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In this paper, we establish an isomorphism between the Euler class
group E(R(X), L) for a real smooth affine variety X = Spec(A)

and the 0-th homology group H0(Mc; G) with local coefficients in
a bundle G of groups constructed from the line bundle L over M
corresponding to the orientation rank-1 projective module L, where
Mc is the compact part of the manifold M of real points in X . Then
by Steenrod’s Poincaré duality between homology and cohomology
groups with local coefficients, this isomorphism is identified with
the Whitney class homomorphism.
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1. Introduction

Obstruction theory in topology is classical, while the advent of obstruction theory in algebra is
a more recent phenomenon. In topology, for real smooth manifolds with dim(M) = n � 2 and line
bundles L over M , there is an obstruction group H(M, L), and for vector bundles E of rank(E ) = n
with an orientation χ : L ∼=−→ ∧n E , there is an invariant w(E ,χ) ∈ H(M, L) such that E has a
nowhere vanishing section if and only if w(E ,χ) = 0.

In early nineties, Nori outlined a program for an obstruction theory in algebra. The program of Nori
mirrors the already existing theory in topology. Accordingly, for smooth affine algebras A over infinite
fields with dim(A) = n � 2 and for projective A-modules L with rank(L) = 1, Nori outlined a defini-
tion ([MS], later generalized in [BRS3]) of an obstruction group E(A, L), which contains an invariant
e(P ,χ) for any projective A-module P of rank(P ) = n with orientation χ : L

∼=−→ ∧n P = det(P ), such
that conjecturally, e(P ,χ) = 0 if and only if P ∼= Q ⊕ A for some projective A-module Q . Essentially,
all the conjectures given at the time when the program was outlined were proved and the program
of Nori flourished beyond all expectations. Among the major and important papers on this program
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are [M,MS,MV,BRS1,BRS2,BRS3,BhDaMa]. Readers are referred to [MaSh] for further introductory re-
marks and history [MkM,Mk,Mu1] of development of obstruction theory in algebra.

While the obstruction theory in algebra was guided by the classical obstruction theory in topol-
ogy, there has not been a successful attempt to reconcile the theory in algebra and topology. More
precisely, let X = Spec(A) be a real smooth affine variety and let M = M(X) be the manifold of
real points of X with dim(X) = dim(M) = n � 2. Also, let L be a projective R(X)-module of rank
one and let L be the line bundle over M , whose module of cross sections comes from L, i.e.
Γ (L) = L ⊗R(X) C(M) [Sw], where R(X) = S−1 A for the multiplicative set S of all functions f ∈ A
that do not vanish at any real point of X . The issue in question is whether there is a canonical homo-
morphism from the algebraic obstruction group E(A, L) to the topological obstruction group H(M, L).
While this fundamental question remained open since the inception of obstruction theory in algebra,
it did not draw enough attention.

In the orientable case, the obstruction group H(M, M × R) in topology is the cohomology group
Hn(M;Z) with integer coefficients. For the general (non-orientable) case, the obstruction group

H(M, L) in topology turns out to be the more sophisticated homology group H0(Mc, GK∗⊗L) with
local coefficients in a bundle G K∗⊗L of groups associated with K∗ ⊗ L, where K is the cotangent
determinant bundle of M , and Mc is the union of compact connected components of M . By Steen-
rod’s Poincaré duality, this obstruction group is also naturally isomorphic to the cohomology group
Hn(M, GL∗ ).

In our earlier paper [MaSh], without using the concept of (co)homology with local coefficients,
we addressed our question for the case of oriented real smooth affine varieties and oriented vector
bundles (i.e. with K X = ∧n

ΩR(X)/R = R(X) and L = R(X)) and defined a canonical isomorphism

ζ : E
(
R(X),R(X)

) → H(M, M × R) ∼= Hn(M;Z),

from the algebraic obstruction group E(R(X),R(X)) to the topological obstruction group
H(M, M × R).

In this paper, we consider the general case and establish a canonical isomorphism

ζ : E
(
R(X), L

) → H(M, L) ∼= H0(Mc, GK∗⊗L) ∼= Hn(M, GL∗).

Furthermore, given a projective R(X)-module P of rank n with an L-orientation χ : L
∼=−→ ∧n P , the

obstruction classes from algebra and from topology agree, i.e. ζ(e(P ,χ)) = w(E ∗,χ), where E is the
vector bundle on M whose sections come from P and the latter χ represents the orientation on E ∗
induced by χ . Some applications of our main theorem are given, including an example of an algebraic
vector bundle that does not have any algebraic nowhere vanishing section, but with a continuous
nowhere vanishing section.

As an interesting consequence, we get a purely algebraic description of such cohomology groups
Hn(M, GL), including the special case of Hn(M;Z). It remains open whether such descriptions can
be given for all cohomology groups Hr(M, GL) for 0 � r < n. This obviously relates to the question,
whether it is possible to give appropriate definitions for obstruction groups in algebra for projective
modules of all ranks and develop an algebraic theory in complete analogy to the existing topological
theory.

In this paper, the not so-widely used (co)homology theory with local coefficients, including
Poincaré duality theorem of Steenrod [St1], is crucially used. In order to prove our results that re-
late algebra to topology, we give this theory a relatively modern account, which is of some novelty to
our knowledge, making rigorous formal connections between topological, geometrical, and algebraic
interpretations of the concept of local orientations. In our presentation, special attention is paid to
make the objects and arguments as much coordinate-free as possible.

Here we briefly describe the content of each of the following sections. In Section 2, we recall the
theory of (co)homology groups with local coefficients including the computation of the 0-th homology
group. In Section 3, we introduce the bundle of groups associated with a bundle of local orientations,
and in Section 4, we identify it with the bundle of homotopy groups for a related vector bundle. In
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Section 5, the concept of the top Whitney class of a vector bundle is described in terms of cohomol-
ogy with local coefficients. In Section 6, we recall Steenrod’s Poincaré duality theorem, and results
about indices of transversal cross sections are deduced from the Euler–Hopf–Poincaré Theorem. Then
we obtain canonical isomorphisms from the Euler class group to a 0-th homology group and an n-th
cohomology group with local coefficients, respectively in Sections 7 and 8, the latter of which identi-
fies the algebraic Euler class of a projective module and the top Whitney class of an associated vector
bundle. Finally in Section 9, we present some applications of our results.

2. Homology with local coefficients

We first recall the notion of homology with local coefficients, which was first formally introduced
by Steenrod [St1] in the simplicial homological context, and can be equivalently formulated in the
singular homological context [Wh2]. In this section, we work with the singular homological version,
and in Section 5, we recall and utilize the simplicial homological version.

For a modern account of the theory of fiber (or vector) bundles that is needed in our discussion,
we referred readers to [Hu,St2,Wh2].

Let F be the fundamental groupoid of a topological space X [Sp]. More explicitly, F is the category
consisting of elements x ∈ X as objects, and homotopy classes [γ ] of (continuous) paths γ : [0,1] → X
from x1 to x2 in X as morphisms from object x1 to object x2, with the composition defined as
[γ2] ◦ [γ1] := [γ1 ∗ γ2] for [γ1] ∈ Hom(x1, x2) and [γ2] ∈ Hom(x2, x3), where γ1 ∗ γ2 is the standard
concatenation of paths γ1 and γ2 with γ2 following γ1. We use s(γ ) and t(γ ) to denote, respectively,
the source x1 and the target x2 of the homotopy class [γ ] ∈ Hom(x1, x2).

For any (locally trivial) fiber bundle F p−→ X , we denote by F |x := p−1({x}) the fiber at x ∈ X and

take F |A := p−1(A) for A ⊂ X , which also denotes the restricted bundle F |A
p|A−−→ A.

A fiber bundle G π−→ X is called a bundle of groups modeled on a group G , if any x ∈ X has an open
neighborhood U ⊂ X with a homeomorphism φU : G|U → U × G , and the transition maps between
such local trivializations are fiberwise group automorphisms of G , i.e. the map g 
→ (φU2 ◦ φ−1

U1
)(x, g)

belongs to Aut(G) for any x ∈ U1 ∩ U2. Via such local trivializations φU , each fiber G|x , x ∈ X , of a
bundle G of groups modeled on G has a well-defined group structure such that G|x ∼= G as groups,
even though in general, there is no canonical choice of an isomorphism between each G|x and G .

We remark that a bundle G of groups modeled on group G is associated with a principal A-bundle
G → X , i.e. G = G ⊗A G := G × G/∼ where ∼ is defined by (zψ, g) ∼ (z,ψ(g)) for all z ∈ G, g ∈ G ,
and ψ ∈ A, for some subgroup A of Aut(G). This is an analogue of the property that if the transition
maps between local trivializations E |U → U × Rn of a vector bundle E → X are fiberwise in a matrix
subgroup H ⊂ GL(n,R) then E = H ⊗H Rn for some principal H-bundle H → X over X . Note that
each bundle G of groups has a global cross section going through the identity element of each fiber
group G|x , but G may not be a trivial fiber bundle unless G is also a G-principal bundle with a well-
defined global G-action on G . On the other hand, a G-principal bundle in general is not a bundle of
groups. In fact, a bundle G of groups modeled on G is a trivial fiber bundle if and only if G is also a
G-principal bundle such that w(z · g) = (wz) · g for any g ∈ G and any z, w in the group G|x at any
x ∈ X .

Note that for a discrete group G , a bundle G π−→ X of groups modeled on G is a covering map, and
hence via lifting of paths, the fundamental groupoid F acts on G in a canonical way compatible with
its canonical action on X and compatible with the group structure on each fiber of G . More precisely,
there is a well-defined continuous map

· : ([γ ], c
) ∈ F ×X G 
→ [γ ] · c ∈ G

where F ×X G := {([γ ], c) | s(γ ) = π(c)} is the fibered product of F and G over X , such that for any
([γ ], c) ∈ F ×X G , (i)

π
([γ ] · c

) = t(γ ) = [γ ](s(γ )
)
,
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(ii) for any morphism [η] composable with [γ ] in F,([η] ◦ [γ ]) · c = [η] · ([γ ] · c
)

and (iii) the action restricted to each fiber

[γ ]· : c ∈ G|s(γ ) 
→ [γ ] · c ∈ G|t(γ )

is a group isomorphism. Indeed the path γ in X is lifted against the projection map π to a unique
path γ̃ in the covering space G that has c ∈ G|s(γ ) as its start (or source) point, and [γ ] · c is then
exactly the end (or target) point of γ̃ .

We now recall the construction of the complex of singular chains with local coefficients in a bundle G
of groups modeled on a discrete abelian group G [Wh2]. Let us view G as an additive group with its
identity element denoted as 0. First we define the group of k-chains in X with local coefficients in G
as

Sk(X; G) :=
{

finite sum
∑

σ :�k→X continuous

cσ σ
∣∣∣ cσ ∈ G|σ (e0)

}

consisting of (finite) formal linear combinations of singular k-simplices σ : �k → X with coefficients
cσ ∈ G|σ(e0) where

�k :=
{

k∑
i=0

aiei

∣∣∣ ai � 0 with
k∑

i=0

ai = 1

}
⊂ Rk+1

is the convex hull of the standard basis vectors e0, . . . , ek of Rk+1. In another word,

Sk(X; G) ∼=
⊕

σ :�k→X continuous

G|σ (e0).

The boundary map

∂ : Sk(X; G) → Sk−1(X; G)

is defined by

∂

(∑
σ

cσ σ

)
=

∑
σ

(([σ01] · cσ

)
∂0σ +

k∑
i=1

(−1)icσ ∂iσ

)

where σ01 : t ∈ [0,1] 
→ σ(te1 + (1 − t)e0) is the path in X from σ(e0) to σ(e1) = (∂0σ)(e0), and the
singular (k − 1)-simplex ∂iσ is the standard i-th face of the singular k-simplex σ . It can be shown
that ∂ ◦ ∂ = 0, and hence we get the chain complex (S ·(X; G), ∂) of singular chains with local coefficients
in G , whose k-th homology group

Hk(X; G) := ker(∂ : Sk(X; G) → Sk−1(X; G))

∂(Sk+1(X; G))

is called the k-th homology group of X with local coefficients in G , where it is understood that ∂ = 0
on S0(X; G) by definition, i.e. every 0-chain is a 0-cycle. We remark that a relative version of such
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homology groups for pairs of spaces (X, A) with A ⊂ X can be formulated similarly in a standard way
and is denoted by Hk(X, A; G).

Furthermore by taking the “dual”

Sk(X; G) ∼=
∏

σ :�k→X continuous

G|σ (e0)

of Sk(X; G), which consists of functions c ≡ ∏
σ cσ σ sending each singular k-simplex σ to an element

cσ ∈ G|σ(e0) , and the “dual” δ : Sk(X; G) → Sk+1(X; G) of ∂ as defined by

δ

( ∏
σ :�k→X continuous

cσ σ

)
=

∏
τ :�k+1→X continuous

(([τ01]−1 · c∂0τ

) +
k+1∑
i=1

(−1)ic∂iτ

)
τ ,

we get the singular cochain complex (S ·(X; G), δ) with local coefficients in G whose k-th homology group
Hk(X; G) is called the k-th cohomology group of X with local coefficients in G . Similarly, the relative
cohomology group Hk(X, A; G) of (X, A) with local coefficients in G can be defined.

It is easy to see that Hk(X; G) = ⊕
j Hk(X j; G|X j ) where X j ’s are the path connected components

of X . Since our main result will be stated in terms of H0(X; G) but the homology with local coef-
ficients is not very widely popularized, we include the following known proposition with a proof,
which provides some insight to our following discussions.

Proposition 1. For a path connected topological space X and a bundle G π−→ X of groups modeled on a discrete
abelian group G,

H0(X; G) ∼= G|x0/
〈{[γ ] · c − c

∣∣ [γ ] ∈ π1(X; x0), and c ∈ G|x0

}〉
for any fixed x0 ∈ X, where G|x0

∼= G and 〈S〉 denotes the subgroup generated by the set S.

Proof. Note that for any singular 1-simplex γ in X , viewed as a path from x := γ (e0) to y := γ (e1),
and for any c ∈ G|x , we have

∂(cγ ) = ([γ ] · c
)

y − cx.

So the group ∂(S1(X; G)) of 0-boundaries is generated by ([γ ] · c)y − cx in S0(X; G), where x, y ∈ X
and γ is a path from x to y, which implies [([γ ] · c)y] = [cx] in

H0(X; G) = S0(X; G)

∂(S1(X; G))
.

Let x0 ∈ X be any point fixed. Since X is path connected, for any x ∈ X , we can fix a path γx from x
to x0, with in particular, γx0 equal to the constant path x0 so that [γx0 ] · c = c for all c ∈ G|x0 . Since
each [γx]· is a group isomorphism,

h :
∑
x∈X

cxx ∈ S0(X; G) 
→
∑
x∈X

[γx] · cx ∈ G|x0

defines a surjective group homomorphism. Note that h(cx0) = c for all c ∈ G|x0 .
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We note that ker(h) ⊂ ∂(S1(X; G)), because if h(
∑

x∈X cxx) = 0, then

∑
x∈X

cxx =
∑
x∈X

cxx −
(∑

x∈X

[γx] · cx

)
x0 = −

∑
x∈X

(([γx] · cx
)
x0 − cxx

)
= −

∑
x∈X

∂(cxγx) = ∂

(
−

∑
x∈X

cxγx

)
∈ ∂

(
S1(X; G)

)
.

Thus we have

H0(X; G) = S0(X; G)

∂(S1(X; G))
∼= S0(X; G)/ker(h)

∂(S1(X; G))/ker(h)
∼= G|x0

h(∂(S1(X; G)))
.

Now it remains to show that h(∂(S1(X; G))) equals the subgroup W ⊂ G|x0 generated by [γ ] · c − c
with [γ ] ∈ π1(X; x0) and c ∈ G|x0 . Clearly

[γ ] · c − c = h
(([γ ] · c

)
x0 − cx0

) = h
(
∂(cγ )

) ∈ h
(
∂
(

S1(X; G)
))

for any [γ ] ∈ π1(X; x0) and c ∈ G|x0 , and hence W ⊂ h(∂(S1(X; G))). Conversely, for any path γ
from x to y and any c ∈ G|x ,

h
(
∂(cγ )

) = h
(([γ ] · c

)
y − cx

) = [γy] · ([γ ] · c
) − [γx] · c

= ([γy] ◦ [γ ] ◦ [γx]−1) · ([γx] · c
) − ([γx] · c

) = ([
γ −1

x ∗ γ ∗ γy
]) · ([γx] · c

) − ([γx] · c
)

where [γ −1
x ∗ γ ∗ γy] ∈ π1(X; x0) and [γx] · c ∈ G|x0 , which implies h(∂(cγ )) ∈ W . So

h(∂(S1(X; G))) ⊂ W . �
If the bundle G π−→ X of groups is modeled on G = Z, then H0(X; G) can be classified as follows.

Corollary 2. For a path connected topological space X and a bundle G π−→ X of groups modeled on Z,

H0(X; G) ∼=
{

Z if G is a trivial bundle,

Z2 if G is a non-trivial bundle.

Proof. First we note that for any x0 ∈ X , since X is path connected and G π−→ X is a covering map,
the group π1(X; x0) acts trivially on G|x0 if and only if G is the trivial bundle X × Z. Also note that
since Aut(Z) = {± id}, for any [γ ] ∈ π1(X; x0), either [γ ] · c = c, i.e. [γ ] · c − c = 0, for all c ∈ G|x0 , or
[γ ] · c = −c, i.e. [γ ] · c − c = −2c, for all c ∈ G|x0 .

If G is trivial, then [γ ] · c − c = 0 for all [γ ] ∈ π1(X; x0) and c ∈ G|x0 , and hence H0(X; G) ∼=
G|x0/{0} ∼= Z.

If G is non-trivial, then there is some [γ ] ∈ π1(X; x0) such that [γ ] · c − c = −2c for all c ∈ G|x0 ,
and hence

H0(X; G) ∼= G|x0/(−2G|x0)
∼= Z/2Z ∼= Z2. �
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3. Bundle of local orientations

In this paper, we consider only real vector bundles of finite rank (i.e. of a finite constant fiber
dimension over R) and with a second countable locally compact Hausdorff base space.

Recall that a rank-n vector bundle E → X over a topological space X is called orientable if the
determinant bundle

∧n E of E is a trivial line bundle, and a (smooth) manifold M is called orientable if
its tangent bundle T M is orientable (or equivalently, its cotangent bundle T ∗M = (T M)∗ is orientable
since (

∧n T M)∗ = ∧n T ∗M). Here the rank of a vector bundle E is referring to the constant dimension
of all fibers of E .

In general, we call any line bundle L over X a bundle of local orientations over X , with the deter-
minant bundle

∧n E of any rank-n vector bundle E as an example.
For any vector bundle E over X , we denote by E ◦ the bundle E with the zero vectors in all of

its fibers removed. Note that the multiplicative group R+ of positive real numbers acts canonically
on E ◦ by fiberwise multiplication, and the orbit space S(E ) := E ◦/R+ is a fiber bundle, called the
sphere bundle associated with E since each fiber of S(E ) is homeomorphic to the unit (n − 1)-sphere

Sn−1 ≈ (
Rn\{0})/R+

if E is a rank-n vector bundle. Here ≈ denotes “being homeomorphic to”. Clearly the multiplicative
group {±1} has a canonical action on the bundle E ◦ by fiberwise multiplication, which commutes
with the R+-action on E ◦ , and hence {±1} has a well-defined canonical action on the sphere bun-
dle S(E ).

We remark that for a Riemannian vector bundle E over X , i.e. a vector bundle E endowed with
a continuous function 〈·,·〉 : E ×X E → R which defines an inner product 〈·,·〉x on the fiber E |x for
each x ∈ X , the unit sphere bundle S(E ) := ⋃

x∈X S(E |x) of E is canonically identified with the sphere
bundle S(E ), where S(E) denotes the unit sphere in any Euclidean space E . Furthermore, for a Rie-
mannian vector bundle E over X , we have a vector bundle isomorphism

E ∼= E ∗

defined by the correspondence v ∈ E |x 
→ 〈v, ·〉 ∈ E ∗|x . In this paper, we consider only second count-
able locally compact Hausdorff spaces X , which are known to be paracompact [Ro], and hence using a
partition of unity subordinate to a locally finite open covering of X [La], we can construct such a Rie-
mannian structure on any vector bundle E over X by piecing together local trivial standard Euclidean
metric structures.

In the case of a line bundle L over X , the sphere bundle

DL := S(L)

is a fiber bundle modeled on S0 = {±1}, and hence with the well-defined {±1}-action, D L becomes
a principal {±1}-bundle over X for the multiplicative group {±1}. But in general, D L is not a bundle
of groups unless it is a trivial principal {±1}-bundle. Now with ±1 acting multiplicatively on Z as
group automorphisms, the associated fiber bundle

GL := DL ⊗{±1} Z

is a bundle of groups over X modeled on Z. Note that D L is a double covering of X , and

DL ⊂ GL

by identifying canonically each z ∈ D L with [(z,1)] ∈ GL = (DL × Z)/ ∼ where (z1,m1) ∼ (z2,m2) in
DL × Z if and only if (z2,m2) = (z1 g, g−1m1) = (z1 g, gm1) for some g ∈ {±1}.
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It is easy to see that if DL is a trivial double covering of X , i.e. D L ∼= X × {±1}, then GL is the
trivial bundle X × Z of groups over X . Conversely, if G L is the trivial bundle X × Z of groups over X ,
then DL = X × {±1} is a trivial double covering of X since D L ⊂ GL consists of the two generators
in each fiber of G L . So DL is a trivial double covering of X if and only if G L is the trivial bundle
X × Z of groups over X .

We also note that a line bundle L is trivial if and only if L has a nowhere vanishing cross section,
or equivalently, the unit sphere bundle S(L) has a cross section when L is endowed with a Rieman-
nian structure. So it is clear that D L when identified with S(L) is trivial if and only if L is trivial.
We summarizes the above observations as follows.

Proposition 3. For a line bundle L over a second countable locally compact Hausdorff space X, the following
are equivalent. (1) L is a trivial bundle. (2) D L = S(L) is a trivial double covering of X . (3) G L is a trivial
bundle of groups over X modeled on Z.

Recall that when applying fiberwise the natural functors of vector spaces, like ⊗, Hom (the space
of R-linear maps), or Isom (the space of R-linear isomorphisms), to vector bundles E , F over X , we
can construct new fiber bundles like E ⊗ F , Hom(E , F ), or Isom(E , F ) (for E , F of the same rank).
Here the group-valued functor Isom applies only to vector spaces of the same fixed dimension. Note
that Hom(E , F ) is a vector bundle over X whose fiber at each x ∈ X consists of linear maps from E |x

to F |x , and one should not confuse Hom(E , F ) with the space of vector bundle homomorphisms from
the vector bundle E to the vector bundle F .

For finite-dimensional vector spaces V and W over R, there is a natural isomorphism Hom(V , W ) ∼=
V ∗ ⊗ W , which gives rise to, when applied fiberwise, a vector bundle isomorphism

Hom(E , F ) ∼= E ∗ ⊗ F

for vector bundles E , F over X . Similarly, the natural homomorphism

∧n : f ∈ Hom(V , W ) 
→ ∧n f ∈ Hom
(∧n V ,

∧n W
)

gives rise to a vector bundle homomorphism

∧n : Hom(E , F ) → Hom
(∧n E ,

∧n F
)
.

For a rank-n vector space V and f ∈ Hom(V , V ), we have
∧n V ∼= R and the map∧n f :

∧n V → ∧n V is the multiplication by the well-defined determinant det( f ) ∈ R (independent
of the choice of a basis for V ), i.e. we have a natural surjective (multiplicative but not linear) map

∧n : f ∈ Hom(V , V ) 
→ det( f ) ∈ R ∼= Hom
(∧n V ,

∧n V
)
.

So we adopt the notations

det
(
Hom(V , W )

) := Hom
(∧n V ,

∧n W
)

and

det
(
Isom(V , W )

) := Isom
(∧n V ,

∧n W
)

for vector spaces V , W of the same dimension n. With these notations, we have surjective fiber bundle
maps
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∧n : Hom(E , F ) → det
(
Hom(E , F )

) := Hom
(∧n E ,

∧n F
)

and

∧n : Isom(E , F ) → det
(
Isom(E , F )

) := Isom
(∧n E ,

∧n F
)

for vector bundles E and F of the same dimension n over X . Note that when E and F are rank-n
vector bundles,

Isom
(∧n E ,

∧n F
) = (

Hom
(∧n E ,

∧n F
))◦

since
∧n E ,

∧n F are line bundles.
We point out that there is a natural isomorphism

w ∧ e1 ∧ · · · ∧ en−1 ∈ ∧n(W ⊕ Rn−1) ∼=
−→ w ∈ W

with respect to 1-dimensional vector spaces W , and hence for any line bundle L over X , we have a
natural isomorphism

∧n(L ⊕ Rn−1) ∼= L

with respect to line bundles L over X , where Rn−1 represents the trivial vector bundle X × Rn−1

over X .
Now for a line bundle L over an n-dimensional manifold M with the cotangent determinant bun-

dle K := ∧n T ∗M , we consider the bundle G K∗⊗L of groups modeled on Z, that arises from the line
bundle

K∗ ⊗ L ∼= Hom(K, L) ∼= det
(
Hom

(
T ∗ X, L ⊕ Rn−1)).

Proposition 4. The bundle G K∗⊗L of groups modeled on Z is a trivial bundle if and only if K ∼= L.

Proof. Since K ⊗ K∗ ∼= Hom(K, K) = R, we have that K∗ ⊗ L ∼= R if and only if L ∼= K ⊗ K∗ ⊗ L ∼=
K ⊗ R ∼= K. �

We note that DL and DL∗ , and hence G L and GL∗ , are naturally isomorphic for line bundles L.
Indeed

[v] ∈ L◦|x/R+ = DL|x 
→ [
v∗] ∈ (

L∗)◦∣∣
x/R+ = DL∗ |x

where for v ∈ L◦|x , v∗ ∈ (L∗)◦|x with v∗(v) ∈ R+ , say, v∗(v) = 1, well defines a natural isomor-
phism DL → DL∗ . So in particular, DK = D∧n T ∗M and DK∗ = D∧n T M are naturally isomorphic for
n-dimensional manifolds M , and they can used interchangeably, e.g. in the later discussion of twisted
bundle of groups and Poincaré–Steenrod duality. We define for [v] ∈ D L|x , the dual

[v]∗ := [
v∗] ∈ DL∗ |x.
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4. Bundle of homotopy groups

In this section, we recall the bundle of (n − 1)-homotopy groups for a rank-n vector bundle
E π−→ M over an n-dimensional manifold M with n > 1.

We denote by Pn−1(E ◦) the disjoint union of the (n − 1)-homotopy groups πn−1(E ◦|x) with x ∈ M ,
and describe it in the following proposition as a bundle of groups modeled on Z. An open set U ⊂ M
is called simple if it is homeomorphic to the open unit n-ball Bn .

Proposition 5. For an n-dimensional manifold M with n > 1, the disjoint union

Pn−1
(

E ◦) =
⋃
x∈M

πn−1
(

E ◦|x
)

of the (n −1)-homotopy groups πn−1(E ◦|x) with x ∈ M is a bundle of groups modeled on Z with the canonical
homotopy group structure on each fiber πn−1(E ◦|x) and with the topology determined by the local trivializa-
tions

πn−1(ιU ,·) :
⋃
x∈U

πn−1
(

E ◦|x
) → U × πn−1

(
E ◦|U

) ∼= U × Z

over simple open sets U ⊂ M, defined on each fiber πn−1(E ◦|x) by

πn−1(ιU ,·) : h ∈ πn−1
(

E ◦|x
) 
→ (

x,πn−1(ιU ,x)(h)
) ∈ {x} × πn−1

(
E ◦|U

)
where πn−1(ιU ,x) is the isomorphism induced by the inclusion map

ιU ,x : E ◦|x ↪→ E ◦|U .

Proof. Note that since any simple neighborhood U of a point x ∈ X is contractible and E trivializes
over it, i.e. E ◦|U ∼= U × (Rn−1\{0}), the inclusion map ιU ,x induces a group isomorphism

πn−1
(

E ◦|x
) πn−1(ιU ,x)−−−−−−→ πn−1

(
E ◦|U

) ∼= πn−1
(
Rn−1\{0}) ∼= πn−1

(
Sn−1) ∼= Z

because E ◦|x is a deformation retract of E ◦|U and is homeomorphic to Rn−1\{0}. So πn−1(ιU ,·) is a
well-defined bijection which is fiberwise a group isomorphism.

It remains to show that the transition maps between overlapping trivializations are continuous
and fiberwise group automorphisms of Z. Let U , V be simple open sets of X with U ∩ V �= ∅. It is
clear that the transition map

πn−1(ιV ,·) ◦ πn−1(ιU ,·)−1
∣∣
(U∩V )×πn−1(E ◦|U )

is fiberwise a group automorphism since πn−1(ιU ,x) and πn−1(ιV ,x) are group isomorphisms for each
x ∈ U ∩ V . On the other hand, for any contractible open set W ⊂ U ∩ V , the inclusions ιU ,x and ιV ,x
factor through the same inclusion ιW ,x for all x ∈ W , and the inclusions ιU ,W : E ◦|W ↪→ E ◦|U and
ιV ,W : E ◦|W ↪→ E ◦|V induce isomorphisms πn−1(ιU ,W ) and πn−1(ιV ,W ), respectively. So

πn−1(ιV ,·) ◦ πn−1(ιU ,·)−1
∣∣

W ×πn−1(E ◦|U )
= idW ×(

πn−1(ιV ,W ) ◦ πn−1(ιU ,W )−1)
which is clearly a continuous function from W ×πn−1(E ◦|U ) ∼= W ×Z to W ×πn−1(E ◦|V ) ∼= W ×Z for
any contractible open set W ⊂ U ∩ V . Thus πn−1(ιV ,·)◦πn−1(ιU ,·)−1 restricted to (U ∩ V )×πn−1(E ◦|U )

is continuous. �
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Proposition 6. For a rank-n vector bundle E over an n-dimensional manifold M with n > 1,

G∧n E ∼= Pn−1
(

E ◦).
Proof. Let L := ∧n E . First we note that every non-zero element of the line L|x is of the form

∧n B :=
v0 ∧ · · · ∧ vn−1 for some ordered basis B = (v0, . . . , vn−1) of E |x , which defines f B ∈ Isom(Rn, E |x) by
f B(ei) := vi for 0 � i � n − 1. Clearly

f : B 
→ f B ∈ Isom
(
Rn, E |x

)
defines a one-to-one correspondence between ordered basis of E |x and linear isomorphisms from Rn

to E |x . We claim that f induces a well-defined injective map

φ : [∧n B
] ∈ DL|x 
→ [ f B |Sn−1 ] ∈ πn−1

(
E ◦|x

) ∼= Z

onto {1,−1} ⊂ Z.
For any ordered bases B, B ′ of E |x , it is easy to see that [∧n B] = [∧n B ′] in DL|x = S(L|x) if and

only if det(τB ′,B) > 0, i.e. τB ′,B is path connected to id in Isom(E |x, E |x), where τB ′,B ∈ Isom(E |x, E |x)
with τB ′,B(vi) = v ′

i for each i. Thus if [∧n B] = [∧n B ′] in DL|x , then f B and f B ′ = τB ′,B ◦ f B are path
connected in Isom(Rn, E |x) and hence [ f B ′ |Sn−1 ] = [ f B |Sn−1 ] in πn−1(E ◦|x). So φ is well defined.

By fixing an ordered basis C = (u0, . . . , un−1) of E |x , we can identify E |x with Rn , and get fC = idRn

under this identification. Clearly

[ fC |Sn−1 ] = 1 ∈ Z ∼= πn−1
(
Sn−1) ∼= πn−1

((
Rn)◦∣∣

x

) ∼= πn−1
(

E ◦|x
)
.

On the other hand, setting B− := (v1, v0, v2, . . . , vn−1) for any ordered basis B = (v0, . . . , vn−1)

of E |x , we have

DL|x = {∧n B,
∧n B−}

since
∧n

(v1, v0, v2, . . . , vn−1) = −∧n
(v0, . . . , vn−1). Since clearly f B− = f B ◦ ρ for the reflection

ρ : (x0, x1, x2, . . . , xn−1) 
→ (x1, x0, x2, . . . , xn−1),

we have, as a well-known property of the degree of maps on Sn−1, that

−[ f B |Sn−1 ] = [ f B |Sn−1 ◦ ρ|Sn−1 ] = [ f B−|Sn−1 ]
in πn−1(E ◦|x). Thus φ([∧n B−]) = −φ([∧n B]), and in particular, φ([∧nC−]) = − 1 ∈ Z ∼= πn−1(S

n−1).
So φ is injective and onto {1,−1}.

Since the above definition of φ at each x ∈ X is canonical, i.e. local trivialization free, it is easy to
see that

φ : DL →
⋃
x∈M

πn−1
(

E ◦|x
) = Pn−1

(
E ◦)

is a well-defined injective (continuous) fiber bundle map onto S ⊂ Pn−1(E ◦), where S consists
of the generators ±1 in each fiber of Pn−1(E ◦). On the other hand, since G L = DL ⊗{±1} Z and
Pn−1(E ◦) = S ⊗{±1} Z, it is easy to see that φ extends to a well-defined bundle isomorphism from G L
to Pn−1(E ◦). �
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Note that for a Riemannian vector bundle E over X , the unit sphere bundle S(E ) is a deformation
retract of E ◦ via deformations preserving each fiber, and hence Pn−1(E ◦) can be canonically identified
with the bundle

Pn−1
(
S(E )

) :=
⋃
x∈X

πn−1
(
S(E )|x

)
.

Corollary 7. For a rank-n Riemannian vector bundle E over an n-dimensional manifold M with n > 1,

G∧n E ∼= Pn−1
(

E ◦) ∼= Pn−1
(
S(E )

)
.

Given simple open neighborhoods U , V of x in an n-dimensional manifold M with U ⊂ V , the
inclusion map induces an isomorphism πn−1(U\{x}) → πn−1(V \{x}) ∼= Z, whose inverse is denoted
by

rU ,V : πn−1
(

V \{x}) → πn−1
(
U\{x}) ∼= Z.

Note that the set of simple open neighborhoods U of x in M is a directed set partially ordered by ⊃
and rU ,V ◦ rV ,W = rU ,W for any simple open neighborhoods U ⊂ V ⊂ W of x. So we have a directed
system {πn−1(U\{x}), rU ,V }, and a well-defined direct limit

Qx := lim
U↘{x}
−→

(
πn−1

(
U\{x})) ∼= Z

in which every continuous map σ : Sn−1 → U\{x} ⊂ M with U a simple open neighborhood of x
determines a unique “germ” of [σ ] ∈ πn−1(U\{x}), denoted by

[[σ ]] ∈ Qx.

Since Tx M is intuitively the linearization of M near x, we can informally view a small open neigh-
borhood U of x as an open neighborhood of 0 in TxM and hence any continuous map σ : Sn−1 →
U\{x} can be viewed as σ : Sn−1 → (Tx M)◦ which gives rise to an element of πn−1((Tx M)◦) =

Pn−1((T M)◦)|x . This informal view indeed gives rise to a canonical identification of Qx with
Pn−1((T M)◦)|x .

Proposition 8. Let K := ∧n T ∗M for an n-dimensional manifold M with n > 1. There is a canonical group
isomorphism defined as

[[σ ]] ∈ Qx
∼=
−→ [

(dφ|x)
−1 ◦ φ ◦ σ

] ∈ Pn−1
(
(T M)◦

)∣∣
x
∼= GK∗ |x

where φ : U � U ′ ⊂ Rn is a chart map of a simple open neighborhood U ⊂ M of x with φ(x) = 0 and Rn

identified with Tx M via the total derivative dφ|x : Tx M
∼=−→ T0U ′ = Rn, and σ : Sn−1 → U\{x} ⊂ M is a

continuous map.

Proof. Note that the homeomorphic map (dφ|x)
−1 ◦ φ induces an isomorphism

[σ ] ∈ πn−1
(
U\{x}) 
→ [

(dφ|x)
−1 ◦ φ ◦ σ

] ∈ πn−1
(
(dφ|x)

−1(U ′\{0}))
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and Z ∼= πn−1((dφ|x)−1(U ′\{0})) ∼= πn−1((Tx M)◦). It is then easy to see that for a fixed chart map
φ : U � U ′ ⊂ Rn , we get a well-defined isomorphism

[[σ ]] ∈ Qx
∼=
−→ [

(dφ|x)
−1 ◦ φ ◦ σ

] ∈ πn−1
(
(TxM)◦

)
.

Next we show that [(dφ|x)
−1 ◦ φ ◦ σ ] ∈ πn−1((Tx M)◦) is independent of the choice of the chart

map φ on U . Without loss of generality, we may assume (φ ◦ σ)(Sn−1) as close to 0 as we need, by
picking a suitable representative of [[σ ]] ∈ Qx .

Let ψ : U → U ′′ ⊂ Rn be another chart map with ψ(x) = 0. Showing that

[
(dφ|x)

−1 ◦ φ ◦ σ
] = [

(dψ |x)
−1 ◦ ψ ◦ σ

] ∈ πn−1
(
(TxM)◦

)
is equivalent to showing that

[
d
(
ψ ◦ φ−1)∣∣

0 ◦ φ ◦ σ
] = [(

ψ ◦ φ−1) ◦ φ ◦ σ
] ∈ πn−1

((
Rn)◦)

.

Note that d(ψ ◦ φ−1)|0 is a linear approximation to ψ ◦ φ−1 near 0 = (ψ ◦ φ−1)(0), or more precisely,

d
(
ψ ◦ φ−1)∣∣

0(v) − (
ψ ◦ φ−1)(v) = O

(‖v‖2)
for v ∈ U ′ ⊂ Rn . Since d(ψ ◦φ−1)|0 is invertible and hence there is δ > 0 such that ‖d(ψ ◦φ−1)|0(v)‖ �
δ‖v‖ for all v ∈ Rn , we can deform (d(ψ ◦ φ−1)|0)|(φ◦σ)(Sn−1) to (ψ ◦ φ−1)|(φ◦σ)(Sn−1) inside (Rn)◦ by
linear interpolation

t ∈ [0,1] 
→ [
(1 − t)

(
d
(
ψ ◦ φ−1)∣∣

0

) + t
(
ψ ◦ φ−1)]∣∣

(φ◦σ )(Sn−1)

= {(
d
(
ψ ◦ φ−1)∣∣

0

) − t
[
d
(
ψ ◦ φ−1)∣∣

0 − (
ψ ◦ φ−1)]}∣∣

(φ◦σ )(Sn−1)

when (φ ◦σ)(Sn−1) ⊂ (Rn)◦ is sufficiently close to 0. Thus we get d(ψ ◦φ−1)|0 ◦φ ◦σ |Sn−1 homotopic
to (ψ ◦ φ−1) ◦ φ ◦ σ |Sn−1 inside (Rn)◦ .

Finally we note that since two chart maps U � U ′ and V � V ′ on simple open neighborhoods U
and V of x can restrict to chart maps on a smaller common simple open neighborhood W of x, it is
easy to see that any chart map φ : U � U ′ ⊂ Rn on any simple open neighborhood U of x gives rise
to the same isomorphism as defined above. �

From now on, we often view [[σ ]] ∈ Qx as an element of G K∗ |x ∼= Pn−1((T M)◦)|x via the canonical
isomorphism in Proposition 8.

Proposition 9. If σ : Bn → M is a continuous injective map with x ∈ σ(Bn) in an n-dimensional manifold M
for n > 1, then

[[σ |Sn−1 ]] ∈ DK∗ |x and [[σ |Sn−1 ]]∗ ∈ DK|x.

Proof. Clearly [idSn−1 ] = 1 in πn−1(Bn\{σ−1(x)}) ∼= Z, and hence [σ |Sn−1 ] = πn−1(σ )([idSn−1 ])
is a generator of πn−1(σ (Bn)\{x}) ∼= Z. Thus [[σ |Sn−1 ]] is a generator of Z ∼= Qx ≡ GK∗ |x , i.e.
[[σ |Sn−1 ]] ∈ DK∗ |x . �
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5. Whitney class

In this section, we revisit the notion of (co)homology with local coefficients in the context of
simplicial complex, which is the framework used in the theory of obstruction involving the Whitney
characteristic class. Then we derive some simple consequences of the obstruction theory needed later.

We recall the simplicial homological version of homology with local coefficients that was initially
used by Steenrod [St1]. Here we first present it in the more flexible context of CW-complexes instead
of simplicial or cell complexes, as done in [Wh2].

Let X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X be the skeletons of a topological space X with respect to a fixed
CW-complex structure on X , and following the convention of [Wh2], we use

σ : (�k, ∂�k) → (Xk, Xk−1)

to denote a typical k-cell (characteristic map) for this CW-complex structure, instead of
σ : (Bk,Sk−1) → (Xk, Xk−1). Note that the interiors σ(�k\∂�k) of all cells σ of all possible dimen-
sions k are pairwise disjoint, and in particular, no part of X is represented as images of two cells
with different “orientations”. We remark that in the discussion of CW-complexes, �k is often im-
plicitly identified with the unit k-ball Bk in a fixed way that preserves the standard orientation, and
identifies e0 ∈ �k ⊂ Rk+1 with e0 ∈ Bk ⊂ Rk and ∂�k with Sk−1.

Let G π−→ X be a bundle of groups modeled on an abelian group G . Then as in the theory of
homology groups with constant coefficient group, we have the relative singular homology group
of (Xk, Xk−1) with local coefficients in G|Xk decomposed as

Hk(Xk, Xk−1; G|Xk )
∼=

⊕
σ a k-cell

Hk(�k, ∂�k; G|σ (e0)) ∼=
⊕

σ a k-cell

G|σ (e0),

and a chain complex

· · · → Ck(X; G)
∂−→ Ck−1(X; G) → ·· ·

can be constructed by taking

Ck(X; G) := Hk(Xk, Xk−1; G|Xk )
∼=

⊕
σ a k-cell

G|σ (e0)

and defining ∂ , as in the singular case, by

∂

( ∑
σ a k-cell

cσ σ

)
=

[ ∑
σ a k-cell

(([σ01] · cσ

)
∂0σ +

k∑
i=1

(−1)icσ ∂iσ

)]

where cσ ∈ G|σ(e0) and
∑

σ a k-cell cσ σ represents the element
⊕

σ a k-cell cσ ∈ ⊕
σ a k-cell G|σ(e0) .

However unless the CW complex structure is actually a simplicial or cell complex structure, we note
that on the right-hand side of the equality, the faces ∂iσ themselves may not be (k − 1)-cells of the
CW complex, but the full sum is a (k − 1)-cycle of S ·(Xk−1, Xk−2; G|Xk−1 ) and can be rewritten as a
homologous sum of (k−1)-cells with coefficients in G . It can be shown [Wh2] that the k-th homology
group of the chain complex (C·(X; G), ∂) is isomorphic to Hk(X; G). So the homology of (C·(X; G), ∂)

is independent of the choice of the CW-complex decomposition of X .
Similarly the relative singular cohomology group of (Xk, Xk−1) with local coefficients in G|Xk de-

composes as
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Hk(Xk, Xk−1; G|Xk )
∼=

∏
σ a k-cell

Hk(�k, ∂�k; G|σ (e0)) ∼=
∏

σ a k-cell

G|σ (e0),

and a cochain complex

· · · → Ck(X; G)
δ−→ Ck+1(X; G) → ·· ·

can be constructed by taking

Ck(X; G) := Hk(Xk, Xk−1; G|Xk )
∼=

∏
σ a k-cell

G|σ (e0)

and defining δ, as in the singular case, by

δ

( ∏
σ a k-cell

cσ σ

)
=

[ ∏
τ a (k+1)-cell

(([τ01]−1 · c∂0τ

) +
k+1∑
i=1

(−1)ic∂iτ

)
τ

]
,

where
∏

σ a k-cell cσ σ represents the function sending σ to cσ ∈ G|σ(e0) . However similar to the ho-
mology case, unless the CW complex structure is a simplicial or cell complex structure, ∂iτ themselves
may not be k-cells of the CW complex for a (k + 1)-cell τ , and hence the right-hand side has to be
suitably interpreted. It can be shown [Wh2] that the k-th homology group of the cochain complex
(C ·(X; G), δ) is isomorphic to Hk(X; G). So the homology of (C ·(X; G), δ) is also independent of the
choice of the CW-complex decomposition of X . We remark that [σ ◦ ρ] = −[σ ] in Hk(Xk, Xk−1;Z)

when ρ is a reflection on Rk+1 (preserving �k), and hence if we replace a cell σ in a CW-complex
structure by the “same” cell with the opposite orientation, then the coefficient cσ in a homology or
cohomology class changes its ±-sign.

Let us now recall the top Whitney class wn(E ) of a vector bundle E → M over an n-dimensional
manifold M as introduced originally by Whitney in [Wn] and then formalized by Steenrod [St1] in
the context of cohomology with local coefficients. For the convenience of discussion, we endow E
continuously with fiberwise inner products and hence the sphere bundle S(E ) can be identified with
the unit sphere bundle S(E ).

We first recall a statement from [Wn] in the following form and provide a detailed proof.

Proposition 10. Let X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X be the skeletons of a CW complex X and let E → X be a
rank-N Riemannian vector bundle with N � n. For any (continuous) cross section sn−1 : Xn−1 → S(E ) which
exists, there are (continuous) cross sections si : Xi → S(E ) over the i-skeleton Xi ⊂ X for all 0 � i < n − 1,
such that {si(x): k � i � n − 1} is an orthonormal set in S(E |x) for all x ∈ Xk for any 0 � k � n − 1.

Proof. We prove by induction on n. When n = 1, the statement is clearly true since X0 is a discrete
set of points in X . As an induction hypothesis, we assume that for any (N − 1)-dimensional inner
product vector bundle E ′ → Xn−1, such cross sections si : Xi → S(E ′) for 0 � i � n − 2 exist.

By Theorem 1.2 of Chapter 8 of [Hu], E restricted to Xn−1 contains the trivial 1-dimensional sub-
bundle R = Xn−1 × R over Xn−1, and hence there is a cross section sn−1 : Xn−1 → S(R) ⊂ S(E ).
On the other hand, any such a cross section sn−1 : Xn−1 → S(E ) determines a copy of the trivial
1-dimensional subbundle R in E , and hence E |Xn−1 = R ⊕ R⊥ where the orthogonal complement
R⊥ → Xn−1 of R in E |Xn−1 is an (N − 1)-dimensional Riemannian vector bundle over Xn−1. So
by induction hypothesis, there are cross sections si : Xi → S(R⊥) ⊂ S(E |Xn−1) over each Xi for all
0 � i � n − 2, such that {si(x): k � i � n − 2} is an orthonormal set in S(R⊥|x) for all x ∈ Xk for all
0 � k � n − 2. Since sn−1 takes value in R while si takes value in R⊥ for all 0 � i � n − 2, we have
{si(x): k � i � n − 1} an orthonormal set in S((R ⊕ R⊥)|x) = S(E |x) for all x ∈ Xk . �
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Now we consider the case of an n-dimensional manifold X = M and a rank-n Riemannian vector
bundle E → M , with both having the same dimension n > 1. For such a case, the above CW-complex
structure on X = M can be assumed to be a simplicial complex structure as a result of a triangulation
of the manifold M , which exists [Ca,Wh1,Mkr1].

We define the Whitney class in terms of a cell complex structure on the manifold, which is a
structure stronger than the CW complex structure, but weaker than the simplicial complex structure.
Roughly speaking, a cell complex structure [St2] on M gives rise to a CW decomposition X0 ⊂ X1 ⊂
X2 ⊂ · · · ⊂ Xn = M such that each k-cell σ : �k → M is a homeomorphism onto σ(�k) ⊂ Xk such that
σ(∂�k) is a disjoint union of the “interiors” σi(�ki \∂�ki ) of finitely many ki -cells σi with ki < k.

Applying the above theorem to a cell complex decomposition of M , we see that for each n-cell
σ : �n → M , since σ(�n) is homeomorphic to �n and hence contractible, E |σ(�n) is a trivial vector
bundle. So the inclusion map

ισ (�n),x : S(E |x) ↪→ S(E |σ (�n)) ≈ σ(�n) × Sn−1

induces a group isomorphism

πn−1(ισ (�n),x) : πn−1
(
S(E |x)

) → πn−1
(
S(E |σ (�n))

) ∼= πn−1
(
Sn−1) ∼= Z

for any x ∈ σ(�n), and we get from [sn−1 ◦ σ |∂�n ] ∈ πn−1(S(E |σ(�n))),

(
πn−1(ισ (�n),σ (e0))

)−1([sn−1 ◦ σ |∂�n ]
) ∈ πn−1

(
S(E |σ (e0))

) = πn−1
(

E ◦|σ (e0)

)
where �n is identified with the standard unit n-ball Bn in a fixed orientation-compatible way with
e0 ∈ Rn+1 identified with e0 ∈ Rn . By abuse of notation, we shall denote (πn−1(ισ (�n),σ (e0)))

−1([sn−1 ◦
σ |∂�n ]) also by [sn−1 ◦ σ |∂�n ] wherever the context is clear about its meaning. The n-cocycle

∏
σ an n-cell

[sn−1 ◦ σ |∂�n ]σ ∈ Cn(M; Pn−1
(

E ◦))
then defines the top Whitney class of E

wn(E ) :=
[ ∏

σ an n-cell

[sn−1 ◦ σ |∂�n ]σ
]

∈ Hn(M; Pn−1
(

E ◦)) ∼= Hn(M; G∧n E ),

which is known to be a well-defined invariant of E , independent of the choice of the cross sec-
tion sn−1 over Xn−1 and the cell complex decomposition of M [St1,Wh2]. Furthermore since normaliz-
ing a cross section s′

n−1 of E ◦|Xn−1 does not change the homotopy class [s′
n−1 ◦σ |∂�n ] ∈ πn−1(E ◦|σ(e0)),

the cross section sn−1 in the above definition of wn(E ) can be any cross section of E ◦|Xn−1 instead
of S(E ◦)|Xn−1 .

We remark that when M is oriented and the vector bundle E is also oriented, say, by an iso-
morphism χ : M × R → ∧n E , the top Whitney class wn(E ) coincides with the Euler class e(E ,χ) ∈
Hn(M;Z), when Hn(M; Pn−1(E ◦)) is identified with Hn(M;Z) via χ . In such a case, the obstruc-
tion to E having a nowhere vanishing cross section is exactly the non-vanishing of the Euler class
e(E ,χ) ∈ Hn(M;Z) of E , and the top Stiefel–Whitney class swn(E ) of E is the image of e(E ,χ) un-
der the canonical homomorphism Hn(M;Z) → Hn(M;Z/2Z) [MiSf]. When the orientability of E or M
is not assumed, we still have the following known fact.

Theorem 11. (See [St2].) A rank-n vector bundle E over an n-dimensional compact manifold M has a nowhere
vanishing cross section if and only if wn(E ) = 0 in Hn(M; Pn−1(E ◦)) ∼= Hn(M; G∧n E ).
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To get some basic insight, we note that half of the above theorem can be easily proved as follows.
If E has a nowhere vanishing cross section s : M → E ◦ , then for the cross section sn−1 := s|Xn−1

over Xn−1 in a fixed cell complex decomposition X0 ⊂ · · · ⊂ Xn = M , since the function sn−1 ◦ σ |∂�n

defined on ∂�n ≈ ∂Bn extends continuously to the function sn−1 ◦σ |�n defined on �n ≈ Bn , we have
[sn−1 ◦ σ |∂�n ] = 0 in πn−1(E ◦|σ(e0)), for any n-cell σ . Thus wn(E ) = 0.

When (
∧n E ) ⊗ (

∧n T M) is a trivial line bundle for a compact manifold, the above proposition
can be derived from the Euler–Hopf–Poincaré Theorem in differential geometry [GrHlVa], which tells
us that the sum of well-defined indices of a cross section of E transversal to its zero section is
independent of the choice of the cross section. But when (

∧n E )⊗(
∧n T M) is a non-trivial line bundle,

the above proposition provides some interesting result, to be discussed in the next section, which does
not seem to be derivable from Euler–Hopf–Poincaré Theorem.

6. Poincaré–Steenrod duality and indices

In this section, we recall Steenrod’s result on Poincaré duality between homology and cohomology
groups with local coefficients.

Let K := ∧n T ∗M , called the canonical bundle of an n-dimensional manifold M . For any bundle G
of abelian groups over M , we define a companion bundle as the tensor product of bundles of abelian
groups

G′ := G ⊗ GK∗

where for all x ∈ M ,

G′|x = G|x ⊗ GK∗ |x ∼= G|x ⊗ Z ∼= G|x

identifying, in a non-canonical way, z′ ∈ G′|x with z ∈ G|x under the relation z′ = z ⊗ 1 in G′|x ∼=
G|x ⊗ Z.

For [γ ] ∈ π(M, x), the automorphism [γ ]· on G K∗ |x equals id when γ preserves the orientation
of M at x, and equals −id when γ reverses the orientation of M at x. From

[γ ] · (z ⊗ 1) = ([γ ] · z
) ⊗ ([γ ] · 1

) =
{

([γ ] · z) ⊗ 1 if [γ ]· = id on GK∗ |x,

(−[γ ] · z) ⊗ 1 if [γ ]· = −id on GK∗ |x,

for all z ⊗ 1 ∈ G|x ⊗ Z ∼= G′|x , we see that G′ coincides with the twisted bundle of groups associated
with G introduced in [St1] when M is not orientable.

Note that when M is orientable, G′ = G . Also we remark that

Pn−1
(

E ◦)′ = Pn−1
(

E ◦) ⊗ GK∗ = G∧n E ⊗ GK∗ ∼= GK∗⊗∧n E .

Furthermore, since π(M, x) acts trivially on G K∗ |x ⊗ GK∗ |x at any x ∈ M , we have G K∗ ⊗ GK∗ a trivial
bundle of groups modeled on Z, and hence

(G′)′ = (G ⊗ GK∗) ⊗ GK∗ ∼= G.

Theorem 12 (Poincaré–Steenrod duality). (See [St1].) Hk(M; G) ∼= Hn−k(M; G′) for all 0 � k � n = dim(M)

for any compact manifold M.

Corollary 13. H0(Mc; G|Mc )
∼= Hn(M; G′) and H0(Mc; G′|Mc )

∼= Hn(M; G), for any n-dimensional mani-
fold M with finitely many compact connected components, where Mc is the union of the compact connected
components of M.
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Proof. Since (G′)′ ∼= G , it suffices to prove the first equality.
Recall that any non-compact n-dimensional manifold X is homotopy equivalent to an (n − 1)-

dimensional CW complex [NR], and hence Hn(X; G) = 0 for any bundle G of groups over X . Thus

Hn(M; G′) ∼= Hn(Mc; G′|Mc )
∼= H0(Mc; G|Mc )

where Mc being the union of finitely many compact components is a compact manifold. �
Now we briefly describe how this duality isomorphism is actually implemented for the case

of k = n.
First we fix a cell complex decomposition of M . Since G K∗ restricted to the contractible set σ(�k)

is trivial for any k-cell σ , we can have G K∗ |x ’s identified as the same group, called G K∗ |σ , for all
x ∈ σ(�k) when working within the same cell σ(�k). Now there is a fundamental class

Z =
[ ∑

σ an n-cell

zσ σ

]
:=

[ ∑
σ ann-cell

[[σ |∂�n ]]σ
]

∈ Hn(M; GK∗)

where zσ := [[σ |∂�n ]] ∈ DK∗ |σ(ē)
∼= DK∗ |σ ⊂ GK∗ |σ with ē = 1

n

∑n
i=0 ei the barycenter of �n . Note

that this definition of Z is independent of the choice of orientation of an n-cell, i.e. if σ is replaced
by σ ◦ ρ then

[[σ ◦ ρ|∂�n ]](σ ◦ ρ) = (−[[σ |∂�n ]]
)
(−σ) = [[σ |∂�n ]]σ

in Hn(M; GK∗ ). For k = n, the Poincaré–Steenrod duality isomorphism is defined by[ ∑
x a 0-cell

cxx

]
∈ H0(M; G) 
→

[
−

∏
x a 0-cell

(
(τx · cx) ⊗ zx∗

)
x∗

]
∈ Hn(M; G′)

where x∗ is the n-cell corresponding to the 0-cell x in the cell complex structure dual (or recipro-
cal) [Mkr2,Le] to the fixed cell complex structure on M , and τx is a path from x to x∗(e0) in x∗(�n).

Next we recall the Euler–Hopf–Poincaré Theorem (Theorem III in Section 9.9 of [GrHlVa]) and some
corollaries, concerning a smooth cross section f : M → E of a rank-n vector bundle E over a compact
n-dimensional manifold M such that f vanishes at finitely many xi ∈ M and f is transversal to the zero
section of E at these xi ’s. We call such a smooth cross section a transversal cross section of E . When
local orientations of M and E are chosen at a zero xi , the index j( f , xi) of f at xi can be computed
as

j( f , xi) = det(d(φ̃ ◦ f ◦ ψ)|xi )

|det(d(φ̃ ◦ f ◦ ψ)|xi )|
∈ {±1}

where ψ : Bn � U ⊂ M with ψ(0) = xi is an orientation-compatible chart map of an open neigh-
borhood U of xi and φ : E |U � U × Rn is an orientation-compatible trivialization of E |U , with
φ̃ : E |U � Rn the second component function of φ. Note that the choice of local orientations of M
and E only affects the ±-sign of j( f , xi), or equivalently, we can say that the index j( f , xi) is well
defined up to a ±-sign for a transversal cross section f of E at a zero xi , for any manifold M and
vector bundle E orientable or not.

Theorem 14 (Euler–Hopf–Poincaré Theorem). If K ⊗ L is a trivial line bundle, where K = ∧n T ∗M and L =∧n E for a (smooth) rank-n vector bundle E over a compact n-dimensional manifold M with n > 1, and f is a
transversal cross section of E with ( finitely many) zeros xi , then |∑i j( f , xi)| = |ω(E )| if M is orientable, and
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|∑i j( f , xi)| = 1
2 |ω(Ẽ )| if M is non-orientable and Ẽ is the pull-back of E to an orientable double covering M̃

of M, where j( f , xi) is the index of f at xi with respect to a fixed orientation of K ⊗ L, and ω(F ) represents
the Euler number of an oriented vector bundle F over an oriented manifold. Here since E or Ẽ is orientable,
|ω(E )| or |ω(Ẽ )| is well defined.

Since the Euler class e(F ,χ) = 0 and hence ωn(F ) = 0 for any orientable vector bundle F with a
nowhere vanishing cross section over an oriented compact manifold, we have the following corollary.

Corollary 15. If K ⊗ L is a trivial line bundle, where K = ∧n T ∗M and L = ∧n E for a (smooth) rank-n vector
bundle E over a compact n-dimensional manifold M with n > 1, and either E when M is orientable or the pull-
back Ẽ of E to an orientable double covering M̃ of M when M is not orientable has a nowhere vanishing cross
section, then

∑
i j( f , xi) = 0 for any transversal cross section f of E with indices j( f , xi) at its zeros xi with

respect to any fixed orientation of K ⊗ L.

When (
∧n T ∗M) ⊗ (

∧n E ) is a non-trivial line bundle, the ambiguity of the ±-sign of the indices
j( f , xi) cannot be globally fixed over M , and we can only expect that

∑
i j( f , xi) ≡ 0 mod 2. However

to prove this, the above results from the Euler–Hopf–Poincaré Theorem do not seem to be useful.
Instead, we use Steenrod’s Poincaré duality to relate the mod-2 sum of indices to the Whitney class
of E and then prove it.

Theorem 16. If K ⊗ L is a non-trivial line bundle, where K = ∧n T ∗M and L = ∧n E for a (smooth) rank-n
vector bundle E over a compact n-dimensional manifold M with n > 1, and E has a nowhere vanishing cross
section, then for any transversal cross section f of E with ( finitely many) zeros xi , we have

∑
i j( f , xi) ≡

0 mod 2, where j( f , xi) ∈ {±1} is the index of f at xi with respect to any local orientations of E and T ∗M
at xi , i.e. f has an even number of zeros.

Proof. Since E has a non-zero cross section, we have wn(E ) = 0. Next we relate wn(E ) to the indices
j( f , xi).

Let X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = M be the skeletons of a simplicial complex structure on M such that
Xn−1 does not contain any of the zeros xi of f and for any n-cell σ : �n → X in the n-skeleton Xn , at
most one zero xi of f is contained in σ(�n\∂�n). Such a simplicial complex decomposition of M can
be obtained by refining a triangulation of M and then perturbing the interiors of some (n − 1)-cells
if necessary. We endow E with a Riemannian structure.

Fixing a homeomorphic orientation-preserving identification of �n with Bn so that e0 ∈ �n is
identified with e0 ∈ Bn and ∂�n is identified with Sn−1, we view σ as defined on Bn . If σ(Bn) does
not contain any zero xi of f , then

f ◦ σ

‖ f ◦ σ‖
∣∣∣∣
Sn−1

: Sn−1 → S(E |σ (Bn)) ≈ σ
(
Bn

) × Sn−1

extends to

f ◦ σ

‖ f ◦ σ‖ : Bn → S(E |σ (Bn)) ≈ σ
(
Bn

) × Sn−1

and hence [ f ◦σ
‖ f ◦σ‖ |Sn−1 ] = 0 in πn−1(S(E |σ(Bn)))

∼= πn−1(S(E |σ(e0))) ∼= Z.

If σ(Bn) contains a zero xi of f , say, σ(0) = xi without loss of generality, then [ f ◦σ
‖ f ◦σ‖ |Sn−1 ] =

[ f ◦σ
‖ f ◦σ‖ |rSn−1 ] in πn−1(S(E |σ(Bn)))

∼= πn−1(S(E |σ(e0))) ∼= Z for all r ∈ (0,1) where f ◦σ
‖ f ◦σ‖ |rSn−1 actually

represents the map ( f ◦σ)(r·)
‖( f ◦σ)(r·)‖ defined on Sn−1. For r sufficiently close to 0, we see that∣∣∣∣[ f ◦ σ

‖ f ◦ σ‖
∣∣∣∣

n−1

]∣∣∣∣ = ∣∣ j( f , xi)
∣∣ = 1
rS
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where j( f , xi) is the index of f at xi with respect to any local orientations of E and M at xi

(cf. [MaSh] for some relevant basic discussion of local index). So [ f ◦σ
‖ f ◦σ‖ |Sn−1 ] is a generator

of πn−1(S(E |σ(e0))) ∼= Z.
Let σi be the n-cell with σi(0) = xi , and set

ci :=
[

f ◦ σi

‖ f ◦ σi‖
∣∣∣∣
Sn−1

]
∈ πn−1

(
S(E |σ (e0))

) ∼= Pn−1
(

E ◦)∣∣
σ (e0)

a generator of Pn−1(E ◦)|σ(e0)
∼= Z. Under the Poincaré–Steenrod duality

Hn(M; Pn−1
(

E ◦)) ∼= H0
(
M; (Pn−1

(
E ◦))′)

,

we have

wn(E ) =
[ ∏

σ an n-cell

[
f ◦ σ

‖ f ◦ σ‖
∣∣∣∣
Sn−1

]
σ

]
=

[∏
i

ciσi

]
∈ Hn(M; Pn−1

(
E ◦))

identified with [∑
i

giσi(0)

]
=

[∑
i

gixi

]
∈ H0

(
M; (Pn−1

(
E ◦))′)

where

gi := (
γ −1

i · ci
) ⊗ [[σi |Sn−1 ]] ∈ (

Pn−1
(

E ◦))′∣∣
xi

∼= Z

for γi(t) := σi(te0), t ∈ [0,1], is a generator of Z, with [[σi|Sn−1 ]] ∈ DK∗ representing an orientation
of σi(B

n), and we note that σ(0)’s are the 0-cells of the cell complex structure dual to the original
simplicial complex structure on X .

Thus from wn(E ) = 0, we get 0 = [∑i gi xi] in H0(M; (Pn−1(E ◦))′) which is isomorphic to either Z

or Z2. With (Pn−1(E ◦))′ a bundle of groups modeled on Z, and gi ∈ {±1} in Z ∼= (Pn−1(E ◦))′|xi , the
condition 0 = [∑i gi xi] implies that

0
mod 2≡

∑
i

|gi| =
∑

i

1 =
∑

i

∣∣ j( f , xi)
∣∣ mod 2≡

∑
i

j( f , xi). �

7. Euler map

Before we prove our first main theorem, we point out the following natural isomorphisms for line
bundles L over an n-dimensional manifold M with K := ∧n T ∗M ,

(K ⊗ L∗)◦

Isom(L, K)
α

Isom(K∗, L∗) (K ⊗ L∗)◦ (K∗ ⊗ L)◦

h h∗

Isom(L, K)
β

Isom(K, L)

g g−1
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which induces an isomorphism

(β ◦ α)∗ : Hk(M; GK⊗L∗) ∼= Hk(M; GK∗⊗L).

Next, we define the “differential” Ds|x0 : Tx0 X → V |x0 of a smooth cross section s of a smooth
vector bundle V over a manifold X at a point (a zero) x0 ∈ X with s(x0) = 0. Indeed using V |x0 as a
prototype of the fibers of V around x0, any (smooth) local trivialization of V at x0 is of the form

φ : V|U → U × (V|x0)

for some open neighborhood U of x0 with φ|V |x0
= id on V |x0 . (Here we use the vector space V |x0

and an open subset U ⊂ X instead of, respectively, a concrete Euclidean space and an open set in a
Euclidean space as more commonly used, because in our following definition of Ds|x0 , the concept
used is well known to be independent of the choice of such explicit Euclidean objects.) We define

Ds|x0 ≡ d(φ̃ ◦ s)|x0 : Tx0 X → V|x0

as the total derivative of the function (φ̃ ◦ s)|U : U → V |x0 at x0 where φ̃ : V |U → V |x0 is the second
component function of φ. The well-definedness of Ds|x0 is given by the following lemma.

Lemma 17. Let V be a smooth vector bundle over a manifold X. If s : X → V is a smooth cross section of V
with s(x0) = 0 at a point x0 ∈ X and φi : V |Ui → Ui × V |x0 with i = 1,2 are smooth local trivializations of V
over some open neighborhoods Ui of x0 with φi |V |x0

= id on V |x0 , then d(φ̃1 ◦ s)|x0 = d(φ̃2 ◦ s)|x0 .

Proof. Replacing Ui by U1 ∩ U2, we may assume U := U1 = U2. Then φ1 ◦ φ−1
2 : U × V |x0 → U × V |x0

is of the form

(
φ1 ◦ φ−1

2

)
(x, v) = (

x,ψ(x)(v)
)

for some smooth function ψ : U → End(V |x0 ) such that

ψ(x) ◦ φ̃2|V|x = φ̃1|V|x : V|x → V|x0

for any x ∈ U with ψ(x0) = id on V |x0 and hence

(
ψ(x)

)(
φ̃2

(
s(x)

)) = φ̃1
(
s(x)

)
for all x ∈ U . Thus by the product rule for differentiation, we get

d(φ̃1 ◦ s)|x0 = (
(dψ)|x0

)(
φ̃2

(
s(x0)

)) + (
ψ(x0)

)(
d(φ̃2 ◦ s)|x0

)
= (

ψ(x0)
)(

d(φ̃2 ◦ s)|x0

) = d(φ̃2 ◦ s)|x0

since s(x0) = 0 and hence φ̃2(s(x0)) = 0. �
Notation. Now we fix some notations that we use subsequently. Let X = Spec(A) be a real smooth
affine variety and let M = M(X) be the manifold of real points in X with dim(M) = n > 1. Further-
more we set R(X) := S−1 A for the multiplicative set S of all functions f ∈ A that do not vanish at
any real point of X . We note that M has finitely many compact connected components [Mi] and hence
the union Mc of all compact connected components of M is a compact submanifold of M .
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We recall that for a finitely generated projective module P over R(X), there is a unique vector
bundle V (P ) over M such that Γ (V (P )) ∼= P ⊗R(X) C(M) [Sw], where Γ (E ) is the space of continuous
cross sections of E and C(M) is the space of all real-valued continuous functions on M .

Lemma 18. Let J = ⋂N
i=1 mi for finitely many maximal ideals mi of R(X) corresponding to xi ∈ M, and let

P be a projective R(X)-module of rank n = dim(M) which determines a vector bundle E → M by Γ (E ) ∼=
P ⊗R(X) C(M). Any surjective R(X)-homomorphism ω : P � J determines an element gi ∈ Isom(E |xi , T ∗

xi
M)

for each i, satisfying

gi
(

f (xi)
) = d

(
ω( f )

)∣∣
xi

for all f ∈ P ⊂ Γ (E ), and a smooth cross section s of the dual bundle of E ∗ → M with s ◦ f = ω( f ) for all
f ∈ P ⊂ Γ (E ), which vanishes exactly at the xi ’s and intersects the zero section transversally at the zeros xi ,
such that

Ds|xi = g∗
i ∈ Isom

(
Txi M, E ∗|xi

)
.

Proof. First we recall that under the well-known relation Γ (E ) ∼= P ⊗R(X) C(M) between projective
modules P and vector bundles E [Sw], we have an isomorphism

η ≡
N⊕

i=1

[ηi] :
P

J P
∼=

N⊕
i=1

P

mi P
∼=

N⊕
i=1

Γ (E )

mi P ⊗R(X) C(M)

∼=−→
N⊕

i=1

E |xi

implemented by the evaluation maps

ηi : f ∈ Γ (E ) 
→ f (xi) ∈ E |xi

that appear in the short exact sequence

0 → mi P ⊗R(X) C(M) → P ⊗R(X) C(M) ∼= Γ (E )
ηi−→ E |xi

∼= Rn → 0

which with P an R(X)-projective module, is derived from the short exact sequence

0 → mi P → P → P/(mi P ) ∼= Rn → 0.

On the other hand, there is also a well-known isomorphism

di : [ f ] ∈ J/(mi J )
∼=
−→ df |xi ∈ T ∗

xi
M

for each i, which gives rise to an isomorphism

N⊕
di : [ f ] ∈ J/ J 2 ∼=

N⊕ J

mi J

∼=
−→
N⊕

df |xi ∈
N⊕

T ∗
xi

M.
i=1 i=1 i=1 i=1
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So a surjective R(X)-homomorphism ω : P � J induces the commuting diagram

⊕N
i=1 E |xi

⊕N
i=1 T ∗

xi
M

ω/ J ≡ ω
⊗

R(X)(R(X)/ J) : P/( J P ) J/ J 2

ω/mi ≡ ω
⊗

R(X)(R(X)/mi) : P/(mi P )

ηi

J/(mi J )

di

E |xi T ∗
xi

M

where the horizontal map ω/mi for each i, and hence ω/ J , is a linear isomorphism. Now each

gi := di ◦ (ω/mi) ◦ η−1
i ∈ Isom

(
E |xi , T ∗

xi
M

)
determined by ω clearly satisfies

gi
(

f (xi)
) = (

di ◦ (ω/mi)
)
( f ) = di

([ f ]) = df |xi .

The surjection ω : P � J also induces a linear functional

s(x) : E |x ∼= P/(mx P ) � J/(mx ∩ J ) ⊂ R(X)/mx ∼= R

at each x ∈ M , where mx is the maximal ideal of R(X) corresponding to x. Since J ⊂ mx if and only
if mx = mi = mxi , i.e. x = xi , for some i, we get s(x) = 0 if and only if x = xi for some i. Note that
s( f (x)) = ω( f )(x) with ω( f ) ∈ J ⊂ C∞(M) for all f ∈ P which contains all coordinate cross sections
of E in a smooth local trivialization at any x ∈ X , and hence s is a smooth cross section of E ∗ .

It remains to show that Ds|xi = g∗
i for each i, which then clearly implies that Ds|xi ∈

Isom(Txi M, E ∗|xi ) and hence s is transversal to the zero cross section at each xi .
To show that Ds|xi = g∗

i , it is helpful to first fix some basis for each E |xi constructed from suitably
chosen cross sections f j ∈ P ⊂ Γ (E ) as follows.

Fixing a set of generators [ω( f1)], . . . , [ω( fn)] of J/ J 2 with f i ∈ P , we have already shown that

gi : f j(xi) ∈ E |xi 
→ d
(
ω( f j)

)∣∣
xi

∈ T ∗
xi

M

for each 1 � j � n and 1 � i � N .
Note that with d(ω( f j))|xi linearly independent at each i, these f j ’s give rise to a chart map

(
ω( f1), . . . ,ω( fn)

) : Ui → Rn

locally at each xi on some open neighborhood Ui of xi . Furthermore, f j(xi) = g−1
i (d(ω( f j))|xi ), 1 �

j � n, are linearly independent at each xi . So by continuity, we may assume that f1(x), . . . , fn(x) ∈⊕N
i=1 E |x are linearly independent at each x ∈ Ui by taking Ui sufficiently small, and hence we get a

trivialization

ψi : E |Ui → Ui × (E |xi )

of E , defined by the well-defined inverse isomorphism
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ψ−1
i :

(
x,

n∑
j=1

a j f j(xi)

)
∈ Ui × (E |xi )

∼=
−→
n∑

j=1

a j f j(x) ∈ E |x ⊂ E |Ui .

Clearly ψi induces a trivialization

φi : E ∗|Ui → Ui × (E |xi )
∗

of E ∗ satisfying that if ξ ∈ E ∗ and ξ( f j(x)) = a j for all 1 � j � n, then φi(ξ) = (x, φ̃i(ξ)) where the
second component function of φ̃i satisfies(

φ̃i(ξ)
)(

f j(xi)
) = a j

for all 1 � j � n.
In particular, since s(x)( f j(x)) = ω( f j)(x) for all j, the function (φ̃i ◦ s)|Ui : Ui → (E |xi )

∗ satisfies(
(φ̃i ◦ s)(x)

)(
f j(xi)

) = (
φ̃i

(
s(x)

))(
f j(xi)

) = ω( f j)(x)

for all x ∈ Ui , which implies that the linear map

Ds|xi = d(φ̃i ◦ s)|xi : Txi M → (E |xi )
∗

satisfies (
(Ds|xi )(·)

)(
f j(xi)

) = (
d(φ̃i ◦ s)|xi (·)

)(
f j(xi)

) = d
(
ω( f j)

)∣∣
xi
(·).

Thus for all 1 � j � n and v ∈ Txi M ,(
gi

(
f j(xi)

))
(v) = d

(
ω( f j)

)∣∣
xi
(v) = (

(Ds|xi )(v)
)(

f j(xi)
)
,

i.e. for all w ∈ E |xi and v ∈ Txi M , (
gi(w)

)
(v) = (

(Ds|xi )(v)
)
(w),

or equivalently, Ds|xi = g∗
i . �

Now we briefly recall the definition of the Euler class group E(R(X), L). There are mainly two ways
to define E(R(X), L), and here we take the first approach that was initiated by Nori ([MS], also see
Remark 4.7 of [BRS3]). Let F be the free abelian group generated by (m,ω) where m is a maximal
ideal of R(X) and

ω : L/(mL)
∼=−→ ∧n(m/m2)

is an isomorphism, called a local orientation of m. An isomorphism ω J : L/( J L)
∼=−→ ∧n

( J/ J 2) called

a local orientation of J , where J = ⋂N
i=1 mi for distinct maximal ideals mi , induces ωi : L/(mi L)

∼=−→∧n
(mi/m2

i ) for each i, and we denote

( J ,ω J ) :=
N∑

(mi,ωi) ∈ F .
i=1
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With the canonical isomorphisms
∧n

(L ⊕ R(X)n−1) ∼= L and hence

∧n
(

L ⊕ R(X)n−1

J (L ⊕ R(X)n−1)

)
∼= L

J L
,

a local orientation ω J determines an equivalence class of isomorphisms

ω̃ J : L ⊕ R(X)n−1

J (L ⊕ R(X)n−1)
→ J/ J 2

with ω J = ∧nω̃ J , where ω̃ J ,1 ∼ ω̃ J ,2 when ω̃ J ,1 = ω̃ J ,2 ◦ η for some

η ∈ S LR(X)/ J

(
L ⊕ R(X)n−1

J (L ⊕ R(X)n−1)

)
.

Let H be the subgroup of F generated by ( J ,ω J ) ∈ F with ω J a global orientation, i.e. ω J liftable to a
surjective homomorphism

ω : L ⊕ R(X)n−1 � J

in the sense that ω J = ∧n
(ω/ J ) where

ω/ J ≡ ω
⊗
R(X)

(
R(X)/ J

) : L ⊕ R(X)n−1

J (L ⊕ R(X)n−1)
� J/ J 2.

Then we define E(R(X), L) := F/H .

Theorem 19. Let X = Spec(A) be a smooth real affine variety with dim(X) = n > 1 and let M be the n-
dimensional manifold of real points of X . For the line bundle L (with Γ (L) = L ⊗R(X) C(M)) associated with
a projective R(X)-module L of rank one and K := ∧n T ∗M, there is a canonical group isomorphism

ε : E
(
R(X), L

) → H0(Mc; GK∗⊗L|Mc )

where Mc is the union of all compact connected components of M.

Proof. (i) First we construct a group homomorphism ε′ : F → S0(Mc; GK∗⊗L|Mc ). Let Mc be the union
of all compact connected components of M . Note that(

K∗ ⊗ L
)◦ ∼= Isom

(∧n T ∗M,
∧n(L ⊕ Rn−1)) ∼= det

(
Isom

(
T ∗M, L ⊕ Rn−1))

for the trivial line bundle R over M , and hence

DK∗⊗L ∼= det
(
Isom

(
T ∗M, L ⊕ Rn−1))/R+.

For any ideal J = ⋂N
i=1 mi where mi is the maximal ideal corresponding to a distinct point xi ∈ M ,

any local L-orientation ω J : L/( J L)
∼=−→ ∧n

( J/ J 2) determines an equivalence class of isomorphisms

ω̃ J : L ⊕ R(X)n−1

n−1
� J/ J 2
J (L ⊕ R(X) )
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with ω J = ∧nω̃ J , which can be decomposed into a direct sum of

ω̃i : L ⊕ R(X)n−1

mi(L ⊕ R(X)n−1)
� J/(mi J )

with ωi = ∧nω̃i .
By Lemma 18, ω̃ J determines

gi ∈ Isom
(

L|xi ⊕ Rn−1, T ∗
xi

M
)

at each xi . In fact, from its proof, we actually have gi = ω̃i after the canonical identifications of their
domains and range spaces. Furthermore

∧n gi ∈ det(Isom(L|xi ⊕ Rn−1, T ∗
xi

M)) depends only on the
equivalence class of ω̃ J , i.e. on ω J .

Now with

[∧n g−1
i

] ∈ (DK∗⊗L)|xi ⊂ (GK∗⊗L)|xi

for each i, we get a singular 0-cycle

ε′( J ,ω J ) :=
∑

i with xi∈Mc

[∧n g−1
i

]
xi ∈ S0(Mc; GK∗⊗L|Mc )

with local coefficients in G K∗⊗L . We note that ε′(mx,ω) = 0 for the maximal ideal mx determined by
any x /∈ Mc , and for ( J ,ω J ) = ∑N

i=1(mi,ωi) in F , it is straightforward to check that

ε′( J ,ω J ) =
N∑

i=1

ε′(mi,ωi).

So ε′ well defines a group homomorphism

ε′ : F → S0(Mc; GK∗⊗L|Mc ).

(ii) If ω J is actually a global L-orientation, i.e. ω J = ∧n
(ω/ J ) for some R(X)-epimorphism

ω : L ⊕ R(X)n−1 � J , then we claim, and prove below, that ε′( J ,ω J ) is a singular 0-boundary with
local coefficients in G K∗⊗L , i.e. [ε′( J ,ω J )] = 0 in H0(Mc; GK∗⊗L|Mc ), which then implies that ε′ in-
duces a well-defined group homomorphism

ε : E
(
R(X), L

) = F/H → S0(Mc; GK∗⊗L|Mc )

∂(S1(Mc; GK∗⊗L|Mc ))
= H0(Mc; GK∗⊗L|Mc ).

By Lemma 18, the epimorphism ω : L ⊕ R(X)n−1 � J determines a transversal cross section s of
the bundle L∗ ⊕ Rn−1 = (L|xi ⊕ Rn−1)∗ vanishing only at xi ’s such that

hi := Ds|xi = g∗
i ∈ Isom

(
Txi M, L∗|xi ⊕ Rn−1).

So [∧nhi] ∈ (DK⊗L∗)|xi ⊂ (GK⊗L∗)|xi
∼= Z satisfies

∣∣[∧nhi
]∣∣ = ∣∣Indxi (s)

∣∣ = ∣∣ j(s, xi)
∣∣ = 1
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[MaSh] where the index j(s, xi) is globally well defined if K ⊗ L∗ is trivial, and is only defined up to
a ±-sign if K ⊗ L∗ is non-trivial.

With n > 1, the vector bundle (L ⊕ Rn−1)∗ ∼= L∗ ⊕ Rn−1 has a nowhere vanishing cross section
over each compact component M ′ of M , and hence by Corollary 15 and Theorem 16, we have∣∣∣∣ ∑

i with xi∈M ′
j(s, xi)

∣∣∣∣{= 0 if (K ⊗ L∗)|M ′ is trivial,

≡ 0 mod 2 if (K ⊗ L∗)|M ′ is non-trivial,

which then implies[ ∑
i with xi∈M ′

[∧nhi
]
xi

]
= 0 ∈ H0

(
M ′; GK⊗L∗ |M ′

)
{= Z if (K ⊗ L∗)|M ′ is trivial,

≡ Z/2Z if (K ⊗ L∗)|M ′ is non-trivial.

Now under the natural isomorphism

β ◦ α : h ∈ K ⊗ L∗ 
→ (
h∗)−1 ∈ K∗ ⊗ L

we get

(β ◦ α)∗ : 0 =
[ ∑

i with xi∈Mc

[∧nhi
]
xi

]
∈ H0(Mc; GK⊗L∗ |Mc )


→
[ ∑

i with xi∈Mc

[∧n g−1
i

]
xi

]
∈ H0(Mc; GK∗⊗L|Mc )

since H0(Mc, G) ∼= ⊕
M′ H0(M ′; G|M′ ) for any G , and hence

[
ε′( J ,ω J )

] =
[ ∑

i with xi∈Mc

[∧n g−1
i

]
xi

]
= 0 in H0(Mc; GK∗⊗L|Mc ).

So we conclude that

ε : ( J ,ω J ) ∈ E
(
R(X), L

) 
→
[ ∑

xi∈Mc

[∧n g−1
i

]
xi

]
∈ H0(Mc; GK∗⊗L|Mc )

well defines a group homomorphism.
(iii) Let M ′ be any compact connected component of M . Fix a maximal ideal m corresponding to a

point x ∈ M ′ and a local L-orientation

ωm : L/(mL) → ∧n(m/m2)
which determines an element g ∈ Isom(L|x ⊕ Rn−1, T ∗

x M), we have

ε(m,ωm) = [[∧n g−1]x
] �= 0 in H0(M ′; GK∗⊗L|M ′).
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Indeed since M ′ is connected, H0(M ′, GK∗⊗L|M′ ) is isomorphic to (G K∗⊗L)x ∼= Z modulo the action
of π1(M ′; x) by automorphisms of Z, which is either Z if (K∗ ⊗ L)|M′ is a trivial line bundle, or Z/2Z

if (K∗ ⊗ L)|M′ is a non-trivial line bundle. Since

[∧n g−1] ∈ DK∗⊗L|x ∼= {±1} ⊂ Z ∼= GK∗⊗L|x

is a generator of the group G K∗⊗L|x ∼= Z, the class [[∧n g−1]x] �= 0 in the quotient group
H0(M ′, GK∗⊗L|M′ ) and is in fact a generator of the group H0(M ′, GK∗⊗L|M′ ). Thus we have proved
that

ε : E
(
R(X), L

) → H0(Mc; GK∗⊗L|Mc )
∼=

⊕
M ′

H0(M ′, GK∗⊗L|M ′)

is a non-zero surjective homomorphism.
Let Mi be the compact connected components of M with K|Mi

∼= L|Mi and let M j be the compact
connected components of M with K|M j � L|M j . We recall that by [BhDaMa], we have

E
(
R(X), L

) ∼=
(⊕

i

Z

)
⊕

(⊕
j

Z2

)
.

On the other hand, we also have H0(Mi, GK∗⊗L) ∼= Z and H0(M j, GK∗⊗L) ∼= Z2. Hence

E
(
R(X), L

) ∼= H0(Mc; GK∗⊗L|Mc )
∼=

⊕
M ′

H0(M ′; GK∗⊗L|M ′)

over all compact connected components M ′ of M .
Now we see that ε is a group homomorphism between groups of the same structure (

⊕
i Z) ⊕

(
⊕

j Z2). So it is easy to verify that this non-zero surjective homomorphism ε is indeed an isomor-
phism. �
Remark. Since (K∗ ⊗ L)◦ ∼= (K ⊗ L∗)◦ naturally, we can instead work with the map

( J ,ω J ) 
→
[∑

i

[∧n gi
]
xi

]
∈ H0(Mc; GK⊗L∗ |Mc )

which also well defines a canonical isomorphism from E(R(X), L) to H0(Mc, GK⊗L∗ |Mc ).

8. Whitney map

In this section, we show that under the Poincaré–Steenrod duality between homology and coho-
mology groups with local coefficients, the isomorphism ε in Theorem 19 coincides with the Whitney
class map for vector bundles.

Proposition 20. Let s be a smooth cross section of a smooth rank-n vector bundle E over an n-dimensional
manifold M with K := ∧n T ∗M for n > 1, and let σ : Bn → M be a continuous injective map with x = σ(0).
If s has an isolated zero at x and is transversal to the zero section at x, then

[∧n
(Ds|x)

] ⊗ [[σ |Sn−1 ]] = [s ◦ σ |Sn−1 ] in GK⊗∧n E |x ⊗ GK∗ |x ∼= G∧n E |x
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where K ⊗ K∗ ⊗∧n E is naturally identified with
∧n E via the canonical pairing a ⊗b ∈ K ⊗ K∗ 
→ b(a) ∈ Z,

and [s ◦ σ |Sn−1 ] ∈ πn−1(E ◦|σ(Bn)) which is identified with πn−1(E ◦|x) ≡ G∧n E |x.

Proof. Clearly [s ◦ σ |Sn−1 ] = [s ◦ σ |rSn−1 ] in πn−1(E ◦|x) ≡ G∧n E |x and [[σ |Sn−1 ]] = [[σ |rSn−1 ]] in
GK∗ |x ≡ Qx for all r ∈ (0,1), where σ |rSn−1 represents the function σ(r·)|Sn−1 . So without loss of
generality, we may assume that σ(Bn) ⊂ U for some simple open neighborhood U of x, in which
s has x as the only zero, with a fixed smooth chart map φ : U → Bn such that φ(x) = 0, and that
σ(Bn) is as close to x as we need.

By Proposition 8, [[σ |Sn−1 ]] ≡ [(dφ|x)−1 ◦ φ ◦ σ |Sn−1 ] in Qx ≡ Pn−1((T M)◦)|x ≡ GK∗ |x . On the other
hand, let ψ : E |U → U × E |x be a smooth trivialization with ψ(v) = (x, v) for all v ∈ E |x . Then Ds|x =
d(ψ̃ ◦ s)|x where ψ̃ is the second component function of ψ . Note that since s is transversal to the
zero section, d(ψ̃ ◦ s)|x is invertible.

Since the concepts involved are coordinate-free, i.e. well defined, independent of chart maps, we
can identify U with Bn (and x with 0) by the chart map φ in order to simplify the presentation.
So in the following, we keep in mind that U = Bn , x = 0, and TxU = Rn ⊃ U . In particular, we have
[[σ |Sn−1 ]] ≡ [σ |Sn−1 ] in πn−1((TxU )◦)| ≡ GK∗ |x .

Note that [s ◦ σ |Sn−1 ] = [ψ̃ ◦ s ◦ σ |Sn−1 ] in πn−1(E ◦|x). On the other hand, since the invertible linear
map

Ds|x = d(ψ̃ ◦ s)|x : TxU = Rn → E |x ∼= Rn

is the linear approximation to ψ̃ ◦ s at x ∈ U ⊂ TxU = Rn and σ(Bn) can be assumed to be as close
to x as needed, by an argument used for a similar situation in the proof of Proposition 8, we get

[Ds|x ◦ σ |Sn−1 ] = [ψ̃ ◦ s ◦ σ |Sn−1 ] = [s ◦ σ |Sn−1 ]
in πn−1(E ◦|x) ≡ G∧n E |x .

It remains to show that [Ds|x ◦ σ |Sn−1 ] ≡ [∧n
(Ds|x)] ⊗ [σ |Sn−1 ]. Note that the canonical pairing

GK⊗∧n E |x ⊗ GK∗ |x = GHom(K∗,
∧n E )|x ⊗ GK∗ |x

∼=−→ G∧n E |x

identifies [h] ⊗ [v] ∈ DHom(K∗,
∧n E )|x ⊗ DK∗ |x with [h(v)] ∈ D∧n E |x where h ∈ Isom(K|x,

∧n E |x) and
v ∈ (K∗)◦|x . From the proof of Proposition 6, we have G∧n E |x ≡ πn−1(E ◦|x) by the canonical identifi-
cation

F E : [∧n B
] ⊗

{±1}
k ∈ D∧n E |x ⊗

{±1}
Z = G∧n E |x

∼=
−→ k[ f B |Sn−1 ] ∈ πn−1
(

E ◦|x
)

where B is an ordered basis of E |x and f B ∈ Isom(Rn, E |x) sends the standard basis of Rn to B .
Similarly, we have G K∗ |x = G∧n T M |x ≡ πn−1((Tx M)◦) by the canonical identification F T M([∧nC]) =
[ fC |Sn−1 ] for ordered basis C of Tx M . Since

∧n
(Ds|x) ∈ Isom(

∧n Tx M,
∧n E |x) sends

∧nC to∧n
(Ds|x(C)) for any ordered basis C of T M|x while πn−1(Ds|x) sends [ fC |Sn−1 ] to

[Ds|x ◦ fC |Sn−1 ] = [ f(Ds|x(C))|Sn−1 ],
we have the commuting diagram

[∧n
(Ds|x)] : GK∗ |x

F T M ≡
G∧n E |x

F E ≡
πn−1(Ds|x) πn−1((TxM)◦) πn−1(E ◦|x)
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where [∧n
(Ds|x)] ∈ DK⊗

∧n E |x is viewed as a homomorphism G K∗ |x → G∧n E |x via the above canon-

ical pairing. This commuting diagram shows that [∧n
(Ds|x)] ≡ πn−1(Ds|x) under canonical identifica-

tions. Thus under the above identification by pairing, we get

[∧n
(Ds|x)

] ⊗ [σ |Sn−1 ] ≡ πn−1(Ds|x)
([σ |Sn−1 ]) = [Ds|x ◦ σ |Sn−1 ]. �

Let P be a projective R(X)-module of rank n with an orientation χ : L
∼=−→ ∧n P , and let E be the

corresponding rank-n vector bundle over the n-dimensional manifold M of real points in X , i.e. with
P ⊗R(X) C(M) = Γ (E ). Then induced by χ , there is a vector bundle isomorphism

χ : L ∼=−→ ∧n E

still denoted by χ , the meaning of which should be clear from the context. For K := ∧n T ∗M , we
have

K∗ ⊗ L = Hom(K, L)
Hom(id,χ)∼= Hom

(∧n T ∗M,
∧n E

) ∼= det
(
Hom

(
T ∗M, E

))
.

The element e(P ,χ) in E(R(X), L) determined by P and χ can be described as follows [BRS3].

There is a surjective homomorphism φ : P � J , where J = ⋂N
i=1 mi for some distinct maximal ide-

als mi corresponding to xi , and e(P ,χ) = ( J ,ω J ) with ω J = ∧nω̃ J for some isomorphism

ω̃ J : (L/ J L) ⊕ (
R(X)/ J

)n−1 → J/ J 2

defined by the commuting diagram

(L/ J L) ⊕ (R(X)/ J)n−1

γ

ω̃ J

J/ J 2

P/ J P

φ/ J

where γ : (L/ J L) ⊕ (R(X)/ J )n−1 → P/ J P is an isomorphism with

∧nγ = χ/ J : L/ J L ∼= ∧n(
(L/ J L) ⊕ (

R(X)/ J
)n−1) → ∧n

(P/ J P ),

and for all f ∈ P ⊂ Γ (E ),

(φ/ J )
(

f (xi)
) = d

(
φ( f )

)∣∣
xi

∈ T ∗
xi

M ⊂
⊕

i

T ∗
xi

M ∼= J/ J 2.

By Lemma 18, φ : P � J determines gi ∈ Isom(E |xi , T ∗
xi

M) and a transversal cross section
s : M → E ∗ such that gi( f (xi)) = d(φ( f ))|xi for all f ∈ P ⊂ Γ (E ) and g∗

i = Ds|xi ∈ Isom(Txi M, E ∗|xi ),
which implies that for all v ∈ Txi M and all f ∈ P ⊂ Γ (E ),

(
(Ds|xi )

∗( f (xi)
))

(v) = (
gi

(
f (xi)

))
(v) = d

(
φ( f )

)∣∣
xi
(v) = [

(φ/ J )
(

f (xi)
)]

(v),

i.e. (Ds|xi )
∗ = (φ/ J )|E |x .
i
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Thus the commuting diagram

L/ J L

∧nω̃ J

∧nγ =χ/ J

∧n
( J/ J 2)

∧n
(P/ J P )

∧n(φ/ J )

implies

∧nω̃ J = ∧n(
(Ds)∗/ J

) ◦ (χ/ J ) : L/ J L → ∧n( J/ J 2) =
⊕

i

∧n(T ∗
xi

M
)

where

(Ds)∗/ J =
⊕

i

(
(Ds)|xi

)∗ :
⊕

i

E |xi →
⊕

i

T ∗
xi

M.

From this description of
∧nω̃ J , we get

ε
[
e(P ,χ)

] = ε
[
( J ,ω J )

] =
[ ∑

i with xi∈Mc

[
(χ/ J )−1 ◦ ∧n(((

(Ds)|xi

)∗)−1)]
xi

]
∈ H0(Mc; GK∗⊗L|Mc )

with [(χ/ J )−1 ◦ ∧n
((((Ds)|xi )

∗)−1)] ∈ DK∗⊗L ⊂ GK∗⊗L .
Applying the inverse of the isomorphism

(β ◦ α)∗ : H0(Mc; GL∗⊗K|Mc )
∼=−→ H0(Mc; GK∗⊗L|Mc )

induced by G L∗⊗K
Gβ◦α∼= GK∗⊗L to ε[e(P ,χ)], we get

(β ◦ α)−1∗
(
ε
[
e(P ,χ)

]) =
[ ∑

i with xi∈Mc

[(
χ∗/ J

) ◦ ∧n
(Ds|xi )

]
xi

]
∈ H0(Mc; GL∗⊗K|Mc ).

There is a simplicial complex structure on M such that xi ’s are the barycenters of different n-
cells σi ’s, i.e. xi = σi(ē) where ē := 1

n+1

∑n
k=0 ek . Thus applying the inverse of the isomorphism

Φ : H0
(
Mc; (GL∗)′|Mc

) = H0(Mc; GL∗⊗K|Mc )
∼=−→ Hn(M; GL∗)

induced by the Poincaré–Steenrod duality as in Corollary 13, we get

Φ
(
(β ◦ α)−1∗

(
ε
[
e(P ,χ)

])) =
[ ∑

i with xi∈Mc

([(
χ∗/ J

) ◦ ∧n
(Ds|xi )

] ⊗ [[σi |∂�n ]]
)
σi

]

=
[ ∑

i with x ∈M

(
χ∗/ J

)
∗
([s ◦ σi|∂�n ]

)
σi

]
∈ Hn(Mc; GL∗ |Mc ).
i c
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Note that for any n-cell σ in this simplicial complex, we have

[s ◦ σ |∂�n ] = 0 ∈ Pn−1
((

E ∗)◦)∣∣
σ (e0)

∼= Z

if σ is different from all σi ’s since s then extends to a cross section of (E ∗)◦ over σ(�n). So we have

wn
(

E ∗) =
[ ∏

σ an n-cell in Mc

[s ◦ σ |∂�n ]σ
]

=
[ ∏

i with xi∈Mc

[s ◦ σi|∂�n ]σi

]
∈ Hn(Mc; Pn−1

((
E ∗)◦)∣∣

Mc

)
.

Hence under the isomorphism

(χ∗)∗ : Hn(M; Pn−1
((

E ∗)◦)) ∼=−→ Hn(M; GL∗)

induced by Pn−1((E ∗)◦) = G∧n E ∗
Gχ∗∼= GL∗ , we get

(χ∗)∗
(

wn
(

E ∗)) =
[ ∏

i with xi∈Mc

(
χ∗/ J

)
∗[s ◦ σi |∂�n ]σi

]
= Φ

(
(β ◦ α)−1∗

(
ε
[
e(P ,χ)

]))
.

We now summarize the above result. First we define the isomorphism

ζ = (
Φ ◦ (β ◦ α)−1∗

) ◦ ε : E
(
R(X), L

) ∼=−→ Hn(M; GL∗)

called the Whitney map, and adopt the notation w(E ∗,χ) := ζ(e(P ,χ)).

Theorem 21. Let X = Spec(A) be a smooth real affine variety with dim(X) = n > 1 and let M be the n-
dimensional manifold of real points of X . For a projective R(X)-module P of rank n with an orientation
χ : L

∼=−→ ∧n P , if E and L are the vector bundles over the manifold M of real points in X corresponding to
P and L respectively, then the Euler class e(P ,χ) ∈ E(R(X), L) coincides with the Whitney class of the vector
bundle E ∗ under the isomorphism (χ∗)−1∗ ◦ ζ , i.e.

(χ∗)−1∗
(
ζ
(
e(P ,χ)

)) = (χ∗)−1∗
(

w
(

E ∗,χ
)) = wn

(
E ∗) ∈ Hn(M; G∧n E ∗),

where χ∗ : ∧n E ∗ ∼=−→ L∗ is the isomorphism canonically induced by χ .

Corollary 22. With notations as in Theorem 21, P has a unimodular element if and only if E has a nowhere
vanishing continuous cross section.

Proof. Note that wn(E ∗) = 0 if and only if E ∗ , or equivalently, E has a nowhere vanishing continuous
cross section, and that e(P ,χ) = 0 if and only if P has a unimodular element. We get clearly the
corollary. �
Remark. Note that the Whitney class wn(E ∗) ∈ Hn(M; Pn−1((E ∗)◦)) where both wn(E ∗) and
Hn(M; Pn−1((E ∗)◦)) are intrinsic to the bundle E in the sense that they depend on the bundle E
but not an external “orientation” χ : L ∼=−→ ∧n E prescribed by a line bundle L. On the other
hand, ζ : E(R(X), L) → Hn(M; GL∗ ) depends only on a given “orientation” L (or L) and can be ap-
plied to e(P ,χ) corresponding to any vector bundle E over M with any prescribed “orientation”
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χ : L ∼=−→ ∧n E . So to get wn(E ∗) from e(P ,χ), we have to include the isomorphism (χ∗)−1∗ which
involves explicitly E .

Remark. Also note that when E is endowed with a Riemannian vector bundle structure, we have
E ∗ ∼= E and hence wn(E ∗) = wn(E ).

9. Applications

Subsequently, for a regular ring A and X = Spec(A), the Chow group of zero cycles modulo rational
equivalence will be denoted by CH0(A) or CH0(X).

Example 23. Suppose X = Spec(A) is a smooth real affine variety with dim(X) = n � 2 and M is the
manifold of real points of X . We assume M is non-empty. Let CHC(X) be the subgroup of CH0(X)

generated by the complex points of X . Assume CHC(X) �= 0. Let L be a projective A-module with
rank(L) = 1. Then, there is a projective A-module P with rank(P ) = n and det(P ) ∼= L such that P does
not have a unimodular element, but the corresponding vector bundle E = V (P ), whose module of
sections Γ (E ) = P ⊗A C(M) has a nowhere vanishing section.

Proof. Let x be a complex point in X such the cycle [x] ∈ CH0(X) is non-zero. Let m be a maximal
ideal corresponding to x. By the proof of [BRS2, Lemma 5.1], there is a local complete intersection
ideal I of A with height n such that (1) I = ( f1, f2, . . . , fn) + I2, (2) m + I = A, (3) I is contained in
only complex maximal ideals, and (4) with

I ′ = ( f1, f2, . . . , fn−1) + I(n−1)!,

we have m ∩ I ′ a complete intersection.
By [DM], there is a projective A-module of rank n and det(P ) = L∗ and an orientation

χ : L ∼−→ ∧n P such that there is a surjective map P � I ′ and the Euler class e(P ,χ) = (I ′,ω) for
some local orientation ω. Since

cycle(A/I ′) = −cycle(A/m) = −x �= 0 ∈ CH0(X),

we have e(P ,χ) �= 0 and so P does not have a nowhere vanishing section. Since I ′ is supported in
complex points, e(P ⊗ R(X),χ ⊗ R(X)) = 0. Let E be the vector bundle corresponding to P . Then, by
our theorem,

wn
(

E ∗) = (χ∗)∗
(
ζ
(
e
(

P ⊗ R(X),χ ⊗ R(X)
))) = 0.

Hence E ∗ has a nowhere vanishing section and so does E . �
Example 24. M.P. Murthy communicated an explicit example of a real smooth affine variety X =
Spec(A), as follows, for which Example 23 is applicable. Let

A = R[X0, X1, . . . , Xn]
(
∑

Xd
i − 1)

where d > n + 1.

Then CHC(A) �= 0.

Proof. Let

B = Q[T0, T1, . . . , Tn]
(
∑

T d − 1)
and C = k[X0, X1, . . . , Xn]

(
∑

Xd − 1)
i i
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where k is the fraction field of B. Let Y ⊆ Pn+1
k be the projective subvariety defined by the equa-

tion
∑n

i=0 Xd
i − Zd = 0. Then, the geometric genus pg(Y ) = dim H0(Y ,Ωn

Y /k) > 0. It follows from the
results of Mumford ([Mu], also see Bloch [Bl]) that the cycle x ∈ CH0(C) corresponding to the maximal
ideal (X0 − T0, . . . , Xn − Tn)C ⊆ C has infinite order.

We can find t0, t1, . . . , tn−1 ∈ R transcendental over Q, and small enough, so that there is tn ∈ R

with
∑n

i=0 td
i = 1. Using this, we can assume that k = Q(t0, t1, . . . , tn) ⊆ R and C ⊆ A is a subring.

Now, we claim that the image of x in CH0(A) has infinite order. If not, then there is a field exten-
sion k ⊆ K ⊆ R such that K is finitely generated over k and the image of x in CH0(K ⊗k C) is a torsion
element. This is impossible.

Since, CH0(A)/CHC(A) is finite (see [BRS2, Theorem 4.10]), it follows that CHC(A) �= 0. This com-
pletes the proof. �

The following is a generalized version of a result in [MaSh].

Theorem 25. Let X = Spec(A), R(X), and M �= φ be as in Theorem 21. Then, the following diagram

E(R(X), L)
ζ

Θ

Hn(M; GL∗)

μ

CH0(R(X))
ζ0

Hn(M;Z2)

commutes, where Θ and μ are the natural homomorphisms and ζ0 is an isomorphism.

Proof. For any bundle G of groups modeled on Z over a path connected space M , it is easy to
see that there is a canonical surjective bundle homomorphism η from G to the trivial bundle Z =
M × Z2 of groups modeled on Z2 over M , sending any c ∈ Gx ∼= Z to c modulo 2 in Z2 for all x ∈ M ,
independent of the choice of the isomorphism G|x ∼= Z. Furthermore f induces a canonical surjective
homomorphism

H0( f ) : H0(M; G) � Z|x ∼= H0(M; Z) ∼= H0(M;Z2)

for any fixed x ∈ M , since H0(M; G) is isomorphic to G|x modulo the π1(M, x)-action, where π1(M, x)
acts on G|x ∼= Z as multiplication by ±1 as discussed in Proposition 1. Thus if M is a connected
n-dimensional manifold, we have a surjective homomorphism

Hn( f ) : Hn(M; G) � Hn(M; Z) ∼= Hn(M;Z),

as either gotten from the Poincaré–Steenrod duality when M is compact, or from Hn(M; G) = 0 =
Hn(M; Z) when M is non-compact and hence homotopy equivalent to an (n − 1)-dimensional CW
complex [NR].

Applying the above result to each connected component M ′ of M including those r compact ones
with K|M′ ∼= L|M′ and those s compact ones with K|M′ � L|M′ , we get a surjective homomorphism μ
in the following commuting diagram

Zr ⊕ (Z2)
s ∼= E(R(X), L)

ζ

Θ

Hn(M; GL∗) ∼=
μ

Zr ⊕ (Z2)
s

mod 2

(Z2)
r+s ∼= CH0(R(X)) Hn(M;Z2) ∼= (Z2)

r+s
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where Θ is the well-known surjective homomorphism [BRS1]. Thus the isomorphism ζ clearly factors
through an isomorphism ζ0 : CH0(R(X)) → Hn(M;Z2). �

We remark that the Whitney class wn(E ) modulo 2, i.e. swn(E ) := μ(ζ(e(P∗, (χ∗)−1))), is the so-
called Stiefel–Whitney class of the vector bundle E [Wh2]. The following extends a result obtained
in [MaSh].

Theorem 26. We use the notations as in Theorem 25. Then, the diagram

K0(A)

C0

K0(R(X))

C0

K O (M)

swn

CH0(A) CH0(R(X))
ζ0

Hn(M;Z2)

commutes, where K0(A), K0(R(X)) (respectively, K O (M)) denote the Grothendieck group of finitely gener-
ated projective modules over the corresponding ring (respectively, of real vector bundles over M), C0 denotes
the top Chern class homomorphism, and swn denotes the top Stiefel–Whitney class homomorphism.

Proof. We only need to prove that the second rectangle commutes. Let τ = [P ]− [R(X)n] ∈ K0(R(X))

be any element, where P is a projective R(X)-module, with rank(P ) = n. Write
∧n P = L and fix

an orientation χ : L
∼=−→ ∧n P . Let E = V (P ) and L = V (L) be the vector bundles on M , respectively,

corresponding to P and L. Let the orientation of E induced by χ be still denoted by χ as before. By
Theorem 21, ζ(e(P∗, (χ∗)−1)) = w(E ,χ).

Recall, that the top Chern class of P is given by a generic section f : P∗ � J (see [Mu1, Re-
mark 3.6]). Now, by Theorem 25 (also see [MiSf, Property 9.5]), we have

ζ0C0(τ ) = ζ0
(
C0(P )

) = ζ0
(
Θ

(
e
(

P∗,
(
χ∗)−1)))

= μ
(
ζ
(
e
(

P∗,
(
χ∗)−1))) = swn(E ). �
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