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Let A be a Nakayama algebra. We give a description of the 
singularity category of A inside its stable module category, 
which provides a new approach to the singularity category of 
a Nakayama algebra. We prove that there is a duality between 
the singularity category of A and the singularity category of 
its opposite algebra. As a consequence, the resolution quiver 
of A and the resolution quiver of its opposite algebra have the 
same number of cycles and the same number of cyclic vertices.
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1. Introduction

Let A be an Artin algebra. Denote by A-mod the category of finitely generated left 
A-modules, and by Db(A-mod) the bounded derived category of A-mod. Recall that a 
complex in Db(A-mod) is perfect provided that it is isomorphic to a bounded complex 
of finitely generated projective A-modules. Following [4,12,17], the singularity category
Dsg(A) of A is the quotient triangulated category of Db(A-mod) with respect to the 
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full subcategory consisting of perfect complexes. Recently, the singularity category of a 
Nakayama algebra was described in [8].

Let A be a connected Nakayama algebra without simple projective modules. Follow-
ing [20], the resolution quiver R(A) of A is defined as follows: the vertex set is the set 
of isomorphism classes of simple A-modules, and there is an arrow from S to τ socP (S)
for each simple A-module S; see also [10]. Here, P (S) is the projective cover of S, ‘soc’ 
denotes the socle of a module, and τ = DTr is the Auslander–Reiten translation [2]. 
A simple A-module is called cyclic provided that it lies in a cycle of R(A).

The following consideration is inspired by [20]. We emphasize that the treatment here 
is different from [20]; compare [20, Example in the introduction] with Example 3.13. Let 
A be a connected Nakayama algebra of infinite global dimension. Let Sc be a complete 
set of pairwise non-isomorphic cyclic simple A-modules. Let Xc be the set formed by 
indecomposable A-modules X such that topX and τ socX both belong to Sc. Here, ‘top’ 
denotes the top of a module. Denote by F the full subcategory of A-mod whose objects 
are finite direct sums of objects in Xc. It turns out that F is a Frobenius abelian category, 
and it is equivalent to A′-mod with A′ a connected selfinjective Nakayama algebra. 
Denote by F the stable category of F modulo projective objects; it is a triangulated 
category by [11]. We emphasize that the stable category F is a full subcategory of the 
stable module category A-mod of A.

The well-known result of [4,12] describes the singularity category of a Gorenstein 
algebra A via the subcategory of A-mod formed by Gorenstein projective modules. Here, 
we recall that an Artin algebra is Gorenstein if the injective dimension of the regular 
module is finite on both sides. In general, a Nakayama algebra is not Gorenstein [20,8]. 
The following result describes the singularity category of a Nakayama algebra via the 
subcategory F of A-mod. For a Gorenstein Nakayama algebra, these two descriptions 
coincide; compare [20].

Theorem 1.1. Let A be a connected Nakayama algebra of infinite global dimension. Then 
the singularity category Dsg(A) and the stable category F are triangle equivalent.

Denote by A-inj the category of finitely generated injective A-modules, and by 
Kb(A-inj) the bounded homotopy category of A-inj. We view Kb(A-inj) as a thick 
subcategory of Db(A-mod) via the canonical functor. Then the quotient triangulated 
category Db(A-mod)/Kb(A-inj) is triangle equivalent to the opposite category of the 
singularity category Dsg(Aop) of Aop. Here, Aop is the opposite algebra of A. It is well 
known that for a Gorenstein algebra A, the singularity categories Dsg(A) and Dsg(Aop)
are triangle dual. In general, it seems that for an arbitrary Artin algebra A, there is no 
obvious relation between Dsg(A) and Dsg(Aop). Indeed, there are examples of algebras 
A of radical square zero such that Dsg(A) and Dsg(Aop) are neither triangle equivalent 
nor triangle dual; see Example 4.4. However, we have the following result for Nakayama 
algebras.
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Proposition 1.2. Let A be a Nakayama algebra. Then the singularity category Dsg(A)
is triangle equivalent to Db(A-mod)/Kb(A-inj). Equivalently, there is a triangle duality 
between Dsg(A) and Dsg(Aop).

Let A be a connected Nakayama algebra of infinite global dimension. Recall from [21]
that the resolution quivers R(A) and R(Aop) have the same number of cyclic vertices. 
The following result strengthens the previous one by a different method.

Proposition 1.3. Let A be a connected Nakayama algebra of infinite global dimension. 
Then the resolution quivers R(A) and R(Aop) have the same number of cycles and the 
same number of cyclic vertices.

The paper is organized as follows. In Section 2, we recall some facts on singularity 
categories of Artin algebras and the simplification in the sense of [19]. In Section 3, we 
introduce the Frobenius subcategory F and prove Theorem 1.1. The proofs of Proposi-
tions 1.2 and 1.3 are given in Sections 4 and 5, respectively.

2. Preliminaries

We first recall some facts on the singularity category of an Artin algebra.
Let A be an Artin algebra over a commutative artinian ring R. Recall that A-mod

denotes the category of finitely generated left A-modules. Let A-proj denote the full 
subcategory consisting of projective A-modules, and A-inj the full subcategory consisting 
of injective A-modules. Denote by A-mod the projectively stable category of finitely 
generated A-modules; it is obtained from A-mod by factoring out the ideal of all maps 
which factor through projective A-modules; see [2, IV.1].

Recall that for an A-module M , its syzygy Ω(M) is the kernel of its projective cover 
P (M) → M . This gives rise to the syzygy functor Ω : A-mod → A-mod. Let Ω0(M) = M

and Ωi+1(M) = Ω(Ωi(M)) for i ≥ 0. Denote by Ωi(A-mod) the full subcategory of A-mod
formed by modules M such that there is an exact sequence 0 → M → Pi−1 → · · · →
P1 → P0 with each Pj projective. We also denote by Ωi

0(A-mod) the full subcategory of 
Ωi(A-mod) formed by modules without indecomposable projective direct summands.

Recall that Db(A-mod) denotes the bounded derived category of A-mod, whose trans-
lation functor is denoted by [1]. For each integer n, let [n] denote the n-th power of [1]. 
The category A-mod is viewed as a full subcategory of Db(A-mod) by identifying an 
A-module with the corresponding stalk complex concentrated at degree zero. Recall 
that a complex in Db(A-mod) is perfect provided that it is isomorphic to a bounded 
complex of finitely generated projective A-modules. Perfect complexes form a thick sub-
category of Db(A-mod), which is denoted by perf(A). Here, we recall that a triangulated 
subcategory is thick if it is closed under direct summands.

Following [4,12,17], the quotient triangulated category

Dsg(A) = Db(A-mod)/perf(A)
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is called the singularity category of A. Denote by q : Db(A-mod) → Dsg(A) the quotient 
functor. We recall that the objects in Dsg(A) are bounded complexes of finitely generated 
A-modules. The translation functor of Dsg(A) is also denoted by [1].

The following results are well known.

Lemma 2.1. (See [6, Lemma 2.1].) Let X be a complex in Dsg(A) and n0 > 0 be an 
arbitrary natural number. Then for any n sufficiently large, there exists a module M in 
Ωn0(A-mod) such that X � q(M)[n].

Lemma 2.2. (See [6, Lemma 2.2].) Let 0 → N → Pn−1 → · · · → P0 → M → 0 be an 
exact sequence in A-mod with each Pi projective. Then there is an isomorphism q(M) �
q(N)[n] in Dsg(A). Moreover, if N = Ωn(M), then there is a natural isomorphism 
θnM : q(M) � q(Ωn(M))[n] for any M in A-mod and n ≥ 0.

Observe that the composition A-mod → Db(A-mod) q−→ Dsg(A) vanishes on projec-
tive modules. Then it induces a unique functor q′ : A-mod → Dsg(A). It follows from 
Lemma 2.2 that for each n ≥ 0, the following diagram of functors

A-mod

q′

Ωn

A-mod

q′

Dsg(A)
[−n]

Dsg(A)

is commutative. Let M and N be in A-mod and n ≥ 0. Lemma 2.2 yields a natural map

Φn : HomA(Ωn(M),Ωn(N)) −→ HomDsg(A)(q(M), q(N)).

Here, Φ0 is induced by q′ and Φn(f) = (θnN )−1 ◦ (q′(f)[n]) ◦ θnM for n ≥ 1.
Consider the following chain of maps {Gn,n+1}n≥0 such that

Gn,n+1 : HomA(Ωn(M),Ωn(N)) −→ HomA(Ωn+1(M),Ωn+1(N))

is induced by the syzygy functor Ω. The sequence {Φn}n≥0 is compatible with 
{Gn,n+1}n≥0, that is, Φn+1 ◦ Gn,n+1 = Φn for each n ≥ 0. Then we obtain an induced 
map

Φ : lim−−→
n≥0

HomA(Ωn(M),Ωn(N)) −→ HomDsg(A)(q(M), q(N)).

The following lemma is contained in [3, Corollary 3.9(1)]. Indeed, we use the isomor-
phism between Hom-spaces in the stabilization category of A-mod and in Dsg(A), which 
is a consequence of the triangle equivalence in [3, Corollary 3.9(1)].
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Lemma 2.3. (See [14, Exemple 2.3].) Let M and N be in A-mod. Then there is a natural 
isomorphism

Φ : lim−−→
n≥0

HomA(Ωn(M),Ωn(N)) �−−→ HomDsg(A)(q(M), q(N)).

Next we recall the simplification in the sense of [19].
Let A be an abelian category. Recall that an object X in A is a brick if EndA(X)

is a division ring. Two objects X and Y are orthogonal if HomA(X, Y ) = 0 and 
HomA(Y, X) = 0. A full subcategory W of A is called a wide subcategory if it is closed 
under kernels, cokernels and extensions. In particular, W is an abelian category and the 
inclusion functor is exact. Recall that an abelian category A is called a length category
provided that each object in A has a composition series.

Let E be a set of objects in an abelian category A. For an object C in A, an E-filtration
of C is given by a sequence of subobjects

0 = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cm = C,

such that each factor Ci/Ci−1 belongs to E for 1 ≤ i ≤ m. Denote by F(E) the full 
subcategory of A formed by objects in A with an E-filtration.

Lemma 2.4. (See [19, Theorem 1.2].) Let E be a set of pairwise orthogonal bricks in A. 
Then F(E) is a wide subcategory of A; moreover, F(E) is a length category and E is a 
complete set of pairwise non-isomorphic simple objects in F(E).

Let A be a connected Nakayama algebra without simple projective modules. Recall 
that the vertex set of the resolution quiver R(A) of A is the set of isomorphism classes 
of simple A-modules, and there is an arrow from S to γ(S) = τ socP (S) for each simple 
A-module S. Since each vertex in R(A) is the start of a unique arrow, each connected 
component of R(A) contains precisely one cycle. A simple A-module is called cyclic
provided that it lies in a cycle of R(A).

Let A be a connected Nakayama algebra of infinite global dimension. In particular, 
there are no simple projective A-modules. Let S be a complete set of pairwise non-
isomorphic simple A-modules. Denote by Sc the subset of all cyclic simple A-modules, 
and by Snc the subset of all noncyclic simple A-modules.

Lemma 2.5. Let A be a connected Nakayama algebra of infinite global dimension. Then 
Sc is a complete set of pairwise non-isomorphic simple A-modules of infinite injective 
dimension, and Snc is a complete set of pairwise non-isomorphic simple A-modules of 
finite injective dimension.

Proof. This is dual to [15, Corollary 3.6]. �



6 D. Shen / Journal of Algebra 429 (2015) 1–18
We will need the following fact. Recall that ‘top’ denotes the top a module.

Lemma 2.6. (See [20, Corollary to Lemma 2].) Let A be a connected Nakayama algebra 
without simple projective modules. Assume that M is an indecomposable A-module and 
m ≥ 0. Then either Ω2m(M) = 0 or else topΩ2m(M) = γm(topM).

3. A Frobenius subcategory

In this section, we introduce a Frobenius subcategory in the module category of a 
Nakayama algebra, whose stable category is triangle equivalent to the singularity cate-
gory of the given algebra.

Throughout this section, A is a connected Nakayama algebra of infinite global di-
mension. Denote by n(A) the number of the isomorphism classes of simple A-modules. 
Denote by l(M) the composition length of an A-module M . Recall that S denotes a 
complete set of pairwise non-isomorphic simple A-modules, Sc the subset of all cyclic 
simple A-modules and Snc the subset of all noncyclic simple A-modules. Observe that 
the map γ restricts to a permutation on Sc. Let Xc be the set formed by indecomposable 
A-modules X such that both topX and τ socX belong to Sc.

We recall some well-known facts on indecomposable modules over the Nakayama 
algebra A; see [2, IV.3 and VI.2]. Each indecomposable A-module Z is uniserial, and 
it is uniquely determined by its top and its composition length. Its composition factors 
from the top are S, τS, · · · , τ l−1S, where S = topZ and l = l(Z). In particular, the 
projective cover P (Z) of Z is indecomposable.

Lemma 3.1. Let M be an indecomposable A-module which contains a nonzero projective 
submodule P . Then M is projective.

Proof. Recall that the projective cover P (M) of M is uniserial, in particular, each 
nonzero submodule of P (M) is indecomposable.

Suppose that, on the contrary, M is nonprojective. Then there is a proper surjective 
map π : P (M) → M . We have a proper surjective map π−1(P ) → P ; it splits, since P
is projective. This is impossible, since π−1(P ), as a submodule of P (M), is indecompos-
able. �

Recall that each indecomposable A-module Z is uniserial. Moreover, for any nonzero 
proper submodule W of Z, we have topZ/W = topZ, socW = socZ and τ socZ/W =
topW .

The following two lemmas are parallel to [20, Lemmas 6 and 7].

Lemma 3.2. Let f : X → Y be a morphism in Xc. Then Ker f , Coker f and Im f belong 
to Xc ∪ {0}.
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Proof. We may assume that f is nonzero. Then we have top(Im f) = topX and 
τ soc(Im f) = τ socY , both of which belong to Sc. Thus, Im f belongs to Xc.

If f is not a monomorphism, then top(Ker f) = τ soc(Im f) = τ socY and 
τ soc(Ker f) = τ socX. Thus, Ker f belongs to Xc.

If f is not an epimorphism, then top(Coker f) = topY and τ soc(Coker f) =
top(Im f) = topX. Thus, Coker f belongs to Xc. �
Lemma 3.3. Let X be an object in Xc. If 0 � X ′′ � X ′ � X are subobjects of X such 
that X ′/X ′′ belongs to Xc, then X ′′ and X/X ′ belong to Xc.

Proof. Since both topX ′′ = τ socX ′/X ′′ and τ socX ′′ = τ socX belong to Sc, it follows 
from the definition that X ′′ belongs to Xc. Similarly, since both topX/X ′ = topX and 
τ socX/X ′ = topX ′/X ′′ belong to Sc, it follows from the definition that X/X ′ belongs 
to Xc. �
Remark 3.4. Under the same assumption as in Lemma 3.3, the same argument proves 
that X ′ and X/X ′′ belong to Xc.

Denote by Pc a complete set of projective covers of modules in Sc. We claim that Pc

is a subset of Xc. Indeed, we have topP (S) = S and τ socP (S) = γ(S), both of which 
belong to Sc. It follows that Xc is closed under projective covers.

For each S in Sc, let E(S) denote the indecomposable A-module of the least compo-
sition length among those objects X in Xc with topX = S. Inspired by [20, Section 4], 
we call E(S) the elementary module associated to S. Denote by Ec the set of elementary 
modules. Recall that F(Ec) is the full subcategory of A-mod formed by A-modules with 
an Ec-filtration.

The support of an A-module M , denoted by suppM , is the subset of S consisting 
of those simple A-modules appearing as a composition factor of M . For a set X of 
A-modules, we denote by addX the full subcategory of A-mod whose objects are direct 
summands of finite direct sums of objects in X .

The following result is in spirit close to [20, Proposition 2]. In particular, we prove that 
each elementary module E is a brick and thus l(E) ≤ n(A). Here, we use the well-known 
fact that a brick Z over the Nakayama algebra A satisfies that l(Z) ≤ n(A).

Proposition 3.5. Let A be a connected Nakayama algebra of infinite global dimension. 
Then the following statements hold.

(1) The set Ec of elementary modules is a set of pairwise orthogonal bricks, and thus 
F(Ec) is a wide subcategory of A-mod.

(2) F(Ec) = addXc, which is closed under projective covers.
(3) Let E and E′ be elementary modules. Then E = E′ if and only if suppE ∩

suppE′ 
= ∅.
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Proof. (1) Let f : E → E′ be a nonzero map between elementary modules. By Lemma 3.2
Im f belongs to Xc. However, Im f is a factor module of E. By the definition of the 
elementary module E we have E = Im f . Then f is an injective map. Similarly, f is a 
surjective map and thus an isomorphism. Therefore Ec is a set of pairwise orthogonal 
bricks.

By Lemma 2.4 F(Ec) is a wide subcategory of A-mod. In particular, it is closed under 
direct sums and direct summands.

(2) We prove that any module X in Xc belongs to F(Ec), and thus addXc ⊆ F(Ec). We 
use induction on l(X). Set S = topX ∈ Sc. If X = E(S) ∈ Ec, we are done. Otherwise, 
there is a proper surjective map π : X → E(S). By Lemma 3.2 we have Kerπ ∈ Xc. 
Then by induction Kerπ ∈ F(Ec). Therefore X ∈ F(Ec).

Recall that each elementary module E satisfies that topE ∈ Sc and τ socE ∈ Sc. 
It follows from its Ec-filtration that each indecomposable object X in F(Ec) satisfies 
that topX ∈ Sc and τ socX ∈ Sc. Then by definition X belongs to Xc. Therefore 
addXc ⊇ F(Ec), and thus F(Ec) = addXc. Since Xc is closed under projective covers, 
we infer that addXc is closed under projective covers.

(3) Suppose that E 
= E′ and they have a common composition factor. Assume that 
socE ∈ suppE′. Recall that E and E′ are orthogonal bricks. We infer that topE ∈
suppE′, otherwise there is a nonzero map from E′ to E. For the same reason, we have 
socE 
= socE′ and topE 
= topE′. Then there exists a chain 0 � E1 � E2 � E′ of 
A-modules such that E2/E1 = E. By Lemma 3.3 we know that E′/E2 belongs to Xc. 
This contradicts to the definition of the elementary module E′. �

The second statement of the following lemma is parallel to [20, Lemma 8].

Lemma 3.6. Let S be a cyclic simple A-module in Sc. Then the following statements hold.

(1) The injective dimension of E(S) is infinite, and the injective dimension of P (S) is 
finite.

(2) There is a unique cyclic simple A-module S′ in Sc such that topE(S′) = τ socE(S)
and Ext1A(E(S), E(S′)) 
= 0.

Proof. (1) We recall from Lemma 2.5 that Sc is a complete set of pairwise non-isomorphic 
simple A-modules of infinite injective dimension. Since the elementary modules have 
pairwise disjoint supports, for each S in Sc, suppE(S) contains precisely one cyclic 
simple A-module, that is, S. In other words, each composition factor of E(S) different 
from S is a noncyclic simple A-module, and thus has finite injective dimension. It follows 
that E(S) has infinite injective dimension.

Let h : P (S) → I be an injective envelope of the A-module P (S). We claim that each 
composition factor S′ of Cokerh is a noncyclic simple A-module, and thus has finite 
injective dimension. Consequently, the injective dimension of Cokerh is finite. Therefore 
the injective dimension of P (S) is finite.
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For the claim, we observe by Lemma 3.1 that P (S) � P (S′) ⊆ I. Then we have 
γ(S′) = γ(S). Recall that the restriction of γ on cyclic simple A-modules is injective. 
Therefore S′ is a noncyclic simple A-module, since S is a cyclic simple A-module and 
S′ 
= S.

(2) Let E = E(S). Recall that P (S) lies in Xc and thus in F(Ec). Consider the 
Ec-filtration of P (S), say

0 = M0 � M1 � · · · � Mt−1 � Mt = P (S),

such that Mi/Mi−1 is elementary for 1 ≤ i ≤ t. We observe that Mt/Mt−1 = E and 
t ≥ 2, since by (1) we have E(S) 
= P (S). Set E′ = Mt−1/Mt−2. Note that E′ = E(S′)
for some cyclic simple A-module S′. Then

topE′ = top(Mt−1/Mt−2) = τ soc(Mt/Mt−1) = τ socE.

Since Mt/Mt−2 = P (S)/Mt−2 is indecomposable, the exact sequence

0 → Mt−1/Mt−2 → Mt/Mt−2 → Mt/Mt−1 → 0

does not split. Then we have Ext1A(E, E′) 
= 0. The uniqueness of S′ is obvious, since 
S′ = τ socE(S). �

Recall that by definition τ socE lies in Sc for each elementary module E. We have a 
map δ : Sc → Sc, which sends a cyclic simple A-module S to δ(S) = τ socE(S). We claim 
that δ is injective and thus bijective. Indeed, if δ(S) = δ(S̄), then socE(S) = socE(S̄). 
It follows from Proposition 3.5(3) that S = S̄.

Corollary 3.7. Let S be a cyclic simple A-module in Sc and t the minimal positive integer 
such that δt(S) = S. Then Sc = {S, δ(S), · · · , δt−1(S)} and S is the disjoint union of the 
supports of all elementary modules.

Proof. Since A is a connected Nakayama algebra without simple projective modules, 
any nonempty subset of S which is closed under τ must be S. We claim that the union 
∪t−1
i=0 suppE(δi(S)) is closed under τ , therefore this union equals S.
For the claim, let S′ ∈ ∪t−1

i=0 suppE(δi(S)). Assume that S′ ∈ suppE(δiS). If S′ 
=
socE(δiS), then τS′ ∈ suppE(δiS). If S′ = socE(δiS), then by the definition of δ, we 
have τS′ = topE(δi+1S) ∈ suppE(δi+1S).

Let S′ be a cyclic simple A-module in Sc. Then there exists an integer 0 ≤ i ≤ t − 1
such that suppE(δi(S)) ∩ suppE(S′) 
= ∅. It follows from Proposition 3.5(3) that S′ =
δi(S). �
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The following result is close to [20, Proposition 1].

Proposition 3.8. Let A be a connected Nakayama algebra of infinite global dimension. 
Then F(Ec) is equivalent to A′-mod, where A′ is a connected selfinjective Nakayama 
algebra.

Proof. Let P = ⊕S∈Sc
P (S) and A′ = EndA(P )op. Then P is a projective object in F(Ec), 

since F(Ec) is a wide subcategory of A-mod. The natural projection P (S) → E(S) is a 
projective cover in the category F(Ec). Recall from Lemma 2.4 that F(Ec) is a length 
category with Ec = {E(S) | S ∈ Sc} a complete set of pairwise non-isomorphic simple 
objects. We infer that for each object X in F(Ec), there is an epimorphism P ′ → X

with P ′ in addP . Then P is a projective generator for F(Ec). We have an equivalence 
F(Ec) � A′-mod; compare [16, Chapter IV, Theorem 5.3].

Since each indecomposable object in F(Ec) is uniserial, we infer that A′ is a Nakayama 
algebra. Denote by τ ′ the Auslander–Reiten translation of A′. Then we have τ ′E(S) =
E(δ(S)) by Lemma 3.6(2). It follows from Corollary 3.7 that all simple A′-modules are 
in the same τ ′-orbit. Therefore, the Nakayama algebra A′ is connected.

It remains to show that A′ is selfinjective. Since γ restricts to a permutation on Sc, the 
modules in Pc have pairwise distinct socles. Therefore, we have Sc = {τ socP | P ∈ Pc}. 
Let E be an elementary module. Since τ socE lies in Sc, there exists P in Pc with 
socP = socE and socP 
= socE′ for any elementary module E′ 
= E. It follows that 
the socle of P in the category F(Ec) is E. We have proven that every simple A′-module 
S′ can embed into an indecomposable projective A′-module P ′, and thus the injective 
envelope of S′ contains P ′ as a submodule. It follows from Lemma 3.1 that every injective 
A′-module is projective. Therefore, A′ is selfinjective. �

The following result is analogous to [20, Proposition 4].

Lemma 3.9. The following statements are equivalent for an indecomposable nonprojective 
A-module M .

(1) M belongs to F(Ec).
(2) There is an exact sequence 0 → M → Pn → · · · → P1 → P0 → M → 0 for some 

n ≥ 1 such that each Pi belongs to Pc.
(3) There is an exact sequence P1 → P0 → M → 0 such that Pi belongs to Pc for 

i = 0, 1.

Proof. “(1) ⇒ (2)” Let A′ be a connected selfinjective Nakayama algebra. Recall that 
the syzygy functor Ω induces a bijective map on the finite set of isomorphism classes 
of indecomposable nonprojective A′-modules; compare [2, IV, Proposition 3.5]. Then 
for any indecomposable nonprojective A′-module M ′, there exists an exact sequence 
0 → M ′ → P ′

n → · · · → P ′
1 → P ′

0 → M ′ → 0 of A′-modules for some n ≥ 1 such that 
each P ′

i is indecomposable projective. Then (2) follows from Proposition 3.8.
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“(2) ⇒ (3)” This is obvious.
“(3) ⇒ (1)” Observe that topM = topP0 and τ socM = topΩ(M) = topP1, both of 

which belong to Sc. Then by definition M belongs to Xc. �
Recall that each component of the resolution quiver R(A) has a unique cycle. For 

each noncyclic vertex S in R(A), there exists a unique path of minimal length starting 
with S and ending in a cycle. We call the length of this path the distance between S and 
the cycle. Let d = d(A) be the maximal distance between noncyclic vertices and cycles. 
Observe that γd(S) is cyclic for each simple A-module S.

Lemma 3.10. Let d = d(A) be the maximal distance between noncyclic vertices and cycles 
in R(A). Then the following statements hold.

(1) Ω2d(M) belongs to F(Ec) for any M in A-mod.
(2) Ω2d

0 (A-mod) ⊆ F(Ec) ⊆ Ω2d(A-mod).

Proof. (1) We may assume that M is indecomposable. It follows from Lemma 2.6 that 
either Ω2d(M) is zero or topΩ2d(M) = γd(topM). If Ω2d(M) is indecomposable pro-
jective, then Ω2d(M) belongs to Pc. If Ω2d(M) is indecomposable nonprojective, then 
topΩ2d(M) = γd(topM) and τ soc Ω2d(M) = topΩ2d+1(M) = γd(topΩ(M)). Then by 
definition M belongs to Xc.

(2) The first inclusion follows from (1), and the second one is a direct consequence of 
Lemma 3.9. �

By Proposition 3.8 F(Ec) is a Frobenius category whose projective objects are precisely 
addPc. Denote by F(Ec) the stable category of F(Ec) modulo projective objects. It is a 
triangulated category; see [11].

Recall from Proposition 3.5 that F(Ec) is a wide subcategory of A-mod which is closed 
under projective covers. Consider the inclusion functor i : F(Ec) → A-mod. It induces 
uniquely a fully-faithful functor i′ : F(Ec) → A-mod. We recall the induced functor 
q′ : A-mod → Dsg(A) in Section 2.

The following is the main result of this section, which describes the singularity category 
of A as a subcategory of the stable module category of A.

Theorem 3.11. Let A be a connected Nakayama algebra of infinite global dimension. Then 
the composite functor q′ ◦ i′ : F(Ec) → A-mod → Dsg(A) is a triangle equivalence.

Proof. Observe that the composite functor F(Ec) i−→ A-mod → Db(A-mod) q−→ Dsg(A)
is a ∂-functor in the sense of [13, Section 1]; compare [5, Lemma 2.4]. Then the functor 
q′ ◦ i′ is a triangle functor; see [5, Lemma 2.5].

Recall that the subcategory F(Ec) of A-mod is wide and closed under projective covers; 
moreover, F(Ec) is a Frobenius category. Then the restriction of the syzygy functor 
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Ω : A-mod → A-mod on F(Ec) is an autoequivalence, in particular, it is fully faithful. It 
follows from Lemma 2.3 that the canonical map HomA(M, N) → HomDsg(A)(M, N) is 
an isomorphism for any M and N in F(Ec). Observe that the canonical map is induced 
by the functor q′ ◦ i′. Then we infer that the functor q′ ◦ i′ is fully faithful.

It remains to show that the functor q′ ◦ i′ is also dense. Let X be an object in Dsg(A). 
It follows from Lemmas 2.1 and 3.10(1) that there exists a module M in F(Ec) and n
sufficiently large such that X � q(M)[n] in Dsg(A). By above, the image Im(q′ ◦ i′) is a 
triangulated subcategory of Dsg(A), in particular, it is closed under [m] for all m ∈ Z. 
It follows from X � q(M)[n] that X lies in Im(q′ ◦ i′). This finishes our proof. �

We observe the following immediate consequence of Proposition 3.8 and Theorem 3.11.

Corollary 3.12. (Compare [8, Corollary 3.11].) Let A be a connected Nakayama algebra 
of infinite global dimension. Then there is a triangle equivalence between Dsg(A) and 
A′-mod for a connected selfinjective Nakayama algebra A′.

Let A be a connected Nakayama algebra of infinite global dimension. The notion of 
Gorenstein core C(A) is introduced in [20]. It is a wide subcategory of A-mod, which 
is Frobenius. The stable category C(A) is triangle equivalent to the stable category 
of finitely generated Gorenstein projective A-modules. The simple objects of C(A) are 
called elementary Gorenstein projective modules. It follows from [20, Proposition 3] that 
each elementary Gorenstein projective module belongs to Xc, therefore C(A) ⊆ F(Ec). 
Moreover, if A is Gorenstein, then by [20, Proposition 5(a)] the elementary modules 
defined here coincide with the elementary Gorenstein projective modules, therefore 
C(A) = F(Ec).

The following example shows that the Gorenstein core C(A) and the Frobenius cate-
gory F(Ec) may not be equal in general.

Example 3.13. (Compare [20, Example in the introduction].) Let A be a connected 
Nakayama algebra with admissible sequence (13, 13, 12, 12, 12). Let {S1, S2, S3, S4, S5}
be a complete set of pairwise non-isomorphic simple A-modules such that τSi = Si+1 for 
1 ≤ i ≤ 4 and τS5 = S1. Then we have l(P1) = l(P2) = 13 and l(P3) = l(P4) = l(P5) =
12. There is an arrow from Si to Sj in R(A) if and only if 5 divides i − j + l(Pi). The 
resolution quiver R(A) looks like:

S1 S4 S3 S5 S2 .

There are four elementary modules: E(S1) = S1, E(S2) with composition factors 
given by S2 and S3, E(S4) = S4 and E(S5) = S5. Observe that there are only two 
elementary Gorenstein projective modules E(1) and E(4); see [20, Example in the intro-
duction]. They are given such that E(1) has composition factors S1, S2, S3, and E(4)
has composition factors S4, S5. Therefore C(A) 
= F(Ec).
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4. A duality between singularity categories

In this section, we prove that there is a triangle duality between the singularity cat-
egory of a Nakayama algebra and the singularity category of its opposite algebra. The 
proof uses the Frobenius subcategory in the previous section.

Let A be a connected Nakayama algebra of infinite global dimension. We recall from 
Propositions 3.5 and 3.8 that the category F = F(Ec) is a wide subcategory of A-mod
closed under projective covers; it is equivalent to A′-mod for a connected selfinjective 
Nakayama algebra A′.

Consider the inclusion functor i : F → A-mod. We claim that it admits an exact right 
adjoint iρ : A-mod → F .

For the claim, recall from the proof of Proposition 3.8 that A′ = EndA(P )op with 
P = ⊕S∈Sc

P (S). We identify F with A′-mod. Then the inclusion i is identified with 
P⊗A′−. The right adjoint is given by iρ = HomA(P, −). It is exact since AP is projective.

The adjoint pair (i, iρ) induces an adjoint pair (i∗, i∗ρ) of triangle functors between 
bounded derived categories. Here, for an exact functor F between abelian categories, 
F ∗ denotes its extension on bounded derived categories.

Recall that Kb(A-inj) denotes the bounded homotopy category of A-inj. We view 
Kb(A-inj) as a thick subcategory of Db(A-mod) via the canonical functor. We men-
tion that by the usual duality on module categories, the quotient triangulated category 
Db(A-mod)/Kb(A-inj) is triangle equivalent to the opposite category of the singularity 
category Dsg(Aop) of Aop. Here, Aop is the opposite algebra of A.

The proof of the following result is similar to [8, Proposition 2.13]. Recall that Pc is a 
complete set of pairwise non-isomorphic indecomposable projective objects in F = F(Ec).

Lemma 4.1. Let A be a connected Nakayama algebra of infinite global dimension. Then 
the above functors i∗ρ and i∗ induce mutually inverse triangle equivalences between 
Db(A-mod)/Kb(A-inj) and Db(F)/Kb(addPc).

Proof. Observe by [7, Lemma 3.3.1] that i∗ : Db(F) → Db(A-mod) is fully faithful. It 
follows that its right adjoint i∗ρ induces a triangle equivalence

i∗ρ : Db(A-mod)/Ker i∗ρ � Db(F);

see [9, Chapter I, Section 1, 1.3 Proposition]. Here, KerF denotes the essential kernel of 
an additive functor F .

We claim that Ker i∗ρ = thick〈Snc〉, the smallest thick subcategory of Db(A-mod)
containing Snc. Here, we recall that Snc denotes the set of noncyclic simple A-modules. 
By Lemma 2.5 each noncyclic simple A-module has finite injective dimension. It follows 
from the claim that Ker i∗ρ ⊆ Kb(A-inj).

For the claim, we observe that Ker iρ = F(Snc), the full subcategory of A-mod formed 
by A-modules with an Snc-filtration. The claim follows from the fact that a complex X
is in Ker i∗ρ if and only if each cohomology Hi(X) is in Ker iρ.
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We observe that iρ preserves injective objects since it has an exact left adjoint. It 
follows that i∗ρ(Kb(A-inj)) ⊆ Kb(addPc). By Lemma 3.6(1) each module Q in Pc has 
finite injective dimension. Note that i∗ρQ = Q. Therefore i∗ρ(Kb(A-inj)) ⊇ Kb(addPc), 
and thus i∗ρ(Kb(A-inj)) = Kb(addPc). From this equality, the triangle equivalence i∗ρ
restricts to a triangle equivalence

Kb(A-inj)/Ker i∗ρ � Kb(addPc).

The desired equivalence follows from [22, Chapitre I, §2, 4-3 Corollaire]. �
Proposition 4.2. Let A be a Nakayama algebra. Then the singularity category Dsg(A)
is triangle equivalent to Db(A-mod)/Kb(A-inj). Equivalently, there is a triangle duality 
between Dsg(A) and Dsg(Aop).

Proof. Recall from [1, Corollary 5] that A has finite global dimension if and only if Aop

does. In this case, all the categories Dsg(A), Db(A-mod)/Kb(A-inj) and Dsg(Aop) are 
trivial.

Assume that A is a connected Nakayama algebra of infinite global dimension. Then 
the singularity category Dsg(A) is triangle equivalent to the stable category F by The-
orem 3.11.

Observe that the proof in [18, Theorem 2.1] is valid for any Frobenius abelian category. 
Since F is a Frobenius abelian category, it follows that the stable category F is triangle 
equivalent to Db(F)/Kb(addPc); see also [4,12,14]. Then the conclusion follows from 
Lemma 4.1. �
Remark 4.3. Let A be a connected Nakayama algebra of infinite global dimension. Ap-
plying Corollary 3.12 to A and Aop, there are triangle equivalences Dsg(A) � A′-mod
and Dsg(Aop) � (A′′)op-mod, where A′, A′′ are connected selfinjective Nakayama alge-
bras; compare [8, Corollary 3.11]. However, we do not know a direct relation between A′

and A′′. On the other hand, by Proposition 4.2, they are stably equivalent.

The following example shows that there are algebras A such that the singularity 
categories Dsg(A) and Dsg(Aop) are neither triangle equivalent nor triangle dual. We 
recall the functor q : Db(A-mod) → Dsg(A) in Section 2.

Example 4.4. Consider the following quiver Q and it opposite quiver Qop.

Q : •
1

•
2 , Qop : •

1′
•
2′ .

Let k be a field. Let A be the finite dimensional algebra over k which is of radical square 
zero given by Q. Denote Si the simple A-module corresponding to the vertex i. It follows 
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from [6, Proposition 2.5] that Dsg(A) = add q(S1 ⊕ S2). We observe that Dsg(A) has 
a unique nontrivial thick triangulated subcategory add q(S1) which is Hom-finite. Here, 
we recall that a k-linear category C is Hom-finite if HomC(X, Y ) is a finite-dimensional 
k-vector space for any X, Y ∈ C.

The opposite algebra Aop of A is of radical square zero given by Qop. We have 
Dsg(Aop) = add q(S1′⊕S2′) and that Dsg(Aop) has a unique nontrivial thick triangulated 
subcategory add q(S2′). We observe that the category add q(S2′) is not Hom-finite.

Therefore, we conclude that the singularity categories Dsg(A) and Dsg(Aop) are nei-
ther triangle equivalent nor triangle dual.

5. The resolution quivers

Let A be a connected Nakayama algebra of infinite global dimension. Recall that n(A)
denotes the number of isomorphism classes of simple A-modules. By Corollary 3.12 the 
Auslander–Reiten quiver of the singularity category Dsg(A) is isomorphic to a truncated 
tube ZAm/〈τ t〉, where m = m(A) denotes its height and t = t(A) denotes its rank. 
Here, we use the fact that the Auslander–Reiten quiver of the stable module category of 
a connected selfinjective Nakayama algebra is a truncated tube; compare [2, VI.2].

Recall that R(A) denotes the resolution quiver of A. We denote by c(A) the number 
of cycles in R(A). Let C be a cycle in R(A). Then the size s(C) of C is the number of 
vertices in C, and the weight w(C) of C is 

∑
S l(P (S))
n(A) , where S runs though all vertices 

of C. Here, l(P (S)) is the composition length of the projective cover P (S) of a simple 
A-module S. Recall from [21] that all cycles in the resolution quiver R(A) have the same 
size and the same weight. We denote s(A) = s(C) and w(A) = w(C) for an arbitrary 
cycle C in R(A).

For two positive integers a and b, we denote their greatest common divisor by (a, b).

Lemma 5.1. Let m = m(A) and t = t(A) be as above. Then c(A) = (m + 1, t), s(A) =
t

(m+1,t) and w(A) = m+1
(m+1,t) .

Proof. Recall from [8, Theorem 3.8] that there exists a sequence of algebra homomor-
phisms

A = A0
η0−−→ A1

η1−−→ A2 → · · · → Ar−1
ηr−1−−−−→ Ar

such that each Ai is a connected Nakayama algebra and Ar is selfinjective; moreover, 
each ηi induces a triangle equivalence between Dsg(Ai) and Dsg(Ai+1). Following [21, 
Lemma 2.2], each ηi induces a bijection between the set of cycles in R(Ai) and the set of 
cycles in R(Ai+1), which preserves sizes and weights. Then we have m(Ai) = m(Ai+1), 
t(Ai) = t(Ai+1), c(Ai) = c(Ai+1), s(Ai) = s(Ai+1) and w(Ai) = w(Ai+1) for 0 ≤ i ≤
r− 1. Therefore it is enough to prove the equations for selfinjective Nakayama algebras.

Let A be a connected selfinjective Nakayama algebra. Then t equals the number of 
isomorphism classes of simple A-modules, and m + 1 equals the radical length of A. We 
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claim that s(A) = t
(m+1,t) . Therefore, we have c(A) = t

s(A) = (m + 1, t) and w(A) =
(m+1)s(A)

t = m+1
(m+1,t) .

For the claim, let {S1, · · · , St} be a complete set of pairwise non-isomorphic simple 
A-modules such that τSi = Si+1 for 1 ≤ i ≤ t. Here, we let St+j = Sj for each j > 0. 
Then we have γ(Si) = Si+m+1. Therefore γd(Si) = Si if and only if t divides d(m + 1). 
Since t divides d(m + 1) if and only if d is a multiple of t

(m+1,t) , it follows that R(A)
consists of cycles of size t

(m+1,t) . �
The following result establishes the relationship between the resolution quiver of a 

Nakayama algebra and the resolution quiver of its opposite algebra.

Proposition 5.2. Let A be a connected Nakayama algebra of infinite global dimension. 
Then the following statements hold.

(1) The resolution quivers R(A) and R(Aop) have the same number of cycles and the 
same number of cyclic vertices.

(2) All cycles in R(A) and R(Aop) have the same weight.

Proof. By Proposition 4.2 there is a triangle duality between Dsg(A) and Dsg(Aop). 
Then the Auslander–Reiten quiver of Dsg(Aop) is isomorphic to the opposite quiver 
of the Auslander–Reiten quiver of Dsg(A). Therefore, we have m(A) = m(Aop) and 
t(A) = t(Aop). It follows from Lemma 5.1 that c(A) = c(Aop), s(A) = s(Aop) and 
w(A) = w(Aop). �
Remark 5.3. The proof of Proposition 5.2 uses the singularity categories. In fact, we 
already know, without using the singularity categories, that the resolution quivers R(A)
and R(Aop) have the same number of cyclic vertices; compare [21]. However, we do not 
know a direct proof of the fact that they have the same number of cycles.

The following example shows that these two resolution quivers R(A) and R(Aop) may 
not be isomorphic in general.

Example 5.4. Let B be a connected Nakayama algebra with admissible sequence 
(7, 6, 6, 5). Let {S1, S2, S3, S4} be a complete set of pairwise non-isomorphic simple 
B-modules such that τSi = Si+1 for 1 ≤ i ≤ 3 and τS4 = S1. Then we have l(P1) = 7, 
l(P2) = 6, l(P3) = 6 and l(P4) = 5. There is an arrow from Si to Sj in R(A) if and only 
if 4 divides i − j + l(Pi).

Denote by D the usual duality, and by (−)∗ the duality on finitely generated projec-
tive modules. Then {DS4, DS3, DS2, DS1} is a complete set of pairwise non-isomorphic 
simple Bop-modules such that τ ′DSi = DSi−1 for 2 ≤ i ≤ 4 and τ ′D(S1) = D(S4). Here, 
τ ′ is the Auslander–Reiten translation of Bop. We observe that l(P ∗

4 ) = 6, l(P ∗
3 ) = 7, 
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l(P ∗
2 ) = 6 and l(P ∗

1 ) = 5. Therefore the admissible sequence of Bop is (6, 7, 6, 5). There 
is an arrow from DSi to DSj in R(Bop) if and only if 4 divides i − j − l(P ∗

i ).
The resolution quivers R(B) and R(Bop) are shown as follows.

S3 S1 S4 S2 ,

DS1

DS4 DS2

DS3

.

We mention that, for the algebra A in Example 3.13, the resolution quivers R(A) and 
R(A)op are isomorphic.
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