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Let k be an infinite field and I C k[z1,...,z,] be a non-zero
ideal such that dim V' (I) = ¢ > 0. Denote by (f1,..., fs) a set
of generators of I. One can see that in the set INk[z1, ..., Tq+1]
there exist non-zero polynomials, depending only on these
q + 1 variables. We aim to bound the minimal degree of the
polynomials of this type, and of a Bézout (i.e. membership)
relation expressing such a polynomial as a combination of
the f;. In particular we show that if degfi = d; where
di > da... > ds, then there exist a non-zero polynomial
#(x) € k[z1,...,xq41] N I, such that degp < ds [[727 " d;.
We also give a relative version of this theorem.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let I C k[z1,...,2,] be a non-zero ideal such that dim V(I) = ¢ > 0. Using Hilbert
Nullstellensatz we can easily see, that in the elimination ideal INk[z1, ..., 2441] there exist

non-zero polynomials. It is interesting to know the minimal degree of the polynomials in

this ideal. Here, performing a generic change of coordinates, and continuing the approach

presented in [5], we get a sharp estimate for the degree of such a minimal polynomial
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(and also for a corresponding generalized Bezout identity), in terms of the degrees of
generators of the ideal I. Then, using a deformation arguments we solve the stated
problem. We show that if deg f; = d; where d; > ds... > ds, then there exist polynomials
gj € klz1,...,2,] and a non-zero polynomial ¢(x) € k[x1, ..., 441] such that

( )degg]fj <d; Hn ! 1 d;,

(b) ¢(z) = Zj:l 9[-

Note that our result works also in the case dim V(I) = —1 (i.e. in the case when
V(I)=0) if we put k[zo] := k and d; = 1 for ¢ > s (however our result in this case is a
little bit worse than these in [5], [6]). Hence, from this point of view, we can treat our
result as a generalization of the Effective Nullstellensatz. We also give a relative version
of this theorem.

Effective versions of Nullstellensatz and Membership problems have a long story and
several variants, going back to G. Hermann [4]. The interested reader can consult e.g.
the references listed by Brownawell [2], Brownawell [3], Kollar [6], and D’ Andrea et al.

[1].
2. Main result

In this section we present a geometric construction and establish degree bounds, re-
lying on generic changes of coordinates. Let us recall (see [5]) two important tools that
we will use in the proof of the main theorem of this section.

Theorem 1. (Perron Theorem) Let L be a field and let Q1,...,Qny1 € Lixy,...,z,] be
non-constant polynomials with deg Q; = d;. If the mapping Q = (Q1,...,Qny1) : L™ —
L™+ ds generically finite, then there exists a mon-zero polynomial W (Ty, ..., Thi1) €
L[Ty,...,Tny1] such that

(a) W(Q1,...,Qnt+1) =0,

(b) deg W (T, 5>, ... Towt*) < 1021 d;

Lemma 2. Let K be an algebraic closed field and let k C K be its infinite subfield. Let

X C K™ be an affine algebraic variety of dimension n. For sufficiently general numbers
ai; € k the mapping

m m m
T: X3 (x17...,xm) — ( E aljacj,Zagjxj,...,Zaljxj> e K"
Jj=1 Jj=2 Jj=n

is finite. O

In the sequel for a given ideal I C k[z1,...,2,] by V(I) we mean the set of algebraic
zeros of I, i.e., the zeroes of I in K™, where K is an algebraic closure of k. Now we can
formulate our first main result:
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Theorem 3. Let k be an infinite field and let fi,..., fs € k[z1,...,2,] be polynomials
such deg f; = d; where dy > dy... > ds. Assume that I = (f1,...,fs) € k[z1,...,2,] is
a non-zero ideal, such that V(I) has dimension q > 0. If we take a sufficiently general
system of coordinates (x1,...,xy), then there exist polynomials g; € k[z1,...,z,] and a
non-zero polynomial ¢(x) € klx1,...,xq+1] such that

(a) degg; fj < ds Hn it di,

(b) ¢(z) = 2.7:1 95 f5-

Proof. Let K be the algebraic closure of k. Take F;,_, = f; and F; = ijz ayj f for
i=1,..,n—q—1, where o;; € k are sufficiently general. Take J = (F1, ..., F;,_4). Then
deg F,,_q = ds; and deg F; = d, fori = 1,...,n—g—1. Moreover, V(J) has pure dimension
q and J C I. The mapping

O :K"xK > (z,2) = (Fi(2)z,...,Fog(x)z,2) e K" x K"

is a (non-closed) embedding outside the set V(J) x K. Take I' = cl(®(K" x K)). Let
7 : T — K" be a generic projection defined over the field k. Define ¥ := 7 o ®(x, 2).
By Lemma 2 we can assume that

Z'VlyFZ+ll( Z Yn—qjFjz + ln—q(2), ln—g41(2), ..., lns1(2)),
Jj=1 Jj=n—gq
where lq,...,l,11 are generic linear form. In particular we can assume that l,_q44,

i=1,..,q+ 1 is the variable z; in a new generic system of coordinates (of K™).
Apply Theorem 1 to . = k(z), and to the polynomials ¥y,..., ¥, € L[z]. Thus
there exists a non-zero polynomial W(T1,...,T,4+1) € L[T1,...,Th+1] such that

—q—
W(¥y,...,U,p1) =0and deg W (T{", T52, ..., T% Thyr,.. ., Tny1) < d H

where k = n — ¢. Since the coefficients of W are in k(z), there is a non-zero polynomial
W € k[Ty,...,Ths1,Y] such that

(a) W(Uy(z,2),..., V1 (x,2),2) =0,

(b) degy W (T, T52, ..., T Tty oo, Togr, Y) < dy [G= Yd;, where degy de-
notes the degree with respect to the variables T' = (11, ... Tn+1)

Note that the mapping ¥ = (¥y,..., ¥, 1) : K® x K — K" is locally finite outside
the set V(J) x K. Consider K"*! as a product K»=? x K¢*t! and let us consider in this
product coordinates (Yg+2, s Yn+1, Y1, -, Yg+1)- Hence W restricted to V(J) xK coincides
with the mapping: (z,2) — (l1(2), ..., ln—q(x), Z1, ..., Tg+1) (recall that we consider a new
generic system of coordinates). Let ¢ = 0 describes the image of the projection

m:V(J) D x> (21, .0y 7g11) € KITL
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Put S = {T € K" : ¢/(T) = 0}. Hence V(J) x K is contained in ¥~1(S). Consequently
the mapping W is proper outside the hypersurface S and thus the set of non-properness
of the mapping W is contained in the S.

Since the mapping ¥ is finite outside S, for every H € K|x1,...,zp, 2] there is a
minimal polynomial Py (T,Y) € K[Ty,...,Th+1][Y] such that Py (Uq,..., Y1, H) =
S obi(¥1,..., U, 1)H"" =0 and the coefficient by satisfies {T": by(T) = 0} C S. In
particular by depends only on variables 21, ..., £441. Note that Py describes a hypersur-

face given by parametric equation (¥q,..., ¥, 11, H). Hence if H € k[z1,...,z,, 2], then
by Grobuner base computation we see that we can assume Py (T,Y) € k[T1,...,Th+1][Y]-
Now set H = z.

We have

—q—
degTPZ(T{thQan"'aTgann-‘rla S H

and consequently we obtain the equality bo(z1,...,Zq11) + > ory Figi = 0, where deg
Fig; < d, H” g-1 d;. Set ¢ = by. By the construction the polynomlal ¢ has zeros only
on the image of the projection

7 V(J) 3z (21, m941) €EKITL O

Remark 4. Simple application of the Bezout theorem shows that our bound on the degree
of ¢ is sharp.

Corollary 5. Let k and I and system of coordinates be as above. If V(I) has pure dimen-
sion q and I has not embedded components, then there is a polynomial ¢1 € k[x1, ..., Tg41)
which describes the image of the projection

7 V() 3z (21, ., 2441) € KT

such that

(a) o1 €1,
(b) deg ¢y < ds [[7 " d

Proof. The set V(J) = ¢ has pure dimension g. Consequently w(V(J)) and w(V (1)) are
hypersurfaces. Moreover, by Grobner bases computation the set 7(V(I)) is described
by a polynomial ¢ from k[z1,...,2441]- Let ¢ be a polynomial as above which vanishes
exactly on m(V(J)). Let ¢1 be a product of all irreducible factors of ¢ (over the field k)
which divides ¢. Hence ¢ = ¢1d2, ¢1,¢2 € k[x1, ..., xg41], where ¢ does not vanish on
any component of V(I). Let I = ()" I be a primary decomposition of I. Consequently
¢1 € I; for every s (by properties of primary ideals) and consequently ¢4 € I. But ¢
describes the image of the projection
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V() 3z (21, 1041) €KL O
3. A deformation argument

In this section, we improve Theorem 3 by releasing the necessity of a generic change of
coordinates, so conditions (a) and (b) will be satisfied in the initial system of coordinates.

Theorem 6. Let k be an infinite field and let fi,..., fs € k[z1,...,2,] be polynomials
such deg f; = d; where di > dg > ... > ds. Assume that I = (f1,...,[s) C k[z1,...,z,)
is a non zero ideal, such that V(I) has dimension g > 0. There exist polynomials g; €
klx1,...,zy] and a non-zero polynomial ¢ € k[x1,...,xq41] such that

(a) degg;f; < d TI'20 " ds,

(b) d=3519;f;

Proof. We use Theorem 3, but over the field L. = k(t). We consider a new generic change
of coordinates using generic values a; ; in the infinite field k, together with the inverse
change of coordinates

n n
X,=x; +1t Z Q; jTj 5 Ty = X; +t Z bi)j(?f))(j7
j=it+1 j=it+1
where bi’j (t) S k)[t]
As in the proof of Theorem 3, we obtain some polynomials G; € L[Xq,...,X,] and
a non-zero polynomial by € L[X,,_g, ..., X;,] such that, after chasing the denominators,

bo(X,t) = nz_q(;j(x, (X, 1),

where b()(X, t), Gj(X, t), Fj (X, t) S k[t] [Xl, ceey Xn]

We cannot just simplify this equality by ¢ and then set ¢ = 0, because we cannot
exclude the possibility that there will be a remaining factor ¢P in the left hand side with
p strictly positive. To rule out this possibility, we need to perform several reduction steps.
Consider the sub-module M = {H(z) = (H1(x),. .., Hy—q(z))} of k[x]"~9 formed by the
relations (first syzygies) between the polynomials Fi(x),. .., F,,—4(x). To each element
H(z) in M corresponds via the change of coordinates a relation H(X,t) between the
polynomials F(X,t),..., F,_4(X,t), such that H(X,t) — H(X) is divisible by t. Re-
writing in (x,t), we obtain that

n—gq
bo(X,1) = Y (G5(X, 1) - Hj (X, 1)) F;(X.1).
j=1
We may assume that in the previous equality bg(X,t) has the form by (X, t) = t?(o(z) +
to1(x,t)); notice that the x— degree of ¢(x) is bounded by the X-degree of by(X,t)).
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Each reduction step will produce a similar equality (with the same degree in 2 bounds)
but with a strictly smaller power p.

Assume p > 0 and let t = 0, we obtain a non trivial relation 0 = >>7""7 G (x,0) F; (),
hence H = (G1(z,0),...,Gn—q(2,0)), a non trivial element of M. Notice that the z—
degree of G(z,0) is bounded by the X-degree of G;(X,t). To which we associate its H
as above with the same degree bound in X (equivalently in by linearity) and notice
that now Y7~ 7(G;(X,t) — H;(X,t))F;(X) vanishes for ¢ = 0, hence admits a factor ¢.
We can simplify the two sides of the previous equality by ¢ and obtain

— H;(X. 1))
t

P (p(x) + oy (w,t) = z_: (G5 (XY Fi(X,1).
j=1

After at most p such reduction steps, we get rid of the initial factor ¢¥ and setting ¢ = 0,
we obtain the announced equality with the announced bounds. O

Using the more general Theorem 3.3 from [5] instead of our Theorem 1 we can prove
in the same way a more general result:

Theorem 7. Let K be an algebraically closed field and k C K be its infinite subfield.
Let X C K™ be an affine variety of dimension n and of degree D, such that its ideal
I1(X) is generated by polynomials from kl[xy,...,xm]. Let f1,...,fs € k[z1,...,2m] be
polynomials such deg f; = d; where dy > do > ... > ds. Assume that I = (f1,...,fs) C
Klz1,...,zm] s an ideal, such that V(I) N X has dimension ¢ > 0 and the ideal IK[X]
is non-zero in K[X|. There exist polynomials g; € k[x1,...,zm] and a polynomial ¢ €
klz1, ..., xg+1], which does not vanish on X identically, such that

(a) degg; f; < DA, I} di,

(b) $ =3, g;f; on X.
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