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1. Introduction

Let L be a finite dimensional Lie algebra over a field F and U (L) be its enveloping algebra. For
each λ ∈ HomF (L, F ), let U (L)λ ≡ {a ∈ U (L) | [x,a] = λ(x)a, x ∈ L}. If U (L)λ �= {0} we call λ, a weight
of L (on U (L)) and set:

Sz
(
U (L)

) =
⊕

λ

U (L)λ,

the semi-center of U (L). Clearly U (L)0 = Z(U (L)), the center of U (L). By [11] Sz(U (L)) is a commu-
tative ring. The notion of Sz(U (L)) is proven to be very useful in case char F = 0. This is evident from
many results in [11, 2]. It is shown by C. Moeglin [23], if F is also algebraically closed that Sz(U (L))

is a factorial domain, thus extending an earlier result of J. Dixmier, in the nilpotent case [12].
In a totally different strand R. Stanley [29] and H. Nakajima [24] considered for a finite group G ,

the factorial and complete intersection properties of S(V )G , where V is a finite dimensional G-module
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and S(V ) its symmetric algebra. The semi-invariants ring (or the ring of relative invariants, see e.g.
[7, p. 279]):

Sz
(

S(V )
) =

⊕
λ

S(V )λ, for λ ∈ Hom
(
G, F \ {0}),

where S(V )λ = {a ∈ S(V )
∣∣ g · a = λ(g)a, g ∈ G}, had an important role in their papers (though some-

what implicit in [29]). In particular Cl(S(V )G) is completely described (see also [4]) and it is shown
in [24] that S(V )G is factorial if and only if Sz(S(V )) is free (finitely generated) over S(V )G .

Let V be a finite dimensional L-module and S(V ) the symmetric algebra of V . Clearly the
linear action of L on V extends to an action by derivations on S(V ). We denote by S(V )L =
{a ∈ S(V ) | x · a = 0, x ∈ L}, the fixed ring of L. Similarly Sz(S(V )) = ⊕

λ S(V )λ , is the ring of L-semi-
invariants, where

S(V )λ = {
a ∈ S(V )

∣∣ x · a = λ(x)a, x ∈ L
}
, λ ∈ HomF (L, F ).

The present paper will be mainly concerned with similar questions for a finite dimensional L,
having char F = p > 0. The questions of when are Z(U (L)), Sz(U (L)), S(V )L factorial domains, are
dealt with as well as the structure of the divisor class groups of Z(U (L)) and S(V )L , Cl(Z(U (L))) and
Cl(S(V )L) respectively. We shall also consider the complete intersection property of Sz(U (L)). It will
become clear that both strands do have common analogs in our case and we shall also explore the
extent of validity of this analogy.

We shall now give a more detailed account of our results.
The following theorem is our key result in the answering the previous questions for Z(U (L)) and

Sz(U (L)).

Theorem A. Let L be a finite dimensional arbitrary Lie algebra over an algebraically closed field F with
char F = p > 0. Then

Sz
(
U (L)

) = Z
(
U (L0)

)a da1,...,a dar
,

where L0 is a Lie sub-algebra of U (L), sharing a common ideal with L, which contains [L, L], and dimF L0 =
dimF L. Here a1, . . . ,ar are p-polynomials in some elements of L, acting nilpotently as derivations on
Z(U (L0)).

The following is an immediate consequence of Theorem A, and of a classical result of Zassen-
haus [32], which grants the normality of Z(U (L)).

Theorem B. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p > 0.
Then Sz(U (L)) is a normal affine domain.

The next result is also a consequence of Theorem A. It clearly establishes an analog to Moeglin’s
result [23], in the prime characteristic case.

Theorem C. Let L be a finite dimensional Lie algebra over an algebraically closed field F , with char F = p > 0.
Suppose that [L, L] is nilpotent. Then Sz(U (L)) is a factorial domain.

Recall that by Lie’s theorem [L, L] is nilpotent in case L is solvable and char F = 0. However the
analogy to the char F = 0 case, is not complete and we exhibit for each p > 0 a finite dimensional
solvable Lie algebra L, over an algebraically closed field F , with a non-factorial semi-center.

Still inspite of the previous counter example, one can say more in the general solvable case. Recall
that a Noetherian domain is factorial iff each of its height one prime ideals is principal. The next
result shows that Z(U (L)) and Sz(U (L)) complement each other in this regard.
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Theorem D. Let L be a solvable finite dimensional Lie algebra over an algebraically closed field F with char F =
p � 3. Let q be a height one prime ideal in Z(U (L)) and v the unique (height one) prime ideal in Sz(U (L))

with v ∩ Z(U (L)) = q. Then at least one of the following holds:

(i) v is principal,
(ii) q = (d) and v(p) = dSz(U (L)), where v(p) is the p-th symbolic power of v.

Theorem D leads to a complete description of the divisor class group Cl(Z(U (L))) as follows.

Theorem E. Let L be a finite dimensional solvable Lie algebra over an algebraically closed field F with char F =
p � 3. Then there exists an exact sequence:

0 −→ Cl
(

Z
(
U (L)

)) ϕ−→ {λ | λ is a weight of L} ψ−→ spanZ/pZ{λ1, . . . , λn} −→ 0,

where λi is a weight corresponding to a prime non-central weight element which ramifies over Z(U (L)), for
1 � i � n.

The analogy to the description of Cl(S(V )G), in the finite group case, is evident and can be seen,
e.g. in [4]. However the interpretation of each λi as coming from a “pseudo-reflection” is missing
here.

The next result is a corollary of Theorem E.

Proposition F. Let L be a finite dimensional solvable Lie algebra over an algebraically closed field F with
char F = p > 0. Then Cl(Z(U (L))) and Cl(Sz(U (L))) are finite elementary abelian p-groups.

The next result assembles together several theorems determining when Z(U (L)) is a U.F.D.

Theorem G. Let L be a finite dimensional solvable Lie algebra over a field F with char F = p > 0. Consider the
following statements:

(i) Z(U (L)) is a U.F.D.,
(ii) Sz(U (L)) is a free (or merely a projective) Z(U (L))-module,

(iii) Sz(U (L)) has exactly logp[Q (Sz(U (L))) : Q (Z(U (L)))] non-central prime weight elements,
(iv) The extension Sz(U (L))/Z(U (L)) has a finite p-basis (in the terminology of [20, p. 76]),
(v) The extension Sz(U (L))/Z(U (L)) is a global complete intersection (in the terminology of [20, p. 317]).

Then (i) is equivalent to (ii). Moreover if in addition, F is algebraically closed and p � 3, then all
statements are equivalent.

In the next theorem we group together all the results about Lie algebra polynomial invariants.

Theorem H. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Let V be an F -finite
dimensional L-module. Then all the results described in Theorems D, E, F, G hold for S(V )L (replacing Z(U (L)))
and Sz(S(V )) (replacing Sz(U (L))).

Observe that L need not be solvable here. As a sample consequence we mention the following
result about torus invariants.

Proposition I. Let L ⊆ glF (V ) be a commutative Lie subalgebra consisting of semi-simple elements, where
dimF V is finite and F is algebraically closed field with char F = p > 0. Then S(V )L is factorial if and only if it
is a polynomial ring.

The results presented so far suggest the plausibility of the following conjectures.
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Conjecture J. Theorems E, F and G are valid for every F -finite dimensional Lie algebra L with char F = p > 0.

In fact, this will be the case if one proves the following conjecture, which extends [6, Conjecture E].

Conjecture K. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Suppose [L, L] = L.
Then Z(U (L)) is factorial and every height one prime ideal in U (L) is generated by a central element.

Special cases of Conjecture K (and hence of [6, Conjecture E]) were already verified in [2,25].
Moreover in a very recent preprint [30], R. Tange confirmed Conjecture K for L which is a Lie algebra
of a connected reductive algebraic group G (with some extra mild assumptions). In particular it holds
for all the classical (that is, of non-Cartan type) semi-simple Lie algebras.

2. Preliminaries

The next result appears in [11, Proposition 4.3.5]. We reproduce it here in order to show that it
is characteristic free. In fact Dixmier proves a more general result about the semi-center of prime
quotients of U (L) and this however seems to require the char F = 0 assumption.

Proposition 2.1. Let L be a finite dimensional Lie algebra over a field F of arbitrary characteristic. Then
Sz(U (L)) is commutative.

Proof. We prove the result by induction on dim L. If [L, L] = L then Z(U (L)) = Sz(U (L)) and there
is nothing to prove. So assume that [L, L] ⊂ L. Therefore there exists an ideal H , H ⊇ [L, L] with
H + F x = L. So, by the P-B-W theorem, each u ∈ U (L) has a unique expression in the form: u =
xnun + xn−1un−1 + · · · + u0, where ui ∈ U (H), for i = 1, . . . ,n. Suppose u ∈ U (L)λ , then for
each y ∈ L we have [y, u] = λ(y)u = xnλ(y)un + xn−1λ(y)un−1 + · · · + λ(y)u0. But also [y, u] =
[y, xn]un + [y, xn−1]un−1 + · · · + [y, x]u1 + xn[y, un] + · · · + x[y, u1] + [y, u0]. Consequently, since
[y, xi] ∈ ∑

j�i−1 x j U (H) for each i, then we get by comparing highest terms, that [y, un] = λ(y)un

for all y ∈ L. That is un ∈ U (L)λ ∩ U (H) and therefore uu−1
n ∈ Z(Q (U (L))). Let a ∈ U (L)λ , b ∈ U (L)μ

then the above grants a = a1z, b = b1c, where a1,b1 ∈ Sz(U (H)) and z, c ∈ Z(Q (U (L))). By induction
[a1,b1] = 0 and since z, c are central this clearly shows that ab = ba. �

The next lemma is valid due to the char F = p > 0 assumption.

Lemma 2.2. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Then
[Q (U (L))λ : Q (Z(U (L)))] = 1 for each L-weight λ.

Proof. Let u, v ∈ Q (U (L))λ , then uv−1 ∈ Z(Q (U (L))) = Q (Z(U (L))), where the last equality holds for
every prime PI ring. �

The next result is a consequence of [9]. Observe that L is solvable here.

Proposition 2.3. Let L be a finite dimensional solvable Lie algebra over a field F with char F = p > 0. If
Sz(U (L)) = Z(U (L)) then Z(U (L)) is factorial.

Proof. Let q be a height one prime ideal in Z(U (L)). By “Going up” between Z(U (L)) and U (L),
there exists a (unique) height one prime ideal P in U (L) such that P ∩ Z(U (L)) = q. Now by
[9, Theorem 5.4] P = cU (L). Consequently c ∈ U (L)λ for some weight λ and by assumption λ = 0,
that is c ∈ Z(U (L)). Thus q = P ∩ Z(U (L)) = cU (L) ∩ Z(U (L)) = c Z(U (L)). �

We now recall some basic definitions. Let I be an ideal in a prime PI Notherian ring R which is
integral over its center. We set I∗ ≡ {y ∈ Q (R) | yI ⊆ R} and I∗∗ ≡ {y ∈ Q (R) | I∗ y ⊆ R}. Then I∗∗ is a
two-sided ideal in R with I ⊆ I∗∗ . I is said to be reflexive if I = I∗∗ .

The next result appears implicitly in [8].
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Proposition 2.4. Let L be a solvable finite dimensional Lie algebra over a field F with char F = p > 0. Let I be
a reflexive ideal in U (L). Then I = dU (L).

Proof. Let P be a height one prime in U (L) and q = P ∩ Z(U (L)). Since U (L)q is a maximal order
with K.dim U (L)q = 1, then Pq is its unique maximal ideal implying that

⋂
i P i

q = {0} and conse-

quently
⋂

i P i = {0}. Let P1 be a height one prime ideal in U (L) such that I ⊆ P1 = d1U (L). Choose n1

maximal so that I ⊆ Pn1
1 . Then d−n1

1 I is a two-sided ideal in U (L) and d−n1
1 I � P1. Choose P2 = d2U (L)

a height one prime ideal so that d−n1
1 I ⊆ Pn2

2 , where n2 is a maximal to satisfy it. Hence d−n2
2 d−n1

1 I
is a reflexive two-sided ideal in U (L) which is not contained in P1 and P2. Iterations of this process
must stop after finitely many steps since I is contained in only finitely many height one prime ideals.
Thus d−nk

k · · ·d−n1
1 I = U (L), for some k, equivalently I = dn1

1 · · ·dnk
k U (L). �

Our next result is slight generalization of [5, Lemma 1].

Lemma 2.5. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Let H be a proper
ideal in L with L = F x + H. Let m(t) ∈ F [t] be a p-polynomial of degree ps. Then {1, x, x2, . . . , xps−1} is a free
basis of U (L) as a U (H){m(x)}-module ( from both sides).

Proof. Set C ≡ U (H){m(x)}, the subring of U (L) generated by U (H) and m(x). If j � ps find k so
that j − kps < ps . Then x j − m(x)k has a smaller degree than j and we argue by induction that
x j − m(x)k ∈ ∑

i<ps Cxi , showing that {1, x, . . . , xps−1} generates U (L) as a C-module from both sides.

Suppose
∑

i<ps f i xi = 0, with f i ∈ C and we shall only consider f i �= 0 (for i �= 0). Using the fact

that m(x) is a p-polynomial we have that f i = ∑
aijm(x) j , with aij ∈ U (H) for each j. Therefore∑

i

∑
j ai jm(x) j xi = 0. Writing m(x) j as a sum of monomials in x shows that the maximal exponent

of x will have the form xps j and therefore the maximal exponent coming from m(x) j xi is xps j+i , (with
0 < i < ps). Since {ps j + i | 0 < i < ps} consists of different numbers, the corresponding terms do not
cancel each other and we reach a contradiction since their sum is 0. �
Remark 2.6. By a modification of the proof the last result holds for any polynomial m(t).

Lemma 2.7. Let L = H + F x1 +· · ·+ F xr be a finite dimensional Lie algebra over a field F with char F = p > 0,
where H ⊇ [L, L] is an ideal in L with dimF H = dimF L − r. Then

(1) Ls ≡ H + F xs+1 +· · · F xr + Fm1(x1)+· · ·+ Fms(xs), is a Lie algebra, H is an ideal in Ls, and dimF Ls =
dimF (L), where ms(t) is an arbitrary p-polynomial, of degree pns , for s = 1, . . . , r.

(2) U (Ls) ∼= U (H + F xs+1 + · · · + F xr){m1(x1), . . . ,ms(xs)} ≡ C, for s = 1, . . . , r.

Proof. By assumption one can complete {x1, . . . , xr} to a basis of L by adding any basis of H .
Consequently by the P-B-W theorem {xs+1, . . . , xr,m1(x1), . . . ,ms(xs)} are algebraically independent
over U (H) and consequently dimF Ls = dimF L for each s. The fact that Ls is a Lie algebra follows
since mi(t) is a p-polynomial and consequently [H,mi(xi)] ⊆ [L, L] ⊆ H as well as [mi(xi),m j(x j)] ⊆
[L, L] ⊆ H . This also shows that H is an ideal in Ls and settles item (1). Now as in Lemma 2.5, it is
easy to see that {xi1

1 · · · x js
s | 0 � i j < pn j , j = 1, . . . , s} is a finite generating set of U (L) as a C-module

(from both sides). Consequently K.dim C = K.dim U (L) = dimF L = dimF Ls = K.dim U (Ls). Now by the
universal property of U (Ls) there is an onto homomorphism ϕ from U (Ls) onto C , thus the last
equality forces kerϕ = {0}. This settles item (2). �

The next result will be used in the proof of Theorem A.
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Lemma 2.8. Let L = H + F x1 +· · ·+ F xr , be a finite dimensional Lie algebra over a field F with char F = p > 0,
where H ⊇ [L, L], is an ideal in L with dimF H = dimF L − r. Set Hi ≡ H + F x1 + · · · + ˆF xi + · · · + F xr , and
let mi(t) be a p-polynomial in F [t] with degmi(t) = pni , for i = 1, . . . , r. Then

r⋂
i=1

U (Hi)
{
mi(xi)

} = U (H)
{
m1(x1), . . . ,mr(xr)

}
.

Proof. By assumption {x1, . . . , xr} can be completed to a basis of L by adding any basis of H . Con-
sequently dimF Hi = dimF L − 1 and H1 ∩ · · · ∩ Ĥi ∩ · · · ∩ Hr � Hi for each i, which shows (by
induction) that dimF H1 ∩ · · · ∩ Hs = dimF L − s, for each 1 � s � r and therefore H1 ∩ · · · ∩ Hs =
H + F xs+1 + · · · + F xr . We shall prove by induction on s (� r) that

s⋂
i=1

U (Hi)
{
mi(xi)

} = U

( s⋂
i=1

Hi

){
m1(x1), . . . ,ms(xs)

}
. (1)

Therefore, by induction, the l.h.s. of (1) can be written in the following form

U

( s−1⋂
i=1

Hi

){
m1(x1), . . . ,ms−1(xs−1)

} ∩ U (Hs)
{
ms(xs)

}
. (2)

Now by Lemma 2.5 and Lemma 2.7 U (
⋂s−1

i=1 Hi){m1(x1), . . . ,ms−1(xs−1)} ∼= U (Ls−1) and has the set

{1, xs, . . . , xpns −1
s }, as a free basis over the r.h.s. of (1). Therefore if a ∈ (2), but a /∈ r.h.s. of (1), then a =∑

i<pnt ai xi
s , where ai ∈ r.h.s. of (1). We shall only consider terms with ai �= 0 (for i �= 0). A maximal

occurrence of xs in ai after straightening (that is, writing it as a sum of monomials with powers
of xs appearing on the right), will have the form xpns ki

s . Consequently the maximal power of x in ai xi
s

will be xpns ki+i
s (where i �= 0). Now the members of {xpns ki+i

s | ai �= 0, 0 < i < pns } are distinct and
therefore the corresponding monomial do not cancel. Thus the maximal power of xs appearing in a

after straightening will be xpns km+m
s , for some 0 < m < pns . However, by (2) a ∈ U (Hs){m(xs)}, and

so a = ∑k
i=0 bim(xs)

i , with bi ∈ U (Hs), bk �= 0. Therefore after straightening the maximal power of xs

appearing in these monomials is xpns k
s . This is in contradiction to the previous discussion. Therefore

we have that l.h.s. of (1) ⊆ r.h.s. of (1). Since the reverse inclusion is obvious, (1) is established. �
3. A reduction theorem

Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p > 0.
We shall show here that Z(U (L)) ⊆ Z(U (L0)) and Sz(U (L)) ⊆ Sz(U (L0)), where L0 is a Lie subalgebra
of U (L), with dimF (L) = dimF (L0). Moreover L and L0 share in common a co-dimension one ideal.
The point is that Z(U (L0)) and Sz(U (L0)) are better behaved then Z(U (L)), Sz(U (L)) (respectively);
thus enabling us to get in Section 4, after a finite number of iterations, our key result Theorem A.

Lemma 3.1. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Let a ∈ U (L)λ , y ∈ L
and i � 0. Then

(1) [yi,a] = aw, for some w ∈ U (L),
(2) [m(y),a] = m(λ(y))a, for each p-polynomial m(t).

Proof. By [15, p. 116], [yi,a] = ∑i
k=1(

i
k)(a dy)k(a)yi−k = a(

∑i
k=1 λ(y)k yi−k). This settles (1). Now (2)

follows from the fact that [yp,a] = (a dy)p(a) = λ(y)p(a). �
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Corollary 3.2. Let L = H + F x, be a finite dimensional Lie algebra over a field F with char F = p > 0. Suppose
that H is a proper ideal in L. Set B = U (H){m(x)}, for some p-polynomial m(t). Let a ∈ U (L)λ and w ∈ B.
Then [w,a] = va for some v ∈ B.

Proof. By Lemma 2.7 B is the enveloping algebra of the Lie algebra L1 = H + Fm(x). Let h1, . . . ,ht

be a basis of H . Then w can be written, by the P-B-W theorem, as a sum of monomials of the form
hi1

1 · · ·hit
t m(x) j . So we only need to consider w of this form. Iterations of Lemma 3.1 items (1) and (2),

yield the result. �
The following is our first reduction result.

Lemma 3.3. Let L = H + F x, be a finite dimensional Lie algebra over a field F with char F = p > 0 and H
a proper ideal in L. Let B = U (H){xp − ηx} where η ∈ F . Suppose [x, Z(B)] �= 0. Then

(1) Z(U (L)) ⊆ Z(B),
(2) Sz(U (L)) ⊆ Sz(B).

Proof. Let a ∈ Z(U (L)). By assumption and the a dx stability of Z(B), there exists u ∈ Z(B) with
0 �= [x, u] ≡ w ∈ Z(B). Now by Lemma 2.5 {1, . . . , xp−1} is a free basis of U (L) over B . Suppose a =
γmxm + ∑

i<m γi xi , where γi ∈ B , i = 1, . . . ,m and γm �= 0, where m < p. Then

0 = [a, u] = γm
[
xm, u

] +
∑
i<m

γi
[
xi, u

]
. (3)

Now [xi, u] ∈ ∑
j�i−1 Bx j and [xm, u] = mwxm−1 + ∑

j<m−1 b j x j where b j ∈ B for each j. Therefore
the coefficients of the highest term in x in (3) is mwγm which must be 0. This leads to a contradiction.
Thus a ∈ B and, since B ⊆ U (L), it implies that a ∈ Z(B). Suppose now that a ∈ U (L)λ , and assume
that a = γmxm + ∑

i<m γi xi , with m < p, γm �= 0 and γi ∈ B , for i = 1, . . . ,m. Retaining u, w ∈ Z(B)

satisfying [x, u] = w �= 0, as above, we have by Corollary (3.2), that there exists v ∈ B such that:
v(γmxm + ∑

i<m γi xi) = va = [u,a] = γm[u, xm] + ∑
i<m γi[u, xi]. Now if v �= 0 then in the r.h.s. of the

last equality all the appearing powers of x are smaller then m, while the coefficient of xm in the
l.h.s. is vγm . Therefore vγm = 0 and consequently γm = 0, that is a ∈ B . If v = 0 then 0 = γm[xm, u] +∑

i>m γi[xi, u] and as in the early part with a ∈ Z(U (L)) we get γm = 0, that is a ∈ B . �
The next two results deal with some elementary properties of p-polynomials. A different proof

which yields more on η was kindly communicated to us by the referee.

Lemma 3.4. Let F be an algebraically closed field with char F = p > 0. Let f (t) ∈ F [t], be a monic p-
polynomial (which is by definition with no constant term). Then exactly one of the following holds:

(i) f (t) = t pn
,

(ii) f (t) = g(t p − ηt), for some η �= 0 in F and a monic p-polynomial g(t) ∈ F [t].

Proof. Suppose that f (t) �= t pn
for all n. So f (t) = t pn + ∑

i�1 αit pn−i
, where α j �= 0 for some j.

Consider g(t) = t pn−1 + ∑n−1
i�1 βit pn−1−i

, where βi ∈ F . The equality f (t) = g(t p − ηt), with η ∈ F , is
equivalent to the following equations:

βi − βi−1η
pn−i = αi for i = 1, . . . ,n − 1, β0 = 0 and βn−1η = αn. (4)
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Starting with β1 = ηpn−1 + α1 and using (4) we get for j = 1, . . . ,n − 1, β j = η(pn−1+pn−2+···+pn− j) +∑ j−1
i=1 αiη

(pn−1−i+···+pn− j) . Thus all but the last equality of (4) hold (for an arbitrary η in F ). To satisfy
the βn−1η = αn , we plug

βn−1 = η(pn−1+···+p) +
∑

αiη
(pn−1−i+···+p)

into it and we get a monic polynomial equation in η with some of the αi ’s being non-zero. Now use
the algebraically closed assumption to find a suitable non-zero solution. �

The next result already appears in [26, Lemma 1].

Lemma 3.5. Let E ⊃ D be two fields of positive characteristic p. Suppose that δ ∈ DerD E satisfies m(δ) = 0,
where m(t) is a minimal monic p-polynomial with coefficients in D. Then every p-polynomial f (t), with
coefficients in D, such that f (δ) = 0 satisfies f (t) = a0m(t)pn + a1m(t)pn−1 + · · · + an−1m(t), where ai ∈ D,
for i = 0, . . . ,n − 1.

Proof. This is merely the p-division algorithm. The proof is by induction on deg f (t). We clearly
may assume that deg f (t) = pr > degm(t) = ps . Let a0 be the leading term coefficient of f (t). Then
f (t) − a0(m(t))pr−s = g(t) satisfies g(δ) = 0 and is a p-polynomial with deg g(t) < deg f (t), we can
now use induction to finish. �
Corollary 3.6. Let L = H + F x, be a Lie algebra over an algebraically closed field F , with char F = p > 0.
Suppose H is a proper ideal in L. Set E = Q (Z(U (H))) and D = Q (Z(U (H)))a dx. Let m(t) denote the minimal
monic p-polynomial that a dx|E satisfies as an element of DerD E. Then all the coefficients of m(t) are in F .

Proof. a dx ∈ DerF L and therefore satisfies a (monic) p-polynomial f (t) who’s coefficients are in F .
Consequently a dx ∈ DerF U (L) satisfies f (t) as well and so is a dx|E . Now by Lemma 3.5 f (t) =
a0m(t)pn + a1m(t)pn−1 + · · · + an−1m(t). Therefore all the roots of m(t) (in the algebraic closure of D)
are roots of f (t) and are therefore in F . This shows that all the coefficients of m(t) are in F . �
Remark 3.7. Let D = Q (Z(U (H)))a dx = Q (Z(U (H))a dx) and E = Q (Z(U (H))). It is a consequence of
Corollary 3.6 that the minimal monic p-polynomial that a dx|E ∈ EndD E satisfies is the same as the
minimal one that a dx|E ∈ EndF E satisfies, and is also the same minimal p-polynomial m(t) ∈ F [t]
such that [m(x), Z(U (H))] = 0.

The next result is crucial.

Corollary 3.8. Let L = F x + H be a finite dimensional Lie algebra over an algebraically closed field F , with
char F = p > 0. Suppose H is a proper ideal in L and let m(t) be chosen as in Corollary 3.6. Let η ∈ F satisfy
m(t) = g(t p − ηt), for some p-polynomial g(t) ∈ F [t] (as in Lemma 3.4). We set B = U (H){xp − ηx}. Then
[x, Z(U (H))] �= 0 implies that [x, Z(B)] �= 0.

Proof. Suppose that [x, Z(B)] = 0, then since [H, Z(B)] = 0 we have Z(B) ⊆ Z(U (L)). Let u ∈
Z(U (H))a d(xp−ηx) , then [u, xp − ηx] = 0 and since [u, H] = 0, we get u ∈ Z(B) ⊆ Z(U (L)), thus
[x, u] = 0 and u ∈ Z(U (H))a dx . The reverse inclusion Z(U (H))a dx ⊆ Z(U (H))a d(xp−ηx) , now shows
that Z(U (H))a dx = Z(U (H))a d(xp−ηx) . Consequently Q (Z(U (H)))a dx = Q (Z(U (H)))a d(xp−ηx) . Let E =
Q (Z(U (H))) and D = Q (Z(U (H))))a dx as in Remark 3.7. Then by [18, p. 536] [E : D] = degm(t). Now
D = Ea d(xp−ηx) and g(a d(xp − ηx)|E ) = m(a dx|E ) = 0, show by a second application of [18, p. 536]
that deg(m(t)) = [E : D] � deg g(t), a contradiction. �

We finally arrive at our main reduction result.
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Theorem 3.9. Let L = H + F x be a finite dimensional Lie algebra over an algebraically closed field with
char F = p > 0. Suppose H is a proper ideal in L and let m(t) be the minimal monic p-polynomial in F [t]
such that [m(x), Z(U (H))] = 0. Set A ≡ U (H){m(x)} and L0 = H + Fm(x). Suppose that [x, Z(U (H))] �= 0.
Then

(1) Z(U (L)) ⊆ Z(A),
(2) Sz(U (L)) ⊆ Sz(A),
(3) For each weight λ on U (L), there exists an L0-weight λ̃ on A such that

U (L)λ ⊆ Aλ̃.

Proof. Recall that A ∼= U (L0) by Lemma 2.7. The proof is by induction on the p-degree of m(t). Let
η ∈ F be chosen, as in Lemma 3.4, to satisfy m(t) = g(t p − ηt). Observe that if m(t) = t pn

, then
g(t) = t pn−1

and η = 0. If p-degree (m(t)) = 1, then m(t) = t p − ηt and A = U (H){xp − ηx}. Corol-
lary 3.8 and [x, Z(U (H))] �= 0, imply by Lemma 3.3 that items (1) and (2) are true. Let x1 ≡ xp − ηx.
If [x1, Z(U (H))] = 0, then m(t) = t p − ηt and we are back to the previous case. So assume that
[x1, Z(U (H))] �= 0. Moreover the minimality of m(t) implies that g(t) is the minimal monic p-
polynomial such that [g(x1), Z(U (H))] = 0. Let L1 ≡ H + F x1. Then one easily verifies that L1 is a Lie
algebra and H is an ideal of a co-dimension one in L1. Set A′ ≡ U (H){g(x1)}. Consequently by induc-
tion Z(U (L1)) ⊆ Z(A′) and Sz(U (L1)) ⊆ Sz(A′). Since m(x) = g(x1) then A′ = A and the last inclusions
translate into Z(U (H){x1}) ⊆ Z(A) and Sz(U (H){x1}) ⊆ Sz(A). Now U (H){x1} = U (H){xp − ηx} ≡ B
and by Corollary 3.8 [x, Z(U (H))] �= 0 implies [x, Z(B)] �= 0. Therefore by Lemma 3.3 we have that
Z(U (L)) ⊆ Z(B) and Sz(U (L)) ⊆ Sz(B). This combined with the previous inclusions complete the proof
of items (1) and (2). Finally let a ∈ U (L)λ , then by Lemma 3.1 item (2), a is a weight vector with re-
spect to the adjoint action of L0 ≡ H + Fm(x). Now by (2), a ∈ Sz(A) and since A ∼= U (L0) this settles
item (3), where λ̃ is defined via λ̃(h) = λ(h), for h ∈ H and λ̃(m(x)) = m(λ(x)). �
4. Theorem A and some of its consequences

The introduction of Sz(U (L)) in case char F = 0, is due to Dixmier, and its importance is manifested
in [11]. Moeglin showed in [23] that Sz(U (L)) is factorial if in addition F is algebraically closed.
Later work, for an arbitrary field F with char F = 0, is done in [10,21]. It is proved in [27] that
Sz(U (L)) ∼= S(L)[L,L] , in case char F = 0, and F algebraically closed. This is an extension of Duflo’s
theorem [11, Theorem 10.4.5] stating that Z(U (L)) ∼= S(L)L .

Theorem A, whose proof is the main result of the present section shows, in case char F = p > 0
and F algebraically closed, that Sz(U (L)) ∼= Z(U (L0))

a da1,...,a dar where L0 is a finite dimensional Lie
algebra related to L. Moreover L and L0 share a common ideal which contains [L, L]. This has some
artificial resemblance to the mentioned above result of Rentschler–Vergne. However it is more similar
in nature (but not in proof) to [3, Satz 6.1].

Lemma 4.1. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p > 0.
Let α be a non-zero L-weight on U (L). Set K = kerα and let x ∈ L \ K . Then [x, Z(U (K ))] �= 0.

Proof. Clearly [L, L] ⊆ K , follows from the fact that α is a weight. Consequently K is a co-dimension
one ideal in L with L = K + F x. Suppose by negation that [x, Z(U (K ))] = 0, then Z(U (K )) ⊆ Z(U (L))

and in particular Q (U (K )) ⊆ Q (U (L)). Therefore by the Skolem–Noether theorem [14, p. 100] there
exists t ∈ Q (U (K )) with a dx|Q (U (K )) = a d(−t)|Q (U (K )) . Thus [x + t, y] = 0 for each y ∈ Q (U (K )),
and in particular [x + t, t] = 0, as well as [x, t] = 0. Consequently [x + t, x] = 0 showing together
with [x + t, y] = 0 where y ∈ Q (U (K )), that x + t ∈ Z(Q (U (L))). Let 0 �= a ∈ U (L)α . Then α(K ) = 0
implies [k,a] = 0 for each k ∈ K and consequently [y,a] = 0 for each y ∈ Q (U (K )). Now, [x + t,a] =
0, since x + t is central. However, [x + t,a] = [x,a] + [t,a] = [x,a] = α(x)a and therefore α(x) = 0,
a contradiction. �
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Lemma 4.2. Let L, α, K , x, a be as in Lemma 4.1. Let m(t) ∈ F [t] be the minimal p-polynomial that a dx
satisfies as a derivation on Z(U (K )). Set L1 = K + Fm(x). Then U (L)α ⊆ Z(U (L1)).

Proof. Clearly K is a co-dimension one ideal in the Lie algebra L1. By Lemma 2.7 U (L1) ∼= U (K ){m(x)},
where the later stands for the subring in U (L), generated by U (K ) and m(x). We have by defini-
tion that [m(x), Z(U (K ))] = 0. Now the argument in Lemma 4.1 (with x being replaced with m(x))
shows that m(x) + t1 ∈ Z(Q (U (L1))), where t1 ∈ Q (U (K )) is chosen to satisfy a dm(x)|Q (U (K )) =
a d(−t1)|Q (U (K )) . Recall that by Theorem 3.9 Sz(U (L)) ⊆ Sz(U (L1)) and in particular a ∈ U (L1). So if
a ∈ U (L)α then 0 = [m(x) + t1,a] = [m(x),a], where the 2nd equality holds since a commutes with K .
Thus a commutes with m(x) and with K implying that a ∈ Z(U (L1)). �
Remark 4.3. Let 
 = {α | α is a non-zero L-weight on U (L)}. Now the finite generation of Sz(U (L))

as a Z(U (L))-module, implies that 
 is finite. Let {α1, . . . ,αr} be a maximal F -linearly independent
subset in 
. Set Hi ≡ Kerαi = α⊥

i , for i = 1, . . . , r, and H ≡ ⋂r
i=1 Hi .

The following lemma is proved by using linear algebra (using g /∈ span{g1, . . . , gt} iff g⊥ �
span{g1, . . . , gt}⊥).

Lemma 4.4. Let H, αi , Hi , for i = 1, . . . , r, be as in the Remark 4.3. Then the following properties hold:

(1) dimF (Hi) = dimF (L) − 1, for i = 1, . . . , r,
(2) dimF (H) = dimF (L) − r,
(3) [L, L] ⊆ Hi , [L, L] ⊆ H, and H, Hi are ideals in L, for i = 1, . . . , r,
(4) α(h) = 0 for each α ∈ 
 and h ∈ H,
(5) One can choose xi ∈ L \ Hi , for i = 1, . . . , r satisfying αi(x j) = δi j ,
(6) Hi = H + ∑

j �=i F x j , for i = 1, . . . , r and L = H + F x1 + · · · + F xr .

Proof. (1) is a consequence of Hi = kerαi . Next, αi is an L-weight and consequently [L, L] ⊆ kerαi =
Hi , for i = 1, . . . , r, which establishes (3). Now H ⊆ Hi and consequently αi(h) = 0 for each h ∈ H
and i = 1, . . . , r. Thus since α ∈ spanF (α1, . . . ,αr} for each α ∈ 
 this settles (4). Next, the linear
independence of {α1, . . . ,αr} and the duality of ⊥ show that Hi = α⊥

i �⊇ (span{α1, . . . , α̂i, . . . ,αr})⊥ =
H1 ∩· · ·∩ Ĥi ∩· · ·∩ Hr . Therefore one can prove (by induction) on k, using (1), that dimF H1 ∩· · ·∩ Hk =
dimF L − k, and (2) is established by taking k = r. Now Hi � H1 ∩ · · · ∩ Ĥi ∩ · · · ∩ Hr permits the
choice of xi /∈ Hi , so that xi ∈ H1 ∩ · · · ∩ Ĥi ∩ · · · ∩ Hr , αi(xi) = 1 and α j(xi) = 0 for j �= i. Thus
(5) is established. By choice {x1, . . . , xr,h1, . . . ,hdim L−r} is a linearly independent set for each basis
{h1, . . . ,hdimL−r} of H . So (2) implies that L = H + F x1 + · · · + F xr and since Hi ⊇ H + ∑

i �= j F x j , the
last equality also shows that Hi = H + ∑

i �= j F x j . �
Lemma 4.5. Retaining all the notations of Remark 4.3 and let mi(t) be the minimal p-polynomial that a dxi
satisfies on Z(U (Hi)) for i = 1, . . . , r. Let Lr = H + Fm1(x1) + Fm2(x2) + · · · + Fmr(xr). Then the following
hold:

(1) Lr is a Lie subalgebra of U (L) with dimF (Lr) = dimF L,
(2) [L, Lr] ⊆ [L, L], [Lr, Lr] ⊆ [L, L] and consequently H is an ideal in Lr ,
(3) U (L)αi ⊆ Z(U (Lr)) for i = 1, . . . , r ,
(4) U (H){m1(x1), . . . ,mr(xr)} ∼= U (Lr),
(5) Let β ∈ 
, then U (L)β ⊆ U (Lr)β̃ for some weight β̃ on U (Lr),
(6) Sz(U (L)) ⊆ Sz(U (Lr)) and Z(U (L)) ⊆ Z(U (Lr)).

Proof. Using the fact that mi(xi) is a p-polynomial in xi we get that [mi(xi),m j(x j)] ∈ [L, L] for
each i, j and [H,mi(xi)] ⊆ [L,mi(xi)] ⊆ [L, L] ⊆ H . This clearly validates most of items (1) and (2).
Also dimF Lr = dimF L is true by Lemma 4.4 item (2) and Lemma 2.7 (with s = r). Now (4) also
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follows from 2.7. Therefore by Lemma 2.8
⋂r

i=1 U (Hi){mi(xi)} = U (H){m1(x1), . . . ,mr(xr)} = U (Lr).
Let 0 �= a ∈ U (L)β . Then by Theorem 3.9 item (3) (or Lemma 3.1) a is a weight vector with
respect to H and m1(x), . . . ,mr(xr). Now by Theorem 3.9 item (2), we have that Sz(U (L)) ⊆⋂r

i=1 Sz(U (Hi){mi(xi)) ⊆ ⋂r
i=1 U (Hi){mi(xi) = U (Lr), so by the previous discussion a is a Lr -weight

vector in U (Lr), that is a ∈ U (Lr)β̃ and consequently U (L)β ⊆ U (Lr)β̃ , for some β̃ . This also set-
tles the 1st part of (6). For the second part of (6), recall by Theorem 3.9 item (1), Z(U (L)) ⊆⋂r

i=1 Z(U (Hi)){mi(xi)} ⊆ ⋂r
i=1 U (Hi){mi(xi)} = U (Lr) ⊆ U (L) and consequently Z(U (L)) ⊆ Z(U (Lr)).

Finally to settle (3) one observes that by Lemma 4.2 and (6) U (L)αi ⊆ Z(U (Hi){mi(xi)}) ∩ U (Lr). Now
since U (Lr) ⊆ U (Hi){mi(xi)}, this shows that U (L)αi ⊆ Z(U (Lr)), for i = 1, . . . , r. �
Proof of Theorem A. We retain all notations appearing in Lemma 4.2, Remark 4.3 and Lemma 4.5. Let
β1, . . . , βs ∈ 
 \ {α1, . . . ,αr} be chosen via Lemma 4.5 item (6) so that {β̃1, . . . , β̃s} is a maximal F -
linearly independent set in {β̃ | β ∈ 
\ {α1, . . . ,αr}}. We set H̃i ≡ ker β̃i , i = 1, . . . , s and H̃ = ⋂s

i=1 H̃i .
As in Lemma 4.4, we choose {y1, . . . , ys} ⊆ Lr with β̃i(y j) = δi j , i = 1, . . . , s (in fact y1, . . . , ys can be
chosen in Fm1(x1) + · · · + Fmr(xr)). Moreover if ni(t) denotes the minimal p-polynomial that a dyi

satisfies over Z(U (H̃i)), then as in Lemma 4.5 we define Lr+1 ≡ H̃ + Fn1(y1) + · · · + Fns(ys). By ap-
plying Lemma 4.5 we have that U (L)βi ⊆ U (L)β̃i

⊆ Z(U (Lr+1)) for i = 1, . . . , s, as well as Sz(U (L)) ⊆
Sz(U (Lr)) ⊆ Sz(U (Lr+1)). Now [Lr+1, Lr+1] ⊆ [Lr, Lr] ⊆ [L, L] and since [L,ni(yi)] ⊆ [L, Lr] ⊆ [L, L]
we get that [L, Lr+1] = [L, H̃ + ∑s

i=1 Fni(yi)] ⊆ [L, Lr] + [L, L] ⊆ [L, L]. Also H ⊆ H̃ ⊆ Lr+1 and
[Lr+1, Lr+1] ⊆ [L, L] ⊆ H show that H is an ideal in Lr+1. Iterating this process finitely many times we
arrive at a Lie algebra L0 having the following properties:

dimF L0 = dimF L, U (L0) ⊆ U (L), H is an ideal in L0 and

U (L)α ⊆ Z
(
U (L0)

)
, for each α ∈ 
. (5)

Moreover [L, L0] ⊆ [L, L] shows that U (L0) and (therefore) Z(U (L0)) are a dL-stable. Also since,
[L, L] ⊆ H and H ⊆ L0 then [L, L] commute with Z(U (L0)). Consequently [a dx|Z(U (L0)),

a dy|Z(U (L0))] = 0 for each x, y ∈ L. Let pi(t) be the minimal p-polynomial that a dxi satisfies on L
(and therefore on U (L)) for i = 1, . . . , r. We can always write pi(t) = (qi(t))pni , with qi(t) being a
semi-simple p-polynomial, for i = 1, . . . , r. Then qi(xi) ≡ ai ∈ U (L) and a dai = qi(a dxi) is a nilpotent
derivation on U (L) for each i = 1, . . . , r. We shall prove that

Sz
(
U (L)

) = Z
(
U (L0)

)a da1,...,a dar
. (6)

In one direction, let a ∈ U (L)λ . Then by Lemma 3.1 0 = [pi(xi),a] = [qi(xi)
pni

,a] = qi(λ(xi))
pni a

and therefore [ai,a] = qi(λ(xi))a = 0, for i = 1, . . . , r, namely a ∈ Z(U (L0))
a da1,...,a dar . For the con-

verse direction, one observes that a dai = qi(a dxi) acts as the zero map on Z(U (L0))
a da1,...,a dar ,

for i = 1, . . . , r, and consequently a dxi , for i = 1, . . . , r, acts semi-simply on Z(U (L0))
a da1,...,a dar .

Also {a dxi |Z(U (L0))a da1,...,a dar } consists of commuting elements. Now [H, Z(U (L0))] = 0 implies that

a dh|Z(U (L0))a da1,...,a dar = 0 for each h ∈ H . Therefore we can decompose Z(U (L0))
a da1,...,a dar into a

direct sum of weight spaces with respect to a dx1, . . . ,a dxr and a dH . This is a decomposition
of Z(U (L0))

a da1,...,a dar into L-weight spaces implying that Z(U (L0))
a da1,...,a dar ⊆ Sz(U (L)). �

Proposition 4.6. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F =
p > 0. Let L0 be as in the proof of Theorem A. Suppose that one of the following holds:

(i) [L0, L0] = [L, L],
(ii) [L, L] is nilpotent.

Then Z(U (L0)) = Sz(U (L0)).
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Proof. We pick by negation 0 �= a ∈ U (L0)γ , with γ �= 0. We shall firstly show that either one of (i)
or (ii) implies that U (L0)γ is a dL-stable. Let x ∈ L, y ∈ L0. Then

[
y, [x,a]] = [[y, x],a

] + [
x, [y,a]]. (7)

If (i) holds then [y, x] ∈ [L0, L] ⊆ [L, L] = [L0, L0] showing that [[y, x],a] = 0 and (7) takes the
form [y, [x,a]] = γ (y)[x,a]. Since [x,a] ∈ U (L0) by the a dL-stability of U (L0) this shows that
[x,a] ∈ U (L0)γ for each x ∈ L. In case (ii) a d[y, x] acts nilpotently on U (L) and since U (L0) ⊆ U (L) it
is also nilpotent on U (L0). Now [y, x] ∈ [L, L0] ⊆ [L, L] ⊆ H ⊂ L0 and hence [[y, x],a] = γ ([y, x])a.
The nilpotency of a d[y, x] and iterations show that γ ([y, x]) = 0. Therefore, as before, (7) takes
the form [y, [x,a]] = γ (y)[x,a] and again U (L0)γ is a dL-stable. In fact by exactly the same ar-
guments, if x, y ∈ L then [x, y] ∈ [L, L] and in case (i) this shows that [[x, y],a] = 0. In case (ii)
[x, y] ∈ [L, L] ⊆ H is ad nilpotent on U (L) and again [[x, y],a] = 0. This shows, in both cases, that
[a dx|U (L0)γ ,a dy|U (L0)γ ] = 0 for each x, y ∈ L. Also recall that H ⊂ L0 and consequently a dh(a) = γ (h)a
for each h ∈ H . Let pi(t) be the minimal p-polynomial that a dxi satisfies on L, where xi is as in the
previous theorems, for each i = 1, . . . , r. Consider

W ≡ spanF

{(
a dxt1

1

)(
a dxt2

2

) · · · (a dxtr
r

)
(a dh) j(a)

∣∣ti < deg
(

pi(t)
)

for i = 1, . . . , r
}
.

Then W ⊂ U (L0)γ is a dL-stable and dimF (W ) < ∞. The previous considerations show that a dL =
Fa dx1 + · · · + Fa dxr + a dH , acts as a commutative Lie algebra of linear transformations on W . Thus
by standard linear algebra (using that F is algebraically closed), there exists a non-zero common a dL
eigenvector b ∈ U (L0)γ . Now since b ∈ U (L0) ⊆ U (L) this shows in particular that b ∈ Sz(U (L)) =
Z(U (L0))

a da1,...,a dar . Therefore b ∈ Z(U (L0)), in contradiction to the assumption γ �= 0. �
The next result confirms, in particular, the validity of Theorem C.

Theorem 4.7. Let L be a solvable finite dimensional Lie algebra over an algebraically closed field F with
char F = p > 0. Suppose that one of the following holds:

(i) [L0, L0] = [L, L], where L0 is as in Theorem A,
(ii) [L, L] is nilpotent.

Then Sz(U (L)) is a factorial domain.

Proof. In both cases we have [L0, L0] ⊆ [L, L] and since L is solvable the same holds for L0. There-
fore by Proposition 2.3 and Proposition 4.6, Z(U (L0)) is factorial. Now, by Theorem A, Sz(U (L)) =
Z(U (L0))

a da1,...,a dar , with a da1, . . . ,a dar being nilpotent derivations on Z(U (L0)) (and on U (L)). Thus
by [16, Corollary 17.3] this implies that Sz(U (L)) is factorial. �
Remark 4.8. A more direct proof of Theorem 4.7 item (ii) can be found in [31].

Corollary 4.9. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p > 0.
Then Sz(U (L)) is factorial in the following cases:

(i) L ⊆ bn, the standard Borel subalgebra of gln,
(ii) L = the Lie algebra of a connected solvable algebraic group.

The following is another consequence of Theorem A.

Theorem 4.10. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p > 0.
Then Cl(Sz(U (L))) is a d-torsion group, where d = PI.deg U (L).
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Proof. By Theorem A, using the fact that a da1, . . . ,a dar are nilpotent derivations, we conclude by
[16, Corollary 17.3] that Cl(Sz(U (L))) ⊆ Cl(Z(U (L0))). Now by [6, Theorem A] the later is a d0-torsion
group where d0 = PI.deg U (L0). Now the result will follow once we show that d0 divides d. To this
end recall that we have the following inclusions of division rings:

Q
(

Z
(
U (L)

)) ⊂ Q
(

Z
(
U (L0)

)) ⊂ Q
(
U (L0)

) ⊂ Q
(
U (L)

)
.

Consequently d2 = [Q (U (L)) : Q (Z(U (L)))] = [Q (U (L)) : Q (U (L0))] · [Q (U (L0)) : Q (Z(U (L0)))] ·
[Q (Z(U (L0))) : Q (Z(U (L)))] = d2

0[Q (U (L)) : Q (U (L0))] · [Q (Z(U (L0))) : Q (Z(U (L)))]. This clearly
shows that d0 divides d. �

The following conjecture is suggested by Theorem 4.10.

Conjecture 4.11. Let L be a finite dimensional Lie algebra over an algebraically closed field of prime character-
istic p. Then Cl(Sz(U (L))) is a finite elementary abelian p-group.

Remark 4.12. The previous argument confirms the validity of this conjecture, in case L is solvable, as
a consequence of Corollary 6.3.

5. The proof of Theorem D

Recall that a Noetherian domain is factorial if and only if all its height one prime ideals are princi-
pal. It is fairly easy to produce a solvable finite dimensional Lie algebra L over a prime characteristic
field F with Z(U (L)) being non-factorial.

Consider for example F x+ F y + F z = L, subject to the Lie products [x, y] = y, [x, z] = z and [y, z] =
0. Then Z(U (L)) = F [xp − x, yi zp−i, i = 0, . . . , p], is clearly a non-factorial domain. If L is nilpotent
this cannot happen by [5]. Given by [23] that Sz(U (L)) is factorial if char F = 0, it might suggest that
Sz(U (L)) is better behaved in case char F = p > 0, as well. This is only partially true as follows from
Theorem 4.7 item (ii) and Example 9.1.

The purpose of the present section is to report, in case L is solvable, on the nature of relation
between height one primes of Z(U (L)) and those of Sz(U (L)). The main result here is as follows:

Theorem D. Let L be a finite dimensional solvable Lie algebra over an algebraically closed field F with char F =
p � 3. Let q be a height one prime ideal in Z(U (L)) and v the unique height one prime ideal in Sz(U (L)) with
v ∩ Z(U (L)) = q. Then at least one of the following holds:

(i) v is principal,
(ii) q = (d) and v(p) = dSz(U (L)).

This theorem is crucial in the determination of Cl(Z(U (L))) in Section 6, as well as in finding, in
Section 7, criteria for the factoriality of Z(U (L)).

Recall that if [L, L] is nilpotent then one can do better, that is Sz(U (L)) is factorial. However, in
Section 9, we exhibit an example (in case p = 5) where neither Z(U (L)) nor Sz(U (L)) are factorial.

The next result is probably well known and is included for lack of a suitable reference. See the
discussion before Proposition 2.4 for the definition of I∗∗ .

Lemma 5.1. Let R be a prime Noetherian P I maximal order and A ⊆ Z(R), a normal Noetherian domain with
R being integral over A. Let I be an ideal in R. Then I∗∗ = ⋂

q Iq, where q runs on all height one prime ideals
of A.

Proof. R being a maximal order implies that
⋂

h Rh = R , where h runs on all height one prime ideals
of Z(R). Since the extension Z(R)/A satisfies “Going down” we have that R = ⋂

q Rq , where q is
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a height one prime ideal in A. Moreover Rq being an hereditary maximal order implies that I∗∗
q = Iq

and therefore we may replace I by I∗∗ and assume that I = I∗∗ . Now let y ∈ ⋂
q Iq , then y ∈ ⋂

q Rq =
R . Consider τ = {z ∈ A | zy ∈ I}. Clearly τ is a two-sided ideal in A which is not contained in any
height one prime ideal of A. Consequently by “Going down” between A and R [28, Theorem 4.4.24]
τ R is not contained in any height one prime ideal of R . Now R/I = R has an Artinian quotient ring
[8, Proposition 1.3], [13, Theorem 3.3] and the minimal primes are all images of height one primes
in R (which contain I). Therefore τ R contains a regular element (mod I) and therefore the inclusion
(τ R)y ⊆ I shows that y ∈ I , as needed �

Given a prime ideal P in R one denotes by P (e) the e-th symbolic power of P meaning P (e) =
P e

q ∩ R , where q = P ∩ Z(R).
The following connects two of the previous notions:

Lemma 5.2. Let R be a prime Noetherian PI ring which is a maximal order and P a height one prime ideal in R.
Then P (e) = (P e)∗∗

Proof. By Lemma 5.1 (P e)∗∗ = ⋂
ht(p′)=1(P e)p′ = P e

q ∩ (
⋂

p′ �=q P e
p′ ) = P e

q ∩ (
⋂

p′ �=q R p′ ). Intersection of
both ends of the previous equality with Rq , yields (P e)∗∗ = (P e)∗∗ ∩ Rq = P e

q ∩ (
⋂

p′ �=q R p′ ∩ Rq) =
P e

q ∩ R = P (e) . �
Lemma 5.3. Let L be an F -finite dimensional Lie algebra over an algebraically closed field F with char F =
p > 0. Let v be a height one, a dL stable, reflexive ideal in Sz(U (L)). Then (vU (L)))∗∗ ∩ Sz(U (L)) = v.

Proof. By the a dL-stability of v we have that vU (L) is a two-sided ideal in U (L) and so is (vU (L))∗∗ .
Let rad(v) = v1 ∩ · · · ∩ vk where v1, . . . , vk are all the height one primes in Sz(U (L)) which con-
tain v . Let pi ≡ vi ∩ Z(U (L)) for i = 1, . . . ,k. Then vi is the unique prime in Sz(U (L)) “lying over” pi
and by the “Going down” theorem height pi = 1 for i = 1, . . . ,k. Consequently Sz(U (L))pi is a D.V.R.,
implying that U (L)pi is a free (left, right) Sz(U (L))pi -module. Therefore Sz(U (L))pi is a direct sum-
mand of U (L)pi and therefore v pi U (L)pi ∩ Sz(U (L))pi = v pi , for i = 1, . . . ,k. Let q denote an arbitrary
height one prime ideal in Z(U (L)) satisfying q �= p1, . . . , pk . Then clearly (vU (L))∗∗

q = (vU (L))q =
U (L)q as well as vq = Sz(U (L))q . Finally (vU (L))∗∗ ∩ Sz(U (L)) ⊆ [⋂k

i=1(v pi U (L)pi ∩ Sz(U (L))pi )] ∩
[⋂q(vU (L))q ∩ Sz(U (L))q] = [⋂k

i=1 v pi ] ∩ [⋂q vq] = v , where the last equality is due to Lemma 5.1
taking R = Sz(U (L)). The reverse inclusion, being obvious, implies the required equality. �
Lemma 5.4. Let L be a finite dimensional solvable Lie algebra over an algebraically closed field F of prime
characteristic. Let v be an a dL-stable height one prime ideal in Sz(U (L)). Then v is principal.

Proof. Let q = v ∩ Z(U (L)). By “Going down” between Z(U (L)) and Sz(U (L)) we have height q = 1.
Moreover since v is the unique prime above q then vn ⊆ qSz(U (L)) for some n. Let P be the unique
height one in U (L) which contracts to q. Thus vU (L) is a two-sided ideal satisfying (vU (L))n ⊆
qU (L) ⊆ P . That is vU (L) ⊆ P and consequently (vU (L))∗∗ ⊆ P is a proper reflexive ideal in U (L).
Now, by Proposition 2.4 (vU (L))∗∗ = dU (L) for some d ∈ U (L)λ . Therefore by Lemma 5.3, applied
twice, we have v = (vU (L))∗∗ ∩ Sz(U (L)) = dU (L) ∩ Sz(U (L)) = dSz(U (L)). �
Corollary 5.5. Say L, v are as in Lemma 5.4 and let q = v ∩ Z(U (L)). Then (qSz(U (L))))∗∗ = v implies that v
is principal.

Proof. Clearly qSz(U (L)) is a dL-stable and consequently (qSz(U (L)))∗∗ = v is a dL-stable. Therefore by
Lemma 5.4 v is principal. �
Lemma 5.6. Let L be a finite dimensional Lie algebra over an algebraically closed field F with char F = p.
Let q be a height one prime ideal in Z(U (L)) and v the unique height one prime ideal in Sz(U (L)) satisfying
q = v ∩ Z(U (L)). Suppose that q is not principal and v is principal. Then v = (qSz(U (L)))∗∗ .
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Proof. Equivalently, we have to show that vq = qqSz(U (L))q . By assumption v = bSz(U (L)) and there-
fore vq = bSz(U (L))q . Now bp ∈ Z(U (L)) shows that e � p, where e is the ramification degree
of the D.V.R. extension Sz(U (L))q/Z(U (L))q . It is standard that [Q (Sz(U (L))) : Q (Z(U (L)))] divides
[Q (U (L)) : Q (Z(U (L)))] and the later is a power of p. Thus e = 1 or e = p. Suppose by negation
that qqSz(U (L))q ⊂ vq . Hence qqSz(U (L)) = v p

q and therefore (qSz(U (L))))∗∗ = v(p) = v p = bpSz(U (L)).
Intersection of both ends with Z(U (L)) yield: q = (qSz(U (L)))∗∗ ∩ Z(U (L)) = bpSz(U (L)) ∩ Z(U (L)) =
bp Z(U (L)), a contradiction. �
Remark 5.7. The assumption that F is algebraically closed is needed to ensure that Sz(U (L))q is a dis-
crete valuation ring (D.V.R.), and it is a consequence of the normality of Sz(U (L)) which holds by
Theorem B.

The next result explains our present need for the assumption char F = p � 3.

Lemma 5.8. Let L and L0 be as in Theorem A and char F = p � 3. Let a ∈ Sz(U (L0)). Then ap ∈ Z(U (L)).

Proof. Suppose firstly that a ∈ U (L0)λ . Let x ∈ L, y ∈ L0. Then [x, y] ∈ L0 implying that [y, [x,a]] =
[[y, x],a] + [x, [y,a]] = λ([y, x])a + λ(y)[x,a]. Therefore [[y, [x,a]],a] = λ(y)[[x,a],a]. Consequently
[y, [[x,a],a]] = [[y, [x,a]],a] + [[x,a], [y,a]] = λ(y)[[x,a],a] + λ(y)[[x,a],a]. That is [[x,a],a] ∈
U (L0)2λ . Now since a ∈ U (L0)λ , this implies, by the commutativity of Sz(U (L0)), that [[[x,a],a],a] = 0.
Thus, since p � 3 we have that [x,ap] = 0 for each x ∈ L; equivalently ap ∈ Z(U (L)). For an arbitrary
a ∈ Sz(U (L)) we write a as a sum of weight vectors and use the previous result. �

We shall now prove a theorem which implies (and in fact is equivalent to) Theorem D. This cru-
cially depends on Theorem A.

Theorem 5.9. Let L be an F -finite dimensional solvable Lie algebra with F algebraically closed and char F =
p � 3. Let q be a height one prime ideal in Z(U (L)) and v the unique height one prime ideal in Sz(U (L))

satisfying v ∩ Z(U (L)) = q. Then at least one of the following holds:

(i) q is principal,
(ii) v is principal and (qSz(U (L)))∗∗ = v.

Proof. The proof is by induction on dimF [L, L], the case [L, L] = 0 being obvious. By Theorem A,
we have Sz(U (L)) = Z(U (L0))

a da1,...,a dar (retaining all our previous notations). Assume by negation
that q is not principal. Let u be the unique prime ideal in Z(U (L0)) with u ∩ Sz(U (L)) = v and
w the unique prime ideal in Sz(U (L0)) satisfying w ∩ Z(U (L0)) = u. If [L0, L0] = [L, L] then by
Proposition 4.6 Sz(U (L0)) = Z(U (L0)) implying by Theorem 4.7 that Z(U (L0)) is factorial. Now since
a da1, . . . ,a dar are nilpotent derivations then by [16, 17.3] Sz(U (L)) is factorial. In particular v is prin-
cipal and the rest follows from Lemma 5.6. We may therefore assume that [L0, L0] ⊂ [L, L]. Thus by
the inductive assumption either u is principal or if not, then w is principal and (uSz(U (L0)))

∗∗ = w .
Recall that Z(U (L0)) being a dL-stable implies that cp ∈ Z(U (L)), for each c ∈ Z(U (L0)) and conse-
quently the ramification degree e of the extension Z(U (L0))q/Z(U (L))q is either 1 or p. Suppose
firstly that e = 1, that is qq Z(U (L0))q = uq . Consider qqSz(U (L))q ⊆ vq . If the last inclusion is proper,
then since Sz(U (L))q is a direct summand of Z(U (L0))q we get that qqSz(U (L))q · Z(U (L0))q ⊂
vq(Z(U (L0)))q and therefore qq Z(U (L0))q ⊂ vq Z(U (L0))q ⊆ uq , in contradiction to our assumption.
Thus qq Z(U (L0))q = uq implies qqSz(U (L))p = vq . Equivalently (qSz(U (L)))∗∗ = v and by Corollary 5.5

v is principal as needed. We may therefore assume that e = p, that is qq Z(U (L0))q = u(p)
q or equiva-

lently (qZ(U (L0)))
∗∗ = u(p) .

If u is principal, u = dZ(U (L0)), then dp ∈ Z(U (L)) and (qZ(U (L0)))
∗∗ = u(p) = up = dp Z(U (L0)).

Intersecting both sides with Z(U (L)) yield: q = (qZ(U (L0)))
∗∗ ∩ Z(U (L)) = dp Z(U (L0)) ∩ Z(U (L)) =

dp Z(U (L)) and q is principal, contradicting the assumption. We may therefore assume that w =
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bSz(U (L0)) is principal and (uSz(U (L0)))
∗∗ = w . By Lemma 5.8 we have that bp ∈ Z(U (L)). There-

fore combining it with qq Z(U (L0))q = up
q we get

qq Z
(
U (L0)

)
qSz

(
U (L0)

)
q = up

q Sz
(
U (L0)

)
q = (

uSz
(
U (L0)

)
q

)p = w p
q = bpSz

(
U (L0)

)
q.

Therefore qqSz(U (L0))q = bpSz(U (L0))q . Equivalently (qSz(U (L0)))
∗∗ = bpSz(U (L0)). Finally intersecting

both sides with Z(U (L)) and using bp ∈ Z(U (L)) we get q = (qSz(U (L0)))
∗∗ ∩ Z(U (L)) = bpSz(U (L0))∩

Z(U (L)) = bp Z(U (L)), in contradiction to our assumption. �
Proof of Theorem D. Suppose that v is not principal, then by Theorem 5.9 q is principal, q =
dZ(U (L)). We have by Corollary 5.5, that (qSz(U (L)))∗∗ ⊂ v . Considerations about the ramifica-
tion degree (as in the proof of Theorem 5.9) now show that (qSz(U (L)))∗∗ = v(p) . Finally since
qSz(U (L)) = dSz(U (L)) then (qSz(U (L)))∗∗ = dSz(U (L)), as claimed. �

The next result is a consequence.

Corollary 5.10. Let L be a solvable finite dimensional Lie algebra over an algebraically closed field F with
char F = p � 3. Then the following map i∗ , induced by inclusion, is trivial:

i∗ : Cl
(

Z
(
U (L)

)) → Cl
(
Sz

(
U (L)

))
.

Proof. Let q be a non-principal height one prime ideal in Z(U (L)). It is well known that Cl(Z(U (L)))

is generated by all [q]. Now by Theorem 5.9 (qSz(U (L)))∗∗ = v and v is principal, that is [v] = 0 in
Cl(Z(U (L))). Since i∗([q]) = [qSz(U (L)))∗∗] = [v] = 0, we reach the desired result. �
6. The divisor class group of Z(U (L))

Our main concern here is to determine Cl(Z(U (L))), the divisor class group of Z(U (L)). More
precisely we shall show, in case L is solvable, how to embed Cl(Z(U (L))) into the additive group of L-
weights and then we shall identify the co-kernel of this embedding with a distinguished subgroup.
The resulting exact sequence has a striking resemblance to analogues results of Nakajima [24] in case
of polynomial invariants of finite group (see [4, Section 3] for a detailed account). The embedding part
is motivated by Samuel’s radical descent theory and, in the polynomial invariants of Lie algebra case,
is not really new. For an authoritative account on this topic one is referred to [16, Section 17]. The
embedding part does not require, in our case, any additional assumption on F appart from char F =
p > 0. One immediate consequence is that Cl(Z(U (L))) is a finite elementary abelian p-group.

Let G ≡ {α | α is an L-weight on U (L)}. Alternatively, G consists of all α appearing in the decom-
position

⊕
α U (L)α = Sz(U (L)). Clearly G is an elementary abelian p-group with respect to addition.

Also, since Sz(U (L)) is a finitely generated Z(U (L))-module, then G is a finite group as well. We next
consider the following subgroups of G .

Let H ≡ spanZ/pZ{α | ∃ a non-central prime element a ∈ U (L)α with (qSz(U (L)))∗∗ = (a) where
q = (a) ∩ Z(U (L))}.

Set K ≡ spanZ/pZ{α | ∃ a non-central prime element a ∈ U (L)α with q = (ap) where q =
(a) ∩ Z(U (L))}.

We now define ϕ : Cl(Z(U (L))) −→ G as follows. Let q be a reflexive ideal in Z(U (L)), then
(qU (L))∗∗ is a reflexive ideal in U (L). Since L is solvable we have by Proposition 2.4 that (qU (L))∗∗ =
aU (L). Clearly a is a weight vector that is a ∈ U (L)α for some α. We set

ϕ
([q]) = α. (8)

The next lemma is very similar to Lemma 5.3 and its proof is therefore omitted.
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Lemma 6.1. Let q be a reflexive ideal in Z(U (L)). Then

(
qU (L)

)∗∗ ∩ Z
(
U (L)

) = q.

Proposition 6.2. Let L be a finite dimensional solvable Lie algebra over a field F with char F = p > 0. Then

ϕ : Cl
(

Z
(
U (L)

)) −→ G ≡ {
α

∣∣ α is a weight on U (L)
}
,

is an injective homomorphism. Moreover if F is algebraically closed and p � 3, then Im(ϕ) = H.

Proof. We firstly need to show that ϕ is a well-defined map. If [τ ] = [τ1] in Cl(Z(U (L))) with τ , τ1
reflexive ideals, then cτ = c1τ1 for some c, c1 ∈ Z(U (L)) implying that ca = c1a1 f with f ∈ F and
therefore α(x)ca = [x, ca] = [x, c1a1 f ] = α1(x)c1a1 f , that is α(x) = α1(x) for each x ∈ L. Next, let τ ,σ
be two reflexive ideals in Z(U (L)). Then (τ U (L))∗∗ = aU (L), a ∈ U (L)α and (σ U (L))∗∗ = bU (L), with
b ∈ U (L)β . Now [τ ][σ ] = [(τσ )∗∗] in Cl(Z(U (L))) and therefore ϕ([τ ][σ ]) = ϕ([(τσ )∗∗]). Now by
Lemma 5.1 we have ((τσ )∗∗U (L))∗∗ = ((τσ )U (L))∗∗ = (τ U (L)σ U (L))∗∗ = ((τ U (L))∗∗(σ U (L))∗∗)∗∗ =
(aU (L)bU (L))∗∗ = (abU (L))∗∗ = abU (L). Now ab ∈ U (L)α+β and we conclude that ϕ([τ ][σ ]) =
α + β = ϕ(τ ) + ϕ(σ ), and ϕ is a homomorphism. Suppose now that ϕ([τ ]) = 0, that is (τ U (L))∗∗ =
aU (L) with a ∈ Z(U (L)), then by Lemma 6.1 we have τ = (τ U (L))∗∗ ∩ Z(U (L)) = aU (L) ∩ Z(U (L)) =
(a), implying that τ is principal and [τ ] = 0 in Cl(Z(U (L))). This shows that ϕ is injective. Finally
recall that Cl(Z(U (L))) is generated by all [q] where q is a non-principal height one prime ideal
in Z(U (L)). Then by Theorem 5.9 (qSz(U (L)))∗∗ = v and v = (a), with a ∈ U (L)α . Thus (qU (L))∗∗ =
(qSz(U (L))U (L))∗∗ = [(qSz(U (L)))∗∗U (L)]∗∗ = (aU (L))∗∗ = aU (L), showing that ϕ([q]) = α and α is by
definition a generator of H . �
Corollary 6.3. Let L be a finite dimensional solvable Lie algebra over a field F with char F = p > 0. Then
Cl(Z(U (L))) is a finite elementary abelian p-group.

Proof. Clearly G = {α | α is a weight on U (L)} is a finite elementary abelian p-group, and by the
Proposition 6.2, Cl(Z(U (L))) can be realized as a subgroup of G . �

Retaining the notations of the beginning of the section we have:

Lemma 6.4. H ∩ K = {0}.

Proof. Suppose by negation that 0 �= γ = ∑r
k=1 ikαk = ∑s

n=1 jnβn , 1 � ik, jn � p − 1, where αk is a
generator of H for 1 � k � r and βn is a generator of K for 1 � n � s. We choose 0 �= ak ∈ U (L)αk

and 0 �= bn ∈ U (L)βn , prime elements, for 1 � n � s, 1 � k � r. Therefore Π r
1aik

k and Π s
1b jn

n are both in
U (L)γ . Consequently, by Lemma 2.2 there exist z1, z2 ∈ Z(U (L)) satisfying

z1
(
Π r

1aik
k

) = z2
(
Π s

1b jn
n

)
. (9)

Suppose z1 ∈ (b1), then z1 ∈ (b1) ∩ Z(U (L)) = (bp
1 ) and so z1 = c1bp

1 with c1 in Z(U (L)). Therefore

c1b1(Π
r
1aik

k ) = z2(Π
s
2b jn

n ). Now the prime ideals (a1), . . . , (ak), (b1), . . . , (bs) are mutually different im-
plying that z2 ∈ (b1) and therefore z2 = c2bp

1 with c2 ∈ Z(U (L)). We may therefore cancel bp
1 in both

sides of (9), thus replacing zi by ci , i = 1,2. This process terminates after finitely many steps, so we
may assume to start with that z1 /∈ (b1). Following the same reasoning we may also assume that
z1 /∈ (b2), . . . , (bs). Therefore (9) shows for some n and k, that ak ∈ (bn), equivalently (ak) = (bn). This
is clearly a contradiction. �
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Theorem 6.5. G = H ⊕ K .

Proof. Let α ∈ G and 0 �= a ∈ U (L)α . By Proposition 2.4, aU (L) = P e1
1 · · · P ek

k where Pi is a height
one prime ideal in U (L), Pi = ai U (L) and consequently ai ∈ U (L)αi , for i = 1, . . . ,k. Therefore
a = ae1

1 · · ·aek
k δ′ , with δ′ in F . Consequently α = e1α1 + · · · + ekαk . We shall show that if αi �= 0

then either αi ∈ H or αi ∈ K . This will prove the theorem. Let pi = Pi ∩ Z(U (L)) and vi be the
unique height one prime ideal in Sz(U (L)) with vi ∩ Z(U (L)) = pi . We already saw in Section 5
that either (piSz(U (L)))∗∗ = vi or (piSz(U (L)))∗∗ = v(p)

i . Now pi ⊆ P ∩ Sz(U (L)) = aiSz(U (L)) implies
that (piSz(U (L)))∗∗ ⊆ aiSz(U (L)) ⊆ vi for each i = 1, . . . ,k. If (piSz(U (L)))∗∗ = vi then aiSz(U (L)) =
vi and consequently αi is a generator of H . So we may assume that (piSz(U (L)))∗∗ = v(p)

i . If
aiSz(U (L)) = vi then by its very definition, αi is a generator of K . So we may assume that
(piSz(U (L)))∗∗ ⊆ aiSz(U (L)) ⊂ vi . Consequently (piSz(U (L)))pi ⊆ aiSz(U (L))pi ⊂ vipi

. Let bi ∈ vi sat-

isfying biSz(U (L))pi = vipi
. Then aiSz(U (L))pi = b ji

i Sz(U (L))pi with 1 < ji � p. Suppose that ji < p.

Therefore for each x ∈ L we have ji[x,bi]b ji−1
i ∈ b ji

i Sz(U (L))pi ; equivalently [x,bi] ∈ biSz(U (L))pi =
vipi

. Therefore vipi
is a dL-stable and consequently vi is a dL-stable. This shows by Lemma 5.4 that

vi = diSz(U (L)) with di ∈ U (L)βi . Now vi = (di) being a dL-stable and v(p)

i = (piSz(U (L)))∗∗ im-

ply that βi ∈ K . Also aiSz(U (L))pi = d ji
i Sz(U (L))pi implies that aiSz(U (L)) = v( ji )

i = d ji
i Sz(U (L)) and

therefore ai = d ji
i δi , δi ∈ F . Hence αi = jiβi implying that αi ∈ K . Finally suppose that ji = p, then

aiSz(U (L))pi = bp
i Sz(U (L))pi = v p

i Sz(U (L))pi and since vi is the unique height one prime above ai we

get that aiSz(U (L)) = (aiSz(U (L)))∗∗ = v(p)

i . If vi = (di) is principal then v(p)

i = v p
i = dp

i Sz(U (L)) im-
plying that ai = dp

i εi , with εi in F . Therefore ai ∈ Z(U (L)), equivalently αi = 0. If vi is not principal

then by Theorem D, v(p)

i = diSz(U (L)) where pi = (di). Again ai = diδi , with δi in F implying that
ai ∈ Z(U (L)) and therefore αi = 0. �

As a consequence of Proposition 6.2, Lemma 6.4 and Theorem 6.5 we have now arrived at the
main result of the present section.

Theorem 6.6. Let L be a solvable F -finite dimensional Lie algebra with F an algebraically closed field and
char F = p � 3. Then the following is an exact sequence:

0 −→ Cl
(

Z
(
U (L)

)) ϕ−→ {
α

∣∣ α is a weight on U (L)
} ψ−→ K −→ 0,

where ψ is the projection in Theorem 6.5, on the second component.

Remark 6.7. (1) The analogy to the exact sequence for polynomial invariants of finite groups is evident
(e.g. [4, Section 3.9]). Indeed in this case, the middle term is replaced by Hom(G, F ∗), the set of all
group homomorphisms from G to F ∗ ≡ F \ {0} and K similarly, is replaced by the subgroup generated
by all group homomorphisms corresponding to ramified height one primes.

(2) This analogy however, has its limitations. In fact, in the case of polynomials invariants of
a finite group Γ , the subgroup K can be characterized using the subgroup of Γ which is gener-
ated by pseudo-reflections. A particular nice consequence of this is the following result of Nakajima
[24, Proposition 3.6]: “Suppose Γ is solvable, (|Γ |, F ) = 1 and F is algebraically closed. Then S(V )Γ is
factorial iff it is a polynomial ring”. Nothing of this nature holds for the center of the enveloping alge-
bra, as the following example shows: Let L = F x + F y + F z + Ft , subject to the Lie products [x, y] = y,
[x, z] = z, [y, z] = t and t central. Then one checks that Z(U (L)) = Sz(U (L)) and by Proposition 2.3
it is a factorial domain. It can be shown by direct computations, that the hypersurface Z(U (L)) has
singularities and in particular it is not a polynomial ring.

(3) Still, see Theorem 8.2 for a positive result in the polynomial invariant case.

The next result shows that the canonical generators of K are Z/pZ-linearly independent. This will
be used in the next section. Observe that here L need not be solvable.
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Lemma 6.8. Let {λ1, . . . , λn} be the set of all different weights corresponding to prime weight elements whose
p-powers are prime element in Z(U (L)). Then {λ1, . . . , λn} is Z/pZ-independent. Equivalently {λ1, . . . , λn}
is a Z/pZ-basis of K .

Proof. Let bi be a prime element in Sz(U (L)) corresponding to λi , i = 1, . . . ,n. Suppose that m1λ1 +· · ·
+ mnλn = 0, with m j � p − 1 for j = 1, . . . ,n. Assume by negation that mi � 1, for 1 � i � r � n
and mi = 0, for i > r. Therefore z ≡ bm1

1 · · ·bmr
r ∈ Z(U (L)). Now z ∈ (b1) ∩ Z(U (L)) = (bp

1 ) implies

that z = bpk1
1 c1 with c1 ∈ Z(U (L)) and c1 /∈ (b1). Then bpk1−m1

1 c1 = bm2
2 · · ·bmr

r if r > 1, implying that

b j ∈ (b1) or (b j) = (b1), for some j � 2, a contradiction. If r = 1 then bpk1−m1
1 c1 = 1, implies that

1 ∈ (b1), another absurd. �
7. When is Z(U (L)) factorial

Throughout this chapter L will denote a finite dimensional solvable Lie algebra over a field F with
char F = p > 0. We shall prove here several theorems, providing necessary and sufficient conditions
for Z(U (L)) to be factorial. These theorems are grouped together in the introduction, under the header
of “Theorem G”. The main results here are as follows.

Theorem 7.1. Let L be a solvable finite dimensional Lie algebra over a field of prime characteristic. Then the
following are equivalent:

(i) Z(U (L)) is a U.F.D.,
(ii) Sz(U (L)) is a finitely generated free (or a projective) Z(U (L))-module.

The proof makes use of a result, analogous to a theorem of Kang [19], asserting that
Pic(Z(U (L))) = 0. A theorem of a different nature is the following:

Theorem 7.2. Let L be a solvable F -finite dimensional Lie algebra and F is algebraically closed with char F =
p � 3. Then the following are equivalent:

(i) Z(U (L)) is a U.F.D.,
(ii) Sz(U (L)) has exactly logp[Q (Sz(U (L))) : Q (Z(U (L)))] non-central different prime weight elements.

The theorem makes use of Theorem B, thus explaining the algebraically closed assumption on the
field F . It is applied in Section 9, showing for the relevant example (with p = 5) that Z(U (L)) is not
a U.F.D. Another result concerning factoriality is the following:

Theorem 7.3. Let L be as in Theorem 7.2. Then the following are equivalent:

(i) Z(U (L)) is a factorial,
(ii) the extension Sz(U (L))/Z(U (L)) is a global (relative) complete intersection (see e.g. [20, p. 317]),

(iii) the extension Sz(U (L))/Z(U (L)) has a finite p-basis (see e.g. [20, p. 76].)

The next Lemma appears in [21, Corollary 3]. The proof however uses a result of [23] and therefore
seems to depend on the char F = 0 assumption. Our proof in contrast is PI dependent and therefore
relies on the char F = p > 0 assumption. Observe that there is no need for the solvability assumption,
in the next 3 results.

Lemma 7.4. U (L) ∩ Q (Sz(U (L))) = Sz(U (L)).

Proof. Using the fact that U (L) is a PI ring, it is easy to verify that Q (Sz(U (L))) = Sz(Q (U (L))) =
Sz(U (L))Z(U (L))\{0} , where the last term stands for the localization of Sz(U (L)) with respect to
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Z(U (L)) \ {0}. It is also a consequence of PI theory that U (L) ∩ Z(Q (U (L))) = Z(U (L)). Therefore
each r ∈ U (L) ∩ Q (Sz(U (L))) can be written in the form r = q1 + · · · + qk , where qi ∈ Q (U (L))λi ,
for i = 1, . . . ,k, and by grouping together elements of equal weights we may assume that λi �= λ j
if i �= j. Observe that if qi ∈ U (L) for i = 1, . . . ,k then qi ∈ U (L) ∩ Q (U (L))λi = U (L)λi and thus
r = q1 + · · · + qk ∈ Sz(U (L)). We choose by negation r ∈ U (L) ∩ Q (Sz(U (L))) having the minimal num-
ber of qi ’s which are not in U (L). By moving the qi ’s which are in U (L) to the left hand side we may
assume that qi /∈ U (L), for each i = 1, . . . ,k. If k = 1 then r ∈ U (L) ∩ Q (U (L))λ1 = U (L)λ1 and we are
done. So we may assume that k > 1. Let x ∈ L be chosen so that λ1(x) �= λ2(x). Then

[x, r] − λ1(x)r = (
λ2(x) − λ1(x)

)
q2 + · · · + (

λk(x) − λ1(x)
)
qk. (10)

Thus by the minimal choice of r, q2 ∈ U (L), r − q2 ∈ U (L) ∩ Q (Sz(U (L))) and by the minimality
of r,q1,q3, . . . ,qk are all in U (L). �
Lemma 7.5. Sz(U (L)) = ⋂

q Sz(U (L))q , where the intersection runs on all height one prime ideals q in
Z(U (L)).

Proof. U (L) being a maximal order satisfies the intersection property that is U (L) = ⋂
q U (L)q ,

where q runs on all height one prime ideals q in Z(U (L)). Consequently
⋂

q Sz(U (L))q ⊆ U (L) ∩
Q (Sz(U (L))) = Sz(U (L)), where the last equality is due to Lemma 7.4. The reverse inclusion is ob-
vious. �
Remark 7.6. The previous result is an immediate consequence of the normality of Sz(U (L)), which is
granted by Theorem B, in case F algebraically closed.

Corollary 7.7. Let λ be an L-weight on U (L). Then U (L)λ is a reflexive rank one Z(U (L))-module.

Proof. That rankZ(U (L)) U (L)λ = 1 follows from Lemma 2.2. We may therefore consider U (L)λ as an
ideal of Z(U (L)). Also U (L)λ is a Z(U (L))-direct summand of Sz(U (L)). Therefore by Lemma 7.5
U (L)λ = ⋂

q(U (L)λ)q , where q runs on all height one prime ideals of Z(U (L)). This implies by
Lemma 5.1 that U (L)λ is a reflexive Z(U (L))-module. �

The following result provides an enveloping algebra analog of a theorem of Kang [19]. The
original theorem deals with a finite group G acting on a polynomial ring S(V ) and states that
Pic(S(V )G) = {0}. The result will be used in the proof of Theorem 7.1. Our proof follows Kang’s argu-
ment as presented in [4, Theorem 3.6.1].

Proposition 7.8. Let L be a finite dimensional solvable Lie algebra over a field F with char F = p > 0. Then
Pic(Z(U (L))) = {0}. Equivalently each projective ideal I in Z(U (L)) is principal.

Proof. Recall that I being projective amounts in this case to I∗ I = I I∗ = Z(U (L)), where I∗ = {y ∈
Q (Z(U (L))) | yI ⊆ Z(U (L))}. Clearly IU (L) is a two-sided ideal in U (L) and I∗U (L) = U (L)I∗ satis-
fies (I∗U (L))(IU (L)) = (IU (L))(I∗U (L)) = U (L), implying that IU (L) is an invertible ideal in U (L). In
particular IU (L) is projective and obviously reflexive. Consequently by Proposition 2.4, IU (L) = aU (L)

for some a ∈ U (L). Moreover since IU (L) is a dL-stale we conclude that a ∈ U (L)λ , for some weight λ.
Let I = (a1, . . . ,as) then I∗ I = Z(U (L)) grants the existence of b1, . . . ,bs ∈ I∗ satisfying

∑s
i=1 aibi = 1.

Now ai ∈ IU (L) = aU (L) implies that ci ≡ (1/a)ai ∈ U (L) for each i = 1, . . . , s. Similarly di = bia ∈
I∗ IU (L) = U (L). Consequently

∑s
i=1 cidi = 1, where ci,di ∈ U (L) for each i = 1, . . . , s. Now LU (L) is

a two-sided ideal in U (L), satisfying by [11, 2.12, p. 66], U (L) = F ⊕ LU (L). Therefore by the previ-
ous equality we may assume that c1 /∈ LU (L), that is c1 = f + g , with 0 �= f ∈ F , g ∈ LU (L). Since
[y, (1/a)] = −λ(y)(1/a) for each y ∈ L, we deduce, using the centrality of a1, that (1/a)a1 = c1 ∈
U (L)−λ . However c1 = f + g , f �= 0, yields: −λ(y)( f + g) = −λ(y)c1 = [y, c1] = [y, f ]+[y, g] = [y, g].
Thus −λ(y) f = λ(y)g + [y, g] is in LU (L) for each y ∈ L, an obvious contradiction unless λ(y) = 0,
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for each y ∈ L. Namely a ∈ Z(U (L)). Therefore I = IU (L) ∩ Z(U (L)) = aU (L) ∩ Z(U (L)) = aZ(U (L)),
where the first equality is due to Lemma 6.1. �
Proof of Theorem 7.1. Suppose firstly that Z(U (L)) is a U.F.D. This implies by Corollary 7.7 that, for
each weight λ, U (L)λ is a free rank one Z(U (L))-module. Consequently Sz(U (L)) is a finitely generated
free Z(U (L))-module. Conversely assume that Sz(U (L)) is a finitely generated projective Z(U (L))-
module. Then U (L)λ is a rank one projective Z(U (L))-module. Thus by Proposition 7.8 U (L)λ is a
free Z(U (L))-module, that is U (L)λ = fλ Z(U (L)). Let q be a height one prime ideal in Z(U (L)), then
q = P ∩ Z(U (L)) for some height one prime ideal in U (L) and since P∗∗ = P we get that (qU (L))∗∗ ⊆ P
and in particular it is a proper reflexive two-sided ideal in U (L). Thus by Proposition 2.4, (qU (L))∗∗ =
dU (L), for some d ∈ U (L). Moreover since q ⊆ Z(U (L)) we get that (q(U (L))∗∗ is an a dL-stable ideal.
Consequently by [5, Lemma 5] d ∈ U (L)μ , for some μ. We next observe that dU (L) ∩ Sz(U (L)) =
dSz(U (L)). Indeed if dy ∈ Sz(U (L)) with y ∈ U (L), then y ∈ Q (Sz(U (L))) ∩ U (L) = Sz(U (L)), where
the last equality is due to Lemma 7.4. This equality could be also deduced from Lemma 5.3 if F
is in addition algebraically closed. Thus q = (qU (L))∗∗ ∩ Z(U (L)) = (dU (L) ∩ Sz(U (L))) ∩ Z(U (L)) =
dSz(U (L)) ∩ Z(U (L)) = dU (L)−μ . Therefore q = dU (L)−μ = df−μ Z(U (L)) and q = (df−μ). �
Remark 7.9. The analogy to Nakajima’s polynomial invariants of finite group result [24, Theorem 2.11]
is evident. We believe that the theorem is valid without the solvability assumption on L. In fact this
is the case if L is acting as derivations on S(V ), as can be seen in Theorem 8.1.

The next two results are needed in the proof of Theorem 7.2. The first one is a consequence of
Nagata’s theorem [16, Section 7].

Lemma 7.10. Let A be a Krull domain where all but possibly finitely many height one prime ideals, are princi-
pal. Then A is factorial.

Proof. Let {p1, . . . , pk} be the set of height one primes which may not be principal. Set S =
A \ p1 ∪ · · · ∪ pk . Then by [16, Corollary 7.2] we have the following exact sequence

0 −→ K −→ Cl(A) −→ Cl(A S) −→ 0,

where K is generated by all height one primes q in A satisfying q ∩ S �= ∅. But q ∩ S �= ∅ means
that q �= pi , for i = 1, . . . ,k, that is q is principal. Hence K = {0} and Cl(A) ∼= Cl(A S). Now A S is
a Krull domain with K.dim A S =1, therefore A S is a Dedekind domain with finitely many maximal
ideals. Hence A S is a principal ideal ring [22, Theorem 12.2] and in particular A S is factorial. That is
Cl(A) ∼= Cl(A S ) = {0}. �
Lemma 7.11. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Let a ∈
Sz(U (L)) \ Z(U (L)) be a prime element. Then ap is an irreducible element in Z(U (L)).

Proof. Clearly ap ∈ Z(U (L)). Suppose by negation that ap = uv , where u, v ∈ Z(U (L)) are non-
invertible elements. By considering u, v as elements in Sz(U (L)) and using the primeness of a we
have that u = aic, v = a jd, where c,d are not in (a) and 0 � i, j � p. Hence ap = ai+ jcd. If i + j > p
then a is invertible, a contradiction. If i + j < p then c or d are in (a) which is another contradic-
tion. Thus i + j = p. If i = 0 this leads to ap = uapd and u is invertible, a contradiction. A similar
contradiction is achieved if j = p. So we may assume that 1 � i, j � p − 1. Now ap = apcd im-
plies that c and d are invertible and consequently c,d ∈ F . Let x ∈ L. Then u ∈ Z(U (L)) implies that
0 = [x, u] = [x,aic] = i[x,a]ai−1c. Consequently [x,a] = 0 for each x ∈ L and a ∈ Z(U (L)), a contradic-
tion. �
Proof of Theorem 7.2. Suppose firstly that Z(U (L)) is factorial. Recall that by Lemma 6.8
[Q (Sz(U (L))) : Q (Z(U (L)))] = pn , where n = the number of different weights corresponding to
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prime weight elements in Sz(U (L)) whose p-powers are prime elements in Z(U (L)). Assume by
negation that Sz(U (L)) \ Z(U (L)) has more then logp[Q (Sz(U (L))) : Q (Z(U (L)))] = n, prime weight
elements. Then there exists a prime weight element b ∈ Sz(U (L)) \ Z(U (L)) such that bp is not
a prime element in Z(U (L)), but this is impossible since by Lemma 7.11 bp is irreducible and
Z(U (L)) is factorial. This proves the implication (i) ⇒ (ii). Conversely suppose that there are ex-
actly logp[Q (Sz(U (L))) : Q (Z(U (L)))] different non-central prime elements, which are also weight
elements. Let q be a height one prime ideal in Z(U (L)) which is not principal, and let v be the unique
height one prime ideal in Sz(U (L)) with v ∩ Z(U (L)) = q. By Theorem 5.9 we have (qSz(U (L)))∗∗ = v
and v is principal, say v = (a). Now q being in Z(U (L)) implies that (qSz(U (L)))∗∗ is a dL-stable,
and therefore a is a weight element which is also prime. Therefore, by the uniqueness of the cor-
respondence between the q’s and the v ’s, there are at most logp[Q (Sz(U (L))) : Q (Z(U (L)))] height
one primes q in Z(U (L)) which are not principal. The result is therefore established by applying
Lemma 7.10. �

We shall now prove the implication (i) ⇒ (iii) of Theorem 7.3.

Proposition 7.12. Let L be a finite dimensional solvable Lie algebra over an algebraically closed field F with
char F = p � 3. Suppose that Z(U (L)) is a U.F.D. Then Sz(U (L)) has a finite p-basis over Z(U (L)).

Proof. Retaining the notations of Lemma 6.8 and let α be a non-zero weight. Then by Theorem 6.6
the U.F.D. property of Z(U (L)) and H = {0} we have α = m1λ1 + · · · + mnλn , with m j � p − 1 for
j = 1, . . . ,n. We may assume that 1 � m j � p − 1 for 1 � j � r � n and m j = 0 for j > r. Therefore
bm1

1 · · ·bmr
r ∈ U (L)α . Now by Theorem 7.1 U (L)α = Z(U (L))xα . Let v be a height one prime in Sz(U (L))

which is minimal over xαSz(U (L)). Then bm1
1 · · ·bmr

r ∈ U (L)α ⊆ xαSz(U (L)) implies that b j ∈ v for some
j and consequently (b j) = v . Therefore we may assume after renumbering, that (b1) = v1, . . . , (bk) =
vk , k � r are all the height one prime ideals containing xαSz(U (L)). By the normality of Sz(U (L))

and the primary decomposition in Sz(U (L)) we have xαSz(U (L)) = v(e1)
1 ∩ · · · ∩ v(ek)

k = ve1
1 · · · vek

k =
be1

1 · · ·bek
k Sz(U (L)), where the second equality is due to Lemmas 5.1 and 5.2 once equality is verified

after localizing at each height one prime. Therefore xα = be1
1 · · ·bek

k δ, with δ ∈ F , since the only units
in U (L) are in F . Moreover bm1

1 · · ·bmr
r ∈ xαSz(U (L)) shows, with the aid of the last equality that

ei � mi � p − 1, for i = 1, . . . ,k. Also xα = be1
1 · · ·bek

k δ shows that α = e1λ1 + · · · + ekλk . This together
with α = m1λ1 +· · ·+mrλr and the Z/pZ independence of {λ1, . . . , λn} yield k = r and mi = ei , that is
xα = bm1

1 · · ·bmr
r δ. Conversely consider b ≡ bm1

1 · · ·bmn
n with mi � p −1, for i = 1, . . . ,n. Then b ∈ U (L)α ,

where α ≡ m1λ1 + · · · + mnλn and the previous argument shows that U (L)α = Z(U (L))b. This shows
that {bm1

1 · · ·bmn
n | 0 � mi � p − 1} is a p-basis of Sz(U (L)) over Z(U (L)). �

Remark 7.13. The reverse implication (iii) ⇒ (i) of Theorem 7.3, follows from Theorem 7.1, since a
p-basis is also a free basis of Sz(U (L)) over Z(U (L)).

Lemma 7.14. Let L be as in Proposition 7.12. Let y1, . . . , yn be variables and b1, . . . ,bn the prime elements
corresponding to λ1, . . . , λn as in Lemma 6.8. Then

Z
(
U (L)

)[y1, . . . , yk]/
〈
yp

1 − bp
1 , . . . , yp

k − bp
k

〉 ∼= Z
(
U (L)

)[b1, . . . ,bk] (11)

for each 1 � k � n.

Proof. Let ψ be defined on the l.h.s. of (11) by ψ(z) = z for z ∈ Z(U (L)) and ψ(yi) = bi , for each
class yi , i = 1, . . . ,k. Clearly ψ extends to an onto ring homomorphism. Recall that {yi

m1 · · · yk
mk |

0 � mi � p − 1, i = 1, . . . ,k} is a generating set of the l.h.s. of (11) over Z(U (L)). Any non-trivial
element in kerψ will give a non-trivial dependence in {bm1

1 · · ·bmk
k | 0 � mi � p − 1} over Z(U (L)), in

contradiction to their p-basis property (by Proposition 7.12) �
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Proposition 7.15. Let L be an F -finite dimensional solvable Lie algebra over an algebraically closed field F
with char F = p � 3. Suppose Z(U (L)) is a U.F.D. Then

Sz
(
U (L)

) ∼= Z
(
U (L)

)[y1, . . . , yn]/
〈
yp

1 − bp
1 , . . . , yp

n − bp
n
〉
,

and consequently Sz(U (L)) is a global (relative) complete intersection over Z(U (L)).

Proof. Let y1, . . . , yn be variables and b1, . . . ,bn the prime weight elements which correspond to
λ1, . . . , λn , as in Lemma 6.8. Then the isomorphism follows from Lemma 7.14 and Proposition 7.12. To
show that yp

1 −bp
1 , . . . , yp

n −bp
n is a regular sequence, one observes that {yp

1 − bp
1 , . . . , yp

k − bp
k } gener-

ates by Lemma 7.14 a prime ideal in Z(U (L))[y1, . . . , yk]. Consequently 〈yp
1 − bp

1 , . . . , yp
k − bp

k 〉, its ex-
tension to Z(U (L))[y1, . . . , yn], is a prime ideal in Z(U (L))[y1, . . . , yn], implying that
yp

1 − bp
1 , . . . , yp

k − bp
k is a regular sequence in Z(U (L))[y1, . . . , yn] for each k � n. �

Proof of Theorem 7.3. The equivalence of (i) and (iii) follows from Proposition 7.12 and Remark 7.13.
Now the implication (i) ⇒ (ii), follows from Proposition 7.15. For the opposite direction observe that
Sz(U (L)) being a global (relative) complete intersection over Z(U (L)) implies that Sz(U (L)) is flat
over Z(U (L)). So being finitely generated as a Z(U (L))-module makes it a projective Z(U (L))-module
[22, p. 53, Corollary]. Therefore by Theorem 7.1, Z(U (L)) is a U.F.D. �

The next result is an immediate consequence.

Corollary 7.16. Let L be an F -finite dimensional solvable Lie algebra over an algebraically closed field F , with
char F = p � 3. Suppose Z(U (L)) is a polynomial ring. Then Sz(U (L)) is a “standard” complete intersection.

Proof. Clearly Z(U (L))[y1, . . . , yn] is a polynomial ring and yp
1 −bp

1 , . . . , yp
n −bp

n is a regular sequence
in it, one now applies Proposition 7.15 �
8. Polynomial invariants of Lie algebras

In this section L will always be a finite dimensional Lie algebra over a field F with char F = p > 0.
Let V be a finite dimensional L-module. We consider here S(V )L (respectively Sz(S(V ))) the invariant
(respectively semi-invariant) ring. As a rule all the previous theorems for Z(U (L)) and Sz(U (L)) holds
for S(V )L and Sz(S(V )) with no further restriction on L or F . The proofs are either similar or even
easier.

Starting with the analog of Theorem 7.1 we have in the present set up:

Theorem 8.1. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Let V be a finite
dimensional L-module. Then the following are equivalent:

(i) S(V )L is a factorial domain,
(ii) Sz(S(V )) is a finitely generated free (projective) S(V )L -module.

The proof is essentially the same as in Theorem 7.1 where U (L) is replaced by S(V ) thus, avoiding
the need for the solvability of L since S(V ) is factorial and therefore (q(S(V ))∗∗ is principal. The
analog of Kang’s theorem in this setting is valid as well, with exactly the same proof.

The following result on torus invariants is in the spirit of [24, Proposition 3.6].

Theorem 8.2. Let V be a finite dimensional vector space over an algebraically closed field F with char F =
p > 0. Let L ⊆ glF (V ) be a commutative subalgebra consisting of semi-simple elements. Then the following
are equivalent:

(i) S(V )L is a factorial domain,
(ii) S(V )L is a polynomial ring.
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Proof. The semi-simplicity of the elements in L and the algebraic closed property of F imply that
Sz(S(V )) = S(V ). Therefore if S(V )L is factorial, then by Theorem 8.1, S(V ) is a free S(V )L -module.
Now S(V )L is a graded subalgebra of S(V ), the grading being induced by the one on S(V ), and by
[4, Corollary 6.2.3] S(V )L is therefore a polynomial ring. The implication (ii) ⇒ (i) is standard. �
Remark 8.3. See [1] for other results on the ring of invariants of a single derivation in the prime
characteristic case.

To get analogs of the theorems appearing in Section 7 one needs the following analog of Theo-
rem D. The proof is markedly easier and no need is required of a version of Theorem A.

Theorem 8.4. Let L, V , S(V ) and S(V )L be as before. Let q be a height one prime ideal in S(V )L and v the
unique height one prime ideal in Sz(S(V )) satisfying v ∩ S(V )L = q. Then at least one of the following holds:

(1) v is principal,
(2) q = (d) and v(p) = dSz(V ).

Proof. Let w be the unique height one prime ideal in S(V ) satisfying w ∩ Sz(S(V )) = v . Suppose
by negation that v is not principal. Since bp ∈ S(V )L for every b ∈ S(V ) then the ramification de-
gree e of the extension S(V )q/S(V )L

q is either 1 or p. That is either qS(V )q = wq or qS(V )q = w p
q .

Consequently either (qS(V ))∗∗ = w or (qS(V ))∗∗ = w p . Now S(V ) is a U.F.D. and so w = (b), im-
plying that w(p) = w p . If (qS(V ))∗∗ = w = bS(V ) then since qS(V ) is a dL-stable we get that
bS(V ) is a dL-stable. This shows that b ∈ S(V )λ for some λ and so b ∈ w ∩ S(V ) = v . Consequently
v = bS(V ) ∩ Sz(S(V )) = bSz(V ) in contradiction to our assumption. Therefore we may assume that
(qS(V ))∗∗ = w(p) = w p = bp S(V ). Now bp ∈ S(V )L and intersecting both ends of the last equality
with S(V )L , yields: q = (qS(V ))∗∗ ∩ S(V )L = bp S(V ) ∩ S(V )L = bp S(V )L = (bp). Finally let e1 be the
ramification degree of the extension S(V )q/Sz(S(V ))q , and e2 the ramification degree of the exten-
sion Sz(S(V ))q/S(V )L

q . Since p = e1e2 then either e1 = p or e2 = p. If e1 = p then w(p) = (v S(V ))∗∗
and therefore bp S(V ) = (v S(V ))∗∗ so by contracting with Sz(S(V )) we get bpSz(S(V )) = v , so v is
principal, which was excluded. Therefore e2 = p, that is v p

q = qSz(S(V ))q = bpSz(S(V ))q and therefore
since v is the unique prime ideal above q = (bp), v(p) = bpSz(S(V )), as needed. �
Theorem 8.5. Let L be a finite dimensional Lie algebra over a field F with char F = p > 0. Then the analog of
Theorems 7.2, 7.3, 6.6 holds for S(V )L (replacing Z(U (L))) and Sz(S(V )) (instead of Sz(U (L))).

Proof. The proofs are essentially the same, as in the cited theorems, making use of Theorem 8.4 and
replacing U (L) by S(V ) throughout. We have no need here for the restriction p � 3 since bp ∈ S(V )L

for every b ∈ S(V ). Moreover there is no need to assume that F is algebraically closed, since no
version of Theorem A is used. �

In fact the following more practical version of Theorem 7.2 is true, where Sz(S(V )) is replaced
by S(V ).

Theorem 8.6. Let L, V and S(V ) be as in Theorem 8.5. Then the following are equivalent:

(i) S(V )L is a U.F.D.,
(ii) S(V ) \ S(V )L has exactly logp[Q (Sz(S(V ))) : Q (S(V )L)] different prime weight elements.

Proof. We only need to show that a is a prime weight element in Sz(S(V )) if and only if it is a prime
weight element in S(V ). Clearly if it is a prime weight element in S(V ), then being in Sz(S(V )) it
is also a prime (weight) element in Sz(S(V )). Conversely let a ∈ Sz(S(V )) \ S(V )L be a prime weight
element and let w be the unique height one prime ideal in S(V ) satisfying w ∩ Sz(S(V )) = (a). So by
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the previous ramification reasonings either aS(V ) = w(p) or aS(V ) = w . In the second case a is also
a prime element in S(V ) and we are done. In the first case, let w = (b) then aS(V ) = w(p) = w p =
bp S(V ), showing that a = bpδ, for some δ in F . This implies that a ∈ S(V )L , a contradiction. �
9. Jacobson’s example revisited

We shall exhibit here a family of examples, showing that for a finite dimensional solvable Lie
algebra over an algebraically closed field of prime characteristic, Sz(U (L)) and Z(U (L)) need not be a
U.F.D. Thus the assumption that [L, L] is nilpotent, in Theorem C, is really essential.

Let F x + F y = S be the solvable two-dimensional Lie algebra over an algebraically closed field F of
prime characteristic p, subject to the relation [x, y] = x. A representation for this Lie algebra is given
by the p × p matrices

x ≡

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
· · · · · · · ·
0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ , y ≡

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 2 0 · · · 0
· · · · · · · ·
0 0 0 0 · · · 0
0 0 0 0 · · · p − 1

⎞
⎟⎟⎟⎟⎟⎠

acting faithfully (and irreducibly) on the right, on V ≡ F p , the p-dimensional F -vector space with
respect to the standard basis ei = (0, . . . ,1, . . . ,0), i = 1, . . . , p.

This example is used in [17, p. 53] to show that S does not satisfy Lie’s theorem and by considering
the semi-direct product L = V ⊕ S one observes (e.g. [17]) that [L, L] is not nilpotent.

The main results of the present section are as follows:

Example 9.1. Let L be as above. Then

(1) Sz(U (L)) is not factorial, for p � 3,
(2) Z(U (L)) is not factorial for p = 5,
(3) Z(U (L)) is a polynomial ring if p = 3.

For p = 2 we “double” the previous example to get:

Example 9.2. Let L0 = S ⊕ (V ⊕ V ), where V , S are as above. Then Sz(U (L0)) is not factorial for p � 2.

The proof of Example 9.1 is achieved via a series of steps.
Let H = F x + V . Clearly V is a codimension one ideal in H and H is a codimension one ideal in L.

One easily verifies that m(t) = t p2 − t p is the minimal p-polynomial that a dx satisfies on V , H and L.

Claim 9.3. Z(U (H)) = U (V )a dx[xp2 − xp] and Sz(U (H)) ⊆ U (V )[xp2 − xp].

Proof. The above shows that m(x) = xp2 − xp is central in U (L) and therefore B = U (V ){xp2 − xp} =
U (V )[xp2 − xp]. This combined with [x, U (V )] �= 0 implies by Theorem 3.9 that Z(U (H)) =
U (V )a dx[xp2 − xp] and Sz(U (H)) ⊆ U (V )[xp2 − xp]. �
Claim 9.4. Assuming p � 3, then [y, Z(U (H))] �= 0.

Proof. Let v ≡ e1e2 · · · ep ∈ U (V ). Then xp = I V implies (a dx)p(v) = 0. We also have a dx(v) �= 0. Let i
be the maximal integer such that w ≡ (a dx)i(v) �= 0. So 0 < i < p, and a dx(w) = 0, imply by Claim 9.3
that w ∈ Z(U (H)). Also [y, v] = (1 + 2 + · · · + (p − 1))v = 0 (this uses p � 3). Consequently [y, w] =
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[y, (a dx)i(v)] = [y, [x, [x, . . . [x, v]]]] = −i[x, [x, [. . . [x, v]]]] + [x, [x, [. . . [y, v]]]] = −i(a dx)i(v) = −iw .
Thus [y, Z(U (H))] �= 0. �
Claim 9.5. Z(U (L)) = U (V )a dx,a dy[yp − y, xp2 − xp] and Sz(U (L)) = U (V )a dx[yp − y, xp2 − xp] =
Z(U (H))[yp − y].

Proof. From Claims (9.4) and (9.3) we get that Z(U (L)) = Z(U (H))a dy[yp − y] and Sz(U (L)) ⊆
Sz(U (H))[yp − y] ⊆ U (V )[xp2 − xp, yp − y]. This combined with Claim 9.3 yield Z(U (L)) =
U (V )a dx,a dy[xp2 − xp, yp − y]. Now let U (L)λ �= 0 be a weight space. Then [x, y] = x implies λ(x) = 0,
that is U (L)λ ⊆ U (L)a dx . Consequently Sz(U (L)) ⊆ U (V )a dx[xp2 − xp, yp − y]. To show the reverse in-
clusion one needs to show that U (V )a dx ⊆ Sz(U (L)). To show this observe that U (V )a dx is a dy stable.
Now a dy acts semi-simply on L (with weights 0,1, . . . , p − 1). Therefore U (V )a dx can be decomposed
into direct sum of a dy-weight spaces. On each one of these weight spaces, a dx acts trivially. Thus
each one of this summands is an a dL weight space, that is U (V )a dx ⊆ Sz(U (L)). �

As a consequence of the previous claim it suffices to show that Z(U (H)) is not a U.F.D., for p � 3.

Claim 9.6. The minimal polynomial of x (on V ) is t p − 1 = (t − 1)p .

Proof. If not then (x−1)p−1 = 0V . Consequently since (x−1)p−1 = I V +· · ·+xp−1 we get by applying
it on e1, the following contradiction 0 = 0V (e1) = e1 + e2 + · · · + ep . �
Corollary 9.7. The Jordan canonical form of x with respect to a new basis of V , up, up−1, . . . , u1 is given by
the p × p matrix

⎛
⎜⎜⎜⎝

1 1 0 · · · 0
0 1 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 1

⎞
⎟⎟⎟⎠ .

Now considering the right lower 3 × 3 block and using p � 3 we have in L:

[x, u1] = −u1, [x, u2] = −(u2 + u1), [x, u3] = −(u3 + u2).

Claim 9.8. Suppose p � 3. Then ζ ≡ −2u3up−1
1 + u2

2up−2
1 ∈ Z(U (H)).

Proof. [x, ζ ] = −2[x, u3]up−1
1 − 2u3[x, up−1

1 ] + [x, u2
2]up−2

1 + u2
2[x, up−2

1 ] =
2(u2 + u3)up−1

1 + 2(p − 1)u3up−1
1 − 2(u2 + u1)u2up−2

1 − (p − 2)u2
2up−2

1 = 0. The claim now easily
follows since ζ ∈ U (V ) clearly commutes with V . �
Claim 9.9. Suppose p � 3 and let P ≡ u1U (H), q = P ∩ Z(U (H)). Then q is a height one prime in Z(U (H))

which is not principal.

Proof. u1 being a normal element in H implies that P is a two-sided ideal in U (H). Moreover since
u1 is part of a basis of H , u1U (H) ≡ P is in fact a prime ideal in U (H) and by the principal ideal
theorem in U (H) it is of height one. Consequently by the “Going down” between U (H) and Z(U (H)),
height q = 1. Now up

1 is irreducible in U (V )a dx since its proper factors in U (V ), ui , for 1 < i < p,
are not in U (V )a dx . Consequently by Claim 9.3, up

1 is an irreducible element in Z(U (H)). Moreover,

up
1 ∈ q. Now if q is principal then q ≡ (up

1 ) and since ζ ∈ P ∩ Z(U (H)) = q we get that −2u3up−1
1 +
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u2
2up−2

1 = αup
1 , with α ∈ Z(U (H)). By canceling we get u2

2 = 2u3u1 +αu2
1 ∈ P = u1U (H). This is clearly

in contradiction with the P-B-W theorem. �
This settles item (1) of Example 9.1, by showing that Sz(U (L)) = Z(U (H)[yp − y] is not factorial.

We next need the following:

Lemma 9.10. [Q (S(V )) : Q (S(V )L)] = p3 .

Proof. Let h = F x+ F xp + F y, considered as a Lie subalgebra of U (L). Now (a dx)p2 = (a dx)p , (a dy)p =
a dy shows that a dh is a restricted Lie algebra with the [p]-operation being the regular associative
p-power. Moreover a dh can be considered as a Lie subalgebra of Der(S(V )) and consequently also
of Der(Q (S(V ))). Now one easily observes that Q (S(V )L) = Q (S(V ))L = Q (S(V ))a dh . Next by using
the Hochschild–Serre formula (e.g. [22, p. 197]) and Jacobson’s formulas for associative p-powers of
a sum of two elements, one gets that Q (S(V ))a dh is a p-Q (S(V ))-Lie subalgebra of Der(Q (S(V )))

(in the terminology if [18, p. 533]). Consequently by [18, Theorem 8.43], [Q (S(V )) : Q (S(V ))L] =
pdim Q (S(V )))a dh . The result will therefore follow once we show that dimQ (S(V )) Q (S(V ))a dh = 3. Now
clearly dimQ (S(V )) Q (S(V ))a dh � 3. Suppose that a ·a dx+b ·a dxp = a dy, with a,b ∈ Q (S(V )). Now by
applying to e1 · · · ep one gets that a dx(e1 · · · ep) = x(e1 · · · ep) �= 0, but a dxp(e1 · · · ep) = xp(e1 · · · ep) =
0 and a dy(e1 · · · ep) = (0 + 1 + · · · + p − 1)e1 · · · ep = 0. Consequently ax(e1 · · · ep) = 0 and therefore
a = 0. Thus ba dxp = a dy. Now since a dy(e1) = y(e1) = 0 and a dxp(e1) = xp(e1) = e1, we get be1 = 0
and so b = 0. The only other possible linear dependence between {a dx,a dxp,a dy} over Q (S(V )) is
of the form c · a dx = a dxp , c ∈ Q (S(V )). Now since a dx(ei) = ei+1, for i = 1, . . . , p − 1, a dx(ep) = e1,
and a dxp(ei) = ei for i = 1, . . . , p, this implies that cei+1 = ei , for i = 1, . . . , p − 1 and cep = e1.
Consequently (ce2) · · · (cep)(ce1) = e1 · · · ep and cpe1 · · · ep = e1 · · · ep , that is cp = 1 and c = 1. This
cannot hold since it implies that e2 = ce2 = e1, an obvious contradiction. �

We shall now proceed to prove the other parts of the example.
The next result verifies item (3) of Example 9.1.

Lemma 9.11. Z(U (L)) is a polynomial ring if p = 3.

Proof. For any p, U (L) is a free module of rank p3 over S(V )[xp2 − xp, yp − y]. Also by
Lemma 9.10 [Q (S(V )) : Q (S(V ))L] = p3, which implies since Z(U (L)) = S(V )L[xp2 − xp, yp − y] that
[Q (U (L)) : Q (Z(U (L)))] = p6. Now if p = 3 then clearly U (L) is free of rank 36 over the central sub-
ring F [e3

1, e3
2, e3

3, x9 − x3, y3 − y] ≡ C . Therefore for p = 3, we have Q (Z(U (L))) = Q (C). Now Z(U (L))

is a finite C-module, implying by the normality of C that C = Z(U (L)). �
We shall now consider item (2) of Example 9.1. To this end recall that if U (L)λ �= 0 for some non-

zero weight λ, then λ(u) = 0 for each u ∈ V and [x, y] = x implies λ(x) = 0. This shows that λ solely
depends on y and hence λ(y) ∈ {0,1,2, . . . , p − 1}. Thus Sz(U (L)) = ⊕p−1

i=0 U (L)iλ . Therefore

[
Q

(
Sz

(
U (L)

)) : Q
(

Z
(
U (L)

))] = p and logp

[
Q (Sz

(
U (L)

)
) : Q

(
Z
(
U (L)

))] = 1.

Consequently by Theorem 7.2 (or Theorem 8.6), in order to verify the non-factorial property
of Z(U (L)), for p = 5, we only need to exhibit two weight elements which generate different prime
ideals in Sz(U (L)). This is done next with the aid of a computer. Presumably a similar result holds
for p > 5.

Consider the element:

w = 4e4
2e4 + 4e1e2

2e3e4 + e2
1e2

3e4 + 3e2
1e2e2

4 + 4e2
1e2e3e5 + e1e3

2e5 + 3e3
1e2

2 = ae5 + b,
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where a = e1e2(4e1e3 + e2
2) is a product of 3 prime elements, and b = 4e4

2e4 + 4e1e2
2e3e4 + e2

1e2
3e4 +

3e2
1e2e2

4 + 3e3
1e2

2. One checks, with the aid of a computer, that w = (a dx)4(e2
1e3

2) and consequently
a dx(w) = 0. Moreover using [y, e2

1e3
2] = 2e10 + 3e2

1e2
2([y, e2]) = −3e2

1e3
2 = 2e2

1e3
2, we get that [y, w] =

[y, (a dx)4(e2
1e3

2)] = −4(a dx)4(e2
1e3

2) + (a dx)4([y, e2
1e3

2]) = −4w + 2w = 3w . Therefore w is a weight
3 element with respect to a dy. Now regarding w = ae5 + b as a degree one element in e5, the
only possible decomposition of w will be of the form w = a1(a2e5 + b2), that is a1a2 = a, a1b2 = b,
where a1,a2,b2 are in F [e1, e2, e3, e4]. Now the possibility a1 = e1 can’t work since e1 is not a divisor
of 4e2

2e4 but it is a divisor of all the other terms appearing in b. Similarly the possibility a1 = e2 does
not work since e2 is not a divisor of e2

1e2
3e4 but divides all the other terms in b. Now if a1 = 4e1e3 +e2

2,
then a monomial in any multiple of a1 will be divisible by either e1e3 or e2

2. However 3e2
1e2e2

4, which
is a monomial in b is not divisible by neither one of them. Thus w is an irreducible element in
F [e1, e2, e3, e4, e5] and by its factorial property it is also a prime weight element with w ∈ S(V ) \
S(V )L . Next consider the element v = (a dx)4(e2

3e3
4). One shows, with the aid of a computer, that v =

4e1e4
4 + 4e1e3e2

4e5 + e1e2
3e2

5 + 4e2e2
3e4e5 + 3e2

1e2
3e4 + 3e3

3e2
4 + e2e3e3

4 = ae2 + b, where a = e3e4(4e3e5 +
e2

4), is a product of 3 prime elements and b = 4e1e4
4 + 4e1e3e2

4e5 + e1e2
3e2

5 + 3e2
1e2

3e4 + 3e3
3e2

4. As before
if v is reducible, then v = a1(a2e2 + b2) which forces us to check the following possibilities: a1 = e3,
a1 = e4 and a1 = 4e2e5 + e2

4. Now a1 = e3 is impossible since e3 does not divide 4e1e4
4. Next a1 = e4

is excluded since e4 does not divide e1e2
3e2

5. Finally a1 = (4e3e5 + e2
4), can not happen since 3e2

1e2
3e4

is not divisible by either 4e3e5 or e2
4, and any monomial in a multiple of a1, and in particular b, must

have this property. Consequently v is prime element in S(V ) = F [e1, e2, e3, e4, e5]. Also a dy(v) =
a dy((a dx)4(e2

3e3
4)) = −4(a dx)4(e2

3e3
4) + (a dx)4([y, e2

3e3
4]) = −4v + 2v = 3v . Since a dx(v) = 0, we see

that v is also a prime weight element and v /∈ S(V )L . Finally, clearly v is not a scalar multiple of w ,
showing that they generate two different height one prime ideals in S(V ).

Next we consider the details of Example 9.2. The case p > 2 is carried out as in Example 9.1 and
so is omitted. Suppose therefore that p = 2. Let {e1, e2} be the standard basis of (V ,0) and { f1, f2}
the standard basis of (0, V ), where V = F 2. Then x and y have the following presentation as 4 × 4
matrices:

x ≡
⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , y ≡

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ ,

with multiplication table:

[x, e1] = e2, [x, e2] = e1, [x, f1] = f2, [x, f2] = f1,

[y, e1] = [y, f1] = 0, [y, e2] = e2, [y, f2] = f2.

Then v ≡ [x, e1e2 f1 f2] = (e2
2 + e2

1) f1 f2 + (e1e2)( f 2
1 + f 2

2 ). It is easily checked that [x, v] = 0 and
[y, v] = v �= 0. Set H0 ≡ F x + (V ⊕ V ). Then v ∈ Z(U (H0)) and consequently [y, Z(U (H0))] �= 0.
Therefore as in Claim 9.5 we have Z(U (L0)) = U (V ⊕ V )a dx,a dy[y2 − y, x4 − x2] and Sz(U (L0)) =
U (V ⊕ V )a dx[y2 − y, x4 − x2] = Z(U (H0))[y2 − y]. Hence to show that Sz(U (L0)) is not factorial we
merely need showing that Z(U (H0)) is not factorial. To this end we exhibit two distinct prime weight
1 elements in Sz(U (H0)) implying that U (H0)1 is not a free Z(U (H0)) module and then use The-
orem 7.1. Now [x, e1 + e2] = e1 + e2, [x, f1 + f2] = f1 + f2 so e1 + e2, f1 + f2 are both in U (H0)1
and both are clearly prime weight elements in Sz(U (H0)), being such in U (V ⊕ V ). This verifies the
properties of Example 9.2.

Remark 9.12. (1) If one wants to have that both Z(U (L)) and Sz(U (L)) are non-factorial in case p = 2,
the easiest is to consider L = S ⊕ (V ⊕ V ⊕ V ), and follow the previous discussion.

(2) By using different methods one can verify that Z(U (L)) is factorial in Example 9.1, for p = 2.
Also Z(U (L)) = Sz(U (L)) in this case.
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