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Let k be an infinite field and I ⊂ k[x1, . . . , xn] be a non-zero 
ideal such that dim V (I) = q ≥ 0. Denote by (f1, . . . , fs) a set 
of generators of I. One can see that in the set I∩k[x1, ..., xq+1]
there exist non-zero polynomials, depending only on these 
q + 1 variables. We aim to bound the minimal degree of the 
polynomials of this type, and of a Bézout (i.e. membership) 
relation expressing such a polynomial as a combination of 
the fi. In particular we show that if deg fi = di where 
d1 ≥ d2... ≥ ds, then there exist a non-zero polynomial 
φ(x) ∈ k[x1, ..., xq+1] ∩ I, such that degφ ≤ ds

∏n−q−1
i=1 di. 

We also give a relative version of this theorem.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let I ⊂ k[x1, ..., xn] be a non-zero ideal such that dim V (I) = q ≥ 0. Using Hilbert 
Nullstellensatz we can easily see, that in the elimination ideal I∩k[x1, ..., xq+1] there exist 
non-zero polynomials. It is interesting to know the minimal degree of the polynomials in 
this ideal. Here, performing a generic change of coordinates, and continuing the approach 
presented in [5], we get a sharp estimate for the degree of such a minimal polynomial 
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(and also for a corresponding generalized Bezout identity), in terms of the degrees of 
generators of the ideal I. Then, using a deformation arguments we solve the stated 
problem. We show that if deg fi = di where d1 ≥ d2... ≥ ds, then there exist polynomials 
gj ∈ k[x1, . . . , xn] and a non-zero polynomial φ(x) ∈ k[x1, ..., xq+1] such that

(a) deg gjfj ≤ ds
∏n−q−1

i=1 di,
(b) φ(x) =

∑s
j=1 gjfj .

Note that our result works also in the case dim V (I) = −1 (i.e. in the case when 
V (I) = ∅) if we put k[x0] := k and di = 1 for i > s (however our result in this case is a 
little bit worse than these in [5], [6]). Hence, from this point of view, we can treat our 
result as a generalization of the Effective Nullstellensatz. We also give a relative version 
of this theorem.

Effective versions of Nullstellensatz and Membership problems have a long story and 
several variants, going back to G. Hermann [4]. The interested reader can consult e.g. 
the references listed by Brownawell [2], Brownawell [3], Kollar [6], and D′ Andrea et al.
[1].

2. Main result

In this section we present a geometric construction and establish degree bounds, re-
lying on generic changes of coordinates. Let us recall (see [5]) two important tools that 
we will use in the proof of the main theorem of this section.

Theorem 1. (Perron Theorem) Let L be a field and let Q1, . . . , Qn+1 ∈ L[x1, . . . , xn] be 
non-constant polynomials with degQi = di. If the mapping Q = (Q1, . . . , Qn+1) : Ln →
Ln+1 is generically finite, then there exists a non-zero polynomial W (T1, . . . , Tn+1) ∈
L[T1, . . . , Tn+1] such that

(a) W (Q1, . . . , Qn+1) = 0,
(b) deg W (T d1

1 , T d2
2 , . . . , T dn+1

n+1 ) ≤
∏n+1

j=1 dj.

Lemma 2. Let K be an algebraic closed field and let k ⊂ K be its infinite subfield. Let 
X ⊂ Km be an affine algebraic variety of dimension n. For sufficiently general numbers 
aij ∈ k the mapping

π : X 	 (x1, . . . , xm) →
( m∑

j=1
a1jxj ,

m∑
j=2

a2jxj , . . . ,

m∑
j=n

a1jxj

)
∈ Kn

is finite. �
In the sequel for a given ideal I ⊂ k[x1, ..., xn] by V (I) we mean the set of algebraic 

zeros of I, i.e., the zeroes of I in Kn, where K is an algebraic closure of k. Now we can 
formulate our first main result:
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Theorem 3. Let k be an infinite field and let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials 
such deg fi = di where d1 ≥ d2... ≥ ds. Assume that I = (f1, . . . , fs) ∈ k[x1, . . . , xn] is 
a non-zero ideal, such that V (I) has dimension q ≥ 0. If we take a sufficiently general 
system of coordinates (x1, . . . , xn), then there exist polynomials gj ∈ k[x1, . . . , xn] and a 
non-zero polynomial φ(x) ∈ k[x1, ..., xq+1] such that

(a) deg gjfj ≤ ds
∏n−q−1

i=1 di,
(b) φ(x) =

∑s
j=1 gjfj.

Proof. Let K be the algebraic closure of k. Take Fn−q = fs and Fi =
∑s

j=i αijfj for 
i = 1, ..., n − q − 1, where αij ∈ k are sufficiently general. Take J = (F1, ..., Fn−q). Then 
degFn−q = ds and deg Fi = di for i = 1, ..., n −q−1. Moreover, V (J) has pure dimension 
q and J ⊂ I. The mapping

Φ : Kn ×K 	 (x, z) → (F1(x)z, . . . , Fn−q(x)z, x) ∈ Kn−q ×Kn

is a (non-closed) embedding outside the set V (J) × K. Take Γ = cl(Φ(Kn × K)). Let 
π : Γ → Kn+1 be a generic projection defined over the field k. Define Ψ := π ◦ Φ(x, z). 
By Lemma 2 we can assume that

Ψ = (
n−q∑
j=1

γ1jFjz + l1(x), . . . ,
n−q∑

j=n−q

γn−qjFjz + ln−q(x), ln−q+1(x), ..., ln+1(x)),

where l1, . . . , ln+1 are generic linear form. In particular we can assume that ln−q+i, 
i = 1, .., q + 1 is the variable xi in a new generic system of coordinates (of Kn).

Apply Theorem 1 to L = k(z), and to the polynomials Ψ1, . . . , Ψn+1 ∈ L[x]. Thus 
there exists a non-zero polynomial W (T1, . . . , Tn+1) ∈ L[T1, . . . , Tn+1] such that

W (Ψ1, . . . ,Ψn+1) = 0 and degW (T d1
1 , T d2

2 , . . . , T dk

k , Tk+1, . . . , Tn+1) ≤ ds

n−q−1∏
j=1

dj ,

where k = n − q. Since the coefficients of W are in k(z), there is a non-zero polynomial 
W̃ ∈ k[T1, . . . , Tn+1, Y ] such that

(a) W̃ (Ψ1(x, z), . . . , Ψn+1(x, z), z) = 0,
(b) degT W̃ (T d1

1 , T d2
2 , . . . , T dk

k , Tk+1, . . . , Tn+1, Y ) ≤ ds
∏n−q−1

j=1 dj , where degT de-
notes the degree with respect to the variables T = (T1, . . . , Tn+1).

Note that the mapping Ψ = (Ψ1, . . . , Ψn+1) : Kn ×K → Kn+1 is locally finite outside 
the set V (J) ×K. Consider Kn+1 as a product Kn−q ×Kq+1, and let us consider in this 
product coordinates (yq+2, ..., yn+1, y1, ..., yq+1). Hence Ψ restricted to V (J) ×K coincides 
with the mapping: (x, z) �→ (l1(x), ..., ln−q(x), x1, ..., xq+1) (recall that we consider a new 
generic system of coordinates). Let φ′ = 0 describes the image of the projection

π : V (J) 	 x �→ (x1, ..., xq+1) ∈ Kq+1.
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Put S = {T ∈ Kn+1 : φ′(T ) = 0}. Hence V (J) ×K is contained in Ψ−1(S). Consequently 
the mapping Ψ is proper outside the hypersurface S and thus the set of non-properness 
of the mapping Ψ is contained in the S.

Since the mapping Ψ is finite outside S, for every H ∈ K[x1, . . . , xn, z] there is a 
minimal polynomial PH(T, Y ) ∈ K[T1, . . . , Tn+1][Y ] such that PH(Ψ1, . . . , Ψn+1, H) =∑r

i=0 bi(Ψ1, . . . , Ψn+1)Hr−i = 0 and the coefficient b0 satisfies {T : b0(T ) = 0} ⊂ S. In 
particular b0 depends only on variables x1, ..., xq+1. Note that PH describes a hypersur-
face given by parametric equation (Ψ1, ..., Ψn+1, H). Hence if H ∈ k[x1, . . . , xn, z], then 
by Gröbner base computation we see that we can assume PH(T, Y ) ∈ k[T1, . . . , Tn+1][Y ]. 
Now set H = z.

We have

degTPz(T d1
1 , T d2

2 , . . . , T dn
n , Tn+1, Y ) ≤ ds

n−q−1∏
j=1

dj

and consequently we obtain the equality b0(x1, ..., xq+1) +
∑n−q

i=1 Figi = 0, where deg 
Figi ≤ ds

∏n−q−1
j=1 dj . Set φ = b0. By the construction the polynomial φ has zeros only 

on the image of the projection

π : V (J) 	 x �→ (x1, ..., xq+1) ∈ Kq+1. �
Remark 4. Simple application of the Bezout theorem shows that our bound on the degree 
of φ is sharp.

Corollary 5. Let k and I and system of coordinates be as above. If V (I) has pure dimen-
sion q and I has not embedded components, then there is a polynomial φ1 ∈ k[x1, ..., xq+1]
which describes the image of the projection

π : V (I) 	 x �→ (x1, ..., xq+1) ∈ Kq+1

such that
(a) φ1 ∈ I,
(b) degφ1 ≤ ds

∏n−q−1
i=1 di.

Proof. The set V (J) = q has pure dimension q. Consequently π(V (J)) and π(V (I)) are 
hypersurfaces. Moreover, by Gröbner bases computation the set π(V (I)) is described 
by a polynomial ψ from k[x1, ..., xq+1]. Let φ be a polynomial as above which vanishes 
exactly on π(V (J)). Let φ1 be a product of all irreducible factors of φ (over the field k) 
which divides ψ. Hence φ = φ1φ2, φ1, φ2 ∈ k[x1, ..., xq+1], where φ2 does not vanish on 
any component of V (I). Let I =

⋂r
Is be a primary decomposition of I. Consequently 

φ1 ∈ Ij for every s (by properties of primary ideals) and consequently φ1 ∈ I. But φ1
describes the image of the projection
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π : V (I) 	 x �→ (x1, ..., xq+1) ∈ Kq+1. �
3. A deformation argument

In this section, we improve Theorem 3 by releasing the necessity of a generic change of 
coordinates, so conditions (a) and (b) will be satisfied in the initial system of coordinates.

Theorem 6. Let k be an infinite field and let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials 
such deg fi = di where d1 ≥ d2 ≥ ... ≥ ds. Assume that I = (f1, . . . , fs) ⊂ k[x1, . . . , xn]
is a non zero ideal, such that V (I) has dimension q ≥ 0. There exist polynomials gj ∈
k[x1, . . . , xn] and a non-zero polynomial φ ∈ k[x1, ..., xq+1] such that

(a) deg gjfj ≤ ds
∏n−q−1

i=1 di,
(b) φ =

∑s
j=1 gjfj.

Proof. We use Theorem 3, but over the field L = k(t). We consider a new generic change 
of coordinates using generic values ai,j in the infinite field k, together with the inverse 
change of coordinates

Xi = xi + t

n∑
j=i+1

ai,jxj ; xi = Xi + t

n∑
j=i+1

bi,j(t)Xj ,

where bi,j(t) ∈ k[t].
As in the proof of Theorem 3, we obtain some polynomials Gj ∈ L[X1, . . . , Xn] and 

a non-zero polynomial b0 ∈ L[Xn−q, ..., Xn] such that, after chasing the denominators,

b0(X, t) =
n−q∑
j=1

Gj(X, t)F̄j(X, t),

where b0(X, t), Gj(X, t), F̄j(X, t) ∈ k[t][X1, ..., Xn].
We cannot just simplify this equality by t and then set t = 0, because we cannot 

exclude the possibility that there will be a remaining factor tp in the left hand side with 
p strictly positive. To rule out this possibility, we need to perform several reduction steps. 
Consider the sub-module M = {H(x) = (H1(x), . . . , Hn−q(x))} of k[x]n−q formed by the 
relations (first syzygies) between the polynomials F1(x), . . . , Fn−q(x). To each element 
H(x) in M corresponds via the change of coordinates a relation H̄(X, t) between the 
polynomials F̄1(X, t), . . . , F̄n−q(X, t), such that H̄(X, t) − H(X) is divisible by t. Re-
writing in (x, t), we obtain that

b0(X, t) =
n−q∑
j=1

(Gj(X, t) − H̄j(X, t))F̄j(X, t).

We may assume that in the previous equality b0(X, t) has the form b0(X, t) = tp(φ(x) +
tφ1(x, t)); notice that the x− degree of φ(x) is bounded by the X-degree of b0(X, t)). 
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Each reduction step will produce a similar equality (with the same degree in x bounds) 
but with a strictly smaller power p.

Assume p > 0 and let t = 0, we obtain a non trivial relation 0 =
∑n−q

j=1 Gj(x, 0)Fj(x), 
hence H = (G1(x, 0), . . . , Gn−q(x, 0)), a non trivial element of M . Notice that the x−
degree of Gj(x, 0) is bounded by the X-degree of Gj(X, t). To which we associate its H̄
as above with the same degree bound in X (equivalently in x by linearity) and notice 
that now 

∑n−q
j=1 (Gj(X, t) − H̄j(X, t))F̄j(X) vanishes for t = 0, hence admits a factor t. 

We can simplify the two sides of the previous equality by t and obtain

tp−1(φ(x) + tφ1(x, t)) =
n−q∑
j=1

(Gj(X, t) − H̄j(X, t))
t

F̄j(X, t).

After at most p such reduction steps, we get rid of the initial factor tp and setting t = 0, 
we obtain the announced equality with the announced bounds. �

Using the more general Theorem 3.3 from [5] instead of our Theorem 1 we can prove 
in the same way a more general result:

Theorem 7. Let K be an algebraically closed field and k ⊂ K be its infinite subfield. 
Let X ⊂ Km be an affine variety of dimension n and of degree D, such that its ideal 
I(X) is generated by polynomials from k[x1, . . . , xm]. Let f1, . . . , fs ∈ k[x1, . . . , xm] be 
polynomials such deg fi = di where d1 ≥ d2 ≥ ... ≥ ds. Assume that I = (f1, . . . , fs) ⊂
K[x1, . . . , xm] is an ideal, such that V (I) ∩X has dimension q ≥ 0 and the ideal IK[X]
is non-zero in K[X]. There exist polynomials gj ∈ k[x1, . . . , xm] and a polynomial φ ∈
k[x1, ..., xq+1], which does not vanish on X identically, such that

(a) deg gjfj ≤ Dds
∏n−q−1

i=1 di,
(b) φ =

∑s
j=1 gjfj on X.
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