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We construct a special class of noncongruence modular subgroups and curves,
analogous in some ways to the usual congruence ones. The subgroups are obtained
via the Burau representation, and the associated quotient curves have a natural
moduli space interpretation. In fact, they are reduced Hurwitz spaces correspond-
ing to covers with 4 branch points and monodromy group equal to semi-direct
products of a cyclic and an abelian group. Furthermore, they form a modular tower
in the sense of Fried. We study representations on the cohomology of these fake
congruence modular curves and also calculate the genera of certain quotient
curves. Q 1999 Academic Press
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1. INTRODUCTION

The present work has two starting points. The first is the work of Oda
and Terasoma on the Burau representation of the Artin braid group B .n
This representation is, in general, a homomorphism

w y1 xp : B ª GL Z t , t . 1Ž .Ž .n n ny1
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† The author expresses his thanks and acknowledges his debts to Takayuki Oda for

introducing the topics considered in this paper and to Mike Fried for valuable discussions
regarding Hurwitz spaces and connections with the modular group. We note that similar
topics have been considered earlier by Helmut Voelklein, whose primary interest was the
realization of certain finite groups of Lie type as Galois groups over Q.
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w xHowever, in O-T and this paper, it is shown that under certain condi-
tions and for certain prime powers q, the map p induces a surjective3
homomorphism

p : PSL Z ª PSL F , 2Ž . Ž .Ž .2 2 q

Žwhere F is the finite field with q elements in it. In fact, we can defineq
such a p in more generality. But then all we would know about its image is

Ž w x .that it is a certain unitary subgroup of PGL Z z rNN , where z is a root2
w x . Ž .of unity and NN is an ideal in Z z . Recall that PSL Z is generated by2

² :the images mod " 1 of

1 1 1 0S s and U s ,ž / ž /0 1 y1 1

Ž .3 Ž .2 Žwith the relations SU s SUS s 1. Here and subsequently, all matri-
² : . Ž .ces will be taken mod "1 . Thus B maps surjectively onto PSL Z via3 2

s ¬ S, s ¬ U. 3Ž .1 2

Ž . Ž .3The kernel is the center Z B , which is generated by s s .3 1 2
w xThe second starting point is the following result of Fried F , which gives

a new, combinatorial group-theoretic way to approach congruence sub-
groups. Suppose N is an odd integer and D is the dihedral groupN

² 2 N y1 y1:g , t : g s t s 1, g tg s t . 4Ž .

Observe that D is the semi-direct product of ZrN and Zr2. Embed DN N
in the symmetric group S via the permutation representation on the NN

² :cosets of g , and take CC to be the conjugacy class of involutions. Let X
be the set

4 ² :a, b , c, d g CC : a, b , c, d s D , and a ? b ? c ? d s 1 rN CC ,Ž . Ž .� 4N SN

5Ž .

Ž .where N CC is the normalizer of CC in S . We can define a right actionS NN
Ž .of PSL Z on X via2

a, b , c, d S s abay1 , a, c, d 6Ž . Ž . Ž .
a, b , c, d U s a, bcby1 , b , d . 7Ž . Ž . Ž .

Fried’s theorem then states that the stabilizer of the element

g , g , tg , tg mod N CC 8Ž . Ž . Ž .SN

Ž .is G N .0
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w xIn fact, in F, B-F it is shown that given any transitive subgroup G of Sn
Ž .and conjugacy classes CC , . . . , CC of G, we can obtain a finite-index1 4

Ž .subgroup D of SL Z . Moreover, the associated quotient curve hrD has a2
moduli space interpretation. We therefore obtain a way of generating

Ž .noncongruence subgroups of SL Z with additional structure associated2
to them.

w xIn B2 , the following is shown. Suppose G is the semi-direct product
w x Ž w x .U w xZ z rNN i Z z rNN , for d an integer and NN an ideal of Z z relatively

Ž . Ž y3 .prime to d. Let CC , . . . , CC s CC, CC, CC, CC , with CC the conjugacy class1 4
1Ž w x .of z . Then our D is in fact equal to the stabilizer of ` g P Z z rNN .

y1Ž .That is, D s p B , where B is the standard Borel subgroup

) )ž /0 )

Ž w x .of PGL Z z rNN and p is the map obtained from the Burau representa-2
tion as above. Equivalently, hrD is a course moduli space for Kummer

1 Ž . w xcovers X of P together with a subgroup of J X isomorphic to Z z rNN.
Ž .If G s D , then D is just G N . We thus obtain a noncongruenceN 0

Ž .modular curve with a moduli space interpretation which generalizes X N .0
Furthermore, if we fix d and let N vary through powers of a prime p, then

Ž w x.for certain p we obtain a modular tower see F2 .
It is our hope that these so-called ‘‘fake congruence subgroups and

modular curves’’ will provide a fertile testing ground for many of the
Žobjects and theories associated with the usual congruence ones Hecke

.operators, action of Frobenius, . . . . Accordingly, we have begun their
study in this paper.

The contents are as follows: in Section 2, we outline the basic frame-
work in which we intend this work to be considered, including a review of
Hurwitz spaces and their relation to noncongruence modular curves. In
Section 3, we use the Oda]Terasoma theorem to construct fake congru-
ence subgroups and fake congruence modular curves. In Section 4, we

Ž .determine the character multiplicities of the representation of PSL F2 q
on the cohomology of our fake congruence modular curves. Finally, in
Section 5, we determine the genera of various quotient curves.

2. HURWITZ SPACES OF FOUR-BRANCH POINT
COVERS AND FAKE CONGRUENCE SUBGROUPS

w2.1. Re¨iew of Hurwitz Spaces. The references for this section are B-F,
xF-V . Let G be a finite group embedded as a transitive subgroup of S forn

Ž .some positive integer n. Let C s CC , . . . , CC e a quadruple of conjugacy1 4
1 Ž .classes of G. We are interested in parametrizing covers of P over C
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ramified over four points with monodromy group G and ramification data
C. To do so, we introduce the following definitions.

4 �Ž . Ž 1.4 4DEFINITION 1. We set U s z , . . . , z g P : z / z for i / j ,1 4 i j
and let U s U 4rS denote the natural quotient. The Nielsen class associ-4 4

Ž . Ž .ated to the data G, C is Ni G, C and is

4 ² :g , . . . , g g G : g , . . . , g s G, g ??? g s 1Ž .� 1 4 1 4 1 4

and g g CC for some s g S .4i is 4

Ž .ab Ž . Ž . Ž .We also set Ni G, C s Ni G, C rN C , where N C is the normalizerS Sn n

of C in S . Finally, the Hurwitz monodromy group H is the fundamentaln 4
group of U . It has the presentation4

²Q , Q , Q : Q Q Q s Q Q Q , Q Q1 2 3 i iq1 i iq1 i iq1 1 3

:s Q Q , Q Q Q Q Q Q s 1 .3 1 1 2 3 3 2 1

Note that H is very closely related to B , since B is the fundamental4 3 3
1 1 � 4group of unordered, distinct triples of C s P y ` . In fact, Hurwitz

space theory can be formulated using B instead of H .3 4
Ž .ab Ž .We have an action of H on Ni G, C as follows: if g , . . . , g g4 1 4

Ž .abNi G, C , then

g , . . . , g Q s g , . . . , g , g g gy1 , g , g , . . . , g .Ž . Ž .1 4 i 1 iy1 i iq1 i i iq2 4

Ž y1Thus Q sends g to g g g , sends g to g , and fixes the other twoi i i iq1 i iq1 i
.elements of the quadruple. Since H is the fundamental group of U , each4 4

Ž .abof its orbits on Ni G, C corresponds to a connected cover of U . Let4
Ž .HH G, C denote the disjoint union of these covers.

w x Ž . 1THEOREM 1 F-V . HH G, C is a coarse moduli space for co¨ers of P

with monodromy group G and ramification data C.

In fact, this theorem holds for covers with an arbitrary number of
branch points.

Ž . Ž . 42.2. PSL C Action. We have canonical PSL C actions on U , U ,2 2 4
Ž . Ž . Ž .and HH s HH G, C as above: if g g PSL C , then g a, b, c, d s2

Ž . 1g a, g b, g c, g d . Also, given a cover f : X ª P , g acts on this cover by
taking it to the composite gf. We denote the quotients of these actions by
U 4 r ed, U r ed, and HH

r ed, respectively. The following result is due to Thomp-4
Ž w x.son see F .
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PROPOSITION 1. There is a surjectï e homomorphism

f : H ª PSL ZŽ .4 2

gï en by

1 1 1 0
f Q s S s , f Q s U s ,Ž . Ž .1 2ž / ž /0 1 y1 1

1 1
f Q s S s .Ž .3 ž /0 1

The kernel is the quaternion group Q of order 8.8

w xTHEOREM 2 B-F . Suppose HH is a connected component of HH. ThenO
Ž .there exists a subgroup D of finite index in PSL Z such that we ha¨e the2

following commutatï e diagram:

HH
r ed ª hrDO

x x
r ed Ž .U ªhrPSL Z4 2

The horizontal maps are isomorphisms, and the bottom isomorphism is
� 4 Ž .obtained by taking any a, b, c, d to the unique up to isomorphism elliptic

� 4cur̈ e ramified o¨er a, b, c, d . Furthermore, D arises as follows: by construc-
r ed Ž .tion, HH corresponds to a subgroup of finite index S in H . Then D s f S ,0 4

where f is the homomorphism of Proposition 1.

2.3. The Semidirect Product of Two Abelian Groups and the Burau Repre-
sentation. Our general set up is as follows. Suppose d G 1 is an integer,

w xand z is a primitive dth root of unity. Let NN be an ideal of Z z coprime
to d, and by abuse of notation, continue to denote the image of z in

w x w xZ z rNN by z . Subsequently, by Z z rNN we will mean the additive group of
w x Ž w x .UZ z rNN unless otherwise noted; Z z rNN will denote the multiplicative

Ž . w x Ž w x .Ugroup of the ring Z z rNN. We can embed Z z rNN into the automor-
w x Ž . Ž w x .Uphism group of Z z rNN by setting g x s g x for g g Z z rNN and

w xx g Z z rNN. Thus we may form the semidirect product

Uw x w xZ z rNN i Z z rNN .Ž .

w x w x Ž w x .UThis group is generated by Z z rNN and symbols g for g g Z z rNN ,
with the relations

Uw x w x w x w xg a s ga for a g Z z rNNŽ .
y1w x w x w xand g t g s g t for t g Z z rNN .
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Ž w xIn the second equality, the left-hand multiplication is in Z z rNN i
Ž w x .U w x .Z z rNN , and the right-hand multiplication is in the ring Z z rNN. Let

w x ² : w x Ž w x .UG be the subgroup Z z rNN i z of Z z rNN i Z z rNN . Notice that
w x Ž w x .U w x w xZ z rNN i Z z rNN acts on Z z rNN as a set: the additive group Z z rNN

Ž w x .Uacts upon itself by addition, and the multiplicative group Z z rNN acts
w x w xon Z z rNN by multiplication. Thus if aZ z rNN s N, we obtain an embed-

w x Ž w x .Uding of Z z rNN i Z z rNN and its subgroup G into S , given asN
w x w x w x Ž w x .Ufollows: if t g Z z rNN and x g g Z z rNN i Z z rNN , then

w x w xt x g s t q x g .Ž .Ž .

w x Ž w x .UIdentify Z z rNN i Z z rNN and G with their images in S . Let CC beN
w x Ž . Ž y3 .the conjugacy class of z . Set C s CC , . . . , CC s CC, CC, CC, CC .1 4

Now let

abX s Ni G, C rQ , 9Ž . Ž .8

where Q is the kernel of f as in Proposition 1. Then we have a8
Ž .well-defined action of PSL Z on X.2

w x Ž . Ž .THEOREM 3 B2 . 1 The action of PSL Z on X is transitï e.2
Ž . 1Ž w x .2 We can identify X with P Z z rNN . Furthermore, we ha¨e the

following commutatï e diagram, where the right hand map p is as defined in
Subsection 3.2 and the left hand map is as described in the Introduction.

id 6Ž . Ž .PSL Z PSL Z2 2

6 6p6Ž . Ž w x .Aut X PGL Z z rNN2 d

Ž y1 y1 y1.In addition, the stabilizer of the image of g , g , tg , g t in X is equal
to the subgroup

G NN s a g PSL Z : p a ` s ` .� 4Ž . Ž . Ž .0 2

Ž . Ž . Ž .3 The cur̈ e Y NN s hrG NN is a reduced Hurwitz space for co¨ers of0 0
P1 with monodromy group G and ramification data C. Thus each point on
Ž .Y NN corresponds to an equï alence class of diagrams of the following form:0

a 6

Y X

6 6g
b 16

W P
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We require all maps to be ramified o¨er 4 points, and the ¨ertical maps to be
² :Galois, with monodromy group ZrdZ s z . In addition, the map g should

Ž y3 . Žha¨e ramification data of the form z , z , z , z here, z is its own conjugacy
² :. w xclass in ZrdZ s z . Furthermore, a must be Galois with group Z z rNN.

Finally, we require b to ha¨e monodromy group G and ramification data
Ž y3 .CC, CC, CC, CC .

We note that once we specify the map b , Y and X will be uniquely
determined. Two diagrams are considered to be equï alent if and only if the

Ž .lower horizontal maps are equï alent mod PSL C .2

Ž .3. CONSTRUCTION OF THE G NN

3.1. Fake Congruence Subgroups. To begin with, we fix natural num-
Ž . Žbers n G 3, d G 7, a primitive dth root of unity z , K s Q z , F s Q z q

y1 . q qz , NN ; OO an ideal, and NN s NN OO .F K
Let B denote the Artin braid groupn

² < <s , . . . s : s s s s s for i y j ) 11 ny1 i j j i

:and s s s s s s s .i iq1 i iq1 i iq1

Ž w x.The reduced Burau representation see Bi is a homomorphism p :n
Ž w y1 x.B ª GL Z t, t . It can be obtained, among other methods, via then ny1

Fox free calculus, or from the action of B on the homology of an infiniten
cyclic extension of P1 ramified over n q 1 points. Its action on the
generators of B is given asn

yt 1 0 ??? 0
0 1 0 ??? 0

s ¬ ,0 0 1 ??? 01

0 ??? ??? ??? 0
0 0 0 0 1

1 0 ??? 0 0ry2

0 1 0 ??? 0
s ¬ 1 - r - n y 1Ž .??? t yt 1 0r

??? 0 0 1 0
0 0 ??? 0 1ny ry2

and
1 0 ??? 0 0
0 1 ??? 0 0

s ¬ .0 ??? ??? ??? 0ny1

0 0 ??? 1 0
0 0 ??? t yt
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w y1 xSetting t s z and reducing by NN gives us a map Z t, t ª OO rNN, andK
Ž w y1 x. Ž .hence a map GL Z t, t ª GL OO rNN . We then obtain a new mapn n K

p : B ª GL OO rNNŽ .n , NN n ny1 K

by composing with the Burau representation.
Now suppose n s 3. In this case we can describe our map as follows.

² :First, notice that B has presentation s , s : s s s s s s s . Then3 1 2 1 2 1 2 1 2
p is given by3, NN

yz 1
s ª 10Ž .1 ž /0 1

1 0
s ª . 11Ž .2 ž /z yz

where we understand the matrix entries to be elements of OO rNN.K
Ž . Ž .3Recall that Z B is generated by s s and observe that3 1 2

z 3 03
p s s s .Ž .Ž .3, NN 1 2 3ž /0 z

Thus p induces a map3, NN

p : PSL Z s B rZ B ª PGL OO rNN . 12Ž . Ž . Ž . Ž .NN 2 3 3 2 K

DEFINITION 2. We have the following analogs of congruence groups
and modular curves:

Ž . Ž . Ž .1 G NN s ker pNN

Ž . Ž . � Ž . Ž . Ž2 G NN s g g PSL Z : p g ` s ` where we take ` g0 2 NN
1Ž ..P OO rNNK

Ž . Ž . U Ž .3 X NN s h rG NN

Ž . Ž . U Ž .4 X NN s h rG NN0 0

Ž . Ž . Ž .5 Y NN s hrG NN

Ž . Ž . Ž .6 Y NN s hrG NN .0 0

Ž . Ž .Any subgroup of PSL Z that contains G NN for some NN will be called a2
fake congruence subgroup.

If d s 2, we obtain the usual congruence objects with NN replaced by N.
Ž .Recall that PSL Z is the free product of the group of order 22

0 y1Ž .generated by USU s and the group of order 3 generated by SU s1 0

0 1Ž ..y1 1
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DEFINITION 3. Let k be a positive integer. The Hecke Triangle Group
Ž .T 2, 3, k is the group

² 2 3 k :b , b , b : b s b s b s b b b s 1 .2 3 k 2 3 k 2 3 k

Ž . Ž .We have a canonical surjection c : PSL Z ª T 2, 3, k given by2

0 y1 0 1USU s ¬ g , SU s ¬ g .2 3ž / ž /1 0 y1 1
Ž .y1 y1 y1 Ž .Since S s USUSU and g s g g , we also see that c S s g .k 3 2 k

Ž . Ž w x .Now note that in our map p : PSL Z ª PGL Z z rNN , we haveNN 2 2

r ryz yz y 1 r yz y 1Ž . Ž . Ž .Ž .r rp S s p s s . 13Ž . Ž .Ž .NN 3, NN 1 ž /0 1
² : Ž k .Thus if we set k s a yz , then p S s 1, and so p factors throughNN NN

Ž .T 2, 3, k . We set

w xD NN s ker T 2, 3, k ª PGL Z z rNN . 14Ž . Ž . Ž .Ž .Ž .2

w x3.2. The Oda]Terasoma Theorem. By the results of O-T , the image of
B under p is unitary with respect to a certain hermitian form H gn n

Ž w y1 x. Ž y1 .GL Z t, t . Here, conjugation is the map t ¬ t . H is given byny1

1
1 y 0 0 ???

t q 1
1 1

y 1 y 0 ???y1 . 15Ž .t q 1t q 1
1 1

0 y 1 y 0y1 t q 1t q 1
??? ??? ??? ??? ???

Ž . Ž .This form then descends to a form in GL OO rNN also denoted H .ny1 K
In fact, one can show that the image of p is contained inn, NN

t ² :U z , H , OO rNN s g g GL OO rNN : g Hg s H , det g g yz .Ž . Ž .� 4ny1 K ny1 K

w xThe main theorem of O-T is that under certain conditions, B actuallyn
Ž .surjects onto U z , H, OO rNN .ny1 K

w xTHEOREM 4 O-T . Assume n G 3, d G 7 if d is odd, d G 14 if d is e¨en,
ŽŽ i. Ž .. Ž .NN is coprime with d and 1 y z r 1 y z 2 F i F n , the prime factors q

Ž .of NN dï iding 6 satisfy N q G 10, NN is coprime to n y 4, and d is oddK r Q

when n s 4. Then
p : B ª U z , H , OO rNNŽ .n , NN n ny1 K

is surjectï e.

A special case of this is the following.
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THEOREM 5. Hypotheses as abo¨e, suppose n s 3 and NNq is a prime
ideal pq. Set p s pqOO . Then the mapK

p : PSL Z ª PU z , H , OO rpŽ . Ž .p 2 2 K

is surjectï e.

3.3. Analysis of p . We must now analyze p in more detail.3 3

� a 4 qLEMMA 1. Let f s ord p s min a g N: p ' 1 mod d . Let p ; OOd F
be a prime o¨er p. Then pq

Ž . Ž q . f1 remains prime in OO if f is e¨en, and a OO rp OO s p , aOO rK K K F
pqs p f r2,

Ž . Ž q. f2 splits into two primes in OO if f is odd, and a OO rp s p .K F

Proof. Let

Tq X s X y z i q zyiŽ . Ž .Ž .Ł
Ž .i , d s1

0-i-dr2

be the irreducible polynomial of z q zy1 over Z. We must factor Tq

w x qin F X ; the degree of each factor will be the residue field index of pp
Ž w x..see C .

Choose a primitive dth root of unity g g F . Thenp

Tq X s X y g i q gyiŽ . Ž .Ž .Ł
Ž .i , d s1

0-i-dr2

qis a factorization of T over F . Considerp

p j yp j w xX y g q g g F X .Ž .Ł ž / p
0Fj-f

Ž .This is irreducible if and only if f is odd otherwise, it will be a square .
Ž q . Ž q .Thus f p rp s fr2 if f is even and f p rp s f if f is odd.

The same argument shows, upon factoring

T X s X y g iŽ . Ž .Ł
Ž .i , d s1
0-i-d

w x Ž . qin F X , that any prime p ; OO over p satisfies f prp s f. Since pp K
cannot ramify in OO by assumption, the result follows.K
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LEMMA 2.

2, if q is odd
PU OO rp : PSU OO rp sŽ . Ž .2 K 2 K ½ 1, if q is e¨en.

Proof. We prove the lemma for OO rp s F 2 ; the proof for OO rp sK q K
F = F is similar.q q

qq1Ž . Ž .2Note that if x g U F and det x s a, then aa s a s 1. Thus the2 q

Ž . Ž .2 2image x of x in PU F is actually in PSU F if and only if there exists2 q 2 q
some m g F 2 with m2 s a, mqq1 s 1.q

Žqq1.r2Ž .2Thus if q is odd, then x g PSU F m a s 1. So in this case,2 q

2 2 2PU F s PSU F j PSU F x ,Ž . Ž . Ž .2 q 2 q 2 q

Ž . Ž .Žqq1.r2
2where x is any element of U F satisfying det x s y1.2 q

If q s 2 r and aqq1 s 1, set m s aqr2q1. Then m2 s a and mqq1 s 1. So
Ž . Ž .2 2PU F s PSU F .2 q 2 q

Ž .We thus observe that when we factor through to PSL Z , the worst we2
Ž .can do is surject onto a group in which PSL F has index 2. We now list2 q
Ž .the cases in which we land precisely on PSL F .2 q

Ž .PROPOSITION 2. With the notation as abo¨e, if p s p l Z, then
Ž . Ž .PU z , OO rp s PSU OO rp if and only if the following conditions hold:2 K 2 K

Case I. p is prime and p is odd.
Ž .1 2 ¦ d: q ' y1 mod 4
Ž . 52 2 d: always
Ž . Ž .3 4 N d: 2 N q q 1 rd.

Case II. p s BB and p is odd.
Ž .1 2 ¦ d: q ' 1 mod 4
Ž . 52 2 d: always
Ž . Ž .3 4 N d: 2 N q y 1 rd.

Case III. p s 2: always.

Ž .Proof. Recall that all elements in PU z , OO rp have determinant2 K
² :contained in yz .

Ž .Žqq1.r2Case I. We must have yz q p s 1 q p , or equivalently,
Ž .Žqq1.r2 ² :yz s 1. Since yz has order 2 d, dr2, or d depending on

5whether 2 ¦ d, 2 d, or 4 N d, the result follows.
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Case II. Proceed as in Case I.

Assumption. From now on, assume that our map p surjects ontop

Ž . Ž . Ž .PU z , OO rp ( PSL F , that q is odd, and that 6, k s 1, where k s2 K 2 q
² :a y z .

Ž .PROPOSITION 3. G p is noncongruence.

Proof. We first quote the following lemma.

w x Ž .LEMMA 3 W . Suppose D is a finite index subgroup of PSL Z . Let N2
denote the least common multiple of the cusp widths of D. Then D is

Ž .congruence if and only if D = G N .

Ž .Completion of Proof. Since G p is normal, all cusp widths will equal
² : Ž . Ž .k s a yz . Now if G p = G k , then we will have a homomorphism
Ž . Ž .PSL ZrkZ ª PSL F . But this is impossible: Since q ¦ k by assump-2 2 q

Ž . Ž .tion, no composition factor of PSL ZrkZ could be equal to PSL F .2 2 q

4. CHARACTER MULTIPLICITIES IN THE
Ž .REPRESENTATION OF PSL F ON2 q

COHOMOLOGY GROUPS

4.1. The Calculation on H 1. We continue our assumption that
Ž Ž . Ž . ² :PSL ZrG p ( PSL F . Recall that if k s a y z , then our map p :2 2 q p

Ž . Ž . Ž . Ž .PSL Z ª PSL F factors through T 2, 3, k with kernel D p . Thus2 2 q
Ž . Ž . Ž . Ž .T 2, 3, k rD p ( PSL F as well. Note that for k ) 6, T 2, 3, k ¨2 q

Ž . ŽPSU 1, 1 . We can obtain this injection from the Burau representation as
follows: for an appropriate choice of a dth root of unity,

y1
1

z q 1
H s y1

1y1z q 1

will have negative determinant. Now one may easily verify that the image
of B under the Burau representation, evaluation t ¬ z , and reduction3

Ž . Ž .mod scalars is isomorphic to T 2, 3, k . Thus we have T 2, 3, k embedded
Ž . .as a subgroup of a unitary group which is conjugate to PSU 1, 1 . Thus
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Ž . 1 Ž . 1 Ž .T 2, 3, k acts on the Poincare disk D . Set R p s D rD p and recall
1 Ž . U Ž . 1that D rT 2, 3, k ( h rPSL Z ( P . We thus obtain two isomorphic2

Ž . 1PSL F covers of P ,2 q

X p s hUrG p ª hUrPSL Z s P1Ž . Ž . Ž .2

and

R p s D1rD p ª D1rT 2, 3, k s P1.Ž . Ž . Ž .
1Ž Ž . . 1, 0Ž Ž . .We wish to determine the structures of H X p , C and H X p , C as

w Ž .x Ž .C PSL F -modules. Observe that the same results hold with X p2 q
Ž .replaced by R p , since the covers are isomorphic.

Ž . 1Now the cover X p ª P is ramified over the points

p s PSL Z e2p i r4 , p s PSL Z e2p i r6 ,Ž . Ž .2 2 3 2 16Ž .
and p s PSL Z ì .Ž .k 2

Lying over them are the points

P s G p e2p i r4 , P s G p e2p i r6 , and P s G p ì . 17Ž . Ž . Ž . Ž .2 3 k

Observe that the inertia group of P over p is generated by2 2

0 y1 mod p ,ž /1 0

that of P over p by3 3

0 1 mod p ,ž /y1 1

and that of P over p byk k

1 1 mod pž /0 1

Ž .see subsection 3.1 . Call these generators g , g , and g , respectively.2 3 k
Ž Ž . . 1Ž Ž . .Note that g s b mod D p . We can approach H X p , C by means ofi i

Ž .the Lefschetz fixed point theorem: for g g PSL F ,2 q

2
i iaFix g s a D ? G s y1 tr g N H X p , C ,Ž . Ž . Ž .Ž .Ž . Ž .ÝX Žp . g

is0

Ž .where D is the diagonal of X p and G is the graph of g acting onX Žp . g
Ž . Ž iŽ Ž . .X p . We know that tr g N H X p , C s 1 for i s 0, 2, and we calculate

Ž .aFix g as follows.
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Note that our above comments tell us that if g is not conjugate to g ,i
Ž . Ž .i s 2, 3, k, then aFix g s 0. Furthermore, the only points in X p with

nontrivial stabilizers are the points lying over p , p , p . Thus if g x s x,2 3 k i
then since g , g , g all have relatively prime orders, we must have2 3 k

Ž .x s s p for some s g PSL F . Soi 2 q

y1 y1 ² : ² :g s p s s p m s g s p s p m s g s g g m s g N g .Ž .i i i i i i i i i

Ž Ž . Ž .For a subgroup H of PSL F , N H denotes the normalizer of H in2 q
Ž . .PSL F .2 q

Also,
y1 ² :s p s t p m t s g g .i i i

This implies that

² :aN gŽ .i
aFix g s .Ž .i ² :a g i

Ž w x.We now recall the following see F-H :

Ž .LEMMA 4. Any element of PSL F is conjugate to either2 q

a 0 x ye1 1 1 eI , , , , or ,y1ž / ž / ž /ž / y x0 1 0 1 0 a

U ² :where F s e .q

An element of the fourth type is said to be split Cartan and an element
of the fifth type is said to be nonsplit Cartan. The nonsplit Cartan

Ž .elements form a subgroup of order q q 1 r2.
From examining the orders of each conjugacy class, we see that

Ž .if 2 i N q y 1 , then g is conjugate to a split Cartan element, and if 2 i Ni
Ž . w xq q 1 , then g is conjugate to a nonsplit Cartan element. Now by F-H ,i

q y 1, g split² :aN g s ½ q q 1, g nonsplit.

Also, half the conjugates will equal g and half will equal gy1. So

q y 1¡
, g ; g , g spliti² :aN g i~aFix g s sŽ . q q 1² :a g
, g ; g , g nonsplit.¢ ii

Putting this information together, we obtain the following.
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Ž 1Ž Ž . ..PROPOSITION 4. If g ¤ g , i s 2, 3, k, then tr g N H X p , C s 2.i
If g ; g for some i as abo¨e, theni

q y 1¡
2 y , 2 i N q y 1Ž .

i1 ~tr g N H X p , C sŽ .Ž .Ž . q q 1
2 y , 2 i N q q 1 .Ž .¢ i

Remark. Our fake congruence groups are generalizations of regular
congruence groups, since

yz 1 1 0
, mod pž / ž /z yz0 1

Ž .are the usual generators of SL F when d s 2. But in this case, the2 p
1 1Ž .image of s g B under p is unipotent, not Cartan. Thus our1 3 p0 1

subsequent calculations differ in this case.

The list of nontrivial irreducible finite-dimensional representations of
Ž . Ž w x.SL F is quite short see F-H :2 q

Ž .1 The complement V of Sg in the permutation representation is
irreducible.

a bŽ . �Ž .4 Ž .2 Let B s be the Borel subgroup of PSL F . Supposey1 2 q0 a
U ² : 2p i rŽqy1.F s e and r s e . The mapq

e n ) nª rynž /0 e

gives a 1-dimensional representation W of B; Ind PS L2ŽFq .W \ Y isn B n n
Ž . Ž .irreducible if n / q y 1 r2; and for n s q y 1 r2, Y splits into twon

irreducible factors Yq and Yy.
x yeŽ . �Ž .43 If C denotes the nonsplit Cartan subgroup andy x

f : C ª Cm

is a character, then V m Y ' IndPS L2ŽFq .f [ Y [ Z for some represen-m C m m
Ž .tation Z which is irreducible if m / q s 1 r2 and splits into twom

irreducible factors Zq and Zy otherwise.

We would like to know the multiplicity of each irreducible representa-
Ž . Ž 1Ž Ž . ..tion in our representation r : PSL F ª Aut H X p , C . We mayp 2 q

Ž .use the standard character formula m s Ý x g x g , whereŽ .x s g PS L ŽF . p2 q

x is the character of r and x is irreducible.p p
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TABLE I
Character Multiplicities

V q y a y TÝ i
i

Ž .Y q q 1 y T y a q 1Ý2 r i
i

iNr

Ž .Z q y 1 y T y 1 y aÝ2 m i
i

i mod m
q q 1 1

q yY , Y y T y 1Ý2 2 a s1i
qq1

even
2 i

q y 1 1
q yZ , Z y T y 1Ý2 2 a sy1i

qq1
even

2 i

² :THEOREM 6. Assumptions as abo¨e, define a g " 1 by q ' a mod ii i
for i s 2, 3, k. Also, let

q y ai
T s .Ý iis2, 3, 7

Then the character multiplicities are as listed in Table I, where i runs through
2, 3, k, Yq and Yy appear only for q ' 1 mod 4, and Zq and Zy appear
only for q ' y1 mod 4.

w xProof. We make use of the character table of F-H . We note that
Ž . Ž .representations of PSL F are the same as representations of SL F2 q 2 q

that map y1 to the identity. In the representation V, the character of2
Ž ."1 is q, the character of a split respectively, nonsplit Cartan element is2

Ž . Ž . Ž Ž . .1 respectively, y1 , and there are q y 3 r2 respectively, q y 1 r2
2 Ž 2 .conjugacy classes with q q q respectively, q y q elements in each

class. Our multiplicity then becomes

1
2? 4qg q q q qŽ .žaPSL FŽ .2 q

q y 3 q y 1
? 2 y X q 2 y XÝ Ýi iž / ž /2 i

q y 1 q q 1
2y q y q ? 2 y Y q 2 y Y .Ž . Ý Ýi iž / ž / /2 i
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Ž .Here, X respectively, Y is the number of conjugacy classes of elementsi i
² : Ž .in the cyclic subgroup g that are split nonsplit Cartan. Thus,i

i y 1, a s 1iX si ½ 0, a s y1i

and Y s d y 1 y X . Summing up gives us the desired result.i i
Further use of the character tables gives us the following.
The multiplicity for Y is2 r

1
2 2? 4 q q 1 g q 4 q y 1 q q q qŽ . Ž . Ž .žaPSL FŽ .2 q

q y 1
? 2 y2 y A q 2 y A ,Ž .Ý Ýi iž / /i

where

0, a s y1¡ i~y2, a s 1, i ¦ rA s ii ¢y2 q 2 i , a s 1, i N r .i

The multiplicity for Z is2 m

1
2? 4 q y 1 g y 4 q y 1Ž . Ž .žaPSL FŽ .2 q

q y 1
2q q y q ? 2 2 y B q 2 y B ,Ž . Ž .Ý Ýi iž / /i

where

0, a s 1¡ i~2, a s y1, i ¦ mB q ii ¢2 y 2 i , a s y1, i N m.i
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The multiplications for Yq and Yy are

1
2? 2 q q 1 g q 2 q y 1Ž . Ž .žaPSL FŽ .2 q

q y 1
2q q q q ? 2 y1 y C q 2 y C ,Ž . Ž .Ý Ýi iž / /i

where

0, a s y1¡ i

q y 1
y1 q i , a s 1, eveni~C s 2 ii

q y 1
y1, a s 1, odd.¢ i 2 i

The multiplicities for Zq and Zy are

1
2? 2 q y 1 g y 2 q y 1Ž . Ž .žaPSL FŽ .2 q

q q 1
2q q y q ? 2 1 y D q 2 y D ,Ž . Ž .Ý Ýi iž / /i

where

0, a s 1¡ i

q q 1
1 y i , a s y1, eveni~D s 2 ii

q q 1
1, a s 1, odd.¢ i 2 i

Again, summing up gives us the desired results.
1, 0 Ž . Ž .4.2. The Calculation on H . Note that if g g PSL F , p g X p ,2 q

Ž .and g p s p, then g induces an automorphism

g# : T ª T, p X Žp . , p X Žp . , p

Ž .of the tangent space of X p at p. Since T is 1-dimensional, g# sX Žp ., p , p
iu iu Ž .e for some u g R. We can calculate e as follows: choose g g PSL Z˜ 2
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Ž . U Ž .such that G p g s g and z g h such that G p z s p. Then in local˜ p p
coordinates,

­ ­
Xg# s g z ,Ž .˜, p p­ z ­ z

a bŽ .and so if g s , then˜ c d

1
g# s ., p 2

cz q dŽ .p

So choose

0 y1 0 1 1 1
g s , g s , and g s .˜ ˜ ˜2 3 kž / ž / ž /1 0 y1 1 0 1

Let z s e2p i r4, z s e2p i r6, and z s ì . Then one may easily check that2 3 k
g U s e2p i r j for j s 2, 3. For j s k, use the transformation z ¬ e2p i z r k.j , pj

In these coordinates, z ¬ g z s z q 1 becomes the map y ¬ e2p i r k y.˜k
Thus g U s e2p i r k as well.k , pk

Noting that
g 6Ž . Ž .X p X p

6 6y1s s

y1s gs 6Ž . Ž .X p X p

Ž y1 .induces an equality g# s s gs # , we see that, s p , p

e2p i r j, sy1g s s gj j
Ug sj , s p y2p i r j y1 y1j ½ e , s g s s g .j j

Now we make use of the following:

Ž .THEOREM 7 Holomorphic Lefschetz Fixed Point Theorem . Let

1
Lef g , OO s .Ž . ÝX Žp . yiu1 y eŽ .pgFix g

iug# se, p

Then
`

i U i , 0Lef g , OO s y1 tr g N H X p , C .Ž . Ž .Ž .Ž . Ž .ÝX Žp .
is0
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1, 0 Ž 1, 0Ž Ž . ..THEOREM 8. Let r denote the representation g ª Aut H X p , C .p
11, 0Then x s x .p p2

Note. This differs sharply from the congruence case.

Ž .Proof. From our above calculations, we see that for any a g PSL F ,2 q

q " 1 1 1 q " 1
aLef g , OO s q s 18Ž .Ž .j X Žp . yp i r j yp i r jž /2 j 2 j1 y e 1 q e

1
as aFix g , 19Ž .Ž .j2

y1 y1 ² :since s g s s g or g for q " 1r2 j elements s modulo g .j j j j
Then by the holomorphic Lefschetz fixed point theorem,

tr g U N H 1, 0 X p , C s 1 y Lef g , X X p 20Ž . Ž . Ž .Ž . Ž .Ž .
1 1

s 1 y aFix g s x g ;g . 21Ž . Ž . Ž .p2 2

5. GENERA OF QUOTIENT CURVES

Ž . Ž .5.1. The Calculation. Let J p denote the Jacobian of X p . We would
Ž .like to understand the decomposition of J p into simple factors. As a first

step in this direction, we calculate the genera of certain quotient curves
Ž .of X p .

U w U ² : ² :xSuppose L is a subgroup of F with F r "1 : "Lr "1 s a .q q L
Ž .Define a subgroup B of PSL F byL 2 q

a b
B s : a g L .L y1½ 5ž /0 a

Ž .Let C be the nonsplit Cartan subgroup of PSL F and S be the split2 q

ay1 0�Ž .4 Ž . Ž .Cartan subgroup . Denote the genus of X p rH by g H for any0 a

Ž .subgroup of PSL F .2 q

PROPOSITION 5. We ha¨e the following:

Ž . Ž� 4. Ž .Ž Ž ..1 2 g 1 y 2 s aPSL F 1 y Ý 1ri2 q i

Ž . Ž . Ž .2 2 g B y 2 s a q q 1 y Ý eL L i i

Ž . Ž . Ž .3 2 g C y 2 s q q y 1 y Ý di i

Ž . Ž . Ž .4 2 g S y 2 s q q q 1 y Ý g ,i i
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where all summations are o¨er i s 2, 3, k and

e resp., d , gŽ .i i i

¡q y 1 q q y 1 q y 1 q q 2Ž . Ž . Ž .
q 2 resp., , q 2 , q ' 1 iŽ .ž /i i i~s

q q 1 q q 1 q y 2 q q q 1Ž . Ž . Ž .
resp., q 2, , q ' y1 i .Ž .¢ ž /i i i

Ž .Proof. Let H be any subgroup of PSL F , and let p , g , be as in2 q i i
Section 4. Using the Hurwitz formula,

2 g H y 2 s PSL F : H ? y2Ž . Ž .Ž .2 q

q PSL F : H y a points over p 22Ž .Ž .Ý Ž .2 q i
i

s PSL F : H y apoints over p . 23Ž .Ž . Ý2 q i
i

Ž .Now if PSL F s jHb , the ramification index of b p over p is2 q j j i i

b bj j² : ² :g : g l H .i i

We calculate these indices in the case H s B ; the remaining cases areL
similar.

Ž .First, note that a set of coset representatives for B in PSL F is givenL 2 q
by

a 0 0 yas A , ,a , ty1 y1 y1½ 5ž / ž /a t a a 0

where a runs over a set of coset representatives for L in FU and t is anq
arbitrary element of F . We may assume by Lemma 5 that g is split orq i
nonsplit Cartan; we will examine these cases separately. So assume that g i

x 0Ž .is split, and hence of the form . Theny10 x

x 0y1A ? g ? A s .y2 y1 y1a , t i a , t ž /a t x y x xŽ .
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² :A a, tWe thus see that g l B is trivial unless t s 0, in which casei L
² :A a, tg : B .i L

Also,

0 ya x 0 0 a y1x 0s .y1 y1 y1 ž /ž / ž / ž / 0 xa 0 0 x ya 0

Hence in this case, the index in question will always be 1.
w Ž . xSo in 2a cases our index is 1, and in PSL F : B y 2a sL 2 q L L

Ž .q y 1 a cases, our index is i. Thus we have 2a unramified pointsL L
Ž .and q y 1 a ri points with ramification index i. Our proposition thenL

follows in this case.
x yŽ .Now assume that g is nonsplit, and hence of the form . Thenye xi

x y yt a2 yy1A ? g ? A s .a , t i a , t y2 2ž /a y e y t x q ytŽ .

² :A a, t ŽWe thus see that g l B is always trivial, since y is never 0 as thei L
.order of g is i and e cannot be a square.i

Also,

x ya2 ye0 ya 0 ax y s .y1 y1 y2ž /ž / ž /ye x ž /a 0 ya 0 ya y x

Ž .Thus in all q q 1 a cases the ramification index is i, and we thus obtainL
Ž .q q 1 a ri points in this case. This completes the proof of the proposi-L
tion for B .L

5.2. AN EXAMPLE. Suppose d s 14, and choose z s ye2p i r7. As usual,
Ž y1 . Ž . q Ž y1 .set F s Q z q z and K s Q z . Let p s 13, z q z q 7 ; OO .F

q q Ž .Then one may verify that p remains prime in OO , that OO rp s Zr 13 ,K F
and that the map X ¬ yz induces an isomorphism

w x 2 qZ X r 13, X y 7X q 1 ( OO rp OO .Ž . K K

Ž 2 . 2 2Let e s X q 3 mod 13, X y 7X q 1 . Then e s x q 6 X q 9, which
Ž 2 . w x Ž 2equals 8 mod 13, X y 7X q 1 . Now conjugation in Z X r 13, X y

.7X q 1 is given by

X mod 13, X 2 y 7X q 1 ¬ Xy1 mod 13, X 2 y 7X q 1Ž . Ž .
s 7 y X mod 13, X 2 y 7X q 1 .Ž .
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2Ž . Ž .So e is equal to 7 y X q 3 mod 13, X y 7X q 1 , which is just ye .
Ž . Ž .2Recall that our map p : PSL Z ª PSU z , H, F is given by2 13

1 1 e y 3 1S s ¬ 24Ž .ž / ž /0 1 0 1

1 0 1 0U s ¬ . 25Ž .ž / ž /y1 1 ye q 3 e y 3

Ž 2 .since e y 3 s X mod 13, X y 7X q 1 corresponds to yz under our
isomorphism.

Now conjugate each matrix by

6e q 1 7e q 2ž /0 4

Žand multiply by 9e q 5. The latter is permitted since we’re working mod
.scalars. Then

e y 3 1 5 q 4e 0¬ 26Ž .ž / ž /0 1 0 5 y 4e

1 0 5 y 3e 6 q 2e¬ , 27Ž .ž / ž /ye q 3 e y 3 6 y 2e 5 q 3e

Ž .2and we thus obtain generators for PSU F . Under the canonical isomor-2 13
Ž . Ž .2phism PSU F ª PSL F given by2 13 2 13

a q c e 2 b y dŽ .a q be c q de ¬ ,ž / ž /c y de a y be b q d a y c

we observe that

5 q 4e 0 5 6¬ 28Ž .ž / ž /0 5 y 4e 4 5

5 y 3e 6 q 2e y2 y1¬ . 29Ž .ž / ž /6 y 2e 5 q 3e y1 y1
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Our composite map is then

V : PSL Z ª PSL F : 30Ž . Ž . Ž .2 2 13

5 6S ¬ 31Ž .ž /4 5

y2 y1U ¬ . 32Ž .ž /y1 y1

Ž . Ž . Ž .Setting g s V USU , g s V SU , and g s V S , we finally obtain the2 3 7
Ž .following images of the generators of T 2, 3, 7 :

7 8 9 2 5 6
g s , g s , g s .2 3 7ž / ž / ž /10 6 0 3 4 5

Using our genus formulas, we see that our associated curve has genus
Ž 1Ž ..14, and that the representation into Aut H R , C is just Y [ Y .NN 2 2
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