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1. Introduction

1.1. Background and main results

The study of quantum groups in a p-adic analytic setting was first proposed by Soibel-
man in [36], where he introduced quantum deformations of the algebras of locally analytic 
functions on p-adic Lie groups and of the corresponding distribution algebra of Schneider 
and Teitelbaum [33]. Soibelman conjectured among other things that his quantum dis-
tribution algebras are topological Hopf algebras and Fréchet-Stein algebras. These latter 
types of algebras were introduced in [33] and play an important role in the theory of 
locally analytic representations of p-adic groups. To the best of our knowledge, Soibel-
man’s conjectures have remained unproved and, since then, apart from the short note 
[27] and the thesis [38], there had been no new constructions or results related to the 
study of p-adic analytic quantum groups until very recently.

We attempt to correct that in this paper by constructing a quantum analogue Ŭq(g), 
or ıUq for short, of the p-adic Arens-Michael envelope Ū(g) of the enveloping algebra 

of the p-adic Lie algebra. Classically, Ū(g) can be identified as the subalgebra of the 
distribution algebra consisting of distributions supported at the identity, and it is known 
to be a Fréchet-Stein algebra. Its representation theory was first studied in [30,31] and 
can be thought of as a first approximation to the locally analytic representation theory 
of the corresponding p-adic Lie group. Our construction of ıUq is inspired by the theory 
developed by Ardakov and Wadsley in [5]. In particular we adapt their methods to show 
that ıUq is a Fréchet-Stein algebra, see Theorem 4.3 and Theorem 4.8. We also show that 
it is a topological Hopf algebra, see section 3.4. The algebra Ū(g) is initially defined to 
be the completion of U(g) with respect to all submultiplicative seminorms that extend 

the norm on the ground field L. Our algebra Ŭq(g) is defined differently, but we show 
that it also satisfies a similar universal property: it is the completion of the quantized 
enveloping algebra Uq(g) with respect to the submultiplicative seminorms which extend 
a particular norm on U0

q = L[Kλ], see Corollary 4.7.
We also construct a quantum analogue Ôq of the algebra of rigid analytic functions 

on the analytification of a semisimple algebraic group G. Specifically, we use the GAGA 
construction on the quantized coordinate algebra Oq := Oq(G) to obtain an algebra Ôq

which we show to be a topological Hopf algebra, see section 3.5. We also use techniques 
based on [16] to prove that Ôq is Fréchet-Stein, see Proposition 4.4 and Theorem 4.9. 
Moreover we show that Ôq is the completion of Oq with respect to all submultiplicative 
seminorms that extend the norm on L, see Corollary 4.7. Throughout this paper we only 
work in the case where q is not a root of unity, and whenever we’re working with ıUq we 
add the mild condition that q − 1 has norm strictly less than 1 in L.

We conclude this work by using the Fréchet-Stein structure on ıUq to construct an 
analogue of the BGG category O for it. Indeed, a particularly important property of 
Fréchet-Stein algebras is that there is a well behaved abelian category of so-called coad-
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missible modules over them, which in the geometric setting correspond to global sections 
of coherent modules over Stein spaces (see [33, Section 3]). There is also a category O for 
quantum groups, see [1], which is a quantum analogue of the sum of the integral blocks 
inside the classical BGG category. Finally, there already exists an analogue of category O
for Arens-Michael envelopes, see [31], and its definition generalises straightforwardly to 
our quantum setting. Roughly, the category consists of those coadmissible modules over ıUq whose weight spaces are finite dimensional and such that the weights are contained 
in finitely many cosets in the weight lattice. We also require for these modules to be 
topologically semisimple, a notion which was inspired by work of Féaux de Lacroix [17]. 
We denote this new category by Ô. Then we prove that the functor M �→ ıUq ⊗Uq

M

is an equivalence of categories between the category O for Uq and the category Ô (see 
Theorem 5.6). The non-quantum version of this result is the main result of [31], and our 
proof follows theirs quite closely.

We note that there has been a successful attempt at constructing a quantum Arens-
Michael envelope for sl2 and proving that it is a Fréchet-Stein algebra in [27], but the 
general case hasn’t been tackled before. Although the object we construct is the same 
as theirs for sl2, our constructions and proofs are different. Very recently, Smith [34]
has constructed certain analytic quantum groups using Nichols algebras. It would be 
interesting to compare our algebras to his.

1.2. Future research

We ultimately aim to develop a theory of D-modules to understand representations 
of Ŭq(g). In the classical setting, the Arens-Michael envelope Ū(g) can be viewed as a 
quantization of the algebra of rigid analytic functions on g∗, and is the right object to 
consider in order to obtain a Beilinson-Bernstein type equivalence, see [5,6,3]. We are 
working on a Beilinson-Bernstein type equivalence in our context, and this motivates our 
choice of working with Ŭq(g). Indeed there exists a theory [7,8] of quantum D-modules 
and a Beilinson-Bernstein theorem for representations of Uq(g) developed by Backelin 
and Kremnizer, and there is also an analogous quantum Beilinson-Bernstein theorem 
due to Tanisaki [37]. In [15] we will begin to adapt the Backelin-Kremnizer theory of 
quantum D-modules to our setting.

1.3. Structure of the paper

In section 2 we recall the basic facts and definitions about quantum groups that we 
will need. In section 3 we define the algebras ıUq and Ôq and use standard results from 
functional analysis to prove that they are Fréchet Hopf algebras. In section 4, we develop 
general criteria to establish that certain algebras are Fréchet-Stein. Specifically, we use 
the notion of a deformable algebra from [4] and adapt two useful criteria for flatness 
from [5,16] to our setting. We then use those to prove that ıUq and Ôq are Fréchet-Stein 
algebras. In doing so, we prove a PBW type theorem for certain lattices inside Uq and 
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obtain universal properties for ıUq and Ôq. Finally, in Section 5, we introduce the notion 
of a topologically semisimple module. We then use this to define the category Ô and 
investigate its properties. In particular, we construct Verma modules and highest weight 
modules for ıUq. We then show that this category is equivalent to the category O for Uq. 
One of the main ingredients is a form of block decomposition by central characters.

1.4. Acknowledgments

The results of this paper form part of the author’s PhD thesis, which was produced 
under the supervision of Simon Wadsley. We would like to thank him for his help, 
encouragement and patience. We would also like to thank Andreas Bode for his continued 
interest in our work and for many useful conversations. We thank Tobias Schmidt for 
pointing out a reference. We thank the anonymous reviewer for his/her helpful comments. 
The author’s PhD was funded by EPSRC.

1.5. Conventions and notation

Throughout L will denote a complete discrete valuation field of characteristic 0 with 
valuation ring R, uniformizer π and residue field k. We fix a unit element q ∈ R which 
is not a root of unity.

Unless explicitly stated otherwise, the term “module” will be used to mean left module, 
and Noetherian rings are both left and right Noetherian. Given a ring homomorphism 
A → B, we will say that B is flat over A to mean that it’s both left flat and right flat.

All of our filtrations on modules or algebras will be positive and exhaustive unless 
specified otherwise. Furthermore, given a ring S, a subring F0S such that S is generated 
over F0S by some elements x1, . . . , xn which normalise F0S, and integers d1, . . . , dn ≥ 1, 
there is a ring filtration on S by F0S-submodules given by setting

FtS = F0S · {xi1 · · ·xir :
r∑

j=1
dij ≤ t}

for each t ≥ 0. In such a setting, we will simply say ‘the filtration given by assigning 
each xi degree di’ to refer to this filtration.

Following [4, Def 2.7], an R-submodule W of an L-vector space V will be called a 
lattice if the map W ⊗R L → V is an isomorphism and W is π-adically separated, i.e.⋂

n≥0 π
nW = 0. Also, for any R-module M , we denote by M̂ := lim←−−M/πnM its π-adic 

completion.
Finally, we let g be a complex semisimple Lie algebra. We fix a Cartan subalgebra 

h ⊆ g contained in a Borel subalgebra. We choose a positive root system and we denote 
the simple roots by α1, . . . , αn. Let C = (aij) denote the Cartan matrix. We let G be 
the simply connected semisimple algebraic group corresponding to g, and we let B be 
the Borel subgroup corresponding to the positive root system, and let N ⊂ B be its 



102 N. Dupré / Journal of Algebra 537 (2019) 98–146
unipotent radical. Let b = Lie(B) and n = Lie(N). Let W be the Weyl group of g, and 
let 〈 , 〉 denote the standard normalised W -invariant bilinear form on h∗. Let P ⊂ h∗ be 
the weight lattice and Q ⊂ P be the root lattice. Let d be the smallest natural number 
such that 〈μ, P 〉 ⊂ 1

dZ for all μ ∈ P . Let di = 〈αi,αi〉
2 ∈ {1, 2, 3} and write qi := qdi .

We make the following two assumptions. First, we assume that q 1
d exists in R. Sec-

ondly, we assume that p > 2 and, if g has a component of type G2, we furthermore 
restrict to p > 3.

All the above algebraic groups and Lie algebras have k-forms, and we write Gk, gk, . . .
etc to denote them.

2. Preliminaries

2.1. Quantized enveloping algebra

We begin by reviewing basic facts about quantized enveloping algebras (see e.g. [11, 
Chapter I.6] for more details). We recall some usual notation for quantum binomial 
coefficients. For n ∈ Z and t ∈ L, we write [n]t := tn−t−n

t−t−1 . We then set the quantum 
factorial numbers to be given by [0]t! = 1 and [n]t! := [n]t[n − 1]t · · · [1]t for n ≥ 1. Then 
we define ñ

n

i

ô
t

:= [n]t!
[i]t![n− i]t!

when n ≥ i ≥ 1.

Definition. The simply connected quantized enveloping algebra Uq(g) is defined to be 
the L-algebra with generators Eα1 , . . . , Eαn

, Fα1 , . . . , Fαn
, Kλ, λ ∈ P , satisfying the 

following relations:

KλKμ = Kλ+μ, K0 = 1,

KλEαi
K−λ = q〈λ,αi〉Eαi

, KλFαi
K−λ = q−〈λ,αi〉Fαi

,

[Eαi
, Fαj

] = δij
Kαi

−K−αi

qi − q−1
i

,

1−aij∑
l=0

(−1)l
ñ
1 − aij

l

ô
qi

E1−aij−l
αi

Eαj
El

αi
= 0 (i �= j),

1−aij∑
l=0

(−1)l
ñ
1 − aij

l

ô
qi

F 1−aij−l
αi

Fαj
F l
αi

= 0 (i �= j).

We will also abbreviate Uq(g) to Uq when no confusion can arise as to the choice of Lie 
algebra g. We can define Borel and nilpotent subalgebras, namely U≥0

q is the subalgebra 
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generated by all the K ′s and the E′s, and U+
q is the subalgebra generated by all the E′s. 

Similarly we can define U≤0
q as the algebra generated by all the K’s and the F ’s, and 

U−
q is the subalgebra generated by the F ’s. There is also a Cartan subalgebra given by 

U0
q := L[Kλ : λ ∈ P ], which is isomorphic to the group algebra LP . There is an algebra 

automorphism ω of Uq defined by ω(Eαi
) = Fαi

, ω(Fαi
) = Eαi

and ω(Kλ) = K−λ.
Recall that Uq is a Hopf algebra with operations given by

Δ(Kλ) = Kλ ⊗Kλ ε(Kλ) = 1 S(Kλ) = K−λ

Δ(Eαi
) = Eαi

⊗ 1 + Kαi
⊗ Eαi

ε(Eαi
) = 0 S(Eαi

) = −K−αi
Eαi

Δ(Fαi
) = Fαi

⊗K−αi
+ 1 ⊗ Fαi

ε(Fαi
) = 0 S(Fαi

) = −Fαi
Kαi

for i = 1, . . . , n and all λ ∈ P . Then U≥0
q and U≤0

q are sub-Hopf algebras of Uq.
We now recall the construction that leads to the PBW basis for Uq (see [21, Chapter 

8] for more details). Firstly, we have a triangular decomposition

Uq
∼= U−

q ⊗L U0
q ⊗L U+

q

so that it is sufficient to find bases for U±
q . In order to obtain a basis for U+

q , we consider 
the action of the braid group on Uq due to Lusztig. Firstly, we recall the usual notation

E(s)
αi

:=
Es

αi

[s]qi !
, F (s)

αi
:=

F s
αi

[s]qi !
,

for any integer s ≥ 0. The braid group action as algebra automorphisms of Uq is then 
defined by

TiEαi
= −Fαi

Kαi

TiFαi
= −K−αi

Eαi

TiEαj
=

−aij∑
s=0

(−1)s−aijq−s
i E

(−aij−s)
i EjE

(s)
i (i �= j)

TiFαj
=

−aij∑
s=0

(−1)s−aijqsiF
(s)
i FjF

(−aij−s)
i (i �= j)

TiKλ = Ksi(λ)

The above action can be extended to construct operators Tw for any element w ∈ W . 
Indeed, if w = si1 · · · sis is a reduced expression for w, then let Tw = Ti1Ti2 · · ·Tis . 
Moreover, if w = w1w2 where �(w) = �(w1) + �(w2) then Tw = Tw1Tw2 .

Let N denote the number of positive roots of g. Let w0 ∈ W be the unique element 
of longest length and choose a reduced expression w0 = si1 · · · siN . Recall that then
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β1 := αi1 , β2 := si1(αi2), . . . , βN := si1 · · · siN−1(αiN )

are all the positive roots of g in some order. Then we define elements Eβ1 , . . . , EβN
of 

Uq by

Eβj
:= Ti1 · · ·Tij−1(Eαij

).

If in particular βj = αt is a simple root, then we have Eβj
= Eαt

. Note that we have in 
general KλEβj

K−λ = q〈λ,βj〉Eβj
.

Then the set of all ordered monomials Em1
β1

· · ·EmN

βN
forms a basis for U+

q . This depends 
on a choice of reduced expression for w0 so we fix one for the rest of this paper. We now 
let Fβj

:= ω(Eβj
) and the corresponding monomials in the F ’s will form a basis of U−

q . 
The triangular decomposition immediately gives a PBW type basis for Uq, namely the 
basis consists of all ordered monomials

Fn1
β1

· · ·FnN

βN
KλE

m1
β1

· · ·EmN

βN

for mi, nj ∈ Z≥0 and λ ∈ P . For short we will write

Mr,s,λ := F rKλE
s

where r, s ∈ ZN
≥0. We recall that the height of such a monomial is defined to be

ht(Mr,s,λ) :=
N∑
j=1

(rj + sj) ht(βj)

where ht(β) :=
∑n

i=1 ai for a positive root β =
∑

i aiαi. This gives rise to a positive 
algebra filtration on Uq defined by

FiUq := L-span{Mr,s,λ : ht(Mr,s,λ) ≤ i}.

From now on we will always refer to this filtration as the height filtration on Uq. It can be 
extended to a multifiltration as follows (see [14, Section 10] for details): the associated 
graded algebra U (1) = grUq with respect to the above filtration can be seen to have 
the same presentation as Uq, with the exception that now all the E’s commute with all 
the F ’s. Moreover it has the same vector space basis, by which we mean the basis for 
U (1) is consists of the symbols of the basis elements for Uq. If we impose the reverse 
lexicographic ordering on Z2N

≥0 , then we can filter U (1) by assigning to each monomial 
Mr,s,λ the degree (r1, . . . , rN , s1, . . . , sN ). In other words for each d ∈ Z2N

≥0 , we set FdU
(1)

to be the span of the monomials Mr,s,λ such that (r1, . . . , rN , s1, . . . , sN ) ≤ d. This is 
an algebra multi-filtration, and we denote the corresponding associated graded algebra 
of U (1) by U (2N+1).
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Theorem. ([14, Proposition 10.1]) The algebra U (2N+1) is the L-algebra with generators

Eβ1 , . . . , EβN
, Fβ1 , . . . , FβN

,Kλ(λ ∈ P )

and relations

KλKμ = Kλ+μ, K0 = 1,

KλEβi
= q〈λ,βi〉Eαi

Kλ, KλFβj
= q−〈λ,βj〉Fβj

Kλ,

Eβi
Fβj

= Fβj
Eβi

Eβi
Eβj

= q〈βi,βj〉Eβj
Eβi

, Fβi
Fβj

= q〈βi,βj〉Fβj
Fβi

for λ, μ ∈ P and 1 ≤ i, j ≤ N .

2.2. Quantized coordinate rings

We now recall the construction of the quantized coordinate algebra Oq. For any module 
M over an L-Hopf algebra H, and for any f ∈ H∗ and v ∈ M , the matrix coefficient 
cMf,v ∈ H∗ is defined by

cMf,v(x) := f(xv) for x ∈ H.

Also recall from [21, Theorem 5.10] that for each λ ∈ P there is a unique irreducible 
representation of type 1, V (λ), of Uq and that these form a complete list of such rep-
resentations. The module V (λ) has a highest weight vector vλ of weight λ and we can 
pick a weight basis, which we will write as {vi} for short, and we will write {fi} for the 
corresponding dual basis.

The quantized coordinate ring Oq is then defined to be the L-subalgebra of U◦
q gen-

erated by all matrix coefficients of the modules V (λ) for λ ∈ P+. In other words, it is 
the algebra generated by the cV (λ)

fi,vj
where λ ∈ P+ (this does not depend on our choice of 

weight basis). Hence Oq is the algebra of matrix coefficients of finite dimensional type 1
representations of Uq.

Furthermore Oq is actually generated by the matrix coefficients of the modules 
V (
1), . . . , V (
r) (see [11, Proposition I.7.8]). It is a sub-Hopf algebra of U◦

q (see [11, 
Lemma I.7.3]) with Hopf algebra maps given by:

ε(cV (λ)
fi,vj

) = fi(vj) = δij , S(cV (λ)
fi,vj

) = c
V (λ)∗
vj ,fi

, Δ(cV (λ)
fi,vj

) =
∑
k

c
V (λ)
fi,vk

⊗ c
V (λ)
fk,vj

(2.1)

where we have V (λ)∗ ∼= V (−w0λ).
We conclude by describing certain q-commutator relations in Oq. For each i we let Bi

denote our basis of V (
i) and B∗
i denote the dual basis. By the above Oq is generated 

by the set
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X = {cV (�i)
f,v : i = 1, . . . n, f ∈ B∗

i , v ∈ Bi}.

From [11, I.8.16-I.8.18], we may order X into a list x1, . . . , xr so that there exists qij ∈
R×, equal to some power of q, and αst

ij , β
st
ij ∈ L× such that

xixj = qijxjxi +
j−1∑
s=1

r∑
t=1

(αst
ijxsxt + βst

ijxtxs)

for 1 ≤ j < i ≤ r.
One can use these relations to deduce that Oq is Noetherian. Indeed let F· denote the 

filtration on Oq obtained by giving xi degree di = 2r − 2r−i. That is we set

FtOq = L-span{xi1 · · ·xin :
n∑

j=1
dij ≤ t}.

These degrees are chosen so that whenever i > j > s and t ≤ r, we always have 
di + dj > ds + dt. Then we have:

Theorem. ([11, Proposition I.8.17 & Theorem I.8.18]) With respect to the above filtration, 
grOq is a q-commutative L-algebra and so Noetherian.

Here we used the following (recall we assumed that q 1
d ∈ R):

Definition. Let A be an R-algebra. We say that a set of elements x1, . . . , xm ∈ A

q-commute if for all 1 ≤ i, j ≤ m we have xixj = qnijxjxi for some nij ∈ 1
dZ. Sup-

pose that S is an R-subalgebra of A. We say that A is a q-commutative S-algebra if 
A is finitely generated over S by elements x1, . . . , xm which normalise S and which 
q-commute.

From a noncommutative analogue of Hilbert’s basis theorem [28, Theorem 1.2.10] and 
by induction, we immediately deduce:

Lemma. Let A be a q-commutative S-algebra as above. If S is Noetherian then so is A.

2.3. Deformable algebras and modules

Recall from [4, Definition 3.5] that a positively Z-filtered R-algebra A with F0A an 
R-subalgebra of A is said to be a deformable R-algebra if grA is a flat R-module and A
is a lattice in AL. Its n-th deformation is the subring

An =
∑
i≥0

πniFiA.

A morphism between deformable R-algebras is a filtered R-algebra homomorphism.



N. Dupré / Journal of Algebra 537 (2019) 98–146 107
We can easily generalise these notions to R-modules. In particular, note that the 
above notion of the n-th deformation of A does not require for A to be deformable in 
order to make sense. Hence, for any positively Z-filtered R-module M , we define its n-th 
deformation to be

Mn =
∑
i≥0

πniFiM.

We then say that M is deformable if grM is a flat R-module and M is a lattice in ML.

Remark. Note that forcing deformable algebras to be π-adically separated is not a very 
big restriction, for instance it always holds when A is a Noetherian domain as long as π
is not a unit by [25, Proposition I.4.4.5].

We can then extend known results with identical proofs:

Lemma. Let M be a deformable R-module. Then

(i) ([4, Lemma 3.5]) For all n ≥ 0, Mn is also deformable, with filtration

FjMn := Mn ∩ FjM =
j∑

i=0
πniFiM,

and there is a natural isomorphism grMn
∼= grM .

(ii) ([5, Lemma 6.4(a)]) M1 ∩ πtM =
∑

i≥t π
iFiM for any t ≥ 0;

(iii) ([5, Lemma 6.4(b)]) (Mn)m = Mn+m for any n, m ≥ 0.

We also record here a useful fact about tensor products that we will need later on. 
Recall that given two filtered R-modules M and N , we can give M ⊗R N a tensor 
filtration, where Ft(M ⊗R N) is generated as an R-module by all elementary tensors 
m ⊗ n such that m ∈ FiM and n ∈ FjN where i + j = t.

2.4. Lemma

If M and N are torsion-free filtered R-modules, then (M ⊗R N)n = Mn ⊗R Nn for 
all n ≥ 0.

Proof. Since M and N are flat, we have an injective homomorphism Mn ⊗R Nn →
M ⊗R N . Identifying Mn ⊗R Nn with its image, we may assume that Mn ⊗R Nn and 
(M ⊗R N)n both are submodules of M ⊗R N . But now, for each t ≥ 0, we have in 
M ⊗R N that πtn(a ⊗ b) = πina ⊗ πjnb, where a ∈ FiM and b ∈ FjN and i + j = t. 
Thus we see that (M ⊗R N)n = Mn ⊗R Nn since t was arbitrary. �

Hence M �→ Mn is a monoidal endofunctor of the category of torsion-free filtered 
R-modules.
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3. Completions of quantum groups

3.1. The functor M �→ M̃L

We begin by recalling the constructions from [5, Section 6.7], which were written in 
terms of R-algebras but extend identically to R-modules. If M is a torsion-free filtered 
R-module, let ’Mn,L := M̂n ⊗R L for each n ≥ 0. This is an L-Banach space, with unit 
ball M̂n. To simplify notation, we write M̂L for ’M0,L.

Now, we have a descending chain

M = M0 ⊃ M1 ⊃ M2 ⊃ · · ·

which induces an inverse system of L-Banach spaces and continuous linear maps

M̂L = ’M0,L ← ’M1,L ← ’M2,L ← · · ·

whose inverse limit we write as

M̃L := lim←−−
’Mn,L.

The maps M̃L → ’Mn,L induce continuous seminorms || · ||n on M̃L, such that the 

completion of M̃L with respect to || · ||n is ’Mn,L. Hence M̃L is an L-Fréchet space. Thus 
we have defined a functor M �→ M̃L from torsion-free filtered R-modules to the category 
of L-Fréchet spaces.

We now apply the above construction to certain lattices in the quantum algebras 
we’ve defined. Let U denote the De Concini-Kac integral form of the quantum group, 
which here means the R-subalgebra of Uq generated by the Eαi

’s, Fαj
’s and the K’s. We 

filter this algebra by setting F0U = R[Kλ : λ ∈ P ] and giving each Eα and Fα degree 1. 
Then each deformation Un is the R-subalgebra of Uq generated by the πnEαi

’s, πnFαj
’s 

and the K’s.
Note that by the definition of the Hopf algebra structure on Uq, we see that each Un

is an R-Hopf subalgebra of Uq.

Definition. We let ‘Uq,n := ‘Un,L and ıUq := ÛL = lim←−−
‘Uq,n where we give U the above 

filtration.

We now consider a different integral form of Uq, namely Lusztig’s integral form. It is 
the R-subalgebra U res

R of Uq generated by K±1
λ (λ ∈ P ) and all E(r)

αi and F (r)
αi for r ≥ 1

and 1 ≤ i ≤ n. It is an R-Hopf subalgebra of Uq. Moreover, by [26, Theorem 6.7] U res
R

has a triangular decomposition and a PBW type basis, so that it is free over R. Note 
that, since U ⊂ U res

R , it immediately implies that U is π-adically separated.
We now define Aq to be the R-subalgebra of HomR(U res

R , R) generated by the matrix 
coefficients of all the R-finite free integrable U res

R -modules of type 1 (see [2, Section 1]). 
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These representations are R-lattices inside finite dimensional Uq-modules of type 1 and 
are closed under taking tensor products and duals, hence Aq is an R-Hopf algebra and, 
after extending scalars, we see that the matrix coefficients generating Aq are in Oq. 
This realises Aq as an R-Hopf subalgebra of Oq. Note that HomR(U res

R , R) is evidently 
π-adically separated hence so is Aq: if f ∈ ⋂

πn HomR(U res
R , R) then Im(f) ⊆ ⋂

πnR = 0.
By inducing one dimensional representations from Borel subalgebras, we get lattices 

in all the fundamental representations V (
i) which are integrable U res
R -modules (see [2, 

Section 3.3]). So we see that by choosing weight bases for these lattices, the generators 
x1, . . . , xr of Oq from 2.2 lie in Aq. Moreover by [2, Proposition & Remark 12.4], Aq

is generated by x1, . . . , xr as an R-algebra. We now give the filtration to Aq given by 
assigning to each xi degree 1. So the n-th deformation is the R-subalgebra generated by 
all the πnxi.

Definition. We let Ôq := (̇Aq)L where we give Aq the above filtration.

We will now show that ıUq and Ôq are Hopf algebras in a suitable sense, when working 
in the category of L-Fréchet spaces.

3.2. Completed tensor products

We recall here some facts about norms on tensor products and topological Hopf al-
gebras. Recall from [32, Section 17B] that given two seminorms p and p′ on the vector 
spaces V and W respectively, the tensor product seminorm p ⊗ p′ on V ⊗L W is defined 
in the following way: for x ∈ V ⊗L W , we have

p⊗ p′(x) := inf
{

max
1≤i≤r

p(vi) · p′(wi) : x =
r∑

i=1
vi ⊗ wi, vi ∈ V,wi ∈ W

}
.

When V and W are Banach spaces or more generally Fréchet spaces, the topology ob-
tained via these tensor product (semi)norms agrees with the inductive and projective 
tensor product topologies on V ⊗L W (see [32, Proposition 17.6]). One can then con-
struct the Hausdorff completion V“⊗LW of this space, which will be a Banach space 
(respectively Fréchet space). Moreover, if V and W are Hausdorff, so is V ⊗L W .

Then “⊗L is a monoidal structure on the categories of L-Banach spaces and L-Fréchet 
spaces. Note that this construction is functorial, so that two continuous linear maps 
f : V → W and g : X → Y induce a continuous linear map f“⊗g : V“⊗LX → W“⊗LY .

Definition. An L-Banach coalgebra, respectively L-Fréchet coalgebra, is a coalgebra object 
in the monoidal category of L-Banach spaces, respectively L-Fréchet spaces. In other 
words it is a Banach, respectively Fréchet, space C equipped with continuous linear 
maps Δ : A → A“⊗LA and ε : A → L which satisfy the usual axioms:

(Δ“⊗ id) ◦ Δ = (id“⊗Δ) ◦ Δ, (id“⊗ε) ◦ Δ = (ε“⊗ id) ◦ Δ = id .
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A morphism of coalgebras is then a continuous linear map f : C → D such that εD ◦f =
εC and (f“⊗ id) ◦ ΔC = ΔD ◦ f .

An L-Banach Hopf algebra, respectively L-Fréchet Hopf algebra, is an L-Banach, 
respectively Fréchet, algebra A which is also a coalgebra such that Δ and ε are al-
gebra homomorphisms, and furthermore A is equipped with a continuous linear map 
S : A → A, which satisfy the usual axioms for a Hopf algebra:

m ◦ (S“⊗ id) ◦ Δ = ι ◦ ε = m ◦ (id“⊗S) ◦ Δ

where m : A“⊗LA → A and ι : L → A denote the multiplication map and the unit in A
respectively. A morphism of Hopf algebras is then a continuous algebra homomorphism 
f : A → B which is also a morphism of coalgebras, such that SB ◦ f = f ◦ SA.

3.3. A monoidal functor

We now aim to establish that some of the algebras we’ve constructed are Hopf algebra 
objects in the categories of L-Banach algebras. We will need the following elementary 
result:

Lemma. Let M, N be two R-modules. Then we have canonical isomorphisms

(M/πaM)⊗R (N/πaN) ∼= (M/πaM)⊗RN ∼= M⊗R (N/πaN) ∼= (M⊗RN)/πa(M⊗RN)

for any a ≥ 1.

Proof. By tensoring the short exact sequence

0 → πaM → M → M/πaM → 0

with N , we obtain an exact sequence

πaM ⊗R N → M ⊗R N → M/πaM ⊗R N → 0.

Thus, since the image of πaM ⊗R N in M ⊗R N equals πa(M ⊗R N), we see that

(M/πaM) ⊗R N ∼= (M ⊗R N)/πa(M ⊗R N).

Similarly M⊗R (N/πaN) ∼= (M⊗RN)/πa(M⊗RN) by interchanging M and N . Finally, 
if we tensor the short exact sequence

0 → πaN → N → N/πaN → 0

with M/πaM , we obtain an exact sequence
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(M/πaM) ⊗R πaN → (M/πaM) ⊗R N → (M/πaM) ⊗R (N/πaN) → 0

where the left hand side map clearly has image 0. Thus we get the required isomor-
phism. �
Proposition. Let M and N be torsion-free R-modules. Then there is a canonical isomor-
phism of L-Banach spaces

M̂L“⊗L
”NL

∼= ¤�(M ⊗R N)L.

Moreover when M and N are R-algebras, this map is an algebra isomorphism. In par-
ticular, M �→ M̂L is a monoidal functor between the category of torsion-free R-modules 
and the category of L-Banach spaces.

Proof. Note that M̂L ⊗L
”NL

∼= (M̂ ⊗R
“N) ⊗R L and, by the Lemma, we have natural 

isomorphisms

(M̂ ⊗R
“N)/πa(M̂ ⊗R

“N) ∼= M̂/πaM̂ ⊗R
“N/πa“N

∼= M/πaM ⊗R N/πaN

∼= (M ⊗R N)/πa(M ⊗R N)

for all a ≥ 1. Thus we see that ÿ�M ⊗R N is canonically isomorphic to the π-adic comple-
tion of M̂ ⊗R

“N . Hence we see that ¤�(M ⊗R N)L is the completion of M̂L ⊗L
”NL with 

respect to the π-adic topology on M̂ ⊗R
“N . By [32, Lemma 17.2], the latter topology is 

the same as the tensor product topology on M̂L ⊗L
”NL, and so we get the result.

In the case where M = A and N = B are algebras, it is clear from the above that the 
isomorphism preserves the algebra structure. �

We introduce the following notation: write ”Oq := ÷(Aq)L.

Corollary. The Banach algebras ”Oq and ‘Uq,n (n ≥ 0) are L-Banach Hopf algebras.

Proof. This follows immediately from the Proposition since monoidal functors preserve 
Hopf algebra objects. �
Example. When G = SL2 i.e. when g = sl2, we can give an explicit description of ”Oq. In 
that case the only fundamental representation of Uq is two dimensional with basis v1, v2

such that

Ev1 = 0 = Fv2 Ev2 = v1 Fv1 = v2 Kv1 = q
1
2 v1 Kv2 = q

−1
2 v2.
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The matrix coefficients with respect to that basis are denoted by x11, x12, x21, x22 and 
they generate Oq. As is customary we denote these generators by a, b, c and d respectively. 
The complete set of relations for Oq is given by

ab = qba, ac = qca, bc = cb, bd = qdb,

cd = qdc, ad− da = (q − q−1)bc, ad− qbc = 1.

(see [11, Theorem I.7.16]).
So in this case Aq is the R-algebra generated by a, b, c, d. By the proof of [13, Lemma 

1.1] we see that Aq is a free R-module and

S = {albmcs, bmcsdt : l,m, s ≥ 0 and t > 0}

is an R-basis of Aq. Concretely, one can identify ”Oq as the ring

”Oq =
{ ∑

l,m,s≥0
λlmsa

lbmcs +
∑
p,t≥0
r>0

μptrb
pctdr : |λlms| → 0 as l + m + s → ∞

and |μptr| → 0 as p + t + r → ∞
}
.

This is an L-Banach algebra with norm∣∣∣∣∣∣∑λlmsa
lbmcs +

∑
μptrb

pctdr
∣∣∣∣∣∣ := sup

l,m,s,p,t,r
{λlms, μptr}.

We will later give an explicit description of ‘Uq,n for n large enough.

3.4. Hopf algebra structure of ıUq

We recall a few standard facts about Fréchet spaces (see e.g. [33, Section 3]). Let V be a 
Fréchet space whose topology is given by a family p1 ≤ p2 ≤ . . . ≤ pn ≤ . . . of seminorms. 
For each n the seminorm pn induces a norm on the quotient V/{v ∈ V : pn(v) = 0}. 
The completion of this normed space is a Banach space, which we denote by Vpn

. The 
identity on V induces continuous linear maps Vpn+1 → Vpn

for all n. Then the natural 
map

V → lim←−−Vpn

is an isomorphism of locally convex L-spaces. When V is a Fréchet algebra, and all the 
seminorms pn are algebra seminorms, then this map is an L-algebra isomorphism.

Proposition. ([16, Proposition 1.1.29]) Let V and W be L-Fréchet spaces whose topologies
are defined by families of seminorms p1 ≤ p2 ≤ . . . ≤ pn ≤ . . . and p′1 ≤ p′2 ≤ . . . ≤ p′n ≤
. . . respectively. Then we have a canonical isomorphism of L-Fréchet spaces
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V“⊗LW ∼= lim←−−Vpn
“⊗LWp′

n
.

When V and W are Fréchet algebras and all the seminorms are algebra seminorms, this 
is an algebra isomorphism.

Using this result, we can prove:

Theorem. The functor M �→ M̃L on the category of torsion-free filtered R-modules is 
monoidal. In particular the Fréchet algebra ıUq is an L-Fréchet Hopf algebra.

Proof. From the above Proposition we see that for any two torsion-free filtered 
R-modules M and N , there is a canonical isomorphism of L-Fréchet spaces

M̃L“⊗LN̂L
∼= lim←−−

’Mn,L“⊗L
’Nn,L

which is an algebra isomorphism when M and N are R-algebras. Now, the first result 
follows by Proposition 3.3 and Lemma 2.4. The fact that ıUq is an L-Fréchet Hopf algebra 
now follows because monoidal functors preserve Hopf algebra objects, and U is a filtered 
Hopf algebra, meaning that Δ, ε and S are filtered maps (where for ε we give R the 
trivial filtration). �
3.5. Hopf algebra structure of Ôq

We know that Aq is a Hopf algebra, however the corresponding Hopf algebra maps 
are not all filtered R-module homomorphisms on Aq, so we can’t immediately deduce 
from our previous methods that Ôq has a Hopf algebra structure. On the other hand, 
we see from equation (2.1) in 2.2 that the counit restricted to Aq is a filtered R-map 
Aq → R and so gives rise to a map Ûε : Ôq → L. For the antipode and comultiplication, 
we can “shift” the deformations to make things work.

Indeed, from (2.1) we have Δ(FnAq) ⊆ FnAq ⊗R FnAq for all n ≥ 0. But then it 
follows that for all n ≥ 0 we have

Δ((Aq)2n) ⊆ (Aq)n ⊗R (Aq)n.

Taking π-adic completions we see that Δ induces maps

“Δn : ÿ�(Aq)2n,L → ◊�(Aq)n,L“⊗L
◊�(Aq)n,L.

Taking inverse limits we obtain a map

ÙΔ : Ôq → Ôq“⊗LÔq

We now move to the antipode. It’s not necessarily clear that it’s a filtered map on Aq, 
so we let
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d = max
1≤i≤r

{min{t : S(xi) ∈ FtAq}}.

It follows that S((Aq)nd) ⊆ (Aq)n for all n ≥ 0. Taking π-adic completions we see that 
S induces maps

Ŝn : ÿ�(Aq)nd,L → ◊�(Aq)n,L.

Taking inverse limits we obtain a map

ÛS : Ôq → Ôq.

We see that the maps Ûε, ÛS and ÙΔ make Ôq into a Hopf algebra, as desired, since all the 
Hopf algebra relations are satisfied on the dense subspace Oq.

Remark. Note that the above shifts really are to be expected. Indeed, for example in 
the case G = SLn(L), the algebra we construct is meant to be a quantum analogue of 
the global sections of the structure sheaf of the analytification of G. If O denotes the 
coordinate algebra of SLn(R), this ring of global sections is given by the inverse limit of 
the Banach algebras ’Om,L, which correspond to the functions on G which are analytic 

on SLn(π−mR). For m > 0, since that subset of G is not a subgroup, the algebra ’Om,L

is not a Hopf algebra. On the other hand matrix multiplication defines a map

SLn(π−mR) × SLn(π−mR) → SLn(π−2mR)

which induces a map Δ : ÷O2m,L → ’Om,L“⊗L
’Om,L. Our quantum situation very much 

mirrors this.

4. Fréchet–Stein structures

4.1. Fréchet–Stein algebras

We start with a definition.

Definition. Following [33, Section 3] we say that an L-algebra U is L-Fréchet-Stein if 
there is a tower U0 ← U1 ← U2 ← · · · of Noetherian L-Banach algebras such that Un+1
has dense image in Un for all n ≥ 0, and satisfying:

(i) Un is a flat Un+1-module for all n ≥ 0; and
(ii) U ∼= lim←−−Un.

Our aim is to prove that the algebras Ôq and ıUq are Fréchet-Stein. The main difficulty 
in proving that an algebra satisfies the above definition is to show that the flatness 
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condition in (i) holds. To do this we rely on two known results. The first one, due to 
Emerton, is the following:

Proposition. ([16, Proposition 5.3.10]) Suppose that A is a left Noetherian R-algebra, 
π-adically separated, π-torsion free, and suppose that B is an R-subalgebra of AL which 
contains A. Suppose B is equipped with an exhaustive R-algebra filtration (F·) satisfying 
F0B = A and such that grB is finitely generated as an A-algebra by central elements. 
Then ”AL and ”BL are left Noetherian and ”BL is right flat over ”AL.

The second one is due to Ardakov and Wadsley, and is using a certain class of de-
formable algebras as well the functor we defined in 3.1.

Theorem. ([5, Theorem 6.7]) Let U be a deformable R-algebra such that grU is commu-
tative and Noetherian. Then ÛL is a Fréchet-Stein algebra.

The issue with these methods is that the statements both involve some commutativity 
or centralness conditions that will not hold in the quantum setting. Therefore, in this 
section, we will prove certain non-commutative, or quantum, versions of these results.

4.2. Fréchet completions of deformable R-algebras

We first generalise Theorem 4.1. The proofs from [5, Section 6.5 & 6.6] go through 
with only minor changes.

We recall the notion of a polynormal sequence in a ring. Suppose that S is a ring and 
that x1, . . . , xr is a finite sequence of elements of S. We say that x1, . . . , xr is polynormal 
if x1 is normal in S, i.e. x1S = Sx1, and for each 1 ≤ i ≤ r, xi+1 +

∑i
j=1 SxjS is normal 

in the quotient ring S/ 
∑i

j=1 SxjS.
Throughout, we will make the following assumptions:

(i) A is a deformable R-algebra such that grA are Noetherian;
(ii) there are elements x1, . . . , xr ∈ A such that

FiA = F0A · {xα1
1 · · ·xαr

r :
r∑

j=1
αjdj ≤ i}

for each i ≥ 0, where dj = deg xj , so that then grA is finitely generated over gr0 A
by the symbols of x1, . . . , xr ∈ A; and

(iii) the sequence πd1x1, . . . , πdrxr, where πdixi denotes the image of πdixi in A1/πA1, 
is polynormal.

Note that (i)-(iii) hold when A is a deformable R-algebra such that grA is commutative 
and Noetherian by the proofs in [5, Section 6.5 & 6.6].
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Lemma. If A satisfies (i) and (ii) as above, then so does An for all n ≥ 1.

Proof. This is a straightforward application of Lemma 2.3(i): (i) follows immediately 
because grAn

∼= grA and (ii) follows because

FiAn = F0A · {(πnd1x1)α1 · · · (πndrxr)αr :
r∑

j=1
αjdj ≤ i}

from which we see that grAn is generated by the symbols of πnd1x1, . . . , πndrxr over 
gr0 An. �
Proposition. Let A be a deformable R-algebra satisfying condition (ii) above, and con-
sider the ideal I := A1 ∩ πA.

(a) The subspace filtration on A1 of the π-adic filtration on A and the I-adic filtration 
on A1 are topologically equivalent; and

(b) I is generated by π and πdjxj for 1 ≤ j ≤ n.

Proof. It is clear from the definition of I that

π ∈ I and πdjxj ∈ I for all 1 ≤ j ≤ n.

Let d0 := 1. It follows from condition (ii) that πiFiA is generated as an F0A-module by 
monomials of the form

(πd0)α0(πd1x1)α1 · · · (πdnxn)αn (4.1)

where αj ≥ 0 for all j = 0, . . . , n and 
∑n

j=0 αjdj = i. For any integer t ≥ 0 and 
i ≥ t max dj , we have (

∑n
j=0 αj) max dj ≥

∑n
j=0 αjdj = i ≥ t max dj , so

(πd0)α0(πd1x1)α1 · · · (πdnxn)αn ∈ It

since π ∈ I and πdjxj ∈ I for all 1 ≤ j ≤ m. Hence by Lemma 2.3(ii) we have

A1 ∩ πt max djA =
∑

i≥t max dj

πiFiA ⊆ It ⊆ A1 ∩ πtA

since I is an F0A-submodule of A, thus proving (a).
For (b), by Lemma 2.3(ii) we have I =

∑
i≥1 π

iFiA. But we know from (4.1) above 
that, for i ≥ 1, πiFiA is generated as an F0A-module by elements which are in the ideal 
generated by π and πdjxj for 1 ≤ j ≤ n. The result follows. �

We can now prove our version of [5, Theorem 6.6]. Their proof goes through unchanged 
except for our use of condition (iii) which replaces their commutativity constraint.
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Theorem. Let A be a deformable R-algebra satisfying conditions (i)-(iii). Then ”AL is 
flat over ‘A1,L.

Proof. Since ‘A1,L = Â1 ⊗R L, it is enough to show that ”AL is flat as a module over 
Â1. By the Proposition, the I-adic completion B of A1 is isomorphic to the closure of 
the image of A1 in Â. Hence we have natural maps Â1 → B → ”AL. Observe that B is 
π-adically complete by the proof of [39, Theorem VIII.5.14], noting that ideals in B are 
I-adically closed by [25, Theorem II.2.1.2, Proposition II.2.2.1].

We observe that B/πB is the I/πA1-adic completion of A1/πA1. From Proposi-
tion 4.2(ii), the ideal I/πA1 is generated by πdjxj for 1 ≤ j ≤ n. Hence it follows 
from condition (iii) and [29, Proposition D.V.1 & Remark D.V.2] that I/πA1 has the 
Artin-Rees property. Thus we have that B/πB is flat over A1/πA1 by [29, Property 
V.8)iii), page 301].

We now filter both Â1 and B π-adically. Since A1 is π-torsion free, we have gr Â1 ∼=
(A1/πA1)[t]. In a similar way, since B is isomorphic to a subring of Â and so has no 
π-torsion, we have grB ∼= (B/πB)[t]. Hence grB is flat over gr Â1. But this implies 
that B is a flat Â1-module by [33, Proposition 1.2], since both Â1 and B are π-adically 
complete.

We now consider the subspace filtration on A1 induced from the π-adic filtration on 
A. We have grA ∼= A[t] where t = grπ and A = A/πA has degree zero. Lemma 2.3(ii) 
implies that the image of grA1 inside grA is ⊕j≥0t

jFjA where FjA denotes the image of 
FjA in A. Note that grA1 is Noetherian by [10, Corollary 1.3] and conditions (i) and (iii) 
since it is generated by the tdixi (here we are using the fact that gr0 A is Noetherian, 
which follows from (i)). Now, as the quotient filtration FjA on A is exhaustive, the 
localisation of this image obtained by inverting t is A[t, t−1]. But B is the completion of 
A1 so

(grB)t = (grA1)t = A[t, t−1] = gr ”AL.

Hence gr ”AL is flat over grB. We can then invoke [33, Proposition 1.2] again to conclude 
that ”AL is flat over B. �
4.3. Theorem

Let A be a deformable R-algebra satisfying assumptions (i)-(iii), such that An satisfies 
(iii) for all n ≥ 0. Then ÂL is a Fréchet-Stein algebra.

Proof. By Lemma 4.2 each An satisfies conditions (i)-(iii). Now since (An)1 = An+1 by 

Lemma 2.3, we have by the Theorem that ‘An,L is a flat ◊�An+1,L-module. Moreover, each ‘An,L is Noetherian because grA is Noetherian. �
We now turn to the important notion of a coadmissible module:
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Definition ([33, Section 3]). Let U = lim←−−Un be a Fréchet-Stein algebra. Then a U-module 
M is called coadmissible if M ∼= lim←−−Mn where, for each n ≥ 0, Mn is a finitely generated 
Un-module and Un ⊗Un+1 Mn+1 ∼= Mn. The full subcategory of coadmissible modules is 
denoted by C(U).

Note that if M is a coadmissible module, then each Mn naturally inherits the struc-
ture of a Banach Un-module, and so M naturally has the structure of a Fréchet space.

We summarise below the facts we’ll need:

Proposition ([33, Lemma 3.6 & Corollaries 3.1, 3.4 & 3.5]). Let U be a Fréchet-Stein 
algebra and let M be a coadmissible U-module.

(i) For each n ≥ 0, Mn
∼= Un ⊗U M.

(ii) The category C(U) is an abelian subcategory of the category of all U-modules; it is 
closed under direct sums and contains the finitely presented U-modules.

(iii) Let N be a submodule of M. Then the following are equivalent:
(1) N is coadmissible;
(2) M/N is coadmissible; and
(3) N is closed in the above Fréchet topology.

(iv) A sum of two coadmissible submodules of M is coadmissible.
(v) Any finitely generated submodule of M is coadmissible.
(vi) Any module map between two coadmissible module is strict with closed image.

The proof of the next result is essentially the proof of the first part of [33, Theorem 
4.11] (see also [31, Theorem 4.3.3]) but we reproduce it here for the convenience of the 
reader.

Corollary. Let A be a deformable R-algebra satisfying assumptions (i)-(iii), such that An

satisfies (iii) for all n ≥ 0. Then the natural map AL → ÂL is flat.

Proof. We show right flatness, the proof of left flatness being completely analogous. Since 
π is central, for every n ≥ 0 the ideal πAn in An satisfies the Artin-Rees property and 
thus ”An is flat over An by [29, Proposition D.V.1 & Property V.8)iii), page 301]. Hence 
it follows that AL → ‘An,L is flat for every n ≥ 0. By the Theorem we know that ÂL is 
Fréchet-Stein. It will suffice to show that for a left ideal I ⊂ AL, the map ÂL⊗AL

I → ÂL

is injective. But now, I is finitely generated and in fact finitely presented since AL is 
Noetherian. Thus ÂL ⊗AL

I is finitely presented as well, and so coadmissible. Thus we 
have isomorphisms

ÂL ⊗AL
I ∼= lim←−−

Ä‘An,L ⊗ıAL
(ÂL ⊗AL

I)
ä ∼= lim←−−( ‘An,L ⊗AL

I).

Now as ‘An,L is flat over AL for every n, it follows that ‘An,L ⊗AL
I → ‘An,L is injective. 

The result then follows since projective limits preserve injections. �
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4.4. Emerton’s result

When it is not known whether the algebras we have at hand are deformable, we instead 
rely on techniques inspired from Emerton’s result to prove that their completions are 
Fréchet-Stein. Again, the arguments from [16, 5.3.5-5.3.10] follow through with only 
minor changes. They mainly rely on some general lemmas that we do not write out here 
but reference throughout the proof.

Proposition. Suppose that A is a left Noetherian R-algebra, π-adically separated, 
π-torsion free, and suppose that B is an R-subalgebra of AL which contains A. Sup-
pose B is equipped with an exhaustive R-algebra filtration (F·) satisfying F0B = A and 
such that grF B is a q-commutative A-algebra. Then ”AL and ”BL are left Noetherian and ”BL is right flat over ”AL.

Proof. Note that Â is left Noetherian because A is left Noetherian, hence so is ”AL. 
Furthermore, grB is left Noetherian by Lemma 2.2. Now, following [16], for any left 
A-submodule M of AL, we let ιM : Â⊗AM → ”AL be the natural map induced from the 
multiplication in ”AL, and we let C denote the image of ιB. By [16, Corollary 5.3.6] C is 
an R-subalgebra of ”AL. Let GiC denote the image of ιFiB . By [16, Lemma 5.3.5], GiC is 
equal to FiB+Â and C = B+Â, and so we see that (G′

·) is an exhaustive algebra filtration 
on C such that G′

0C = Â. Now, by [16, Lemma 5.3.5], Fi−1B = AL∩Gi−1C for all i ≥ 1
and so it follows that Fi−1B = FiB∩(Fi−1B+Â). Hence the natural map grFi B → grGi C

induced by ιFiB is an isomorphism. Thus we deduce from our assumptions that the 
associated graded ring grG′

C is a q-commutative Â-algebra. Therefore by Lemma 2.2
we have that grG′

C is left Noetherian, hence so is C.
The fact that ”BL is right flat over ”AL now follows easily. Indeed, since C = B + Â we 

see that CL = ”AL. Moreover ”BL
∼= ”CL by [16, Lemma 5.3.8]. But the ideal generated 

by π satisfies the Artin-Rees property as π is central, and so “C is right flat over C as C
is left Noetherian. Tensoring over R with L, we therefore see that ”BL

∼= ”CL is right flat 
over ”AL = CL. �
4.5. A PBW type R-basis

In order to apply the previous results to ıUq, it will be useful to find certain bases of 
the algebras Un. These will in turn allow us to get an explicit description of ıUq.

Let U be the R-submodule of Uq spanned by all monomials Mr,s,λ, which is free by 
the PBW theorem. The height filtration on Uq induces a filtration on U . Explicitly, we 
define FiU to be the R-span of the monomials Mr,s,λ such that ht(Mr,s,λ) ≤ i. We want 
to deform this module and eventually obtain an algebra. For each n ≥ 0, the R-module 
Un is just the R-span of all πn ht(Mr,s,λ)Mr,s,λ, or in other words the R-span of the 
monomials

(πn ht(β1)Fβ1)r1 · · · (πn ht(βN )FβN
)rNKλ(πn ht(β1)Eβ1)s1 · · · (πn ht(βN )EβN

)sN .
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We let m be the least integer such that

π2m

qi − q−1
i

∈ R for all 1 ≤ i ≤ n.

Hence for all n ≥ m, we have

(πnEαi
)(πnFαi

) − (πnFαi
)(πnEαi

) ∈ R[Kλ : λ ∈ P ]

and so the generators of Un satisfy relations which can be expressed as an R-linear 
combination of them.

Theorem. Suppose that q ≡ 1 (mod π). Then the R-module Un is equal to Un for all 
n ≥ m, and so is an R-algebra.

We start preparing for the proof the Theorem. We will now assume that q ≡ 1 (mod π)
until the end of section 4.6.

For all n ≥ 0, we let U+
n be the positive part of Un, i.e. the R-subalgebra of Uq

generated by the πnEαi
’s. It is the n-th deformation of U+ with respect to the filtration 

given by assigning every Eαi
degree 1. We also define U+

n to be the R-submodule of Un

spanned by all monomials of the form

(πn ht(β1)Eβ1)s1 · · · (πn ht(βN )EβN
)sN .

It is the n-th deformation of U+ := U+
0 with respect to the height filtration. We also 

define U−
n and U−

n by applying ω to the positive parts.
By our assumption on q, we have that for each i and each n ∈ Z, [n]qi ≡ n (mod π). 

By our assumptions on p = char(k) from section 1.5, we see that the quantum divided 
powers E(s)

αi and F (s)
αi lie in U whenever s ≤ −aij (where the aij ’s are the Cartan matrix 

entries). Thus the braid group action from section 2.1 preserves U and so, in particular, 
Eβj

lies in U for all 1 ≤ j ≤ N . Since the automorphism ω preserves U , we see that the 
Fβj

’s also belong to U , and hence that U ⊂ U .
Our first goal will be to obtain that U+

n ⊂ U+
n for every n ≥ 0. To do so, we adapt 

[21, Lemma 8.19 and Proposition 8.20] to our situation. The same proofs go through 
with only minor changes. Before that, we establish the following notation: for a sequence 
J = {αi1 , . . . , αij} of simple roots, we write EJ for the product Eαi1

· · ·Eαij
.

Lemma. Let w ∈ W and α be a simple root. Suppose wα > 0 and write wα =
∑n

i=1 miαi. 
Then Tw(Eα) is an R-linear combination of words all of the form EJ where J is a finite 
sequence of simple roots such that each root αi occurs in J with multiplicity mi.

Proof. We first prove the result in a particular case.
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Claim. Suppose β �= α is another simple root and assume w is in the subgroup of W
generated by sα and sβ. Then the result holds.

Proof of claim. We are reduced to a rank 2 case-by-case analysis. If w = 1 the result is 
trivial so assume w �= 1. Denote by m the order of sαsβ . We have m = 2, 3, 4 or 6.

If m = 2 then w = sβ and Tw(Eα) = Eα. If m = 3 then

w ∈ {sβ , sαsβ}.

If m = 4 then

w ∈ {sβ , sαsβ , sβsαsβ}.

If m = 6 then

w ∈ {sβ , sαsβ , sβsαsβ , sαsβsαsβ , sβsαsβsαsβ}.

Hence in all cases we see that Tw(Eα) is just one of the root vectors that arise in the 
PBW basis for the case where g has rank 2. The result then follows by the formulae in 
[14, Appendix, (A1)-(A3)] using our assumptions on p. �

We now use induction on �(w). If �(w) = 0 then Tw = 1 and the result is trivial. 
So assume that �(w) > 0. Hence there exists a simple root β such that wβ < 0 (and 
so α �= β). By standard facts about Coxeter groups (see [19]), we have a decomposition 
w = w′w′′ where w′′ lies in the subgroup of W generated by sα and sβ such that w′β > 0
and w′α > 0. Then �(w) = �(w′) + �(w′′) so that Tw = Tw′Tw′′ . Moreover since wα > 0
and wβ < 0 it follows that w′′α > 0 and w′′β < 0. In particular w′′ �= 1. By the claim 
we have that Tw′′(Eα) is an R-linear combination of words all of the form EJ ′′ where J ′′

is a finite sequence of simple roots only involving α and β such that they appear with 
the appropriate multiplicities. By induction hypothesis, we also have that Tw′(Eα) is an 
R-linear combination of words all of the form EJ ′ where J ′ is a finite sequence of simple 
roots each simple root appears in J ′ with the appropriate multiplicity. Similarly, the 
analogous statement is true for Tw′(Eβ). Now the result follows since Tw = Tw′Tw′′ . �
Corollary. Fix a reduced expression w0 = si1 · · · siN . For any 1 ≤ j ≤ N , write βj =∑n

i=1 mijαi. Then Eβj
is an R-linear combination of words all of the form EJ where J

is a finite sequence of simple roots such that each root αi occurs in J with multiplicity 
mij (and so J has length htβj).

Proof. Since βj := si1 · · · sij−1(αij ) we can write it as wα where w = si1 · · · sij−1 and 
α = αij . �
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In particular, the Corollary implies that, for all n ≥ 0, πn ht(βj)Eβj
∈ U+

n for all 
1 ≤ j ≤ N . Similarly πn ht(βj)Fβj

∈ U−
n for all j. Hence we see that U± ⊆ U± as 

promised, and that Un ⊆ Un for all n ≥ 0.

Remark. Although the proof that Eβj
∈ U+ is well-known, we couldn’t find a reference 

for the result about multiplicities so we included the proofs for that.

4.6. Proof of Theorem 4.5

The argument to prove the theorem is the same as in [21, Theorem 8.24], rephrased 
in our context. We sketch it here. We begin with a triangular decomposition for Um:

Lemma. The multiplication map U−
m ⊗R U0

m ⊗R U+
m → Um is an isomorphism, where 

U0
m = R[Kλ : λ ∈ P ] = RP .

Proof. Since the left hand side is a lattice inside U−
q ⊗L U0

q ⊗L U+
q and by using the 

triangular decomposition for Uq, we see that the map is injective. So we just need to 
show surjectivity.

Suppose that we have a word u in the generators of Um. We show by induction on 
word length that it lies in the image of the map. Using the defining relations of Uq we 
may write u as w(E, F )w′(K) where w(E, F ) is a product of πmEαi

’s and πmFαj
’s in 

some order and w′(K) is some element in RP . So it’s enough to show that w(E, F ) is in 
the image since then we can push the K’s in w′(K) back to the left past all the πmEαi

’s 
to get an expression of the correct form.

Now if w(E, F ) does not contain any πmEαi
’s, there is nothing to do. Similarly we’re 

done if it does not contain any πmEαj
’s. So without loss of generality, we may write it 

in the form

w1(F )w2(E)πmEαi
πmFαj

w3(E,F )

where w1(F ) is a word in the πmF ’s, w2(E) is a word in the πmE’s, and w3(E, F ) is a 
word in the πmE’s and πmF ’s. Now if i = j then this is

w1(F )w2(E)πmFαj
πmEαi

w3(E,F ),

and if i �= j then this is equal to

w1(F )w2(E)πmFαj
πmEαi

w3(E,F ) + aw1(F )w2(E)(Kαi
−K−1

αi
)w3(E,F )

where a ∈ R by our choice of m. Either way, by induction on the word length we are 
reduced to showing that

w1(F )w2(E)πmFαj
πmEαi

w3(E,F )
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lies in the image.
Let � be the word length of w2. We will reduce to the case � = 0. So assume � > 0. 

Now w2(E)πmFαj
can be written as w′

2(E)πmEαs
πmFαj

for some word w′
2(E) of length 

� − 1 and some 1 ≤ s ≤ n. By letting w′
3(E, F ) = πmEαi

w3(E, F ), we now have the 
expression

w1(F )w′
2(E)πmEαs

πmFαj
w′

3(E,F ),

i.e. we’re back to our initial situation but now w′
2 has smaller length. Iterating the above 

process � − 1 times, we may therefore assume that � = 0 as promised, i.e. we have an 
expression

w1(F )πmFαj
w3(E,F ).

Now by induction on the word length, w3 is of the right form and so we’re done. �
Note that we also clearly have a triangular decomposition Um

∼= U−
m ⊗R U0

m ⊗R U+
m

where U0
m = U0

m. Hence, since the automorphism ω preserves Um, we only have to check 
that U+

m = U+
m in order to obtain Um = Um. In fact we show that U+ = U+ and that 

this implies that U+
n = U+

n for every n ≥ 0.

Proposition. Let w ∈ W and choose a reduced expression w = sj1 · · · sjt . Denote by 
U+[w] the R-span of all monomials of the form

Em1
β1

· · ·Emt

βt
(4.2)

where Eβi
= Tαj1

· · ·Tαji−1
(Eαji

) for 1 ≤ i ≤ t. Then U+[w] depends only on w, not of 
the choice of reduced expression.

Proof. This is identical to the proof of [21, Proposition 8.22], noting that the rank 2 
calculations that they perform all take place inside U+. �
Corollary. We have U+

n = U+
n for every n ≥ 0. Moreover, the height filtration on U+ =

U+ equals the filtration obtained by assigning every Eαi
degree 1.

Proof. By the Proposition we see that U+ = U+[w0] is independent of the choice of 
reduced expression for w0, and thus is preserved under left multiplication by all the 
generators Eαi

by the proof of [21, Theorem 8.24]. Hence U+ = U+ since 1 ∈ U+.
The height filtration on U+ is an algebra filtration as it is the subspace filtration of 

an algebra filtration on U+
q . Since all the Eαi

’s have degree 1 in it, it must contain the 
filtration where we set deg(Eαi

) = 1. Corollary 4.5 gives the reverse inclusion. Thus we 
now obtain U+

n = U+
n by taking the n-th deformation with respect to this filtration. �
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Proof of Theorem 4.5. Put n = m in the previous Corollary to obtain that Um = Um. 
Moreover, by the same proof as in the previous Corollary, we get that the height filtration 
on Um equals to filtration obtained by setting F0Um = R[Kλ : λ ∈ P ] and deg(Eαi

) =
deg(Fαi

) = 1. Hence we get that Un = Un for every n ≥ m by deforming. �
Remark. We see that the only thing stopping U from being equal to U is the commutator 
relations between the E’s and the F ’s, which stop the triangular identity as we wrote it 
from holding in U . We can fix this slightly by noticing that we have U ∼= U−⊗RF0U⊗U+

with a slightly different choice of F0U : we define it to be the R-algebra generated by the 
Kλ, λ ∈ P , and the elements

[Kαi
; 0]qi :=

Kαi
−K−1

αi

qi − q−1
i

for all 1 ≤ i ≤ n. Then F0U = U ∩ U0
q and we may define an alternative filtration on U

given by assigning each Eαi
and Fαi

degree 1. Just as in the above proofs, this coincides 
with the subspace filtration of the height filtration.

We can also use Theorem 4.5 to get an explicit description of ‘Uq,n for n ≥ m. Indeed 
we see that as a topological vector space it is given by the series

‘Uq,n =

⎧⎨⎩∑
r,s,λ

ar,s,λMr,s,λ :
∣∣∣π−n ht(Mr,s,λ)ar,s,λ

∣∣∣ → 0 as ht(Mr,s,λ) → ∞

⎫⎬⎭ .

The norm on ‘Uq,n is then given by∣∣∣∣∣∣
∣∣∣∣∣∣∑r,s,λ ar,s,λMr,s,λ

∣∣∣∣∣∣
∣∣∣∣∣∣
n

= sup
r,s,λ

∣∣∣π−n ht(Mr,s,λ)ar,s,λ

∣∣∣ .
One can then similarly describe ıUq:

ıUq =

⎧⎨⎩∑
r,s,λ

ar,s,λMr,s,λ :
∣∣∣π−n ht(Mr,s,λ)ar,s,λ

∣∣∣ → 0 as ht(Mr,s,λ) → ∞ for all n ≥ 0

⎫⎬⎭ .

Its Fréchet topology is given by all the norms ||·||n.

4.7. The quantum Arens-Michael envelope

As an application of this PBW theorem we explain an analogy between our definition 
of ıUq and the Arens-Michael envelope of the classical enveloping algebra Ū(g), which is 
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the completion of the enveloping algebra U(g) with respect to all the submultiplicative 
seminorms which extend the norm on L.

As a Fréchet space, ıUq is the completion of Uq with respect to the norms ||·||n for 
n ≥ 0, which are the norms on Uq coming from the π-adic filtrations on the Un. The 
completion of Uq with respect to the single norm ||·||n is then ‘Uq,n. For example these 
norms take the following values:

||Eα||n = ||Fα||n = |π|−n
, ||Kλ||n = 1 for all simple root α and all λ ∈ P.

We now aim to show that ıUq does not actually depend on the choice of such norms. To 
make this statement precise, we first consider the canonical norm ||·|| on the Laurent 
polynomial ring L[Kλ : λ ∈ P ], namely the one obtained from giving the π-adic topology 
to R[Kλ : λ ∈ P ] and extending scalars. Hence we have ||Kλ|| = 1 for all λ in P . Note 
that the norms ||·||n are all extensions of ||·|| to Uq.

We will now work in a more general context. Let A ⊂ B be two π-torsion free, 
π-adically separated R-algebras, and equip AL with the norm coming from the π-adic 
topology on A. Suppose that B ∩AL = A, where we regard A, AL and B as subalgebras 
of BL. Recall that a seminorm p on BL is called submultiplicative if for all x, y ∈ BL we 
have p(xy) ≤ p(x)p(y) and p(1) = 1.

Proposition. For A and B as above, suppose that B is generated as an A-algebra by a 
finite set of elements x1, . . . , xm ∈ B \ A which normalise A, i.e. xiA = Axi for all i. 
For each 1 ≤ i ≤ m, pick a positive integer di, and consider the A-filtration on B given 
by assigning degree di to xi for each i. Then, for this filtration, B̂L is isomorphic to the 
completion of BL with respect to all submultiplicative seminorms which extend the norm 
on AL.

Proof. The filtration gives rise to a family of norms ||·||n on BL, which are just the ex-
tensions to BL of the norms coming from the π-adic topology on each of the deformations 
Bn. Since the π-adic filtration on Bn is an algebra filtration, it follows that these norms 
are submultiplicative. Also, the π-adic topology on Bn restricts to the π-adic topology 
on A for all n because B ∩AL = A, and so these norms extend the norm on AL. Hence, 
since B̂L is the completion of BL with respect to the norms ||·||n, there is a canonical 
map B → B̂L, where B denotes the completion of BL with respect to all submultiplica-
tive seminorms that extend the norm on AL. Thus we just need to prove that this map 
is a topological isomorphism.

This will follow if we can show that given any submultiplicative seminorm p on BL

that extends the norm on AL, there is some n such that p ≤ ||·||n. This in turn is 
equivalent to showing that the unit ball

B(p; 1) = {x ∈ BL : p(x) ≤ 1}
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contains the unit ball of BL with respect to ||·||n, i.e. contains Bn for some n. Now note 
that since p is submultiplicative and as it extends the norm on AL, we have that B(p; 1)
is an R-algebra containing A. Moreover, by definition of (F·), Bn is the R-subalgebra of 
B generated by A and the πndixi. So we just need to show that there exists an n ≥ 0 such 
that πndixi ∈ B(p; 1) for all i. But that’s clearly true since p(πndixi) = |π|ndi p(xi) → 0
as n → ∞ for any i. �
Corollary. The algebra Ôq is the completion of Oq with respect to all the submultiplica-
tive seminorms that extend the norm on L. Moreover, if q ≡ 1 (mod π), then ıUq is 
isomorphic to the completion of Uq with respect to all submultiplicative seminorms that 
extend ||·||.

Proof. Set A = R[Kλ : λ ∈ P ] and B = Um for ıUq (note that B ∩ AL = A by 
Theorem 4.5), and A = R and B = Aq for Ôq. The hypotheses of the Proposition are 
then satisfied. �
4.8. Fréchet-Stein property of ıUq

We can now start applying our techniques to ıUq.

Lemma. Suppose that q ≡ 1 (mod π). Then for each n ≥ m, the R-algebra Un satisfies 
conditions (i) and (ii) from section 4.2.

Proof. By Lemma 4.2, it suffices to consider n = m. The height filtration on Um is 
the subspace filtration of the height filtration on Uq, thus there is a natural embed-
ding grUm ↪→ U (1) where U (1) := grUq. Write U (1)

m := grUm. This shows that U (1)
m is 

π-torsion free, thus flat. Moreover since Um is free it is also π-adically separated. There-
fore Um is a deformable R-algebra. Recall now that we defined in 2.1 a Z2N

≥0 -filtration 

on U (1). Using the above embedding, we may now give to U (1)
m the corresponding 

Z2N
≥0 -filtration. We see from the relations in Theorem 2.1 that the associated graded 

algebra of U (1)
m is then q-commutative, hence Noetherian by Lemma 2.2. Therefore U (1)

m

is Noetherian, and condition (i) is satisfied. Condition (ii) just follows from definition of 
the height filtration. �
Remark. If we equip U with the filtration from Remark 4.6, it is then also true that 
it satisfies conditions (i) and (ii) using the same proof as in the Lemma. However the 
Fréchet completion ÛL that one gets that way is not the same as ıUq. Specifically, the 
norms defining ÛL all have value 1 at the elements [Kαi

; 0], which is not true in ıUq. 
Now the triples (Eαi

, Fαi
, [Kαi

; 0]) correspond under specialisation at 1 to the usual sl2
triples (ei, fi, hi) (for the simple roots) in g, and in the Arens-Michael envelope Ū(g), 
the defining norms do not necessarily have value 1 at hi. While we are not working with 
a truly generic quantum group, this analogy motivates our choice of working with ıUq. 
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Note however that the theorem below is also true, with essentially the same proof, for 
ÛL.

Before getting to the next result, we introduce some notation. Let e1, . . . , en be the 
simple root vectors coming from the Serre presentation of g, which can then be extended 
to a Chevalley basis x1, . . . , xN of n. It follows from [18, Theorem 25.2] that the R-span 
nR of x1, . . . , xN is a Lie lattice in n, i.e. a lattice that is also an R-Lie algebra, and we 
write nk := nR/πnR, a nilpotent k-Lie algebra.

We let U(nR) be the universal enveloping algebra of nR. For n ≥ 0, we denote by 
U(nR)n the R-subalgebra of U(nR) generated by all πnei. It is the n-th deformation of 
U(nR) with respect to the height filtration (which is not the same as the PBW filtration 
– it is defined completely analogously as the height filtration on Uq). Moreover, U(nR)n
is also the universal enveloping algebra of the R-Lie subalgebra of nR generated by all 
πnei. However, in light of the relations in [18, Theorem 25.2], we see that this R-Lie 
subalgebra is canonically isomorphic as an R-Lie algebra to nR by mapping πnei → ei, 
and hence there is a canonical isomorphism of R-algebras U(nR) ∼= U(nR)n for all n ≥ 0. 
Thus in particular we have that U(nR)n/πU(nR)n ∼= U(nk). In the light of these facts, 
we can now prove the following:

Theorem. Suppose that q ≡ 1 (mod π). Then the quantum Arens-Michael envelope ıUq

is a Fréchet-Stein algebra.

Proof. By Theorem 4.3 and the previous Lemma, the result will follow if we prove that 
condition (iii) is satisfied in Un for all n ≥ m. As before, we let I = πUn ∩ Un+1. 
We know that I is generated by π, π(n+1) ht βiEβi

and π(n+1) ht βjFβj
(1 ≤ i, j ≤ N) 

by Proposition 4.2(ii). Observe that πn+1Eαi
commutes with πn+1Fαj

for all i, j since 

πnEαi
and πnFαJ

commute in grUn, and so the same can be said of π(m+1) ht βiEβi

and π(m+1) ht βjFβj
. Moreover we also have that all π(m+1) ht βiEβi

and π(m+1) ht βjFβj

q-commute with Kλ for all λ ∈ P .
Therefore it is enough to show that the elements π(n+1) ht βiEβi

for all i form a poly-
central sequence in U+

n+1/πU
+
n+1, since the ideal I is preserved by the automorphism ω. 

But since q ≡ 1 (mod π) we have a surjection

U(nk) ∼= U(nR)n+1/πU(nR)n+1 → U+
n+1/πU

+
n+1

from the universal enveloping algebra of nk, which sends ei to πn+1Eαi
. In fact, by 

considering PBW bases we see that this is an isomorphism. Hence it suffices to show 
that the elements of the Chevalley basis in some order form a polycentral sequence in 
U(nk). But that is a well known fact (and more generally any ideal of U(nk) is polycentral 
by [35, Theorem A]). �

By applying Corollary 4.3 we immediately get:
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Corollary. Suppose that q ≡ 1 (mod π). Then the natural map Uq → ıUq is flat.

The Corollary gives an exact functor M �→ ıUq ⊗Uq
M between the category of 

Uq-modules and the category of ıUq-modules. We will investigate this functor further 
in Section 5.

4.9. Fréchet-Stein property of Ôq

As an L-algebra, Oq is generated by x1, . . . , xr, i.e. by the matrix coefficients of the 
fundamental representations. Now the issue is that the q-commutator relations between 
these are not necessarily defined over R here. Indeed recall from 2.2 that we have

xixj = qijxjxi +
j−1∑
s=1

r∑
t=1

(αst
ijxsxt + βst

ijxtxs),

for 1 ≤ j < i ≤ r with αst
ij , β

st
ij ∈ L for all i, j, s, t. These relations are obtained by 

considering R-matrices for representations of Uq and it is unclear to us whether the 
R-matrices are the same when considering integral forms. Note however that the defining 
relations of Oq are defined over R in type A by [2, Proposition 12.12].

We fix this issue by deforming enough. Recall the filtration on Oq given by assigning 
to each xi degree di = 2r − 2r−i, where we had that whenever i > j > s and t ≤ r, we 
always have di + dj > ds + dt. Thus we see that if we let yi = πldixi for l sufficiently 
large, multiplying the above relation by πl(di+dj) yields

yiyj = qijyjyi +
j−1∑
s=1

r∑
t=1

(α′ st
ij ysyt + β′ st

ij ytys), (4.3)

where now α′ st
ij , β′ st

ij ∈ R. Fix the smallest l such that this holds and let B be the 
R-subalgebra of Oq generated by y1, . . . , yr.

Recall from section 3.1 that Aq was defined to be the R-subalgebra of Oq generated 
by x1, . . . , xr. Thus we see that B ⊆ Aq.

Lemma. The algebra B is Noetherian, π-adically separated and π-torsion free.

Proof. B is π-torsion free because Aq is. Moreover, let (F ′
· ) be the filtration on B given 

by assigning degree di to each yi. Then with respect to that filtration, we see by the proof 
of [11, Proposition I.8.17] that grF ′

B is q-commutative over R and so is Noetherian by 
Lemma 2.2. So we just need to show that it’s π-adically separated. But that follows 
because B ⊆ Aq and Aq was π-adically separated. �

We now filter B by assigning degree 1 to all the yi’s. By Proposition 4.7 we see that 
Ôq

∼= B̂L. Let A = B1 be the first deformation of B, i.e. the R-subalgebra of Oq generated 
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by πy1, . . . , πyr. Completely analogously as in the Lemma, we see that A is Noetherian, 
π-adically separated and π-torsion free. We now set a new filtration on B by defining

GtB = A · {yi1ai1 · · · yilail : aij ∈ A and
l∑

j=1
dij ≤ t}.

This is the smallest algebra filtration on B such that yi ∈ Gdi
B and A = G0B.

Proposition. With respect to the above filtration, the associated graded ring grG B is 
finitely generated as an A-algebra by elements which q-commute with the R-algebra gen-
erators of A, and which also q-commute with each other.

Proof. Set zi := yi + Gdi−1B ∈ grG B to be the symbol of yi for each 1 ≤ i ≤ r. 
Any homogeneous component grGt B, if it is non-zero, is spanned over A by the symbols 
of the products yi1ai1 · · · yilail such that 

∑l
j=1 dij = t, and any such element equals 

zi1ai1 · · · zilail . Therefore grG B is generated over A by the zi.
Now, for any 1 ≤ j < i ≤ r, we have

yi(πyj) − qij(πyj)yi = (πyi)yj − qijyj(πyi)

=
j−1∑
s=1

r∑
t=1

(
α′ st
ij ys(πyt) + β′ st

ij (πyt)ys
)
∈ Gdj−1B.

Therefore we see that zi(πyj) = qij(πyj)zi in grG B for all i, j, so that the zi’s will 
q-commute with the generators of A. Furthermore we have zizj = qijzjzi, i.e. the zi’s will 
q-commute with each other in grG B. Indeed this follows from (4.3) because the di’s were 
chosen so that whenever i > j > s we have for any 1 ≤ t ≤ r that di + dj > ds + dt. �
Theorem. The algebra Ôq is a Fréchet-Stein algebra.

Proof. By Proposition 4.4, it follows from the previous Proposition that ”BL is right flat 
over ”AL and that they are both left Noetherian. Left flatness and right Noetherianity 
will follow by the same argument applied to Bop. Thus we see that ”BL is flat over ”AL. 
For any n ≥ 1, we can repeat the entire above arguments replacing B by the R-algebra 
generated by πnyi for all i, and A by the R-algebra generated by πn+1yi for all i. �
5. Verma modules and category Ô for Ûq

We now start discussing an analogue of category O for ıUq, using its Fréchet-Stein 
property. We thus make the following assumption:

from now on and until the end of this paper, we assume that q ≡ 1 (mod π).
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Most of the content of this Section is inspired by [31], whose main theorem has a natural 
quantum analogue which we prove. In fact most of the arguments work identically to 
there, but we reproduce them for the convenience of the reader.

5.1. Topologically semisimple ”U0
q -modules

We begin with a discussion of semisimplicity for modules over the algebra ”U0
q :=”U0 ⊗R L. In our future paper [15] we will also need some of these results working with ◊�(U res

R )0L instead, where (U res
R )0 = U0

q ∩U res
R . The proofs will be identical for either of them, 

so we will let H denote both of these to simplify notation. Our treatment is inspired by 
the work of Féaux de Lacroix [17].

First recall that given λ ∈ P , there is a character ψλ of U0
q defined by ψλ(Kμ) = q〈λ,μ〉

for any μ ∈ P , and the restriction of this character to (U res
R )0 has image in R (see [2, 

Lemma 1.1]). Given a U0
q -module M , its λ-weight space is defined to be

Mλ = {m ∈ M : um = ψλ(u)m for all u ∈ U0
q }.

Since q is not a root of unity these are all linearly independent and the sum of the weight 
spaces in M is direct.

We will now consider the category M (H) whose objects are Fréchet spaces M endowed 
with an action of H by L-linear endomorphisms, and whose morphisms are continuous 
L-linear maps which preserve the action of H. Given an object M of this category and 
λ ∈ P , we denote by Mλ the λ-weight space of M when viewed as a U0

q -module.

Definition. We say that M as above is topologically H-semisimple if for every m ∈ M
there exists a family {mλ ∈ Mλ}λ∈P such that 

∑
λ∈P mλ converges to m in M.

We want to investigate the full subcategory D(H) of M (H) whose objects are the 
topologically H-semisimple modules. We first need a couple of preparatory results.

We identify the weight lattice P with its image in the group of characters of U0
q via 

λ �→ ψλ. Let x ∈ U0
q . For every λ ∈ P we write x(λ) := ψλ(x) ∈ L. Note that if 

x ∈ (U res
R )0 or U0, then x(λ) ∈ R for all λ ∈ P . Let q′ = q1/d so that q〈λ,μ〉 ∈ (q′)Z for 

any λ, μ ∈ P .

Lemma. Let r ∈ N, m1, . . . , mr ∈ Z and ω1, . . . , ωr be (not necessarily distinct) funda-
mental weights. For each γ ∈ P , write ni(γ) = d〈γ, ωi〉 ∈ Z and let

Pγ(t) =
r∏

i=1
(tni(γ) − (q′)mi) ∈ R[t, t−1].

Then, for every positive integer a ≥ 1, the image of the set {Pγ(q′) : γ ∈ P} in R/πaR

is finite.
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Proof. First let b = vπ(q′ − 1) > 0 and note that b = vπ((q′)−1 − 1). Consider

Qγ(t) =
r∏

i=1
(tni(γ)−mi − 1) ∈ R[t, t−1].

Then we see that Pγ(q′) = (q′)m1+···+mrQγ(q′), so that it suffices to show that the result 
holds for Qγ(t). Note that since vπ((q′)m − 1) ≥ b |m| for any m ∈ Z, it follows that 
Qγ(q′) ≡ 0 (mod πa) whenever b |ni(γ) −mi| ≥ a for any 1 ≤ i ≤ r. Let

X = {(k1, . . . , kr) ∈ Zr : b |ki| < a for all 1 ≤ i ≤ r}

and set

M =
{

r∏
i=1

((q′)ki − 1) : (k1, . . . , kr) ∈ X

}
∪ {0}.

Then by the above observation we have that every Qγ(q′) is congruent to an element of 
M modulo πa. The result follows since M is finite. �
Proposition. Suppose that X is a finite subset of P and let λ ∈ P \X. Then there is an 
element p ∈ U0

q such that p(P ) ⊂ R, p(X) = 0 and p(λ) = 1.

Proof. For each μ ∈ X, the character ψμ is determined by its action on the K�i
, so as 

λ �= μ there must be some hμ ∈ {K�1 , . . . , K�n
} such that hμ(λ) �= hμ(μ). Consider the 

product

x =
∏
μ∈X

(hμ − hμ(μ)) ∈ U0.

Note that hμ(P ) ⊂ R for every μ ∈ X and that, furthermore, the image of hμ(P )
in k = R/πR is constant equal to 1 because K�i

(γ) = q〈γ,�i〉 ≡ 1 (mod π) for any 
1 ≤ i ≤ n and any γ ∈ P . So x(X) = 0, x(λ) �= 0 and x(P ) ⊂ R, actually such that 
x(P ) has image zero in k. Hence there exists a maximal N > 0 such that y := π−Nx

still satisfies y(P ) ⊂ R, and of course we still have y(X) = 0 and y(λ) �= 0.
Now note that if y(λ) ∈ R×, then p = y(λ)−1y satisfies the required hypothesis. 

Otherwise, note that the set of residues of y(P ) in R/πaR is in bijection with the residues 
of x(P ) = πNy(P ) in R/πN+aR, hence is finite for any a ≥ 1 by the Lemma. Let V be 
a finite set in R, containing 0, such that every element of y(P ) is congruent to a unique 
element of Y modulo π, and set

g = π−1
∏
v∈V

(t− v) ∈ L[t].

Then g(y(P )) ⊂ R, g(y(X)) = 0 and vπ(g(y(λ))) = vπ(y(λ)) − 1. Moreover the image 
of g(y(P )) in R/πaR is in bijection with the image of πg(y(P )) in R/πa+1R, which is 
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finite for every a ≥ 1 since it was for y(P ). By induction, we can then find h ∈ L[t] such 
that p := h(g(y)) satisfies the required properties. �
Theorem. Suppose that M ∈ D(H). Then for each m ∈ M, there exists a unique family 
(mλ)λ∈P with mλ ∈ Mλ such that 

∑
λ∈P mλ converges to m. Moreover, if m ∈ N where 

N is a closed U0
q -invariant subspace, then each mλ ∈ N .

Proof. We know by definition that there is a family (mλ)λ∈P with mλ ∈ Mλ such that ∑
λ∈P mλ converges to m. So we just need to prove uniqueness. Fix μ ∈ P , and let 

q1 ≤ q2 ≤ · · · be a countable set of semi-norms defining the topology on M, so that 
M ∼= lim←−−Mqi .

Fix some i ≥ 1. There is an ascending chain S1 ⊂ S2 ⊂ · · · of finite subsets of P such 
that λ ∈ P \ Sj implies that qi(mλ) ≤ 1/j. By the Proposition, for every j ≥ 1, there 
exists pj ∈ U0

q such that pj(P ) ⊂ R, pj(Sj \ {μ}) = 0 and pj(μ) = 1. Then we have

pj ·m =
∑
λ∈P

pj(λ)mλ = mμ +
∑

λ∈P\Sj

pj(λ)mλ.

By construction, qi(pj(λ)mλ) ≤ qi(mλ) ≤ 1/j for all λ ∈ P \ Sj . Hence pj ·m → mμ in 
Mqi as j → ∞. So we see that the image of mμ in Mqi is uniquely determined by m by 
uniqueness of limits. Since i was arbitrary and since M ∼= lim←−−Mqi , it follows that mμ is 
uniquely determined by m.

For the last part, since N is closed and so complete, it follows that Nqi is equal to 
the closure of N in Mqi for each i ≥ 1, and N ∼= lim←−−Nqi . Now N is U0

q -invariant, so 
for every i ≥ 1 we have that the image of mμ in Mqi equals lim pj · m ∈ Nqi . Hence 
mμ ∈ N . �
Remark. The ideas in the proofs of the Proposition and the Theorem were adapted for 
quantum groups from a proof that was communicated to us privately by Simon Wadsley.

Given M ∈ D(H), we may form

M ss =
⊕
λ∈P

Mλ

which is a U0
q -module. From the above, we immediately get the first part of the next 

result:

Corollary. The category D(H) is stable under passage to closed H-submodules and to the 
corresponding quotients. Moreover, given M ∈ D(H) and a closed submodule N , we have 
(M/N )ss ∼= Mss/N ss.

Proof. For the last part, for every m ∈ M, write m for its image in the quotient M/N . 
Suppose that m ∈ (M/N )ss. By continuity of the quotient map, if m =

∑
λ∈P mλ con-
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verges then m =
∑

λ∈P mλ converges too, and that sum must be finite by the uniqueness 
of the decomposition from the Theorem. Thus there is a finite set S ⊂ P such that, if 
λ ∈ P \ S, then mλ ∈ N . Hence if we write m′ =

∑
λ∈S mλ ∈ Mss, then m′ = m. This 

shows that the map

Mss → (M/N )ss

is surjective. We now simply observe that its kernel is N ss. �
5.2. A bijection between Uq-invariant subspaces

We need one other result to do with topologically semisimple modules. It is completely 
analogous to [17, Satz 1.3.19 & Kor. 1.3.22], but we give a proof nevertheless.

Proposition. Suppose that M ∈ D(H). Then the assignment

f : N �→ N ∩Mss

defines an injective map between the set of closed H-submodules of M and the set of 
abstract U0

q -submodules of Mss, with left inverse given by passing to the closure in M. 
Now assume furthermore that all the weight spaces Mλ are finite dimensional. Then f is 
in fact surjective and so bijective. If additionally, M is also equipped with a Uq-action by 
continuous L-linear endomorphisms extending the U0

q -action, then the bijection descends 
to a bijection between the Uq-invariant objects.

Proof. For the first part, we must show that N = N ∩Mss. Pick m ∈ N . By Theo-
rem 5.1, we may write m =

∑
λ∈P mλ where mλ ∈ N for each λ ∈ P . For each n ∈ N, 

let

Pn =
¶∑

ni
i ∈ P : |ni| ≤ n
©
.

Since each Pn is a finite set, we may define mn =
∑

λ∈Pn
mλ ∈ N ∩Mss. Then we have 

mn → m as n → ∞ and so m ∈ N ∩Mss. Thus we see that N ⊆ N ∩Mss. The other 
inclusion is trivial.

Now assume all weight spaces are finite dimensional, and let N ⊆ Mss be a 
U0
q -submodule. Note that N must be semisimple since Mss is semisimple. The result 

will follow if we show that for such an N , we always have N = N ∩Mss. To do that, we 
need to show that N ∩Mss is contained in N , the other inclusion being clear. So pick 
m ∈ N ∩Mss. Then there is a sequence (mj)j∈N converging to m such that mj ∈ N for 
all j. Since all the mj lie in Mss, we can find an ascending chain of finite subsets Sj ⊆ P

such that mj =
∑

λ∈Sj
mλ,j with mλ,j ∈ Mλ. We may also find a finite subset S0 ⊆ P

such that m =
∑

λ∈S0
mλ with mλ ∈ Mλ, and without loss of generality we may assume 

that S0 ⊆ S1. Let S =
⋃

j≥0 Sj .
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Now it follows from our assumption on weight spaces that any finite direct sum of 
weight spaces is finite dimensional, and hence the subspace topology on it is equivalent to 
the Banach space topology given by the max norm. In particular the projection map to 
any direct summand is continuous. Since Mss is the direct limit of the these finite direct 
sums, we see that the projection map from Mss to any direct summand is continuous, 
where Mss is given the subspace topology. Hence we have that, for a fixed λ ∈ S, mλ,j

converges to mλ (where mλ,j , respectively mλ, is understood to be zero when λ /∈ Sj , 
respectively λ /∈ S0). But now mλ,j ∈ N ∩ Mλ for every j, and N ∩ Mλ is finite 
dimensional hence complete. So we get that mλ ∈ N for every λ ∈ S0 as required.

For the last part, we have that Mss is then a Uq-submodule of M, so that N ∩
Mss is Uq-invariant whenever N is Uq-invariant. Also, Uq-invariant subspaces of M are 
preserved under passing to the closure. Hence the result follows immediately from the 
above. �
5.3. Category Ô

We are now in a position where we can define an analogue of the BGG category O
for ıUq. First we recall that there is a category, that we denote by O, which is the full 
subcategory of the category of Uq-modules consisting of modules M that satisfy the 
following:

• M is finitely generated;
• M is the sum of its weight spaces, i.e. M = ⊕λ∈PMλ; and
• dimL U+

q m < ∞ for all m ∈ M .

This category is an analogue of the integral subcategory Oint (i.e. the direct sum of all 
integral blocks) of the usual BGG category O for the complex Lie algebra g (see [20]). 
Our category O shares all the standard properties of Oint, see [1, Section 6] and [12, 
Chapters 9-10]. In particular, all modules in O have finite dimensional weight spaces 
and have finite length, the highest weight Uq-modules all belong to that category, are 
indecomposable and have a unique simple quotient, and O splits into blocks

O =
⊕

λ∈−ρ+P+

Oλ

where ρ is half the sum of the positive roots, and the block Oλ consists of those modules 
from O whose composition factors have highest weights in W · λ.

Now we have for each n ≥ m that U0 = R[Kλ : λ ∈ P ] ⊂ Un and from the PBW 
theorem (Theorem 4.5) we see that πaUn ∩U0 = πaU0 for every a ≥ 1. Hence it follows 
that the subspace topology on U0 of the π-adic topology on Un is the π-adic topology on 
U0. Thus we see that the injection U0

q ⊆ Uq is strict (in fact an isometry) with respect 
to all the norms ||·||n for n ≥ m on Uq and the single gauge norm ||·|| on U0

q associated 

to U0
q . Hence there is a canonical strict embedding ”U0

q ↪→ ıUq.
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Moreover, recall from the notion of a coadmissible module from Definition 4.3 and 
the properties of the category C(ıUq) from Proposition 4.3. These modules have a Fréchet 
topology attached to them, making them by the above into ”U0

q -modules where the action 
is by continuous L-linear endomorphisms.

Definition. The category Ô for ıUq is defined to be the full subcategory of C(ıUq) consisting 
of coadmissible modules M satisfying:

(i) M is topologically ”U0
q -semisimple with weights contained in finitely many cosets of 

the form λ −Q+, with λ ∈ P ; and
(ii) all weight spaces of M are finite dimensional.

From Proposition 4.3 and Corollary 5.1, we immediately get:

Proposition. Let M be an object of Ô.

(i) The direct sum of two objects in Ô is in Ô;
(ii) the category Ô is an abelian subcategory of C(ıUq);
(iii) the sum of two coadmissible submodules of M is in Ô;
(iv) any finitely generated submodule of M is in Ô; and
(v) Let N be a submodule of M. Then the following are equivalent:

(1) N is in Ô;
(2) M/N is in Ô; and
(3) N is closed in the Fréchet topology of M.

We also record here the following fact:

Lemma. Let M ∈ Ô. There is an inclusion preserving bijection between the subobjects of 
M in Ô and the Uq-submodules of Mss.

Proof. We see from Proposition 5.2 that the map

N �→ N ∩Mss

gives an inclusion preserving bijection between the closed, Uq-invariant, ”U0
q -submodules 

of M and the Uq-submodules of Mss. But the former are just the closed ıUq-submodules 
of M, which are just the subobjects in Ô by Proposition 5.3(v). �
5.4. Verma modules

We may now define the objects which play the role of Verma modules. For each λ ∈ P , 
there is a one dimensional U≥0

q -module Lλ given by u · 1 = ψλ(u), where we extend ψλ



136 N. Dupré / Journal of Algebra 537 (2019) 98–146
to a character of U≥0
q by setting it to be 0 on U+

q . We can then define a Verma module 
M(λ) := Uq ⊗U

≥0
q

Lλ.
We now let Iλ be the left ideal of ıUq generated by all Eαi

, K�i
−λ(K�i

) (1 ≤ i ≤ n). 
Since it is finitely generated, it must be a coadmissible module and hence the quotient ıUq/Iλ is coadmissible as well.

Definition. We define the Verma module with highest weight λ for ıUq to be the quotient 
M̆(λ) := ıUq/Iλ, which is a coadmissible module.

Note that M̆(λ) ∼= ıUq ⊗Uq
M(λ). Indeed, if Jλ denotes the left ideal of Uq generated 

by all Eαi
, K�i

− λ(K�i
) (1 ≤ i ≤ n), then we have a short exact sequence

0 → Jλ → Uq → M(λ) → 0

of Uq-modules, and our claim follows by tensoring it with ıUq.
We now want to show that M̆(λ) is an object of our category. To do this, we will need 

a tensor product decomposition of ıUq. Consider the filtration on U− given by assigning 
each Fαi

degree 1 (this is the same as the height filtration by Corollary 4.6). The n-th 
deformation of U− with respect to this filtration is just U−

n for each n ≥ 0. For n ≥ m, 
by the PBW theorem (Theorem 4.5), we have that πaUn ∩U−

n = πaU−
n for every a ≥ 0, 

so that there is an isometric embedding

‘U−
q,n := Û−

n ⊗R L ↪→ ‘Uq,n.

Hence if we let Ũ−
q := lim←−−

‘U−
q,n, then there is a strict embedding Ũ−

q ↪→ ıUq. Using 

Corollary 4.6, we may describe Ũ−
q explicitly as follows:

Ũ−
q =

®∑
r

arF
r1
β1

· · ·F rN
βN

:
∣∣∣π−n ht(Fr)ar,s,λ

∣∣∣ → 0 as ht(F r) → ∞ for all n ≥ 0
´
.

(5.1)

We may completely analogously define the positive subalgebra of ıUq.
We can also do a similar construction for the positive Borel. For each n ≥ m, the 

inclusion U≥0
n ⊆ Un induces an isometric embedding

‘
U≥0
q,n := ‘

U≥0
n ⊗R L ↪→ ‘Uq,n

and passing to the inverse limit, this gives a strict embedding Ū≥0
q ↪→ ıUq where Ū≥0

q =
lim ‘

U≥0
q,n.
←−−
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Lemma. The multiplication map defines a topological isomorphism

Ũ−
q “⊗LŪ

≥0
q → ıUq

of bimodules.

Proof. The PBW theorem (Theorem 4.5) for Um gives an isomorphism

U−
m ⊗R U≥0

m
∼= Um

of filtered R-modules. The result follows from Theorem 3.4. �
Note that, for every λ ∈ P , the one-dimensional U≥0

q -module Lλ is complete 
with respect to any Hausdorff locally convex topology, and so naturally extends to a 

Ū≥0
q -module.

Proposition. The module M̆(λ) lies in Ô and M̆(λ)
ss

= M(λ). There is a canonical 
inclusion preserving bijection between the subobjects of M̆(λ) and the Uq-submodules of 
M(λ). In particular, M̆(λ) is an irreducible object if and only if M(λ) is irreducible as 
a Uq-module.

Proof. From the definition, we see that M̆(λ) = ıUq ⊗
Ũ

≥0
q

Lλ, and its topology is the 

quotient topology coming from ıUq. Since it’s therefore complete, it follows that M̆(λ) ∼=ıUq“⊗
Ũ

≥0
q

Lλ. By the Lemma and using the fact that the projective tensor product is 

associative, we obtain an isomorphism

M̆(λ) ∼= Ũ−
q “⊗LLλ

∼= Ũ−
q ⊗L Lλ

as left Ũ−
q -modules. By considering now the ”U0

q -action on this, and using the description 

of Ũ−
q in (5.1), we see that M̆(λ) ∈ Ô and that M̆(λ)

ss
= U−

q ⊗L Lλ = M(λ). The final 
two statements follow immediately from Lemma 5.3. �
Corollary. Let λ ∈ P . Then the following are equivalent:

• M̆(λ) is an irreducible object in Ô.
• For every positive root β, 〈λ + ρ, β∨〉 /∈ N.

Proof. This is just the condition for M(λ) to be irreducible, see [12, Corollary 
10.1.11]. �
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5.5. Highest weight modules

Having defined the Verma modules, we now look more generally at highest weight 
modules.

Definition. Given a coadmissible ıUq-module M and λ ∈ P , an element 0 �= m ∈ Mλ is 
called a maximal vector of weight λ if U+

q ·m = 0. We say M is a highest weight module 

with highest weight λ if it is the cyclic ıUq-module on a maximal vector in Mλ.

The next result follows directly from the definition of M̆(λ):

Lemma. The coadmissible module M̆(λ) is a highest weight module with highest weight 
λ.

Note more generally that it is immediate from the definition of Ô that every object 
of Ô contains a maximal vector. Hence by Proposition 5.3(iv), every irreducible object 
in Ô is a highest weight module.

Proposition. Let M ∈ C(ıUq) be a highest weight module on a maximal vector m ∈ M of 
weight λ ∈ P . We have the following:

(i) M is topologically ”U0
q -semisimple with weights contained in λ −Q+.

(ii) The weight spaces of M are finite dimensional and dimL Mλ = 1. In particular, 
M ∈ Ô and M has finite length in Ô.

(iii) Each non-zero quotient of M by a coadmissible submodule is again a highest weight 
module.

(iv) Each coadmissible submodule of M generated by a maximal vector m′ ∈ Mμ for 
some μ < λ is proper. In particular, if M is an irreducible object in Ô then all its 
maximal vectors lie in Lm, and hence EndÙUq

(M) = L.
(v) M has a unique maximal subobject and a unique irreducible quotient object and, 

hence, is an indecomposable object.
(vi) Let N be another highest weight module of weight μ. Then

dimLHomÙUq
(M,N ) < ∞.

If λ �= μ then M and N are not isomorphic. If M and N are simple objects and 
λ = μ, then M ∼= N .

Proof. By definition of highest weight modules, there is a surjection M̆(λ) → M which 
is a morphism in C(ıUq). Hence we see from Proposition 5.3(v) that M ∈ Ô. From 
Corollary 5.1 and Proposition 5.4, we get a surjection

M(λ) = M̆(λ)
ss
→ Mss.
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In particular, Mss is a highest weight module of weight λ in O. All properties therefore 
follow from the usual properties of O by Lemma 5.3. �

If we write V̆ (λ) to denote the unique irreducible quotient of M̆(λ), then we have 

V̆ (λ)
ss ∼= V (λ), where the latter denotes the unique irreducible quotient of M(λ). Then 

we obtain:

Corollary. The map λ �→ [V̆ (λ)] gives a bijection between P and the set of isomorphism 
classes of irreducible objects in Ô.

5.6. A functor O → Ô

We now describe a functor between the categories O and Ô. It follows from Corol-
lary 4.3 that the functor M �→ ıUq ⊗Uq

M between the categories of Uq-modules and ıUq-modules is exact. If M is a finitely generated Uq-modules, then M is in fact finitely 
presented since Uq is Noetherian and hence ıUq ⊗Uq

M is also finitely presented. But this 
implies that ıUq⊗Uq

M is coadmissible. Thus there is an exact functor F : M �→ ıUq⊗Uq
M

between the category of finitely generated Uq-modules and the category of coadmissible ıUq-modules.
Moreover we have already seen that F (M(λ)) = M̆(λ). Thus, if M ∈ O is a highest 

weight module of highest weight λ, then by exactness of F we get that F (M) is a quotient 
of M̆(λ) and hence is in Ô. More generally, every object of O has a finite filtration with 
highest weight subquotients. Hence there is a surjection ⊕iMi → M from a finite direct 
sum of highest weight modules to M , and since F commutes with finite direct sums, it 
follows that F (M) is a quotient of ⊕iF (Mi) and so lies in Ô. Hence F restricts to an 
exact functor

F : O → Ô.

Then we have:

Proposition. The functor F : O → Ô is a fully faithful exact embedding with left inverse 
given by M �→ Mss.

Proof. It suffices to show that there is an isomorphism M ∼= F (M)ss natural in M . First 
observe that there is such a natural Uq-module map, given by m �→ 1 ⊗m. If M = M(λ)
for some λ ∈ P , that map is an isomorphism by the proof of Proposition 5.4. If M is a 
highest weight module, we have a short exact sequence

0 → N → M(λ) → M → 0

for some λ ∈ P . Writing N as a subquotient of Uq and using the fact that M̆(λ) is 
the completion of Uq/Jλ with the quotient locally convex topology, we see that the 
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image of the map F (N) → M̆(λ) is the closure of N in M̆(λ). Hence N ∼= F (N)ss by 
Proposition 5.2 and it follows that M ∼= F (M)ss by exactness of the two functors. Now 
if M is arbitrary, it has a filtration whose subquotients are highest weight modules. By 
induction we may assume M is an extension of highest weight modules. Then the result 
follows by the Five Lemma. �

Moreover we can easily identify the essential image of the functor F :

Lemma. The essential image of F is the full subcategory of Ô whose objects are those 
modules M ∈ Ô which have a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

by subobjects such that the quotient Mi/Mi−1 is a highest weight module for each i ≥ 1.

Proof. The essential image is contained in this since, for M ∈ O, we have an analogous 
finite filtration in O with subquotients equal to highest weight modules and so we obtain 
the filtration for F (M) by applying F to this filtration and using exactness. For the 
converse, suppose that M is as described. Then by exactness of M �→ Mss (Corollary 5.1) 
and by Proposition 5.5 and its proof, we see that Mss ∈ O. Thus it suffices to show that 
F (Mss) ∼= M. Now by applying the functor ıUq ⊗Uq

(·) to the inclusion Mss ⊂ M and 
postcomposing with the action map u ⊗m �→ um, we get a morphism F (Mss) → M in 
Ô. Let K and C denote its kernel and cokernel respectively. Then from Proposition 5.6
we get that Kss = Css = 0, and so K = C = 0 by Proposition 5.2. �

We claim that the full subcategory described in Lemma 5.6 is the whole of Ô:

Theorem. The functors F and (·)ss are quasi-inverse equivalence of categories between 
the categories O and Ô.

The rest of this paper will be spent proving this theorem.

5.7. Central characters

We now quickly recall some facts about central characters. Recall that the centre of 
Z(Uq) is isomorphic to a polynomial algebra in n variables (see [23, Section 7.3, page 
218] - note that this is only true for the simply connected form of the quantum group). 
For each λ ∈ P , Z(Uq) acts on the Verma module M(λ) by a central character χλ (see 
[21, Lemma 6.3]). These characters satisfy the usual property that χλ = χμ if and only 
if μ ∈ W · λ (see [12, Theorem 9.1.8]) with respect the dot action w · λ = w(λ + ρ) − ρ. 
Thus every character has a unique representative in −ρ + P+.

For a given λ ∈ −ρ + P+, the character χλ extends to a continuous character of 
the closure Ż(Uq) of Z(Uq) in ıUq, which we also denote by χλ, using the fact that 



N. Dupré / Journal of Algebra 537 (2019) 98–146 141
EndÔ(M̆(λ)) = L from Proposition 5.5(iv). Indeed it’s clear from it that Ż(Uq) acts on 
the Verma module by a continuous character, and we see that this character extends χλ

by considering the semisimple part. Hence we see more generally from Proposition 5.5
that Ż(Uq) acts on a highest weight module M by the character χλ, and that every 
Jordan-Holder factor of M must necessarily have highest weight in W · λ.

Now, if M ∈ Ô then Z(Uq) acts on each weight space Mλ and we may form the 
subspace

Mχ
λ := {m ∈ Mλ : (kerχ)a ·m = 0 for some a = a(m) ≥ 1}

where χ is a character of Z(Uq). Since ⊕λMχ
λ is a Uq-submodule of Mss, its closure Mχ

inside M is a subobject in Ô by Lemma 5.3. Thus we may define the full subcategory 
Ôχ of Ô whose objects are those M ∈ Ô such that M = Mχ. When χ = χμ for some 
μ ∈ P , we write Ôχ = Ôμ. We now establish a few facts about these subcategories.

Lemma. Suppose M ∈ Ô and χ is a central character as above. If Mχ �= 0, then χ = χμ

for some μ ∈ P .

Proof. Since Mχ is an object in Ô, it must have a maximal vector m ∈ Mχ
μ. Let n ≥ 1

be minimal such that (kerχ)n ·m = 0. Pick 0 �= m′ ∈ (kerχ)n−1 ·m. Then m′ is still a 
maximal vector and the centre acts on it by χ. On the other hand, the highest weight 
module generated by m′ is a quotient of M̆(μ) and hence the centre acts on it by χμ. 
This forces χ = χμ. �

Hence we see that the only such subcategories which are non-zero are the Ôμ for 
μ ∈ −ρ + P+.

Proposition. For every μ ∈ −ρ +P+, the category Ôμ is abelian and the functor Ô → Ôμ

given by M �→ Mχμ is exact. Moreover, Ôμ is Artinian and Noetherian.

Proof. Given a morphism M → N in Ô we have morphisms Mλ → Nλ for each λ ∈ P

and Mχμ

λ → Nχμ

λ . Taking the sum over all λ and passing to the closure, we see that the 
assignment M �→ Mχμ is functorial. For the exactness, we apply the same argument 
again using the fact that module maps between coadmissible modules are automatically 
strict and so passage to the closure then preserves exactness by [9, 1.1.9, Corollary 6]. 
As Ôμ is a full subcategory of Ô, it is now clear that it is closed under passage to kernels 
and cokernels and, thus, abelian.

The last part follows using the classical argument for category O (see [20, Theorem 
1.11]) as follows. Given M ∈ Ôμ, let V =

∑
λ∈W ·μ Mλ. Then V is finite dimensional. 

Now if 0 �= N ′ ⊂ N is a strict inclusion of subobjects of M, let m ∈ Nλ be such that its 
image in N/N ′ is a maximal vector for some weight λ. The cyclic submodule of N/N ′

generated by the image of m is highest weight, hence Ż(Uq) acts on it by χλ. Hence it 
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must be that χλ = χμ i.e. that λ ∈ W ·μ. Thus by definition of V we see that m ∈ N ∩V

and so we obtain dimL(N ∩ V ) > dimL(N ′ ∩ V ). The result now follows. �
They key step in the proof of Theorem 5.6 is the following:

5.8. Proposition

The above functors Ô → Ôμ induce a faithful embedding of Ô into the direct product ∏
μ∈−ρ+P+ Ôμ.

Proof. Choose polynomial generators z1, . . . , zn of Z(Uq). Then for any M ∈ Ô, the vec-
tor space Mχμ

λ is the simultaneous generalised eigenspace of the finitely many commuting 
operators z1, . . . , zn with simultaneous generalised eigenvalues χμ(z1), . . . , χμ(zn). Now 
there is a finite field extension L ⊆ L′ such that

Mλ ⊗L L′ =
⊕
χ

(Mλ ⊗L L′)χ

where the sum runs over a finite number of L′-valued characters of Z(Uq) and (Mλ ⊗L

L′)χ is defined in the obvious way. Hence we just need to show that if (Mλ ⊗L L′)χ �= 0
then χ = χμ for some μ. But this is Lemma 5.7, noting that M ⊗L L′ is in Ô since L′

is a finite extension.
Thus we have that Mλ =

⊕
μ M

χμ

λ . Moreover, the equality Mμ ∩Mss =
⊕

λ M
χμ

λ

implies that Mss =
⊕

μ(Mμ∩Mss). Hence we see that from this and the usual properties 
of (·)ss that the sum 

∑
μ Mμ is direct and dense in M. In particular the functor Ô →∏

μ Ôμ given by M �→ (Mμ)μ is faithful. �
We can now establish our main result. We first need a couple of preparatory results.

Lemma. For every n ≥ m, there is a triangular decomposition

‘U−
q,n“⊗L

”U0
q
“⊗L

‘U+
q,n

∼=−→ ‘Uq,n

given by the multiplication map.

Proof. By the PBW theorem (Theorem 4.5), the multiplication map yields a triangular 
decomposition

U−
n ⊗R U0 ⊗R U+

n

∼=−→ Un

for every n ≥ m. The result now follows by Proposition 3.3. �
Given any coadmissible ıUq-module M, we write Mn := ‘Uq,n ⊗ÙUq

M which is a 

finitely generated Banach ‘Uq,n-module. Moreover the canonical map M → Mn has 
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dense image. We also remark that the map ıUq → ‘Uq,n is flat for every n ≥ m (see [33, 
Remark 3.2]).

5.9. Lemma

For any λ ∈ P and any n ≥ m, we have V̆ (λ)n �= 0.

Proof. Consider the kernel K of the surjection M̃λ → V̆ (λ). Since ıUq → ‘Uq,n is flat, the 

kernel of (M̃λ)n → V̆ (λ)n is Kn for every n ≥ m. By the triangular decomposition for ‘Uq,n from the previous Lemma, we get

(M̃λ)n ∼= ‘Uq,n ⊗Uq
Mλ

∼= ‘U−
q,n ⊗L Lλ

and so (M̃λ)n is topologically ”U0
q -semisimple with ((M̃λ)n)ss = Mλ. By Corollary 5.1, 

both Kn and V̆ (λ)n are topologically semisimple and it suffices to show that Kss
n �=

((M̃λ)n)ss = Mλ. Now the composite Kss ⊂ K → Kn has dense image, so it follows from 
Proposition 5.2 that its image is Kss

n . So we get Kss
n

∼= Kss as U0
q -modules, and now we 

see that Kss
n �= Mλ as required because V̆ (λ)

ss
�= 0. �

Proposition. The category Ô is Artinian and Noetherian.

Proof. Let M ∈ Ô. We have from the proof of Proposition 5.8 that 
⊕

μ Mμ is dense in 
M. Now for any n ≥ m, we have

Mn = ‘Uq,n ⊗ÙUq
M ⊇ ‘Uq,n ⊗ÙUq

(⊕
μ

Mμ

)
=

⊕
μ

(Mμ)n.

Any non-zero Mμ has a composition series by Proposition 5.7 and so V̆ (λ)n ⊆ (Mμ)n
for some λ ∈ P and then we see that (Mμ)n �= 0 by the previous Lemma. Since Mn

is a finitely generated ‘Uq,n-module and ‘Uq,n is Noetherian, it follows that Mμ = 0 for 
all but finitely many μ. But then the sum 

⊕
μ Mμ is finite and so closed by Proposi-

tion 5.3(iii)&(v). �
This now concludes the proof of Theorem 5.6:

Proof of Theorem 5.6. This follows immediately from the previous Proposition by 
Lemma 5.6. �
5.10. A Harish-Chandra isomorphism

The analogue of Theorem 5.6 was proved for (non-quantum) Arens-Michael envelopes 
in [31]. One of the main ingredients was a version of the Harish-Chandra isomorphism. 
Recall that the centre of Z(Uq) is isomorphic to a polynomial algebra in n variables.
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Conjecture. The above isomorphism extends to a topological isomorphism Ż(Uq) →
O(An,an

L ) between the closure of Z(Uq) in ıUq and the algebra of rigid analytic functions 
on the analytification of affine n-space.

To justify that this conjecture might plausibly be true, we show it for Uq(sl2). In that 
case, the centre Z(Uq) is a polynomial algebra in the quantum Casimir element

Cq := FE + qK2 + q−1K−2

(q − q−1)2 ,

see [22, Proposition 2.18]. In this sl2 setting, recall that we had set the number m to be 
the least positive integer such that

π2m

q − q−1 ∈ R.

Having recalled this, we can now show:

Proposition. Conjecture 5.10 holds for Uq(sl2).

Proof. By definition of Cq, for n ≥ 2m, we have

π2nCq = (πnF )(πnE) + π2n(qK2 + q−1K−2)
(q − q−1)2 ∈ Un.

Hence we see that the subalgebra of Z(Uq) consisting of polynomials in π2nCq with coef-
ficients in R is contained in the centre of Un. Conversely, suppose that z =

∑a
i=0 ciC

i
q ∈

Z(Uq) ∩Un, with each ci ∈ L. We show by induction on a that each coefficient ci actually 
belongs to π2niR. If a = 0 this is obvious so assume a ≥ 1. Now note that

Ci
q = F iEi + (terms of lower height).

Indeed this follows from the commutator relation between E and F . In particular, ex-
panding Ci

q in terms of the PBW basis, we see that Ci
q is a linear combination of basis 

vectors of height ≤ 2i − 1, with the exception of F iEi which arises with coefficient 1.
Thus we see that the coefficient of F aEa in the PBW basis expression for z is ca, since 

all other terms appearing in every summand of z have height at most 2a − 1. But by the 
PBW theorem for Un (Theorem 4.5) and since z ∈ Un, it follows that the coefficient of 
F aEa in the basis expression for z is in π2naR. Hence ca ∈ π2naR and it follows that 
caC

a
q ∈ R(π2nCq)a ⊆ Un. Thus we may consider

a−1∑
ciC

i
q = z − caC

a
q ∈ Z(Uq) ∩ Un
i=0
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and get that the other coefficients satisfy the required property by induction hypothesis.
The above calculation shows that the centre of Un is Zn := R[π2nCq] for every n ≥ 2m. 

If we write ‘Zq,n := ”Zn ⊗R L, we get that the closure Ż(Uq) of Z(Uq) in ıUq is the 
projective limit lim←−−

‘Zq,n. From our description of Zn, it is clear that this is isomorphic 
to O(A1,an

L ). �
Remark. The non-quantum version of Harish-Chandra for the Arens-Michael envelope 
is due to Kohlhaase [24, Theorem 2.1.6]. A completely similar construction to the initial 
Harish-Chandra homomorphism applies to the Arens-Michael envelope, and he shows 
it to be an isomorphism. In our quantum setting, we can do that construction as well. 
One can straightforwardly construct a continuous projection map Ż(Uq) → ”U0

q and twist 
by −ρ, which gives a continuous algebra homomorphism with image in the Weyl group 
invariants. However all the defining norms of ıUq are identical on ”U0

q and so it is not clear 
a priori how to see the Fréchet structure of this image (this is something that does not 
occur in the classical situation).

The above calculation for sl2 works because we have a complete and explicit descrip-
tion of the polynomial generator for the centre in terms of the PBW basis. In order to 
perform a similar calculation for a general Lie algebra, we’d need to have a similar de-
scription of the polynomial generators of the centre, something which we have not found 
in the literature.
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