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1. Introduction
1.1. Background and main results

The study of quantum groups in a p-adic analytic setting was first proposed by Soibel-
man in [36], where he introduced quantum deformations of the algebras of locally analytic
functions on p-adic Lie groups and of the corresponding distribution algebra of Schneider
and Teitelbaum [33]. Soibelman conjectured among other things that his quantum dis-
tribution algebras are topological Hopf algebras and Fréchet-Stein algebras. These latter
types of algebras were introduced in [33] and play an important role in the theory of
locally analytic representations of p-adic groups. To the best of our knowledge, Soibel-
man’s conjectures have remained unproved and, since then, apart from the short note
[27] and the thesis [38], there had been no new constructions or results related to the
study of p-adic analytic quantum groups until very recently. -

We attempt to correct that in this paper by constructing a quantum analogue U, (g),
or ﬁq for short, of the p-adic Arens-Michael envelope [7?9) of the enveloping algebra
of the p-adic Lie algebra. Classically, U/'@ can be identified as the subalgebra of the
distribution algebra consisting of distributions supported at the identity, and it is known
to be a Fréchet-Stein algebra. Its representation theory was first studied in [30,31] and
can be thought of as a first approximation to the locally analytic representation theory
of the corresponding p-adic Lie group. Our construction of [7(1 is inspired by the theory
developed by Ardakov and Wadsley in [5]. In particular we adapt their methods to show
that ﬁq is a Fréchet-Stein algebra, see Theorem 4.3 and Theorem 4.8. We also show that
it is a topological Hopf algebra, see section 3.4. The algebra [ﬁg\) is initially defined to
be the completion of U(g) with respect to all submultiplicative seminorms that extend
the norm on the ground field L. Our algebra m is defined differently, but we show
that it also satisfies a similar universal property: it is the completion of the quantized
enveloping algebra U,(g) with respect to the submultiplicative seminorms which extend
a particular norm on U = L[K,], see Corollary 4.7.

We also construct a quantum analogue 6; of the algebra of rigid analytic functions
on the analytification of a semisimple algebraic group G. Specifically, we use the GAGA
construction on the quantized coordinate algebra O, := O4(G) to obtain an algebra @
which we show to be a topological Hopf algebra, see section 3.5. We also use techniques
based on [16] to prove that C’)Aq is Fréchet-Stein, see Proposition 4.4 and Theorem 4.9.
Moreover we show that /(5; is the completion of O, with respect to all submultiplicative
seminorms that extend the norm on L, see Corollary 4.7. Throughout this paper we only
work in the case where ¢ is not a root of unity, and whenever we’re working with /U; we
add the mild condition that ¢ — 1 has norm strictly less than 1 in L.

We conclude this work by using the Fréchet-Stein structure on /U_'; to construct an
analogue of the BGG category O for it. Indeed, a particularly important property of
Fréchet-Stein algebras is that there is a well behaved abelian category of so-called coad-
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missible modules over them, which in the geometric setting correspond to global sections
of coherent modules over Stein spaces (see [33, Section 3]). There is also a category O for
quantum groups, see [1], which is a quantum analogue of the sum of the integral blocks
inside the classical BGG category. Finally, there already exists an analogue of category O
for Arens-Michael envelopes, see [31], and its definition generalises straightforwardly to
our quantum setting. Roughly, the category consists of those coadmissible modules over
ﬁq whose weight spaces are finite dimensional and such that the weights are contained
in finitely many cosets in the weight lattice. We also require for these modules to be
topologically semisimple, a notion which was inspired by work of Féaux de Lacroix [17].
We denote this new category by ®. Then we prove that the functor M /U; ®u, M
is an equivalence of categories between the category O for U, and the category o (see
Theorem 5.6). The non-quantum version of this result is the main result of [31], and our
proof follows theirs quite closely.

We note that there has been a successful attempt at constructing a quantum Arens-
Michael envelope for sl, and proving that it is a Fréchet-Stein algebra in [27], but the
general case hasn’t been tackled before. Although the object we construct is the same
as theirs for sl,, our constructions and proofs are different. Very recently, Smith [34]
has constructed certain analytic quantum groups using Nichols algebras. It would be
interesting to compare our algebras to his.

1.2. Future research

mltima‘cely aim to develop a theory of D-modules to un(ieﬁtand representations
of Uy(g). In the classical setting, the Arens-Michael envelope U(g) can be viewed as a
quantization of the algebra of rigid analytic functions on g*, and is the right object to
consider in order to obtain a Beilinson-Bernstein type equivalence, see [5,6,3]. We are
working on a Beilinson—B;ein\stein type equivalence in our context, and this motivates our
choice of working with Uq,(g). Indeed there exists a theory [7,8] of quantum D-modules
and a Beilinson-Bernstein theorem for representations of U,(g) developed by Backelin
and Kremnizer, and there is also an analogous quantum Beilinson-Bernstein theorem
due to Tanisaki [37]. In [15] we will begin to adapt the Backelin-Kremnizer theory of
quantum D-modules to our setting.

1.3. Structure of the paper

In section 2 we recall the basic facts and definitions about quantum groups that we
will need. In section 3 we define the algebras ﬁq and @ and use standard results from
functional analysis to prove that they are Fréchet Hopf algebras. In section 4, we develop
general criteria to establish that certain algebras are Fréchet-Stein. Specifically, we use
the notion of a deformable algebra from [4] and adapt two useful criteria for flatness
from [5,16] to our setting. We then use those to prove that ﬁq and Z’)TZ are Fréchet-Stein
algebras. In doing so, we prove a PBW type theorem for certain lattices inside U, and
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obtain universal properties for /U; and OAq. Finally, in Section 5, we introduce the notion
of a topologically semisimple module. We then use this to define the category O and
investigate its properties. In particular, we construct Verma modules and highest weight
modules for UA'q. We then show that this category is equivalent to the category O for U,.
One of the main ingredients is a form of block decomposition by central characters.

1.4. Acknowledgments

The results of this paper form part of the author’s PhD thesis, which was produced
under the supervision of Simon Wadsley. We would like to thank him for his help,
encouragement and patience. We would also like to thank Andreas Bode for his continued
interest in our work and for many useful conversations. We thank Tobias Schmidt for
pointing out a reference. We thank the anonymous reviewer for his/her helpful comments.
The author’s PhD was funded by EPSRC.

1.5. Conventions and notation

Throughout L will denote a complete discrete valuation field of characteristic 0 with
valuation ring R, uniformizer 7w and residue field k. We fix a unit element ¢ € R which
is not a root of unity.

Unless explicitly stated otherwise, the term “module” will be used to mean left module,
and Noetherian rings are both left and right Noetherian. Given a ring homomorphism
A — B, we will say that B is flat over A to mean that it’s both left flat and right flat.

All of our filtrations on modules or algebras will be positive and exhaustive unless
specified otherwise. Furthermore, given a ring S, a subring FS such that S is generated
over FyS by some elements x1, ..., z, which normalise FyS, and integers dy,...,d, > 1,
there is a ring filtration on S by FjS-submodules given by setting

FtS = F()S {.’Eil R 17 S Zdzﬂ S t}
j=1

for each ¢t > 0. In such a setting, we will simply say ‘the filtration given by assigning
each x; degree d;’ to refer to this filtration.

Following [4, Def 2.7], an R-submodule W of an L-vector space V will be called a
lattice if the map W ® g L — V is an isomorphism and W is w-adically separated, i.e.
Nn>o "W = 0. Also, for any R-module M, we denote by M= MM/WnM its m-adic
completion.

Finally, we let g be a complex semisimple Lie algebra. We fix a Cartan subalgebra
h C g contained in a Borel subalgebra. We choose a positive root system and we denote
the simple roots by a,...,a,. Let C' = (a;;) denote the Cartan matrix. We let G be
the simply connected semisimple algebraic group corresponding to g, and we let B be
the Borel subgroup corresponding to the positive root system, and let N C B be its
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unipotent radical. Let b = Lie(B) and n = Lie(N). Let W be the Weyl group of g, and
let (,) denote the standard normalised W-invariant bilinear form on h*. Let P C h* be
the weight lattice and Q C P be the root lattice. Let d be the smallest natural number
such that (u, P) C éZ for all p € P. Let d; = % € {1,2,3} and write g; := ¢%.

We make the following two assumptions. First, we assume that q5 exists in R. Sec-
ondly, we assume that p > 2 and, if g has a component of type G, we furthermore
restrict to p > 3.

All the above algebraic groups and Lie algebras have k-forms, and we write G, gg, - - -
etc to denote them.

2. Preliminaries
2.1. Quantized enveloping algebra

We begin by reviewing basic facts about quantized enveloping algebras (see e.g. [11,
Chapter 1.6] for more details). We recall some usual notation for quantum binomial

coefficients. For n € Z and t € L, we write [n], := t::tt:ln. We then set the quantum
factorial numbers to be given by [0]¢! = 1 and [n];! := [n]¢[n — 1];-- - [1]¢ for n > 1. Then
we define

n_ [n]:!

i, [ldeln— !

when n >17 > 1.

Definition. The simply connected quantized enveloping algebra U,(g) is defined to be
the L-algebra with generators Eo,,...,Eq,, Foy,---s Fo,, Kx, A € P, satisfying the
following relations:

KK, =Kx;,, Ko=1,
K\Eo,K_\ = q™*VE,,, K\Fo,K_,=q MF,,
Ko, — K_q,

3 J qifqil

i

1—aij
1 —ay —Gi— . .
P ] I R )
=0 qi
1—aij
1 —ay
_1l ¥
>

Fali—az:j—lFajFoléi =0 (@ 7& j)
=0 i

qi

We will also abbreviate U, (g) to U, when no confusion can arise as to the choice of Lie
algebra g. We can define Borel and nilpotent subalgebras, namely UqZO is the subalgebra
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generated by all the K's and the E's, and U, is the subalgebra generated by all the E's.

Similarly we can define UqSO as the algebra generated by all the K’s and the F’s, and

U, is the subalgebra generated by the F’s. There is also a Cartan subalgebra given by

Ug := L[K) : A € P], which is isomorphic to the group algebra LP. There is an algebra

automorphism w of U, defined by w(Eq,) = Fa,, w(Fa,) = Eq, and w(Ky) = K_.
Recall that U, is a Hopf algebra with operations given by

A(K)\):K)\Q@K)\ E(K)\) 1 S(K)\):K,)\
A(Bo,) =B, ®1+ Ko, ® Ea,  €(Ea,) =0  S(Ea,) = —K_o,Ea,
0

i i i

A(Fy)=F,, @K o, +1®F,, e(Fy,) S(F,,) = —F,, K,

i i i

fori=1,...,n and all A\ € P. Then UqZO and UqSO are sub-Hopf algebras of U,.
We now recall the construction that leads to the PBW basis for Uy (see [21, Chapter
8] for more details). Firstly, we have a triangular decomposition

U, 2U; @ U@L U

so that it is sufficient to find bases for U, qi. In order to obtain a basis for U, ;‘ , we consider
the action of the braid group on U, due to Lusztig. Firstly, we recall the usual notation

B® = Lo pe . fa
’ [s]q,! ! [s]q,!

for any integer s > 0. The braid group action as algebra automorphisms of U, is then
defined by

TiEa, = Y (-1 EC " BED (i # )

TiFa,; = Z (=1)7 qui(S)FjFi(iaijis) (i #J)
s=0

TiKy = Ky,

The above action can be extended to construct operators T, for any element w € W.
Indeed, if w = s;, ---s;, is a reduced expression for w, then let T, = T;,T;, --- T;..
Moreover, if w = wiwe where ¢(w) = £(w1) + ¢(ws) then Ty, = Toy, T, -

Let N denote the number of positive roots of g. Let wg € W be the unique element

of longest length and choose a reduced expression wg = ;, - - - i, - Recall that then
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pr = ai1752 = Sil(aiz)v s BN = Siy t e siN—l(aiN)
are all the positive roots of g in some order. Then we define elements Ejg,, ..., Eg, of
U, by
Eﬁj = Ti1 s Tij,l(Eociv)-

J

If in particular 3; = «y is a simple root, then we have Ejs, = FE,,. Note that we have in
general K)\Ep K_) = q</\’5f>E5j.

Then the set of all ordered monomials Egil e E?NN forms a basis for U, ;‘ . This depends
on a choice of reduced expression for wgy so we fix one for the rest of this paper. We now
let Fjg, := w(Eps;) and the corresponding monomials in the F’s will form a basis of U,
The triangular decomposition immediately gives a PBW type basis for U;, namely the
basis consists of all ordered monomials

n n m m
FBll o FBJiIVK)‘E&l o EﬁNN
for m;,n; € Z>o and A € P. For short we will write
My s\ = F'K\E?®

where r,s € Zgo. We recall that the height of such a monomial is defined to be

Mz

(rj + s;) ht(5;)

'r's)\

Jj=1

where ht(3) := Y. a; for a positive root 3 = 7, a;a;. This gives rise to a positive
algebra filtration on U, defined by

F,Uy == L-span{ M, s » : ht(M, s ) < i}.

From now on we will always refer to this filtration as the height filtration on U,. It can be
extended to a multifiltration as follows (see [14, Section 10] for details): the associated
graded algebra U = gr U, with respect to the above filtration can be seen to have
the same presentation as Uy, with the exception that now all the £’s commute with all
the F’s. Moreover it has the same vector space basis, by which we mean the basis for
UM is consists of the symbols of the basis elements for U,. If we impose the reverse
lexicographic ordering on Z>0, then we can filter U()) by assigning to each monomial
M, s » the degree (r1,...,7n,51,...,5n). In other words for each d € Zijg, we set FyU™M)
to be the span of the monomials M, ¢ » such that (ri,...,7n,81,...,5n) < d. This is
an algebra multi-filtration, and we denote the corresponding associated graded algebra
of UM by UEN+1),
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Theorem. ([14, Proposition 10.1]) The algebra UN*Y) s the L-algebra with generators
Eﬂu .. "EﬁN’FBU' . .,FBN,K)\()\ S P)
and relations

K)\Kp. = K)\+,u,7 Ky =1,

K}\Eﬁl :q<>\7ﬂL>Eo¢1K)\7 KAFﬂJ :q_<>\7ﬂJ>FB]K)\,
Ep, Fp; = Fp; Eg,

EﬁiEﬁJ = qwi’ﬁj)EﬁjEﬁm FﬁiFﬁj = qwivﬁj)Fﬁij

for\,pe Pand1<i,j<N.
2.2. Quantized coordinate rings

We now recall the construction of the quantized coordinate algebra O,. For any module
M over an L-Hopf algebra H, and for any f € H* and v € M, the matrix coefficient
cfv € H* is defined by

c%v(a:) = f(zv) for x € H.

Also recall from [21, Theorem 5.10] that for each A € P there is a unique irreducible
representation of type 1, V(X), of U, and that these form a complete list of such rep-
resentations. The module V(A) has a highest weight vector vy of weight A and we can
pick a weight basis, which we will write as {v;} for short, and we will write {f;} for the
corresponding dual basis.

The quantized coordinate ring O, is then defined to be the L-subalgebra of U, gen-
erated by all matrix coefficients of the modules V() for A € P*. In other words, it is
the algebra generated by the c}/(i‘]) where A € P (this does not depend on our choice of
weight basis). Hence O, is the algebra of matrix coefficients of finite dimensional type 1
representations of U,.

Furthermore O, is actually generated by the matrix coefficients of the modules
V(w1),..., V(@) (see [11, Proposition 1.7.8]). It is a sub-Hopf algebra of U, (see [11,
Lemma 1.7.3]) with Hopf algebra maps given by:

V(X V(X V(a* V(X
e(cy <>) filv;) =0y, S(c ffvj)_cvjﬁfj, cm] Zcfgg@ch (2.1)

where we have V(\)* 2 V(—wgl).

We conclude by describing certain g-commutator relations in O,. For each i we let B;
denote our basis of V(w;) and B} denote the dual basis. By the above O, is generated
by the set
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X:{c}iiwi) ci=1,...n,f € B},v € B;}.

From [11, 1.8.16-1.8.18], we may order X into a list 1,..., 2, so that there exists ¢;; €

R*, equal to some power of ¢, and o}, 47f € L* such that

j—1 r

_ st st
Ty = ¢ijxiT; + E g (afjzsz + BijTe2s)
s=1t=1

forl<j<i<r.
One can use these relations to deduce that O, is Noetherian. Indeed let F. denote the
filtration on O, obtained by giving z; degree d; = 2" — 2"~%. That is we set

F,0, = L-span{z;, - - - x;, : Zdij <t}
j=1

These degrees are chosen so that whenever i > j > s and t < 7, we always have
d; +d; > ds + d¢. Then we have:

Theorem. ([11, Proposition 1.8.17 & Theorem 1.8.18]) With respect to the above filtration,
grOy is a g-commutative L-algebra and so Noetherian.

Here we used the following (recall we assumed that ¢ € R):

Definition. Let A be an R-algebra. We say that a set of elements z1,...,2z, € A
g-commute if for all 1 < 4,5 < m we have z;2; = ¢"/x;x; for some n;; € éZ. Sup-
pose that S is an R-subalgebra of A. We say that A is a g-commutative S-algebra if
A is finitely generated over S by elements x1,...,%, which normalise S and which
g-commute.

From a noncommutative analogue of Hilbert’s basis theorem [28, Theorem 1.2.10] and
by induction, we immediately deduce:

Lemma. Let A be a g-commutative S-algebra as above. If S is Noetherian then so is A.
2.83. Deformable algebras and modules

Recall from [4, Definition 3.5] that a positively Z-filtered R-algebra A with FyA an
R-subalgebra of A is said to be a deformable R-algebra if gr A is a flat R-module and A
is a lattice in Ay. Its n-th deformation is the subring

A, = Z TV A.

i>0

A morphism between deformable R-algebras is a filtered R-algebra homomorphism.
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We can easily generalise these notions to R-modules. In particular, note that the
above notion of the n-th deformation of A does not require for A to be deformable in
order to make sense. Hence, for any positively Z-filtered R-module M, we define its n-th
deformation to be

M, = Z TV F; M.
i>0

We then say that M is deformable if gr M is a flat R-module and M is a lattice in M.

Remark. Note that forcing deformable algebras to be m-adically separated is not a very
big restriction, for instance it always holds when A is a Noetherian domain as long as 7
is not a unit by [25, Proposition 1.4.4.5].

We can then extend known results with identical proofs:

Lemma. Let M be a deformable R-module. Then

(i) ([4, Lemma 3.5]) For alln >0, M, is also deformable, with filtration

J
FiM, := M, N F;M =Y 7" F,M,
=0

and there is a natural isomorphism gr M, = gr M.
(ii) ([5, Lemma 6.4(a)]) My N 7'M =", 7" F;M for any t > 0;
(iii) ([5, Lemma 6.4(b)]) (Mp)m = Mp+m for any n,m > 0.

We also record here a useful fact about tensor products that we will need later on.
Recall that given two filtered R-modules M and N, we can give M ®r N a tensor
filtration, where F3(M ®pr N) is generated as an R-module by all elementary tensors
m ®@ n such that m € F;M and n € F;N where i +j = 1.

2.4. Lemma

If M and N are torsion-free filtered R-modules, then (M ®g N),, = M,, ®g N,, for
all n > 0.

Proof. Since M and N are flat, we have an injective homomorphism M, ®zr N,, —
M ®pgr N. Identifying M, ®r N, with its image, we may assume that M, ®r N, and
(M ®r N), both are submodules of M ® g N. But now, for each ¢ > 0, we have in
M ®g N that 7" (a ® b) = 7'"a @ m"b, where a € F;M and b € F;N and i + j = t.
Thus we see that (M ®g N),, = M,, ®g N,, since ¢t was arbitrary. O

Hence M +— M, is a monoidal endofunctor of the category of torsion-free filtered
R-modules.
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3. Completions of quantum groups
3.1. The functor M ]\/4?

We begin by recalling the constructions from [5, Section 6.7], which were written in
terms of R-algebras but extend identically to R-modules. If M is a torsion-free filtered
R-module, let ]\7,; = MZ ®pr L for each n > 0. This is an L-Banach space, with unit
ball MZ To simplify notation, we write J\//.-fz for m.

Now, we have a descending chain
M=MyD>M DMsD---
which induces an inverse system of L-Banach spaces and continuous linear maps
TR Tl Tl T

whose inverse limit we write as

J/\/[\L = ELnMn,L

The maps M, — M, 1, induce continuous seminorms || - ||, on M, such that the
completion of M}, with respect to [ |]n is ]\/LL\L Hence M, is an L-Fréchet space. Thus
we have defined a functor M — M\L from torsion-free filtered R-modules to the category
of L-Fréchet spaces.

We now apply the above construction to certain lattices in the quantum algebras
we’ve defined. Let U denote the De Concini-Kac integral form of the quantum group,
which here means the R-subalgebra of U, generated by the E,,’s, Fi,,’s and the K’s. We
filter this algebra by setting FoU = R[K) : A € P] and giving each E, and F,, degree 1.
Then each deformation U, is the R-subalgebra of U, generated by the 7" E,,’s, 7" Fy,’s
and the K'’s.

Note that by the definition of the Hopf algebra structure on Uy, we see that each U,
is an R-Hopf subalgebra of U,.

— —

Definition. We let Tj%\n = /,: and /U; = U = lim Uy, where we give U the above
filtration.

We now consider a different integral form of Uy, namely Lusztig’s integral form. It is
the R-subalgebra Ug® of U, generated by Kiﬁl (A € P) and all E((J) and Fc(f) forr >1
and 1 < i < n. It is an R-Hopf subalgebra of U,. Moreover, by [26, Theorem 6.7] Ufs®
has a triangular decomposition and a PBW type basis, so that it is free over R. Note
that, since U C UR®, it immediately implies that U is m-adically separated.

We now define A, to be the R-subalgebra of Hompg(UR®, R) generated by the matrix
coefficients of all the R-finite free integrable Uj®-modules of type 1 (see [2, Section 1]).
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These representations are R-lattices inside finite dimensional U,-modules of type 1 and
are closed under taking tensor products and duals, hence A, is an R-Hopf algebra and,
after extending scalars, we see that the matrix coefficients generating A, are in O,.
This realises A, as an R-Hopf subalgebra of O,. Note that Homg(Ug®, R) is evidently
m-adically separated hence so is Ag: if f € (7" Homg(Ug*®, R) then Im(f) C N7"R = 0.

By inducing one dimensional representations from Borel subalgebras, we get lattices
in all the fundamental representations V (w;) which are integrable Uj®-modules (see [2,
Section 3.3]). So we see that by choosing weight bases for these lattices, the generators
z1,...,z, of Oy from 2.2 lie in A,;. Moreover by [2, Proposition & Remark 12.4], A,
is generated by z1,...,x, as an R-algebra. We now give the filtration to A, given by
assigning to each x; degree 1. So the n-th deformation is the R-subalgebra generated by
all the 7"x;.

—

Definition. We let Z’)\q = (Aq) where we give A, the above filtration.

We will now show that ﬁq and @ are Hopf algebras in a suitable sense, when working
in the category of L-Fréchet spaces.

3.2. Completed tensor products

We recall here some facts about norms on tensor products and topological Hopf al-
gebras. Recall from [32, Section 17B] that given two seminorms p and p’ on the vector
spaces V and W respectively, the tensor product seminorm p®@p' on V @ W is defined
in the following way: for x € V ®p W, we have

r
/ . /
PP (z):= 1nf{112?§x p(v;) - p'(w;) 1 &= ;vi ® w;,v; € Vyw; € W}
When V and W are Banach spaces or more generally Fréchet spaces, the topology ob-
tained via these tensor product (semi)norms agrees with the inductive and projective
tensor product topologies on V ®@p W (see [32, Proposition 17.6]). One can then con-
struct the Hausdorff completion V&L W of this space, which will be a Banach space
(respectively Fréchet space). Moreover, if V and W are Hausdorff, so is V @ W.

Then @y, is a monoidal structure on the categories of L-Banach spaces and L-Fréchet
spaces. Note that this construction is functorial, so that two continuous linear maps
f:V = Wandg:X — Y induce a continuous linear map f®g: Ve, X — WRLY.

Definition. An L-Banach coalgebra, respectively L-Fréchet coalgebra, is a coalgebra object
in the monoidal category of L-Banach spaces, respectively L-Fréchet spaces. In other
words it is a Banach, respectively Fréchet, space C' equipped with continuous linear
maps A: A — A®pA and ¢ : A — L which satisfy the usual axioms:

(ADid) o A = (Id®A) 0 A, (IdBe)o A = (e®id) o A =id.
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A morphism of coalgebras is then a continuous linear map f : C' — D such that epo f =
ec and (f®id)o A =Apo f.

An L-Banach Hopf algebra, respectively L-Fréchet Hopf algebra, is an L-Banach,
respectively Fréchet, algebra A which is also a coalgebra such that A and ¢ are al-
gebra homomorphisms, and furthermore A is equipped with a continuous linear map
S : A — A, which satisfy the usual axioms for a Hopf algebra:

mo (S®id)o A =10e=mo (id®S)o A
where m : A® A — A and ¢ : L — A denote the multiplication map and the unit in A
respectively. A morphism of Hopf algebras is then a continuous algebra homomorphism
f: A — B which is also a morphism of coalgebras, such that Sgo f = foSy.

3.3. A monoidal functor

We now aim to establish that some of the algebras we’ve constructed are Hopf algebra
objects in the categories of L-Banach algebras. We will need the following elementary
result:

Lemma. Let M, N be two R-modules. Then we have canonical isomorphisms
(M/m*M)@pr(N/m*N) = (M/m*M)®rN = MQr(N/m*N) =2 (MQrN)/m*(M®&grN)
for any a > 1.
Proof. By tensoring the short exact sequence
0—=7m'M—-M— M/m*M — 0
with N, we obtain an exact sequence
M@z N - Mr N — M/7°M @r N — 0.
Thus, since the image of 7*M ®r N in M ® N equals 7*(M ®gz N), we see that
(M/m*M)®@r N = (M ®r N)/7*(M ®g N).

Similarly M @r (N/7*N) =2 (M@rN)/n*(M ®g N) by interchanging M and N. Finally,
if we tensor the short exact sequence

0—-7*N— N — N/m*N =0

with M/m®M, we obtain an exact sequence



N. Dupré / Journal of Algebra 537 (2019) 98-146 111

(M/n*M) @5 7N — (M/x*M) @ N — (M/x*M) @ (N/7*N) = 0

where the left hand side map clearly has image 0. Thus we get the required isomor-
phism. 0O

Proposition. Let M and N be torsion-free R-modules. Then there is a canonical isomor-
phism of L-Banach spaces

ML®LNL & (M ®rN)pL.

Moreover when M and N are R-algebras, this map is an algebra isomorphism. In par-
ticular, M — My, is a monoidal functor between the category of torsion-free R-modules
and the category of L-Banach spaces.

Proof. Note that ML QL ]/\/'z & (]T/[\ ®R J/\/'\) ®gr L and, by the Lemma, we have natural
isomorphisms
(M ®g N)/n*(M ®r N) = M/n°M ®r N/m*N
X M/m*M @ N/m*N
~(M®grN)/7m*(M Qg N)

for all @ > 1. Thus we see that M Qpr ﬁmicaﬂy isomorphic to the m-adic comple-
tion of M ®r N. Hence we see that (M Or N)r is the completion of Z\/iz =3 ]sz with
respect to the m-adic topology on M R N. By [32, Lemma 17.2], the latter topology is
the same as the tensor product topology on M, L Qr N. 1, and so we get the result.

In the case where M = A and N = B are algebras, it is clear from the above that the
isomorphism preserves the algebra structure. 0O

—

We introduce the following notation: write @\q = (Ag)rL-
Corollary. The Banach algebras 6\(] and U/}L\n (n > 0) are L-Banach Hopf algebras.

Proof. This follows immediately from the Proposition since monoidal functors preserve
Hopf algebra objects. O

Example. When G = SL, i.e. when g = sl,, we can give an explicit description of @\q. In

that case the only fundamental representation of Uy is two dimensional with basis vy, vy
such that

FEvi =0=Fvy FEvy=v1 Fvi =19 Kvlzq%vl K’UQZQ%I’UQ.
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The matrix coefficients with respect to that basis are denoted by 11, z12, 21, 22 and
they generate O,. As is customary we denote these generators by a, b, c and d respectively.
The complete set of relations for O, is given by

ab = qgba, ac=qca, bc=-cb, bd=qdb,
cd = qde, ad—da=(q—q ')be, ad— qbc=1.
(see [11, Theorem 1.7.16]).

So in this case A, is the R-algebra generated by a, b, ¢, d. By the proof of [13, Lemma
1.1] we see that A, is a free R-module and

S = {a'b™e*, b c*dt - 1,m,s > 0 and t > 0}

is an R-basis of A,. Concretely, one can identify 6\4 as the ring

0, = { Z Nims@'b™c® + Z ptrbPetd” [ Ams| — 0 as I +m + s — oo
1,m,s>0 p,t>0
>0

and |fper| —>0asp—|—t—|—r—>oo}.

This is an L-Banach algebra with norm

’ ‘Z Almsalbmcs + Z Mptrbpctdr = sup {Almsy Uptr}-

l,m,s,p,t,r

We will later give an explicit description of (7‘1,\71 for n large enough.
3.4. Hopf algebra structure ofﬁq

We recall a few standard facts about Fréchet spaces (see e.g. [33, Section 3]). Let V be a
Fréchet space whose topology is given by a family p; < ps < ... <p, < ... of seminorms.
For each n the seminorm p, induces a norm on the quotient V/{v € V : p,(v) = 0}.
The completion of this normed space is a Banach space, which we denote by V},.. The

identity on V' induces continuous linear maps V,, — Vp,, for all n. Then the natural

n+1
map

V —=1limV,
wm vy,

is an isomorphism of locally convex L-spaces. When V is a Fréchet algebra, and all the
seminorms p,, are algebra seminorms, then this map is an L-algebra isomorphism.

Proposition. ([16, Proposition 1.1.29]) Let V' and W be L-Fréchet spaces whose topologies
are defined by families of seminorms p1 <ps < ... <pp <...andpjy <ph < ... <ph <
. respectively. Then we have a canonical isomorphism of L-Fréchet spaces
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VELW 2 limV, &, Wy, .

When V' and W are Fréchet algebras and all the seminorms are algebra seminorms, this
is an algebra isomorphism.

Using this result, we can prove:

Theorem. The functor M +— ]\//[\L on the category of torsion-free filtered R-modules is
monoidal. In particular the Fréchet algebra U, is an L-Fréchet Hopf algebra.

Proof. From the above Proposition we see that for any two torsion-free filtered
R-modules M and N, there is a canonical isomorphism of L-Fréchet spaces

MpRLNp, = lim M, 11N 1

which is an algebra isomorphism when M and N are R-algebras. Now, the first result
follows by Proposition 3.3 and Lemma 2.4. The fact that (7(1 is an L-Fréchet Hopf algebra
now follows because monoidal functors preserve Hopf algebra objects, and U is a filtered
Hopf algebra, meaning that A, € and S are filtered maps (where for ¢ we give R the
trivial filtration). O

3.5. Hopf algebra structure of@

We know that A, is a Hopf algebra, however the corresponding Hopf algebra maps
are not all filtered R-module homomorphisms on A4, so we can’t immediately deduce
from our previous methods that OAq has a Hopf algebra structure. On the other hand,
we see from equation (2.1) in 2.2 that the counit restricted to A, is a filtered R-map
A, — R and so gives rise to a map € : (’)Aq — L. For the antipode and comultiplication,
we can “shift” the deformations to make things work.

Indeed, from (2.1) we have A(F,A,) C F, A, ®r F, A, for all n > 0. But then it
follows that for all n > 0 we have

A((Aq)Zn) - (Aq)n ®R (Aq)n~

Taking m-adic completions we see that A induces maps

—

Ap i (Ag)2n,L = (Aq)n,L®L(Aq)n7L'
Taking inverse limits we obtain a map
Z : OAq — /@@L@

We now move to the antipode. It’s not necessarily clear that it’s a filtered map on Ay,
so we let
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d = max {min{t : S(z;) € FyA.}}.
1<i<r

It follows that S((Ag)na) € (Aq)n for all n > 0. Taking m-adic completions we see that
S induces maps

—

S, : (Apnd,L = (Ag)n,L-

Taking inverse limits we obtain a map

We see that the maps €, S and A make /(9: into a Hopf algebra, as desired, since all the
Hopf algebra relations are satisfied on the dense subspace O,.

Remark. Note that the above shifts really are to be expected. Indeed, for example in
the case G = SL, (L), the algebra we construct is meant to be a quantum analogue of
the global sections of the structure sheaf of the analytification of G. If O denotes the
coordinate algebra of SL,,(R), this ring of global sections is given by the inverse limit of
the Banach algebras Cin:, which correspond to the functions on G which are analytic
on SL,(7~™R). For m > 0, since that subset of G is not a subgroup, the algebra O/m\L

is not a Hopf algebra. On the other hand matrix multiplication defines a map

SL, (7™ ™R) x SL, (7~ ™R) — SL,, (7~ *™R)

—

which induces a map A : Ogp . — Oy, L@LC’)W 1. Our quantum situation very much

mirrors this.
4. Fréchet—Stein structures
4.1. Fréchet-Stein algebras
We start with a definition.
Definition. Following [33, Section 3] we say that an L-algebra U is L-Fréchet-Stein if
there is a tower Uy < Uy < Us < - - - of Noetherian L-Banach algebras such that U, 41

has dense image in U, for all n > 0, and satisfying:

(i) U, is a flat Uy, +1-module for all n > 0; and
(ii) U = limU,.
—

Our aim is to prove that the algebras @ and ﬁq are Fréchet-Stein. The main difficulty
in proving that an algebra satisfies the above definition is to show that the flatness
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condition in (i) holds. To do this we rely on two known results. The first one, due to
Emerton, is the following;:

Proposition. ([16, Proposition 5.3.10]) Suppose that A is a left Noetherian R-algebra,
m-adically separated, w-torsion free, and suppose that B is an R-subalgebra of Ay which
contains A. Suppose B is equipped with an exhaustive R-algebra filtration (F.) satisfying
B = A and such that gr B is finitely genemted as an A- algebm by central elements.
Then AL and BL are left Noetherian and BL is right flat over AL

The second one is due to Ardakov and Wadsley, and is using a certain class of de-
formable algebras as well the functor we defined in 3.1.

Theorem. ([5, Theorem 6.7]) Let U be a deformable R-algebra such that grU is commu-
tative and Noetherian. Then Uy is a Fréchet-Stein algebra.

The issue with these methods is that the statements both involve some commutativity
or centralness conditions that will not hold in the quantum setting. Therefore, in this
section, we will prove certain non-commutative, or quantum, versions of these results.

4.2. Fréchet completions of deformable R-algebras

We first generalise Theorem 4.1. The proofs from [5, Section 6.5 & 6.6] go through
with only minor changes.

We recall the notion of a polynormal sequence in a ring. Suppose that S is a ring and
that x1,...,x, is a finite sequence of elements of S. We say that =1, ..., x, is polynormal
if z; is normal in S, i.e. 1.5 = Sx1, and foreach 1 <i <7, z;41 +Z§-=1 Sz;S is normal
in the quotient ring S/ % %_, Sx;S.

Throughout, we will make the following assumptions:

(i) A is a deformable R-algebra such that gr A are Noetherian;
(ii) there are elements 1, ...,z, € A such that

FiA = FRoA-{af a2 Y ayd; < i}

for each ¢ > 0, where d; = deg x;, so that then gr A is finitely generated over gry A
by the symbols of x1,...,z, € A; and

(iii) the sequence w1z1, ..., 7w x,, where % x; denotes the image of 7% x; in A /A,
is polynormal.

Note that (i)-(iii) hold when A is a deformable R-algebra such that gr A is commutative
and Noetherian by the proofs in [5, Section 6.5 & 6.6].
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Lemma. If A satisfies (i) and (i) as above, then so does A, for alln > 1.

Proof. This is a straightforward application of Lemma 2.3(i): (i) follows immediately
because gr A, = gr A and (ii) follows because

FA, = FRA- {(W”dlxl)o‘l (ﬂ”d’“x,«)aT : Zajdj <i}
=1

from which we see that gr A,, is generated by the symbols of 7%z, ..., 7"¢

groA,. O

T, OVer

Proposition. Let A be a deformable R-algebra satisfying condition (ii) above, and con-
sider the ideal I := A1 NTwA.

(a) The subspace filtration on Ay of the w-adic filtration on A and the I-adic filtration
on A1 are topologically equivalent; and
(b) I is generated by m and 7% z; for 1 < j <n.

Proof. It is clear from the definition of I that

d

mel and 7%zx; €l forall 1<j5<n.

Let do := 1. It follows from condition (ii) that 7*F; A is generated as an FyA-module by
monomials of the form

(Wdo)ao (Wdlxl)o‘l ... (dexn)an (4.1)

where a; > 0 for all j = 0,...,n and Z?:O ajd; = 4. For any integer ¢t > 0 and
i > tmaxd;, we have (E;’:O aj)maxd; > Z;’L:O a;d; =i >tmaxd;, so

(Wdo)ao (ﬂ'dll’l)al . (Wd”xn)a” c It
since 7 € I and 7% x; € I for all 1 < j < m. Hence by Lemma 2.3(ii) we have

Ay N optmaxds 4 — Z TFEACI'C A NttA

1>t max d;

since [ is an FyA-submodule of A, thus proving (a).

For (b), by Lemma 2.3(ii) we have I = 3,5, 7' F;A. But we know from (4.1) above
that, for s > 1, 7°F; A is generated as an FOA—rr_lodule by elements which are in the ideal
generated by 7 and i z; for 1 < 7 < n. The result follows. O

We can now prove our version of [5, Theorem 6.6]. Their proof goes through unchanged
except for our use of condition (iii) which replaces their commutativity constraint.
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Theorem. Let A be a deformable R-algebra satisfying conditions (i)-(iii). Then le is
flat over Ay 1.

Proof. Since XI\L = ;1\1 ®gr L, it is enough to show that Zz is flat as a module over
;1\1. By the Proposition, the [-adic completion B of A; is isomorphic to the closure of
the image of A in A. Hence we have natural maps ;1\1 — B — le Observe that B is
m-adically complete by the proof of [39, Theorem VIIL.5.14], noting that ideals in B are
I-adically closed by [25, Theorem I1.2.1.2, Proposition 11.2.2.1].

We observe that B/mB is the I/mA;-adic completion of A;/mA;. From Proposi-
tion 4.2(ii), the ideal I/wA; is generated by 7% xz; for 1 < j < n. Hence it follows
from condition (iii) and [29, Proposition D.V.1 & Remark D.V.2] that I/wrA; has the
Artin-Rees property. Thus we have that B/mB is flat over A;/7rA; by [29, Property
V.8)iii), page 301].

We now filter both ;1\1 and B m-adically. Since A; is m-torsion free, we have gr;l\l =~

(Ay/wAy)[t). In a similar way, since B is isomorphic to a subring of A and so has no
m-torsion, we have gr B = (B/nB)[t]. Hence gr B is flat over gr A;. But this implies
that B is a flat A\l—module by [33, Proposition 1.2], since both ;1\1 and B are m-adically
complete.

We now consider the subspace filtration on A; induced from the w-adic filtration on
A. We have gr A = A[t] where t = grm and A = A/ A has degree zero. Lemma 2.3(ii)
implies that the image of gr A; inside gr A is @jzotjm where m denotes the image of
F;Ain A. Note that gr A; is Noetherian by [10, Corollary 1.3] and conditions (i) and (iii)
since it is generated by the t%7; (here we are using the fact that gry A is Noetherian,
which follows from (i)). Now, as the quotient filtration F;A on A is exhaustive, the
localisation of this image obtained by inverting t is A[t,#~1]. But B is the completion of
A1 so

(gr B): = (gr Av), = Alt,t ™' = gr Ap.

Hence gr Zl\L is flat over gr B. We can then invoke [33, Proposition 1.2] again to conclude
that Ay, is flat over B. O

4.3. Theorem

Let A be a deformable R-algebra satisfying assumptions (i)-(iii), such that A, satisfies
(#3) for all n > 0. Then Ayr, is a Fréchet-Stein algebra.

Proof. By Lemma 4.2 each A,, satisfies conditions (i)-(iii). Now since (A,); = A,4+1 by
Lemma 2.3, we have by the Theorem that A, ; is a flat A,,11,,-module. Moreover, each

A, 1, is Noetherian because gr A is Noetherian. O

We now turn to the important notion of a coadmissible module:
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Definition (/33, Section 3]). Let U = limU, be a Fréchet-Stein algebra. Then a U/-module
M is called coadmissible it M = lim M, where, for each n > 0, M., is a finitely generated
U,-module and U,, ®y, ., Mp1+1 = M,,. The full subcategory of coadmissible modules is
denoted by C(U).

n+1

Note that if M is a coadmissible module, then each M,, naturally inherits the struc-
ture of a Banach U,-module, and so M naturally has the structure of a Fréchet space.
We summarise below the facts we’ll need:

Proposition (/33, Lemma 3.6 & Corollaries 3.1, 3.4 & 3.5]). Let U be a Fréchet-Stein
algebra and let M be a coadmissible U-module.

(i) For eachn >0, M, = U, &y M.

(ii) The category C(U) is an abelian subcategory of the category of all U-modules; it is
closed under direct sums and contains the finitely presented U-modules.

(iii) Let N be a submodule of M. Then the following are equivalent:
(1) N is coadmissible;
(2) M/N is coadmissible; and
(3) N is closed in the above Fréchet topology.

(iv) A sum of two coadmissible submodules of M is coadmissible.

(v) Any finitely generated submodule of M is coadmissible.

(vi) Any module map between two coadmissible module is strict with closed image.

The proof of the next result is essentially the proof of the first part of [33, Theorem
4.11] (see also [31, Theorem 4.3.3]) but we reproduce it here for the convenience of the
reader.

Corollary. Let A be a deformable R-algebra satisfying assumptions (i)-(iii), such that A,
satisfies (iii) for all n > 0. Then the natural map A, — Ar is flat.

Proof. We show right flatness, the proof of left flatness being completely analogous. Since
m is central, for every n > 0 the ideal wA,, in A,, satisfies the Artin-Rees property and
thus Z; is flat over A,, by [29, Proposition D.V.1 & Property V.8)iii), page 301]. Hence
it follows that Ap — /TR\L is flat for every n > 0. By the Theorem we know that ;{E is
Fréchet-Stein. It will suffice to show that for a left ideal I C Ay, the map fT\L@)AL I — AAL
is injective. But now, I is finitely generated and in fact finitely presented since Ay is
Noetherian. Thus AAL ®4, I is finitely presented as well, and so coadmissible. Thus we
have isomorphisms

—

A @a, 12 him (A, @ (Ap@a, 1)) 2 lim(A, L ©a, 1),

G ==

Now as A/n\L is flat over Ay, for every n, it follows that A/n\L ®a, I — A/n\L is injective.
The result then follows since projective limits preserve injections. 0O
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4.4. Emerton’s result

When it is not known whether the algebras we have at hand are deformable, we instead
rely on techniques inspired from Emerton’s result to prove that their completions are
Fréchet-Stein. Again, the arguments from [16, 5.3.5-5.3.10] follow through with only
minor changes. They mainly rely on some general lemmas that we do not write out here
but reference throughout the proof.

Proposition. Suppose that A is a left Noetherian R-algebra, m-adically separated,
w-torsion free, and suppose that B is an R-subalgebra of Ay which contains A. Sup-
pose B is equipped with an erhaustive R-algebra ﬁltmtion (F) satisfying FoB = A and
such that gr” B is a q-c commutative A-algebra. Then AL and BL are left Noetherian and
BL is rTight flat over AL.

Proof. Note that A is left Noetherian because A is left Noetherian, hence so is Zz
Furthermore, gr B is left Noetherian by Lemma 2.2. Now, following [16], for any left
A-submodule M of Ayr, we let ¢y : 21\@,4 M — Zz be the natural map induced from the
multiplication in ;12, and we let C' denote the image of tp. By [16, Corollary 5.3.6] C' is
an R-subalgebra of ;12 Let G;C denote the image of vy, p. By [16, Lemma 5.3.5], G;C'is
equal to F;B+A and C = B+A, and so we see that (G') is an exhaustive algebra filtration
on C such that G{C = A. Now, by [16, Lemma 5.3.5], F;_1B = AL, NG;_1C for alli > 1
and so it follows that F,_1 B = F; BN(F;_1 B+ A). Hence the natural map grf' B — e C
induced by tp,p is an isomorphism. Thus we deduce from our assumptions that the
associated graded ring ng, C is a g-commutative g-algebra. Therefore by Lemma 2.2
we have that gr® G’ C is left Noetherlan hence so is C.

The fact that By, t B, is right ﬂat over Af AL now follows easily. Indeed, since C = B + A we
see that Cf, = AL Moreover BL =~ C’L by [16, Lemma 5.3. 8] But the ideal generated
by 7 satisfies the Artin-Rees property as m is central, and so C is right flat over C' as C'
is left Noetherian. Tensoring over R with L, we therefore see that Ez = 6’2 is right flat
over Zz =C,. O

4.5. A PBW type R-basis

In order to apply the previous results to ﬁq, it will be useful to find certain bases of
the algebras U,,. These will in turn allow us to get an explicit description of ﬁq.

Let U be the R-submodule of U, spanned by all monomials M, , x, which is free by
the PBW theorem. The height filtration on U, induces a filtration on ¢. Explicitly, we
define Fiif to be the R-span of the monomials M, 5 » such that ht(M, s 1) < i. We want
to deform this module and eventually obtain an algebra. For each n > 0, the R-module
U, is just the R-span of all 7P (Mrsx) M.\ or in other words the R-span of the
monomials

(7" ht(ﬁl)FBI)rl e (7 ht(ﬁN)FBN)TNK/\(Trn ht(ﬁl)E’Bl)Sl e (7 ht(BN)EBN)SN
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We let m be the least integer such that

7.r27n

—_1€R fOraHlSZSTL
qi — g,

Hence for all n > m, we have
(7" By, ) (" Fy,) — (7" Fy, ) (7" Ey,) € R[K) : A € P]

and so the generators of U, satisfy relations which can be expressed as an R-linear
combination of them.

Theorem. Suppose that ¢ = 1 (mod 7). Then the R-module U,, is equal to U, for all
n > m, and so is an R-algebra.

We start preparing for the proof the Theorem. We will now assume that ¢ =1 (mod 7)
until the end of section 4.6.

For all n > 0, we let U, be the positive part of U,, i.e. the R-subalgebra of U,
generated by the 7™ FE,,’s. It is the n-th deformation of Ut with respect to the filtration
given by assigning every E,. degree 1. We also define U to be the R-submodule of U,
spanned by all monomials of the form

(7-‘-” ht(ﬁl)Eﬁl)sl L (ﬂ." ht(ﬁN)EBN)SN_

It is the n-th deformation of U := U with respect to the height filtration. We also
define U, and U,; by applying w to the positive parts.

By our assumption on ¢, we have that for each i and each n € Z, [n],, =n (mod 7).
By our assumptions on p = char(k) from section 1.5, we see that the quantum divided

powers ng) and Fc(f)

lie in U whenever s < —a;; (where the a;;’s are the Cartan matrix
entries). Thus the braid group action from section 2.1 preserves U and so, in particular,
Eg, lies in U for all 1 < j < N. Since the automorphism w preserves U, we see that the
Fg,’s also belong to U, and hence that U/ C U.

Our first goal will be to obtain that U7 C U,; for every n > 0. To do so, we adapt
[21, Lemma 8.19 and Proposition 8.20] to our situation. The same proofs go through
with only minor changes. Before that, we establish the following notation: for a sequence

J ={ai,,...,a;;} of simple roots, we write E; for the product E,, --- Eai]»
Lemma. Let w € W and a be a simple root. Suppose wa > 0 and write wo =i ma;.
Then T\, (Ey) is an R-linear combination of words all of the form Ej; where J is a finite

sequence of simple roots such that each root o; occurs in J with multiplicity m;.

Proof. We first prove the result in a particular case.
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Claim. Suppose B # « is another simple root and assume w is in the subgroup of W
generated by s and sg. Then the result holds.

Proof of claim. We are reduced to a rank 2 case-by-case analysis. If w = 1 the result is
trivial so assume w # 1. Denote by m the order of sos3. We have m = 2,3,4 or 6.
If m =2 then w = sg and T\, (Ey) = Eo. If m = 3 then

w € {sg, 5a58}

If m = 4 then

w € {58,5058,585453}-

If m = 6 then

w € {58,5058,585a58, SaS35a 58, S35aS35aSa}-

Hence in all cases we see that T,,(F,) is just one of the root vectors that arise in the
PBW basis for the case where g has rank 2. The result then follows by the formulae in
[14, Appendix, (A1)-(A3)] using our assumptions on p. O

We now use induction on ¢(w). If £(w) = 0 then T, = 1 and the result is trivial.
So assume that ¢(w) > 0. Hence there exists a simple root § such that w8 < 0 (and
so a # (). By standard facts about Coxeter groups (see [19]), we have a decomposition
w = w'w” where w” lies in the subgroup of W generated by s, and sg such that w'g > 0
and w'a > 0. Then £(w) = £(w') + €(w") so that Ty, = Ty Tyyr. Moreover since wa > 0
and wfB < 0 it follows that w”«a > 0 and w”B < 0. In particular w” # 1. By the claim
we have that T\~ (F,) is an R-linear combination of words all of the form E;» where J”
is a finite sequence of simple roots only involving o and § such that they appear with
the appropriate multiplicities. By induction hypothesis, we also have that T, (F,) is an
R-linear combination of words all of the form Ej;, where J' is a finite sequence of simple
roots each simple root appears in J’ with the appropriate multiplicity. Similarly, the
analogous statement is true for T, (Eg). Now the result follows since T, = Ty Typrr. O

Corollary. Fiz a reduced expression wg = Si, -+ 8;. For any 1 < j < N, write 8; =
Stimimgjag. Then Eg, is an R-linear combination of words all of the form E; where J
is a finite sequence of simple roots such that each root oy occurs in J with multiplicity
mi; (and so J has length ht ;).

Proof. Since 3; = s;, ~~sij_1(aij) we can write it as wa where w = s;, ---s;,_, and
oa=aq;. O
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In particular, the Corollary implies that, for all n > 0, 7" ht(Bi)Egj € US for all
1 < j < N. Similarly w"ht(ﬁf)ng € U, for all j. Hence we see that Ut C UF as
promised, and that U,, C U,, for all n > 0.

Remark. Although the proof that Ez, € U™ is well-known, we couldn’t find a reference
for the result about multiplicities so we included the proofs for that.

4.6. Proof of Theorem 4.5

The argument to prove the theorem is the same as in [21, Theorem 8.24], rephrased
in our context. We sketch it here. We begin with a triangular decomposition for U,,:

Lemma. The multiplication map U, @r US, @g U — U, is an isomorphism, where
U = R[K): )\ € P]=RP.

Proof. Since the left hand side is a lattice inside U, ®p, Ug Q1 U;r and by using the
triangular decomposition for U,, we see that the map is injective. So we just need to
show surjectivity.

Suppose that we have a word u in the generators of U,,. We show by induction on
word length that it lies in the image of the map. Using the defining relations of U, we
may write u as w(E, F)w'(K) where w(E, F) is a product of 7™ E,,’s and 7" F,,’s in
some order and w’(K) is some element in RP. So it’s enough to show that w(FE, F) is in
the image since then we can push the K’s in w’(K) back to the left past all the 7™ E,,’s
to get an expression of the correct form.

Now if w(E, F') does not contain any 7™ E,,’s, there is nothing to do. Similarly we’re
done if it does not contain any 7™ E,;’s. So without loss of generality, we may write it

in the form
w1 (Fwe(E)1"™ Eq, " Fo w3 (E, F')

where w (F') is a word in the 7™ F’s, wy(F) is a word in the #™E’s, and w3(E, F) is a
word in the 7™ E’s and 7" F’s. Now if ¢ = j then this is

w1 (F)we(E)1™ Fo, 1™ Eq,w3(E, F),
and if ¢ # j then this is equal to
w (Fwe(E)m" Fo, 7™ Eo,w3(E, F) + aw; (F)wa (E)(Ka, — K;il)wg(E, F)

where a € R by our choice of m. Either way, by induction on the word length we are
reduced to showing that

w1 (F)we (E)1"™ Fo, ™ Eg, w3 (E, F')
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lies in the image.

Let ¢ be the word length of ws. We will reduce to the case £ = 0. So assume ¢ > 0.
Now wo(E)n™ Fy; can be written as wy(E)m™ E,, 7™ F,,; for some word ws(E) of length
¢ —1 and some 1 < s < n. By letting w(E, F) = 7" E,,w3(E, F), we now have the
expression

w1 (F)wy(E)n" Eq ™" Fowy(E, F),

i.e. we're back to our initial situation but now w} has smaller length. Iterating the above
process £ — 1 times, we may therefore assume that ¢ = 0 as promised, i.e. we have an
expression

wl(F)ﬂmFang(E, F)
Now by induction on the word length, ws is of the right form and so we’re done. 0O

Note that we also clearly have a triangular decomposition U, = U,, @ UY, @r U},
where U = U? . Hence, since the automorphism w preserves U,,, we only have to check
that U}, = U}, in order to obtain U,, = U,,. In fact we show that UT = YT and that
this implies that U,” = U} for every n > 0.

Proposition. Let w € W and choose a reduced expression w = s;, ---sj,. Denote by
Ut [w] the R-span of all monomials of the form

Eg' - Ep (4.2)
where Eg, = Taj1 - T

s, (Eay,) for 1 <i <t. Then UT[w] depends only on w, not of
the choice of reduced expression.

Proof. This is identical to the proof of [21, Proposition 8.22], noting that the rank 2
calculations that they perform all take place inside UT. O

Corollary. We have U = U for every n > 0. Moreover, the height filtration on UT =
U™ equals the filtration obtained by assigning every E,, degree 1.

Proof. By the Proposition we see that U™ = Ut [wy] is independent of the choice of
reduced expression for wg, and thus is preserved under left multiplication by all the
generators F,, by the proof of [21, Theorem 8.24]. Hence UT = U™ since 1 e U™.

The height filtration on UY is an algebra filtration as it is the subspace filtration of
an algebra filtration on U;‘ . Since all the E,,’s have degree 1 in it, it must contain the
filtration where we set deg(E,;) = 1. Corollary 4.5 gives the reverse inclusion. Thus we
now obtain Ul = U, by taking the n-th deformation with respect to this filtration. O
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Proof of Theorem 4.5. Put n = m in the previous Corollary to obtain that U,, = U,,.
Moreover, by the same proof as in the previous Corollary, we get that the height filtration
on Uy, equals to filtration obtained by setting FoU,, = R[Kj : A € P| and deg(E,,) =
deg(F,,) = 1. Hence we get that U,, = U,, for every n > m by deforming. O

Remark. We see that the only thing stopping U from being equal to U is the commutator
relations between the E’s and the F’s, which stop the triangular identity as we wrote it
from holding in U. We can fix this slightly by noticing that we have U = U~ ®g FoU QU+
with a slightly different choice of FyU: we define it to be the R-algebra generated by the
Ky, A € P, and the elements

K., — K;!
[Kai;o]lh e
qi — g;

for all 1 <i <n. Then FoU =U N Ug and we may define an alternative filtration on U
given by assigning each E,, and F,, degree 1. Just as in the above proofs, this coincides
with the subspace filtration of the height filtration.

We can also use Theorem 4.5 to get an explicit description of [7(1; for n > m. Indeed
we see that as a topological vector space it is given by the series

—n ht (M s
Uy = Z p s \Mp gy |T " (M, ’*)ar}s’,\ — 0 as ht(Myp s) = 00

7,8,

The norm on @ is then given by

§ ar,s,/\Mr,s,)\ = Sup 7T'7“ht(lwr's’)\)ar,s,>\ .

7,8,
7,8, [
n

One can then similarly describe ﬁq:

U, = Z ap s \Mp sy |m " ht(M”v*)an&A — 0 as ht(M, s5) oo foralln >0

7,8,A

Its Fréchet topology is given by all the norms ||-||,,.
4.7. The quantum Arens-Michael envelope

As an application of this PBW theorem we explain an analogy between our definition
of U, and the Arens-Michael envelope of the classical enveloping algebra U(g), which is
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the completion of the enveloping algebra U(g) with respect to all the submultiplicative
seminorms which extend the norm on L.

As a Fréchet space, ﬁq is the completion of U, with respect to the norms |||, for
n > 0, which are the norms on U, coming from the m-adic filtrations on the U,,. The
completion of U, with respect to the single norm |||, is then @. For example these
norms take the following values:

1Eall,, = |Fall, = |7|™™, ||Kall,, =1 for all simple root o and all X € P.

We now aim to show that /U\q does not actually depend on the choice of such norms. To
make this statement precise, we first consider the canonical norm |[|-|| on the Laurent
polynomial ring L[K ), : A € P], namely the one obtained from giving the m-adic topology
to R[K) : A € P] and extending scalars. Hence we have ||K,|| = 1 for all A in P. Note
that the norms ||-||,, are all extensions of ||-|| to U,.

We will now work in a more general context. Let A C B be two m-torsion free,
m-adically separated R-algebras, and equip Ay with the norm coming from the m-adic
topology on A. Suppose that BN Ay, = A, where we regard A, Ay, and B as subalgebras
of By,. Recall that a seminorm p on By, is called submultiplicative if for all =,y € By, we

have p(zy) < p(2)p(y) and p(1) = 1.

Proposition. For A and B as above, suppose that B is generated as an A-algebra by a
finite set of elements x1,...,2, € B\ A which normalise A, i.e. x;A = Ax; for all i.
For each 1 < i < m, pick a positive integer d;, and consider the A-filtration on B given
by assigning degree d; to x; for each i. Then, for this filtration, BAL is isomorphic to the
completion of By, with respect to all submultiplicative seminorms which extend the norm
on Aj,.

Proof. The filtration gives rise to a family of norms ||-||,, on By, which are just the ex-
tensions to By, of the norms coming from the 7-adic topology on each of the deformations
B,,. Since the m-adic filtration on B,, is an algebra filtration, it follows that these norms
are submultiplicative. Also, the w-adic topology on B, restricts to the m-adic topology
on A for all n because BN Ay, = A, and so these norms extend the norm on Aj. Hence,
since By, is the completion of By, with respect to the norms |||],,» there is a canonical
map B — BAL, where 98 denotes the completion of By with respect to all submultiplica-
tive seminorms that extend the norm on Ay . Thus we just need to prove that this map
is a topological isomorphism.

This will follow if we can show that given any submultiplicative seminorm p on By,
that extends the norm on Ay, there is some n such that p < [|||,. This in turn is
equivalent to showing that the unit ball

B(p;1) ={z € B : p(z) < 1}
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contains the unit ball of By, with respect to ||-||,, i.e. contains B,, for some n. Now note
that since p is submultiplicative and as it extends the norm on Aj,, we have that B(p; 1)
is an R-algebra containing A. Moreover, by definition of (F'), B,, is the R-subalgebra of
B generated by A and the 7% z;. So we just need to show that there exists an n > 0 such
that 7% z; € B(p; 1) for all i. But that’s clearly true since p(7"%z;) = |7|"% p(z;) — 0
as n — oo for any <. O

Corollary. The algebra /(’)2 is the completion of Oy with respect to all the submultiplica-
tive seminorms that extend the norm on L. Moreover, if ¢ = 1 (mod 7), then U, is
isomorphic to the completion of U, with respect to all submultiplicative seminorms that
extend ||-||.

Proof. Set A = R[K) : A € P] and B = U, for (7(1 (note that BN A, = A by
Theorem 4.5), and A = R and B = A, for O,. The hypotheses of the Proposition are
then satisfied. O

4.8. Fréchet-Stein property ofi_f;
We can now start applying our techniques to ﬁq.

Lemma. Suppose that ¢ =1 (mod 7). Then for each n > m, the R-algebra U,, satisfies
conditions (i) and (ii) from section 4.2.

Proof. By Lemma 4.2, it suffices to consider n = m. The height filtration on U, is
the subspace filtration of the height filtration on U,, thus there is a natural embed-
ding grU,, < UM where UM := grU,. Write U .= grU,,. This shows that U\ is
m-torsion free, thus flat. Moreover since U, is free it is also w-adically separated. There-
fore U, is a deformable R-algebra. Recall now that we defined in 2.1 a Zilg -filtration

on UM, Using the above embedding, we may now give to U,(nl) the corresponding

728 filtration. We see from the relations in Theorem 2.1 that the associated graded

) is then g-commutative, hence Noetherian by Lemma 2.2. Therefore U,(n1 )

algebra of U7(n1
is Noetherian, and condition (i) is satisfied. Condition (ii) just follows from definition of

the height filtration. O

Remark. If we equip U with the filtration from Remark 4.6, it is then also true that
it satisfies conditions (i) and (ii) using the same proof as in the Lemma. However the
Fréchet completion /U? that one gets that way is not the same as ﬁq. Specifically, the
norms defining /U: all have value 1 at the elements [K,,;0], which is not true in ﬁq.
Now the triples (Eq,;, Fa,, [Kq,;0]) correspond under specialisation at 1 to the usual sl,
triples (e;, fi, h;) (for the simple roots) in g, and in the Arens-Michael envelope (@,
the defining norms do not necessarily have value 1 at h;. While we are not working with

a truly generic quantum group, this analogy motivates our choice of working with ﬁq.
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Note however that the theorem below is also true, with essentially the same proof, for

—_—

Ur.

Before getting to the next result, we introduce some notation. Let ey, ..., e, be the
simple root vectors coming from the Serre presentation of g, which can then be extended
to a Chevalley basis x1,...,2zx of n. It follows from [18, Theorem 25.2] that the R-span
ng of x1,...,zN is a Lie lattice in n, i.e. a lattice that is also an R-Lie algebra, and we
write ng := ng/mng, a nilpotent k-Lie algebra.

We let U(ng) be the universal enveloping algebra of ng. For n > 0, we denote by
U(ng), the R-subalgebra of U(ng) generated by all n™e;. It is the n-th deformation of
U(ng) with respect to the height filtration (which is not the same as the PBW filtration
— it is defined completely analogously as the height filtration on U,). Moreover, U(ng),
is also the universal enveloping algebra of the R-Lie subalgebra of ng generated by all
m"e;. However, in light of the relations in [18, Theorem 25.2], we see that this R-Lie
subalgebra is canonically isomorphic as an R-Lie algebra to ng by mapping 7"e; — e;,
and hence there is a canonical isomorphism of R-algebras U(ng) = U(ng), for all n > 0.
Thus in particular we have that U(ng),/7U(ng), = U(ng). In the light of these facts,
we can now prove the following:

Theorem. Suppose that ¢ = 1 (mod 7). Then the quantum Arens-Michael envelope ﬁq
is a Fréchet-Stein algebra.

Proof. By Theorem 4.3 and the previous Lemma, the result will follow if we prove that
condition (iii) is satisfied in U, for all n > m. As before, we let I = wU, N Upy1.
We know that I is generated by m, ("D A gy and p(+DRA [y (1 < 4,5 < N)
by Proposition 4.2(ii). Observe that 7" *1E,, commutes with 7n*1F,  for all 4, since
7" Eq, and 7" F,, commute in grU,, and so the same can be said of w(m+1)ht 8 [,
and (M 1B; By Moreover we also have that all 7(m+1)bht8i By and w(m+1) b6 [y
g-commute with K, for all A € P.

Therefore it is enough to show that the elements 7(**D 1t 8 Fg for all ¢ form a poly-

central sequence in U, | /7U,f ,, since the ideal I is preserved by the automorphism w.
But since ¢ =1 (mod 7)) we have a surjection

U(ﬂk) = U(nR)n+1/7TU(nR)n+1 — U:+1/7"U:+1

from the universal enveloping algebra of ng, which sends e; to W In fact, by
considering PBW bases we see that this is an isomorphism. Hence it suffices to show
that the elements of the Chevalley basis in some order form a polycentral sequence in
U (ng). But that is a well known fact (and more generally any ideal of U (ny) is polycentral
by [35, Theorem A]). O

By applying Corollary 4.3 we immediately get:
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Corollary. Suppose that ¢ =1 (mod m). Then the natural map Uy — ﬁ; is flat.

The Corollary gives an exact functor M ~— ﬁq ®u, M between the category of
Ugs-modules and the category of @—modules. We will investigate this functor further
in Section 5.

4.9. Fréchet-Stein property ofOAq

As an L-algebra, O, is generated by z1,...,x,, i.e. by the matrix coefficients of the
fundamental representations. Now the issue is that the g-commutator relations between
these are not necessarily defined over R here. Indeed recall from 2.2 that we have

Jj—1 r

_ st st
TiTj = qijT;x; + Z Z(aijxsxt + B zizs),

s=1t=1
for 1 < j < i < r with off, 85} € L for all 4,j,s,t. These relations are obtained by
considering R-matrices for representations of U, and it is unclear to us whether the
R-matrices are the same when considering integral forms. Note however that the defining
relations of O, are defined over R in type A by [2, Proposition 12.12].

We fix this issue by deforming enough. Recall the filtration on O, given by assigning
to each z; degree d; = 2" — 2"~%, where we had that whenever i > j > s and t < r, we
always have d; + d; > ds + d;. Thus we see that if we let y; = mldig; for | sufficiently
large, multiplying the above relation by 7!(%+di) yields

ji—1 r

ity = Qigyyi + Y Y (0 ysye + B yys), (4.3)

s=1t=1

where now o', 5" € R. Fix the smallest | such that this holds and let B be the
R-subalgebra of O, generated by y1,...,¥r.
Recall from section 3.1 that A, was defined to be the R-subalgebra of O, generated

by x1,...,2,. Thus we see that B C A,.
Lemma. The algebra B is Noetherian, w-adically separated and w-torsion free.

Proof. B is m-torsion free because A, is. Moreover, let (F') be the filtration on B given
by assigning degree d; to each y;. Then with respect to that filtration, we see by the proof
of [11, Proposition 1.8.17] that grf’ "Bis g-commutative over R and so is Noetherian by
Lemma 2.2. So we just need to show that it’s m-adically separated. But that follows
because B C A, and A, was m-adically separated. O

We now filter B by assigning degree 1 to all the y;’s. By Proposition 4.7 we see that
Oy = Br. Let A = B be the first deformation of B, i.e. the R-subalgebra of O, generated
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by my1,...,7y,. Completely analogously as in the Lemma, we see that A is Noetherian,
m-adically separated and m-torsion free. We now set a new filtration on B by defining

1
GiB=A-{ya; - -yyai :a;; € Aand Zdiﬁ < t}.

j=1
This is the smallest algebra filtration on B such that y; € G4, B and A = GopB.

Proposition. With respect to the above filtration, the associated graded ring gr° B is
finitely generated as an A-algebra by elements which q-commute with the R-algebra gen-
erators of A, and which also g-commute with each other.

Proof. Set z; := y;, + G4,1B € gr® B to be the symbol of y; for each 1 < i < r.
Any homogeneous component gr& B, if it is non-zero, is spanned over A by the symbols
of the products y;,a;, - - y;,a;, such that Zé‘:l d;; = t, and any such element equals
Ziy G4y - - %, 04, . Therefore gr® B is generated over A by the z;.

Now, for any 1 < j < i < r, we have

yi(ﬂ'yj) - qij(ﬂyj)yi = (Wyi)yj - Qijyj(ﬂ—yi)
j—1 r

=33 (e ys(my) + B (mye)ys) € Ga,—1B.

s=1t=1

Therefore we see that z;(my;) = qi;(my;)z; in gr¥ B for all i, j, so that the z;’s will
g-commute with the generators of A. Furthermore we have z;2; = g;;2;2;, i.e. the 2;’s will
g-commute with each other in gro B. Indeed this follows from (4.3) because the d;’s were
chosen so that whenever ¢ > j > s we have for any 1 <t <r thatd; +d; > ds; +d;. O

Theorem. The algebra /(9: is a Fréchet-Stein algebra.

Proof. By Proposition 4.4, it follows from the previous Proposition that Ez is right flat
over ;1; and that they are both left Noetherian. Left flatness and right Noetherianity
will follow by the same argument applied to B°P. Thus we see that éz is flat over Zz
For any n > 1, we can repeat the entire above arguments replacing B by the R-algebra
generated by 7"y, for all i, and A by the R-algebra generated by 7" *ly; for all i. O

5. Verma modules and category O for /IE

We now start discussing an analogue of category O for ﬁq, using its Fréchet-Stein
property. We thus make the following assumption:

from now on and until the end of this paper, we assume that ¢ =1 (mod ).
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Most of the content of this Section is inspired by [31], whose main theorem has a natural
quantum analogue which we prove. In fact most of the arguments work identically to
there, but we reproduce them for the convenience of the reader.

5.1. Topologically semisimple @—modules

We begin with a discussion of semisimplicity for modules over the algebra 6‘? =
U% ®g L. In our future paper [15] we will also need some of these results working with

(U5)9 instead, where (U®)? = UYNUJ®. The proofs will be identical for either of them,
so we will let H denote both of these to simplify notation. Our treatment is inspired by

the work of Féaux de Lacroix [17].
First recall that given A € P, there is a character ¥ of Ug defined by 5 (K,) = g
for any pu € P, and the restriction of this character to (U}*)? has image in R (see [2,

Lemma 1.1]). Given a U(?—module M, its A-weight space is defined to be
My ={m € M :um = ¢(u)m for all u € U}

Since q is not a root of unity these are all linearly independent and the sum of the weight
spaces in M is direct.

We will now consider the category .# (1) whose objects are Fréchet spaces M endowed
with an action of H by L-linear endomorphisms, and whose morphisms are continuous
L-linear maps which preserve the action of H. Given an object M of this category and
A € P, we denote by M) the A\-weight space of M when viewed as a Ug-module.

Definition. We say that M as above is topologically H-semisimple if for every m € M
there exists a family {my € M)} cp such that >"\c.pm, converges to m in M.

We want to investigate the full subcategory D(H) of .#(#H) whose objects are the
topologically H-semisimple modules. We first need a couple of preparatory results.

We identify the weight lattice P with its image in the group of characters of Ug via
A = ¥x. Let x € UL. For every A € P we write z(\) := ¢x(z) € L. Note that if
x € (UKs)° or U, then z(\) € R for all A € P. Let ¢’ = ¢"/¢ so that ¢‘»*) € (¢')% for
any A, u € P.

Lemma. Let r € N, my,...,m, € Z and wy,...,w, be (not necessarily distinct) funda-
mental weights. For each v € P, write n;(7y) = d(y,w;) € Z and let

T

Py(t) = [[¢" ™ = (¢)™) € R[t,t7].

i=1

Then, for every positive integer a > 1, the image of the set {P,(¢') : v € P} in R/m*R
is finite.
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Proof. First let b= v,(¢’ — 1) > 0 and note that b = v.((¢’)~* — 1). Consider

T

Q,(1) = [T~ 1) € Rlt, e,

i=1

Then we see that P, (¢") = (¢/)™ T ™ Q. (q’), so that it suffices to show that the result
holds for @(t). Note that since v,((¢')"™ — 1) > b|m| for any m € Z, it follows that
Q+(¢') =0 (mod 7*) whenever b|n;(y) —m;| > a for any 1 <i <r. Let

X ={(k1,...,k.)€Z" :b|k;] <aforalll <i<r}

and set

M= {ﬁ((q')k7 —1): (k1,..., k) € X} u{0}.

=1

Then by the above observation we have that every Q.(¢’) is congruent to an element of
M modulo 7®. The result follows since M is finite. O

Proposition. Suppose that X is a finite subset of P and let A € P\ X. Then there is an
element p € UY such that p(P) C R, p(X) = 0 and p(\) = 1.

Proof. For each ;1 € X, the character ¢, is determined by its action on the K,, so as
A # p there must be some h;, € {Kq,,...,Kq, } such that h,(\) # h, (). Consider the
product

r= H (hy = hyu(p)) € U

Note that h,(P) C R for every p € X and that, furthermore, the image of h,(P)
in k = R/mR is constant equal to 1 because K, (7) = ¢/ =1 (mod ) for any
1<i<mnandany vy € P.Soz(X)=0, xz(\) # 0 and z(P) C R, actually such that
x(P) has image zero in k. Hence there exists a maximal N > 0 such that y := 7"z
still satisfies y(P) C R, and of course we still have y(X) = 0 and y(A\) # 0.

Now note that if y(\) € R*, then p = y(\)~ 'y satisfies the required hypothesis.
Otherwise, note that the set of residues of y(P) in R/7®R is in bijection with the residues
of z(P) = 7Vy(P) in R/7N TR, hence is finite for any a > 1 by the Lemma. Let V be
a finite set in R, containing 0, such that every element of y(P) is congruent to a unique
element of Y modulo 7, and set

g=m"1! H(t—v) € Lt].

Then g(y(P)) C R, g(y(X)) = 0 and v, (g(y(A))) = v=(y(A)) — 1. Moreover the image
of g(y(P)) in R/7*R is in bijection with the image of mg(y(P)) in R/7*"!R, which is
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finite for every a > 1 since it was for y(P). By induction, we can then find h € L[t] such
that p := h(g(y)) satisfies the required properties. O

Theorem. Suppose that M € D(H). Then for each m € M, there exists a unique family
(mx)aep withmy € My such that Y ,cpmx converges to m. Moreover, if m € N where
N is a closed U(?—invarz'ant subspace, then each my € N.

Proof. We know by definition that there is a family (my)xcp with my € M, such that
> xep M converges to m. So we just need to prove uniqueness. Fix y € P, and let
q1 < g2 < --- be a countable set of semi-norms defining the topology on M, so that
M = lim M,

Fix some ¢ > 1. There is an ascending chain S; C So C - - of finite subsets of P such
that A € P\ S; implies that ¢;(my) < 1/j. By the Proposition, for every j > 1, there
exists p; € UY such that p;(P) C R, p;(S; \ {1}) = 0 and p;(n) = 1. Then we have

pj-m=Y pi(Nmy=mu,+ > pi(MNma.
XeP AEP\S;

By construction, g;(p;(A)my) < ¢;(my) < 1/j for all A € P\ S;. Hence p; - m — m,, in
My, as j — oc. So we see that the image of m,, in M, is uniquely determined by m by
uniqueness of limits. Since ¢ was arbitrary and since M = lim Mg, , it follows that m,, is
uniquely determined by m.

For the last part, since N is closed and so complete, it follows that A, is equal to
the closure of N in My, for each i > 1, and N = lim Ny,. Now N is Ug-invariant, so
for every ¢ > 1 we have that the image of m, in M,, equals limp; - m € N,. Hence
my, eN. O

Remark. The ideas in the proofs of the Proposition and the Theorem were adapted for
quantum groups from a proof that was communicated to us privately by Simon Wadsley.

Given M € D(H), we may form

M> =5 M,

AEP

which is a qu-module. From the above, we immediately get the first part of the next
result:

Corollary. The category D(H) is stable under passage to closed H-submodules and to the
corresponding quotients. Moreover, given M € D(H) and a closed submodule N, we have

(M/N)bb [ Mss/Nss.

Proof. For the last part, for every m € M, write m for its image in the quotient M/N.
Suppose that m € (M/N)%. By continuity of the quotient map, if m = cp m\ con-
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verges then ™ = >, . p T converges too, and that sum must be finite by the uniqueness
of the decomposition from the Theorem. Thus there is a finite set S C P such that, if
A € P\ S, then my € N. Hence if we write m’ = Y ,cqgmx € M, then m’ = m. This
shows that the map

M — (MNP
is surjective. We now simply observe that its kernel is A, O
5.2. A bijection between Ug-invariant subspaces

We need one other result to do with topologically semisimple modules. It is completely
analogous to [17, Satz 1.3.19 & Kor. 1.3.22], but we give a proof nevertheless.

Proposition. Suppose that M € D(H). Then the assignment
N = NNM*®

defines an injective map between the set of closed H-submodules of M and the set of
abstract Ug—submodules of M?%, with left inverse given by passing to the closure in M.
Now assume furthermore that all the weight spaces My are finite dimensional. Then f is
in fact surjective and so bijective. If additionally, M is also equipped with a Ug-action by
continuous L-linear endomorphisms extending the Ug-action, then the bijection descends
to a bijection between the Ugy-invariant objects.

Proof. For the first part, we must show that ' = N N Mss. Pick m € N. By Theo-
rem 5.1, we may write m = Y ,cp mx where my € N for each X\ € P. For each n € N,
let

P, = {anwz € P:ny gn}.

Since each P, is a finite set, we may define m,, =3 \cp mx € N N M33. Then we have
m, — m as n — oo and so m € N N M>s. Thus we see that N C A N MsS. The other
inclusion is trivial.

Now assume all weight spaces are finite dimensional, and let N C M be a
Ug—submodule. Note that N must be semisimple since M>® is semisimple. The result
will follow if we show that for such an N, we always have N = N N M?®®. To do that, we
need to show that N N M is contained in N, the other inclusion being clear. So pick
m € N N M. Then there is a sequence (m;),en converging to m such that m; € N for
all j. Since all the m; lie in M**, we can find an ascending chain of finite subsets S; C P
such that m; = EAeSj my,; with my ; € M. We may also find a finite subset Sy € P
such that m = Y, 5, ma with my € M, and without loss of generality we may assume
that Sp C S1. Let S = (J;5¢5;-
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Now it follows from our assumption on weight spaces that any finite direct sum of
weight spaces is finite dimensional, and hence the subspace topology on it is equivalent to
the Banach space topology given by the max norm. In particular the projection map to
any direct summand is continuous. Since M** is the direct limit of the these finite direct
sums, we see that the projection map from M?>® to any direct summand is continuous,
where M** is given the subspace topology. Hence we have that, for a fixed A € S, my ;
converges to my (where my ;, respectively my, is understood to be zero when A ¢ S;,
respectively A ¢ Sp). But now my; € N N M, for every j, and N N M, is finite
dimensional hence complete. So we get that my € N for every A € Sy as required.

For the last part, we have that M is then a U;-submodule of M, so that A’ N
M is Ug-invariant whenever N is Ug-invariant. Also, U,-invariant subspaces of M are
preserved under passing to the closure. Hence the result follows immediately from the
above. O

5.3. Category o

We are now in a position where we can define an analogue of the BGG category O
for ﬁq First we recall that there is a category, that we denote by O, which is the full
subcategory of the category of Uj,-modules consisting of modules M that satisfy the
following:

e M is finitely generated;
e M is the sum of its weight spaces, i.e. M = @ cpM); and
. dimLU;m<oofor allm e M.

This category is an analogue of the integral subcategory Oy (i.e. the direct sum of all
integral blocks) of the usual BGG category O for the complex Lie algebra g (see [20]).
Our category O shares all the standard properties of Oy, see [1, Section 6] and [12,
Chapters 9-10]. In particular, all modules in O have finite dimensional weight spaces
and have finite length, the highest weight U;-modules all belong to that category, are
indecomposable and have a unique simple quotient, and O splits into blocks

o= & o

AE—p+P+

where p is half the sum of the positive roots, and the block O* consists of those modules
from O whose composition factors have highest weights in W - \.

Now we have for each n > m that U° = R[K) : A € P] C U, and from the PBW
theorem (Theorem 4.5) we see that 72U, NU® = 7?U° for every a > 1. Hence it follows
that the subspace topology on U? of the m-adic topology on U, is the m-adic topology on
U°. Thus we see that the injection Ug C U, is strict (in fact an isometry) with respect
to all the norms ||-||,, for n > m on U, and the single gauge norm ||-|| on U associated

to Ug . Hence there is a canonical strict embedding U < ﬁq.
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Moreover, recall from the notion of a coadmissible module from Definition 4.3 and
the properties of the category C(Uy) from Proposition 4.3. These modules have a Fréchet
topology attached to them, making them by the above into U, g—modules where the action

is by continuous L-linear endomorphisms.

Definition. The category O for l7q is defined to be the full subcategory of C(@) consisting
of coadmissible modules M satisfying:

(i) M is topologically ﬁ?—semisimple with weights contained in finitely many cosets of
the form A — QT, with A € P; and
(ii) all weight spaces of M are finite dimensional.

From Proposition 4.3 and Corollary 5.1, we immediately get:
Proposition. Let M be an object of 0.

) The direct sum of two objects in O is in O;
) the category O is an abelian subcategory of C(UA}I);
iii) the sum of two coadmissible submodules of M s in O;
) any finitely generated submodule of M is in O; and
) Let N be a submodule of M. Then the following are equivalent:
(1) N is in O;
(2) M/N is in O; and
(3) N is closed in the Fréchet topology of M.

We also record here the following fact:

Lemma. Let M € O. There is an inclusion preserving bijection between the subobjects of
M in O and the Uq-submodules of M.

Proof. We see from Proposition 5.2 that the map
N = NN M™

gives an inclusion preserving bijection between the closed, Ug-invariant, @—submodules
of M and the Uj;-submodules of M?*°. But the former are just the closed /U;—submodules

of M, which are just the subobjects in @ by Proposition 5.3(v). O

5.4. Verma modules

We may now define the objects which play the role of Verma modules. For each A € P,
there is a one dimensional quo—module Ly given by u -1 = 9 (u), where we extend 1y
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to a character of UqZO by setting it to be 0 on U;. We can then define a Verma module
M()\) = Uq ®U20 L>\.

We now let I be the left ideal of UA'q generated by all E,,, Ko, —AMKg,) (1 <i<n).
Since it is finitely generated, it must be a coadmissible module and hence the quotient
U, /I is coadmissible as well.

Definition. We define the Verma module with highest weight X\ for ﬁq to be the quotient

—

M) = ﬁ;/b\, which is a coadmissible module.

—_

Note that M ()\) = Uy @y, M(X). Indeed, if Jy denotes the left ideal of U, generated
A(K

by all E,,, Ko, ;) (1 << n), then we have a short exact sequence

0—=Jyx—U;,— M) —0

of Uz-modules, and our claim follows by tensoring it with ﬁq.

We now want to show that m is an object of our category. To do this, we will need
a tensor product decomposition of /U;. Consider the filtration on U™ given by assigning
each F,, degree 1 (this is the same as the height filtration by Corollary 4.6). The n-th
deformation of U~ with respect to this filtration is just U, for each n > 0. For n > m,
by the PBW theorem (Theorem 4.5), we have that 7*U, NU,; = w®U,, for every a > 0,
so that there is an isometric embedding

Ugn = Usy @ L < U.p.

—

Hence if we let Uy := limUyn, then there is a strict embedding Uy — UA’q. Using

Corollary 4.6, we may describe U, explicitly as follows:

Uy = {Zangll Fgg : w‘”ht(Fr)ar’s,)\ — 0 as ht(F") — oo for all n > 0} )

(5.1)

We may completely analogously define the positive subalgebra of ﬁq.
We can also do a similar construction for the positive Borel. For each n > m, the
inclusion UnZO C U, induces an isometric embedding

UM — U@L Ugm

—

and passing to the inverse limit, this gives a strict embedding quo — ﬁq where Uq20 =

. >0
lim Ugp.
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Lemma. The multiplication map defines a topological isomorphism
/UE@L[/]?) - U,
of bimodules.
Proof. The PBW theorem (Theorem 4.5) for U, gives an isomorphism
U, @rUz"~=U,,
of filtered R-modules. The result follows from Theorem 3.4. O

Note that, for every A € P, the one-dimensional UqZO—module L, is complete

Vﬁ/liih respect to any Hausdorff locally convex topology, and so naturally extends to a
UZ%-module.
Proposition. The module J\/ﬂ\/\) lies in O and mss = M(X). There is a canonical
inclusion preserving bijection between the subobjects ofm and the Ug-submodules of
M(N). In particular, m is an irreducible object if and only if M(N) is irreducible as
a Ug-module.

Proof. From the definition, we see that M(\) = /U\q ®-—= Ly, and its topology is the
Ug

quotient topology coming from ﬁq. Since it’s therefore complete, it follows that M (\) =
Uq@/;oLA. By the Lemma and using the fact that the projective tensor product is
Ug

associative, we obtain an isomorphism

—

M\ 2 Uy ®pLy = Uy @ Ly

s

as left Uy -modules. By considering now the U2-action on this, and using the description
— N —8

of Uy in (5.1), we see that M (\) € O and that M(X) = Uy @1 Lx = M(}). The final
two statements follow immediately from Lemma 5.3. O

Corollary. Let A € P. Then the following are equivalent:

o M()) is an irreducible object in O.

o For every positive oot 3, (A + p, B¥) ¢ N.

Proof. This is just the condition for M(X) to be irreducible, see [12, Corollary
10.1.11). O
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5.5. Highest weight modules

Having defined the Verma modules, we now look more generally at highest weight
modules.

Definition. Given a coadmissible ﬁq—module M and A € P, an element 0 # m € M, is
called a maximal vector of weight A if Uq+ -m = 0. We say M is a highest weight module
with highest weight X if it is the cyclic /U_;—module on a maximal vector in M.

—

The next result follows directly from the definition of M (\):
Lemma. The coadmissible module M (X) is a highest weight module with highest weight
A

Note more generally that it is immediate from the definition of @ that every object
of O contains a maximal vector. Hence by Proposition 5.3(iv), every irreducible object
in D is a highest weight module.

—_

Proposition. Let M € C(U,) be a highest weight module on a mazimal vector m € M of
weight A € P. We have the following:

(i) M is topologically @—semisimple with weights contained in X — Q™.

(ii) The weight spaces of M are finite dimensional and dimy, My = 1. In particular,
M e O and M has finite length in O.

(iii) Each non-zero quotient of M by a coadmissible submodule is again a highest weight
module.

(iv) Each coadmissible submodule of M generated by a mazimal vector m’ € M,, for
some pu < X\ is proper. In particular, if M is an irreducible object in O then all its
mazimal vectors lie in Lm, and hence Endf]\q (M)=L.

(v) M has a unique mazimal subobject and a unique irreducible quotient object and,
hence, is an indecomposable object.

(vi) Let N be another highest weight module of weight . Then

dimHom~ (M, N) < oo.

If X # pu then M and N are not isomorphic. If M and N are simple objects and
A=pu, then M =2 N.
Proof. By definition of highest weight modules, there is a surjection M (\) — M which
is a morphism in C(U,). Hence we see from Proposition 5.3(v) that M € O. From
Corollary 5.1 and Proposition 5.4, we get a surjection

S

M) =M\ — M,
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In particular, M is a highest weight module of weight A in O. All properties therefore
follow from the usual properties of O by Lemma 5.3. O

— —

If we write V(A) to denote the unique irreducible quotient of M(X), then we have

—SS
V() = V()), where the latter denotes the unique irreducible quotient of M(\). Then
we obtain:

Corollary. The map \ — [V(X\)] gives a bijection between P and the set of isomorphism
classes of irreducible objects in 0.

5.6. A functor O — o

We now describe a functor between the categories O and O. 1t follows from Corol-
lary 4.3 that the functor M — [7(1 ®u, M between the categories of Uj,-modules and
f];—modules is exact. If M is a finitely generated U,-modules, then M is in fact finitely
presented since Uy is Noetherian and hence @ ®y, M is also finitely presented. But this
implies that @@Uq M is coadmissible. Thus there is an exact functor F' : M +— @@UQ M
between the category of finitely generated U,-modules and the category of coadmissible
ﬁq—modules.

Moreover we have already seen that F'(M (X)) = m Thus, if M € O is a highest
weight module of highest weight A, then by exactness of F' we get that F'(M) is a quotient
of m and hence is in O. More generally, every object of O has a finite filtration with
highest weight subquotients. Hence there is a surjection @&;M; — M from a finite direct
sum of highest weight modules to M, and since F' commutes with finite direct sums, it
follows that F(M) is a quotient of &;F(M;) and so lies in O. Hence F restricts to an
exact functor

F:0—0.
Then we have:

Proposition. The functor F : O — O isa fully faithful exact embedding with left inverse
given by M — M.

Proof. It suffices to show that there is an isomorphism M = F'(M)*® natural in M. First
observe that there is such a natural U -module map, given by m — 1®@m. If M = M(\)
for some A € P, that map is an isomorphism by the proof of Proposition 5.4. If M is a
highest weight module, we have a short exact sequence

0->N—->MAN—=>M-=0

—

for some A € P. Writing N as a subquotient of U, and using the fact that M(\) is
the completion of U,/Jx with the quotient locally convex topology, we see that the
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— —

image of the map F(N) — M(}) is the closure of N in M()). Hence N & F(N)®* by
Proposition 5.2 and it follows that M = F(M)® by exactness of the two functors. Now
if M is arbitrary, it has a filtration whose subquotients are highest weight modules. By
induction we may assume M is an extension of highest weight modules. Then the result
follows by the Five Lemma. 0O

Moreover we can easily identify the essential image of the functor F:

Lemma. The essential image of F is the full subcategory of O whose objects are those
modules M € O which have a finite filtration

O=MoCcM;C---CM, =M
by subobjects such that the quotient M;/M;_1 is a highest weight module for each i > 1.

Proof. The essential image is contained in this since, for M € O, we have an analogous
finite filtration in O with subquotients equal to highest weight modules and so we obtain
the filtration for F'(M) by applying F' to this filtration and using exactness. For the
converse, suppose that M is as described. Then by exactness of M — M (Corollary 5.1)
and by Proposition 5.5 and its proof, we see that M® € O. Thus it suffices to show that
F(M®) =2 M. Now by applying the functor UA'q ®y, (-) to the inclusion M* C M and
postcomposing with the action map u ® m +— um, we get a morphism F(M?*) — M in
O. Let K and C denote its kernel and cokernel respectively. Then from Proposition 5.6
we get that % =% = 0, and so K = C = 0 by Proposition 5.2. O

We claim that the full subcategory described in Lemma 5.6 is the whole of O:

Theorem. The functors F' and (-)* are quasi-inverse equivalence of categories between
the categories O and 0.

The rest of this paper will be spent proving this theorem.
5.7. Central characters

We now quickly recall some facts about central characters. Recall that the centre of
Z(U,) is isomorphic to a polynomial algebra in n variables (see [23, Section 7.3, page
218] - note that this is only true for the simply connected form of the quantum group).
For each A € P, Z(U,) acts on the Verma module M () by a central character x» (see
[21, Lemma 6.3]). These characters satisfy the usual property that x» = x, if and only
if p € W - X (see [12, Theorem 9.1.8]) with respect the dot action w - A = w(A + p) — p.
Thus every character has a unique representative in —p 4+ PT.

For a giv% € —p + PT, the character x, extends to a continuous character of
the closure Z(U,) of Z(U,) in (7,1, which we also denote by x», using the fact that
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—

End (]\//[—(—)T)) = L from Proposition 5.5(iv). Indeed it’s clear from it that Z(U,) acts on
the Verma module by a continuous character, and we see that this character extends x
by cogsﬁlging the semisimple part. Hence we see more generally from Proposition 5.5
that Z(U,) acts on a highest weight module M by the character x,, and that every
Jordan-Holder factor of M must necessarily have highest weight in W - A.

Now, if M € O then Z(U,y) acts on each weight space M) and we may form the
subspace

Y i={me M, : (kerx)*-m =0 for some a = a(m) > 1}

where y is a character of Z(Uy). Since & MY is a Ug-submodule of M, its closure MX
inside M is a subobject in o by Lemma 5.3. Thus we may define the full subcategory
OX of O whose objects are those M € O such that M = MX. When x = X for some
u € P, we write Ox = Or. We now establish a few facts about these subcategories.

Lemma. Suppose M € O and x is a central character as above. If MX # 0, then y = Xu
for some p € P.

Proof. Since MX is an object in O, it must have a maximal vector m € M. Let n > 1
be minimal such that (ker x)™ - m = 0. Pick 0 # m’ € (ker x)" ! - m. Then m/ is still a
maximal vector and the centre acts on it Ey‘x On the other hand, the highest weight
module generated by m' is a quotient of M (x) and hence the centre acts on it by x,.
This forces x = x,. O

Hence we see that the only such subcategories which are non-zero are the OF for
pe—p+ Pt

Proposition. For every i € —p+P™, the category O is abelian and the functor O — Or
given by M +— MXe is exact. Moreover, OF is Artinian and Noetherian.

Proof. Given a morphism M — A in @ we have morphisms My — N for each A € P
and Mi\(" — J\f;(”. Taking the sum over all A and passing to the closure, we see that the
assignment M — MXw is functorial. For the exactness, we apply the same argument
again using the fact that module maps between coadmissible modules are automatically
strict and so passage to the closure then preserves exactness by [9, 1.1.9, Corollary 6].
As OF is a full subcategory of @, it is now clear that it is closed under passage to kernels
and cokernels and, thus, abelian.

The last part follows using the classical argument for category O (see [20, Theorem
1.11]) as follows. Given M € O let V = > xew.p M. Then V is finite dimensional.
Now if 0 £ N’/ C N is a strict inclusion of subobjects of M, let m € Ny be such that its
image in A//A is a maximal vector for some weight A. The cyclic submodule of N'/N’

—

generated by the image of m is highest weight, hence Z(U,) acts on it by xx. Hence it
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must be that x\ = x,, i.e. that A € W - u. Thus by definition of V' we see that m € NNV
and so we obtain dimy,(N NV) > dimz (N’ NV). The result now follows. 0O

They key step in the proof of Theorem 5.6 is the following:
5.8. Proposition

The above functors O — O" induce a faithful embedding of@ into the direct product

H,LLG*P‘FPJF or.

Proof. Choose polynomial generators z1, ..., 2, of Z(U,). Then for any M € O, the vec-
tor space /\/lif“ is the simultaneous generalised eigenspace of the finitely many commuting
operators zi, ..., z, with simultaneous generalised eigenvalues x,(21), ..., xu(2n). Now
there is a finite field extension L C L’ such that

My L' =P My @ L)

X

where the sum runs over a finite number of L’-valued characters of Z(U,) and (M) @,
L)X is defined in the obvious way. Hence we just need to show that if (M) ®p L)X #0
then x = x,, for some p. But this is Lemma 5.7, noting that M ®p, L’ is in O since L'
is a finite extension.

Thus we have that My = EBHM;(”. Moreover, the equality M* N M = @, MX*
implies that M5 = @M(M”DMSS). Hence we see that from this and the usual propeEties
of (-)** that the sum ), M* is direct and dense in M. In particular the functor O —
[1, O" given by M = (M*),, is faithful. O

We can now establish our main result. We first need a couple of preparatory results.
Lemma. For every n > m, there is a triangular decomposition
Uan®r008 LU n > Uy
given by the multiplication map.

Proof. By the PBW theorem (Theorem 4.5), the multiplication map yields a triangular
decomposition

U- @r U @r UT =5 U,
for every n > m. The result now follows by Proposition 3.3. O

Given any coadmissible @-module M, we write M,, = (7,1,\” ®z; M which is a
q

finitely generated Banach @—module. Moreover the canonical map M — M, has
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dense image. We also remark that the map /UTI — @ is flat for every n > m (see [33,
Remark 3.2]).

5.9. Lemma
For any A € P and any n > m, we have V(X),, # 0.

Proof. Consider the kernel K of the surjection My — V(A). Since ﬁq — 17(1\71 is flat, the
kernel of (M\A)n = V()

Uq,n from the previous Lemma, we get

n 18 ICpy for every n > m. By the triangular decomposition for

(E)n = Uq,n ®Uq M)\ = Uan ®r L)\

and so (/J\/[\,\)n is topologically ﬁqa—semisimple with ((/ATA)")SS = M. By Corollary 5.1
both ), and V()
((My),)® = M. Now the composite K% C K — I, has dense image, so it follows from

Proposition 5.2 that its image is 5. So we get I = K as U0 modules, and now we

see that K3 #£ M), as required because V()\) #0. DO

are topologically semisimple and it suffices to show that K® #

Proposition. The category O is Artinian and Noetherian.

Proof. Let M € O. We have from the proof of Proposition 5.8 that 5, M* is dense in
M. Now for any n > m, we have

Mo = Uy 852 M 2 Ugn ©55 (@ MH) — PmH)..
p "

Any non-zero M* has a composition series by Proposition 5.7 and so V( ) © (MH*),
for some A € P and then we see that (M“)n # 0 by the previous Lemma. Slnce M,
is a finitely generated Uq n-module and U .n is Noetherian, it follows that M#* = 0 for
all but finitely many p. But then the sum &, M* is finite and so closed by Proposi-
tion 5.3(iii)&(v). O

This now concludes the proof of Theorem 5.6:

Proof of Theorem 5.6. This follows immediately from the previous Proposition by
Lemma 5.6. O

5.10. A Harish-Chandra isomorphism

The analogue of Theorem 5.6 was proved for (non-quantum) Arens-Michael envelopes
n [31]. One of the main ingredients was a version of the Harish-Chandra isomorphism.
Recall that the centre of Z(U,) is isomorphic to a polynomial algebra in n variables.
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Conjecture. The above isomorphism extends to a topological isomorphism Z(U;) —
O(A7™) between the closure of Z(Uy,) in Uy and the algebra of rigid analytic functions
on the analytification of affine n-space.

To justify that this conjecture might plausibly be true, we show it for U,(slz). In that
case, the centre Z(U,) is a polynomial algebra in the quantum Casimir element

qK2 + q—lK—2

C, =—FE+1 71 =
I (g—q1)?

see [22, Proposition 2.18]. In this sly setting, recall that we had set the number m to be
the least positive integer such that

7.(.2m

q—qt

€R.

Having recalled this, we can now show:
Proposition. Conjecture 5.10 holds for Ug(sly).
Proof. By definition of Cy, for n > 2m, we have

’/T2n(qK2 + q71K72)
(q—q71)?

m"Cy = (r"F) (" E) + e U,.

Hence we see that the subalgebra of Z(U,) consisting of polynomials in 72"C, with coef-
ficients in R is contained in the centre of U,,. Conversely, suppose that z = Y7 ciC’é €
Z(Uqy)NUy,, with each ¢; € L. We show by induction on a that each coefficient ¢; actually
belongs to w2 R. If a = 0 this is obvious so assume a > 1. Now note that

C; = F'E" + (terms of lower height).

Indeed this follows from the commutator relation between FE and F'. In particular, ex-
panding Cé in terms of the PBW basis, we see that Cé is a linear combination of basis
vectors of height < 2¢ — 1, with the exception of F*E* which arises with coefficient 1.

Thus we see that the coefficient of F'* E* in the PBW basis expression for z is ¢, since
all other terms appearing in every summand of z have height at most 2a — 1. But by the
PBW theorem for U,, (Theorem 4.5) and since z € U,, it follows that the coefficient of
F2E® in the basis expression for z is in 72" R. Hence ¢, € m2"*R and it follows that
caCy € R(’]TQan)a C U,,. Thus we may consider

a—1
ZCZ'C; =z—c.Cy € Z(Uy) NU,
i=0
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and get that the other coeflicients satisfy the required property by induction hypothesis.
The above calculation shows that the centre of U, is Z,, := R[r?"C,] for every n > 2m.

If we write Z;\n = 2\ ®gr L, we get that the closure Z(U,) of Z(U,) in ﬁq is the
projective limit lim Zq n- From our description of Z,, it is clear that this is isomorphic
to O(A}™). O

Remark. The non-quantum version of Harish-Chandra for the Arens-Michael envelope
is due to Kohlhaase [24, Theorem 2.1.6]. A completely similar construction to the initial
Harish-Chandra homomorphism applies to the Arens-Michael envelope, and he shows
it to be an isomorphism. In our quantum setting, we can do that/c%tru@i\on as well.
One can straightforwardly construct a continuous projection map Z(U,) — Ug 0 and twist
by —p, which gives a continuous algebra homomorphlsm with i image in the Weyl group
invariants. However all the defining norms of U are identical on U0 and so it is not clear
a priori how to see the Fréchet structure of this image (this is somethmg that does not
occur in the classical situation).

The above calculation for sl; works because we have a complete and explicit descrip-
tion of the polynomial generator for the centre in terms of the PBW basis. In order to
perform a similar calculation for a general Lie algebra, we’d need to have a similar de-
scription of the polynomial generators of the centre, something which we have not found
in the literature.
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