}
,
{
i3, i

′
2, i

′
3
}
,
{
1, 1′

}
,
{
2, 2′

}
, . . . ,

{
k, k′

}
and the generators h1, s1, . . . , sk−1 generate all set partitions of the form

hi1,i2,i3 = {i1, i2, i3},
{
i′1, i

′
2, i

′
3
}
,
{
1, 1′

}
,
{
2, 2′

}
, . . . ,

{
k, k′

}
.

Let d be a diagram in D with at least one pair of odd-sized blocks. We have two cases
to consider.

Case 1: Let I and J be two blocks of odd size in d and assume I ⊆ [k] and J ⊆ [k′].
Since d has no singletons, each set has at least 3 elements. So let i1, i2, i3 ∈ I and

j′1, j
′
2, j

′
3 ∈ J . Let d′ be the diagram with the same blocks as d except that I and J in d

have been replaced by the following sets in d′:

I \ {i1, i2, i3}, J \
{
j′1, j

′
2, j

′
3
}
,

{
i1, j

′
1
}
,

{
i2, j

′
2
}
,

{
i3, j

′
3
}
.

Then d′ has two fewer sets of odd size than d, and hence inductively is the product of
elements in G. The diagram

hi1,i2,i3d
′

is the diagram obtained from d by replacing I and J by the sets

I \ {i1, i2, i3}, J \
{
j′1, j

′
2, j

′
3
}
, {i1, i2, i3},

{
j′1, j

′
2, j

′
3
}
.

If I or J has more than 3 elements (i.e. I \ {i1, i2, i3} or J \ {j′1, j′2, j′3} are non-empty),
then for example

I \ {i1, i2, i3} and {i1, i2, i3}
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can be joined by right-multiplication of the even-block diagram

{
i1, i4, i

′
1, i

′
4
}
,
{
1, 1′

}
, . . . ,

{
k, k′

}
,

where i4 ∈ I \ {i1, i2, i3}. Hence, d is the product of elements in G.
Case 2: Both I and J have at least one element in [k], and one of them has at least two

elements in [k]. (Otherwise, the same statement is true for [k′], and a similar construction
can be used.)

Assume that J ∩ [k] has at least two elements j1 and j2. Let d′ be a new diagram with
the sets J \ j1 and I ∪ {j1} in place of I and J in d. Then d′ has two fewer sets of odd
size than d, and if i ∈ I ∩ [k], then

d = tj2,j1,id
′,

d =
· · · · · ·

j2 j1 i

d′
. �

We have just shown that one can write d = w as diagrams with w = w1w2 · · ·w�

and wi ∈ G. Further, the algorithm presented inductively on the number of pairs of odd
blocks in d provides a process for finding a w satisfying further that each consecutive
subword has no isolated vertices.

Corollary 2.7 tells us that if d1, d2 ∈ D and the diagram d1d2 has an isolated vertex,
then d̄1d̄2 = 0. However, if the diagram d1d2 does not have an isolated vertex, Corol-
lary 2.7 does not tell us which terms appear with non-zero coefficient. In particular, it
is not immediately obvious that cd1d2

d1,d2
is non-zero. A case-by-case calculation (done in

Appendix A) gives the following lemma.

Lemma 3.2. If d1 ∈ G is one of the generators of D and d2 ∈ D, then either

1. d1d2 ∈ D and then coefficient cd1d2
d1,d2

of d1d2 in d̄1d̄2 is non-zero, or
2. d1d2 /∈ D, and then d̄1d̄2 = 0.

Corollary 3.3. As before, let d̄ = π⊗k ◦d. Then QPk(n) is generated by {d̄ | d ∈ G}, where
G is as in (13).

Proof. Let d ∈ D. By Theorem 3.1, we can generate d as a diagram from G; let w =
w1w2 · · ·w� be a word in the elements of G so that d = w as diagrams, satisfying for
all i = 1, . . . , � − 1, the diagram wiwi+1 · · ·w� ∈ D (as explained immediately after the
proof of Theorem 3.1). Using Lemma 3.2 inductively, w̄ appears with non-zero coefficient
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in w̄1 · · · w̄�. Using the triangularity of Corollary 2.7, we can then generate all of {d̄ |
d ∈ D}. �

We can use Lemmas 2.2 and 2.3 to calculate the expansion of these elements of QPk(n)
in terms of maps [d], and thus use relations in Pk(n−1) to determine relations in QPk(n).
For example, Lemma 2.3 says that

ē1 = + − 1
n

− 1
n

. (14)

So since bracketed terms multiply by diagram concatenation,

ē2
1 = (n− 1) + (n− 1) − n− 1

n
− n− 1

n
= (n− 1)ē1.

Similarly, one can easily check that the generators satisfy the following relations in
QPk(n):

s̄2
i = 1, s̄is̄i+1s̄i = s̄i+1s̄is̄i+1, s̄is̄j = s̄j s̄i if |i− j| > 1,

ē2
i = (n− 1)ēi, ēiēi±1ēi = ēi, b̄2i = n− 2

n
b̄i + 1

n2 ēi

s̄ib̄i = b̄is̄i = b̄i if 1 � i � n− 1, s̄it̄i = t̄is̄i+1 = t̄i if 1 � i � n− 2, and

ēit̄i = t̄iēi+1 = 0.

Comparing these relations to those of the partition algebra Pk(n− 1),

s2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| > 1,

e2
i = (n− 1)ei, eiei±1ei = ei, b2i = bi,

sibi = bisi = bi if 1 � i � n− 1, siti = tisi+1 = ti if 1 � i � n− 2, and

eiti = tiei+1 = 0, (15)

we observe that they are very similar but with additional lower terms in some cases. For
example, b2i has and additional ei term; but ei � bi, and in the limit n → ∞, we have
b̄2i → b̄i.

4. Representation theory of the quasi-partition algebra

In this section we describe the representation theory of QPk(n). Both the represen-
tation theory of QPk(n) and of Sn can be described using integer partitions, which we
review here. Fix n ∈ Z�0. An (integer) partition λ of n, denoted λ � n, is a sequence
of nonnegative integers λ = (λ1, λ2, . . . , λ�) such that |λ| = λ1 + λ2 + · · · + λ� = n and
λ1 � λ2 � · · · � λ�. If n = 0, the unique partition is the empty partition, denoted by ∅.
Given two partitions λ and μ we say that μ ⊆ λ if μi � λi for all i.
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The irreducible representations Sλ of Sn are indexed by partitions λ of n. As usual we
identify a partition with its Young diagram, depicted as |α| boxes up and left justified,
where the ith row has αi boxes. In our setting, the combinatorics of the representa-
tion theory of QPk(n) can be simplified by replacing partitions λ � n with partitions
(λ2, . . . , λ�) of λ2 + · · ·+ λ�. Thus the partitions of n are in bijection with the partitions
α of m < n for which α1 � n/2. For any such partition, let

ᾱ = (n− |α|, α1, . . . , α�), for example, (n− 7, 3, 3, 1) = (3, 3, 1) = .

We will need the following theorem.

Theorem 4.1 (The centralizer theorem). Let A be a finite dimensional algebra over C. Let
M be a semisimple A-module and let C = EndA(M). Suppose that M ∼=

⊕
λ(Aλ)⊕mλ ,

where Aλ are irreducible A-modules and mλ ∈ Z�0 are multiplicities of Aλ in the de-
composition of M . Then

(a) C ∼=
⊕

λ Mmλ
(C), and

(b) as an (A,C)-bimodule, M ∼=
⊕

λ A
λ ⊗ Cλ, where Cλ are simple C-modules.

By the centralizer theorem, in order to understand the representation theory of
QPk(n), it suffices to know how to decompose the Sn module W⊗k. The tensor product
(or Kronecker product) of two irreducible Sn-representations is usually not itself irre-
ducible, and a general rule for decomposing this tensor product is not known. However,
there are many results concerning stability of the product. For example, in [3], it is shown
that if n � |α| + |β| + α1 + β1 then the Kronecker product

Sᾱ ⊗ Sβ̄ =
⊕
γ

gγαβS
γ̄

is stable, meaning that for large n the product does not depend on n. In the special case
when one of the representations is S(n−1,1) = S(1) = S , we have the very well-known
result

Sα ⊗ S = c(α)(Sα) ⊕
⊕
β∈α±

Sβ, (16)

where c(α) is the number of corner boxes of α and α± is the set of partitions β with
β1 � n/2 gotten from α by (1) adding a box, (2) removing a box, or (3) moving a corner
box of alpha to another corner. That is, β differs from α from the position of a corner.
For example, if n � 0,
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S ⊗ S = 2 S ⊕ S ⊕ S ⊕ S ⊕ S ⊕ S ⊕ S ⊕ S .

Theorem 4.2. Let k � 2 and assume that n > 2k + 1. If Lk(λ) denotes the irre-
ducible representation of QPk(n) indexed by λ, we have the decomposition of W⊗k as an
(Sn, QPk(n))-bimodule

W⊗k =
⊕

Sλ ⊗ Lk(λ)

where the sum is over all partitions λ of n such that |λ| � k.

Proof. Since n > 2k + 1, we have that QPk(n) is isomorphic to the centralizer algebra.
Then by the rule for tensoring S(n−1,1) ⊗ Sλ and the centralizer theorem we get the
decomposition. �

We get as an immediate consequence a labeling set for the irreducible representations
of QPk(n).

Corollary 4.3. For (n − 1)/2 > k � 2 the irreducible representations of QPk(n) are
indexed by partitions μ of 0, 1, . . . , k.

4.1. Bratteli diagram

We set QP0(n) = C. For k � 1 we have that

QPk−1(n) ⊆ QPk(n).

We identify the elements in QPk−1(n) with the elements of QPk(n) that contain the
block {k, k′}. Hence, we have a tower of algebras

QP0(n) ⊆ QP1(n) ⊆ QP2(n) ⊆ QP3(n) ⊆ · · · . (17)

For the remainder of the paper we assume that n � 0.
We can represent the inclusion of A ⊂ B of multimatrix algebras (with the same unit)

by a bipartite graph. The vertices in the graph are labeled by the simple summands of A
and B. The number of edges joining a vertex v for A to a vertex w for B is the number
of times the representation v occurs in the restriction of w to A.

In the case that we have a sequence of inclusions A0 ⊂ A1 ⊂ A2 ⊂ · · · of multimatrix
algebras, one may connect the bipartite graphs describing the inclusions Ai ⊂ Ai+1, to
obtain the Bratteli diagram.
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Fig. 1. Bratteli diagram for QP0(n) ⊆ QP1(n) ⊆ QP2(n) ⊆ · · · , levels 0–3, and part of level 4. On levels
0–3, the parenthetical number given next to each partition λ is the number of downward paths from the
top to λ.

We build the graph P̂ as follows:

Vertices: On level k = 0 the vertex set is P0 = {∅};
on level k = 1 the vertex set is P1 = {(1)};
and on level k � 2, the vertex set is Pk = {μ | |μ| � k}.

Edges: Connect λ ∈ Pk−1 to λ ∈ Pk with c(λ) edges;
otherwise, connect λ ∈ Pk−1 to μ ∈ Pk with one edge if μ ∈ λ±.

See Fig. 1.

Proposition 4.4. As n → ∞, the Bratteli diagram of the chain

QP0(n) ⊂ QP1(n) ⊂ QP2(n) ⊂ QP3(n) ⊂ · · ·

is the graph P̂ .

Proof. Since QPk(n) is a centralizer algebra, we know by double centralizer the-
ory that the decomposition of W⊗k as an Sn-module yields the decomposition as a
QPk(n)-module. So we can use the decomposition rule in (16) to construct the Bratteli
diagram for the chain in (17), a leveled graph completely described by P̂ .

The vertices at the kth level of the Bratteli diagram are indexed by the irreducible
components of W⊗k as an Sn-module; the number of edges joining a vertex indexed
by α in the (k − 1)st level to a vertex β in the kth is given by the multiplicity of β

in Vα ⊗ W as an Sn-module. In other words, the vertices at the ith level index the
irreducible components of W⊗k as an Sn-module, and the number of edges joining α in
the ith level to a vertex β in the (i + 1)th level is the multiplicity of Sβ in Sα ⊗W as
an Sn-module. �
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Remark. Notice that in general, the Bratteli diagram is not multiplicity free; if λ has
more than one corner in its diagram, there are that number of edges from λ in level i to
λ in level i + 1. For example, in Fig. 1, the number of edges from to itself is 2.

As usual, we get that the number of paths from ∅ to λ is equal to the dimension of
the irreducible representation of QPk(n) indexed by λ. These paths can be encoded by
the set of tableaux in the next definition as in [5].

Definition. Given a positive integer k and partition λ, a sequence T = (μ0, . . . , μk) is
called a Kronecker tableau of shape λ if it is a sequence of k Young diagrams such that
μ0 = ∅ and μk = λ and, for every pair μi and μi+1 of consecutive diagrams, either μi+1

is obtained from μi by the addition or removal of one corner, or μi+1 differs from μi by
the position of one corner, or μi+1 = μi and μi+1 has one distinguished corner.

For example, if k = 9 a possible tableaux of shape λ = is

T = (∅, , , , , , , , , )

Here we have indicated the distinguished corner by an .
The following is a direct consequence of the centralizer theorem as the number of

paths from ∅ to λ is equal to the dimension of L(λ).

Lemma 4.5. Let λ be a partition indexing an irreducible representation QPk(n). Then
the number of Kronecker tableaux of shape λ of length k is equal to the dimension of the
L(λ).

In the following theorem we give an exact formula for these dimensions.

Theorem 4.6. Let k and n be two positive integers and λ̄ a partition of n such that
n > k + λ2 with λ = (λ2, λ3, . . .). Then the dimension of the irreducible representation
indexed by λ in QPk(n) is

fλ

|λ|∑
m1=0

((
k

m1

) � k−m1
2 �∑

m2=|λ|−m1

(
m2

|λ| −m1

)
sp2(k −m1,m2)

)
,

where fα is the number of Kronecker tableaux of shape α and sp2(a, b) is the number of
set partitions of a set with a elements into b parts of size at least 2.

Proof. In [5, Proposition 2] Chauve an Goupil have counted the number of Kronecker
tableaux, hence by Lemma 4.5 the result follows. �

The number of paths from ∅ to λ and back to ∅ is equal to the square of the di-
mension of λ. If we sum these values we obtain the dimension of QPk(n). In our case,
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we get for the sum of squares of the dimensions of the irreducible representations is
1, 1, 4, 41, 715, 17722, . . . (A000296) is the number of partitions of a 2k-set into blocks of
size greater than 1, as expected.
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Appendix A. Finding the non-zero “top terms”

In this appendix we prove Lemma 3.2. To do this we would like to track the coefficient
of [d1d2] (and therefore the coefficient of d1d2) in the expansion of d̄1d̄2 according to
Lemmas 2.2 and 2.3. If [(d1)X ][(d2)Y ] = [d1][d2] as diagrams (neglecting coefficients),
then necessarily, X ⊆ [k′] and Y ⊆ [k]. Therefore, we will restrict to focusing on the
products of those terms

1. in the expansion of d̄1 which isolate only bottom vertices, and
2. in the expansion of d̄2 which isolate only top vertices.

Further, if d1 has a vertical size-2 block containing i′, then Y cannot contain i (and
vice-versa). Note that for i = 1, . . . , k−1, since s̄i = [si], we have s̄id̄ = sid. We continue
with calculations for d1 = e1, b1, t1, and h1, and let d2 = d be any diagram in D.

A.1. The coefficient of [e1d] in ē1d̄

The expansion of ē1 is

ē1 = [e1] +
[
(e1){1′,2′}

]
− 1

n

[
(e1){1,2}

]
− 1

n

[
(e1){1,2,1′,2′}

]
.

The terms [(e1)X ] for which X ⊆ [k′] are [e1] + [(e1){1′,2′}]. The only vertices which can
then be isolated in d are 1 and 2. Thus, possible contributions to [e1d] are

d

+

d

+ a

d{2}

+ a

d{2}

+ b

d{1}

+ b

d{1}
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+ c

d{1,2}

+ c

d{1,2}

.

In the diagrams we emphasize that a vertex is isolated by circling it.

Case 1: If the vertices 1 and 2 are in separate blocks, then [e1d] only appears in one
place, since right multiplication of d by e1 results in 1 and 2 being in the same
block. The coefficient of [e1d] is 1.

Case 2: The vertices 1 and 2 are in the same block.
(a) If {1, 2} is a block: d .

Then d{1} = d{2} = d{1,2}, so a = b = −1/n and c = 1/n. Then the
coefficient on [e1d] is

(n− 1) + (n− 1) − (1/n)
(
(n− 1) + (n− 1)2

)
= n− 1 .

(b) If {1, 2,m′} or {1, 2,m} is a block, then e1d has an isolated vertex, so
ē1d̄ = 0.

(c) The vertices 1 and 2 are in the same block, and are connected to at least
two other vertices.
Then a = b = −1/n, c = 1/n2, and the coefficient on [e1d] is

1 + 1 − (1/n)
(
1 + (n− 1) + 1 + (n− 1)

)
+
(
1/n2)((n− 1) + (n− 1)2

)

= n− 1
n

.

A.2. The coefficient of [b1d] in b̄1d̄

The expansion of b̄1 only has one term where the isolation avoids top vertices,
namely [b1]. Again, this restricts us to terms in d̄ where the isolation is restricted to
the first two vertices. Thus the possible contributions to [b1d] are

d

+ a

d{2}

+ b

d{1}

+ c

d{1,2}

.
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Case 1: The vertices 1 and 2 are in separate blocks.
In this case, [b1d] only appears in one place, since b1 joins their blocks together.
Then the coefficient of [b1d] is 1.

Case 2: The vertices 1 and 2 are in the same block.
(a) If {1, 2} is a block, then d{1} = d{2} = d{1,2}. So a = b = −1/n and c = 1/n,

and the coefficient on [b1d] is 1 − 1/n− 1/n + 1/n = n−1
n .

(b) If {1, 2,m′} or {1, 2,m} is a block:
Then d{1,2} doesn’t contribute, and a = b = −1/n. Since b1 joins 1 and 2
back together, [b1d] has coefficient 1 − 1/n− 1/n = n−2

n .
(c) The vertices 1 and 2 are in the same block, and are connected to at least

two other vertices.
Then a = b = −1/n, c = 1/n2, and the coefficient on [b1d] is

1 − 1/n− 1/n + 1/n2 = (n− 1)2

n2 .

A.3. The coefficient of [t1d] in t̄1d̄

The expansion of t̄1 only has one term where the isolation avoids top vertices,
namely [t1]. This restricts us to terms in d̄ where the isolation is in the first three
vertices. However, we can also note that the terms

d{1} d{1,3}

d{1,2} d{2,3} d{1,2,3}

will not contribute to [t1d] in any case. Therefore the possible contributors are

d

+ a

d{2}

+ b

d{3}

Case 1: If 2 and 3 are in separate blocks, then [t1d] only appears in one place, since t1
joins their blocks together. In this case its coefficient is 1.

Case 2: If {2, 3} is a block, then t̄1d̄ = 0.
Case 3: Otherwise, a = b = −1/n and the coefficient on [t1d] is 1 − 2/n = n−2

n .
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A.4. The coefficient of [h1d] in h̄1d̄

The expansion of h̄1 has two terms which have no top vertices isolated, namely [h1]−
[(h1){1′,2′,3′}]. This restricts us to terms in d̄ where the isolation is in the first three
vertices, and the possible contributors to [h1d] are

d

−
d

+ a1

d{1}

− a1

d{1}

+ a2

d{2}

− a2

d{2}

+ a3

d{3}

− a3

d{3}

+ b1

d{2,3}

− b1

d{2,3}

+ b2

d{1,3}

− b2

d{1,3}

+ b3

d{1,2}

− b3

d{1,2}

+ c

d{1,2,3}

− c

d{1,2,3}

.

Case 1: If 1, 2, and 3 are all in separate blocks, then there is no repetition, and the top
term appears with coefficient 1.

Case 2: The vertices 1 and 2 appear in the same block, but separate from 3 (similarly
for 1 and 3 or 2 and 3).
(a) If {1, 2} is a block:

If 3 is also in a block of size 2, then h1d has an isolated vertex, and h̄1d̄ = 0.
If 3 is in a larger block, then since a1 = a2 = a3 = −b3 = −1/n, b1 = b2 =
−c = 1/n2, the coefficient is

1 − (n− 1) − (2/n)
(
1 − (n− 1)2

)
− (1/n)

(
(n− 1) − (n− 1)2

)
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+ (2/n2)
(
(n− 1) − (n− 1)3

)
+ (1/n)

(
1 − (n− 1)2

)
− (1/n2)

(
(n− 1) − (n− 1)3

)
= (n− 1)(n− 2) .

(b) Otherwise, none of the terms with [(h1){1′,2′,3′}] will contribute. So the only
possible contributors are

[h1][d], [h1][d{1}], and [h1][d{2}]

(because we need h1 to bond 3 to 1 and 2, and we need one of 1 or 2 to
bond to the rest of their block). Then since a1 = a2 = −1/n, the top term
has a coefficient of 1 − 2/n = n−2

n .
Case 3: The vertices 1, 2, and 3 are all in the same block.

(a) If {1, 2, 3} is a block:
Then d{1,2} = d{1,3} = d{2,3} = d{1,2,3}, b1 = b2 = b3 = −c = 1/n2,
a1 = a2 = a3 = −1/n. The coefficient on the top terms is

(n− 1)
(
1 − 1 − (3/n)

(
1 − (n− 1)

)
+

(
2/n2)(1 − (n− 1)2

))

= (n− 2)(n− 1)
n

.

(b) If {1, 2, 3,m′} or {1, 2, 3,m} is a block, then h̄1d̄ = 0.
(c) Otherwise, the vertices 1, 2, and 3 are in a block of size 5 or more.

Then a1 = a2 = a3 = −1/n, b1 = b2 = b3 = 1/n2, and c = −1/n3 and the
coefficient on the top term is

1 − 1 − (3/n)
(
1 − (n− 1)

)
+

(
3/n2)(1 − (n− 1)2

)

−
(
1/n3)((n− 1) − (n− 1)3

)
= (n− 1)(n− 2)

n2 .
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