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Let I be a regular proper ideal in a Noetherian ring R . We prove
that there exists a simple free integral extension ring A of R
such that the ideal I A has a Rees-good basis; that is, a basis
c1, . . . , cg such that ci W = I W for i = 1, . . . , g and for all Rees
valuation rings W of I A. Moreover, A may be constructed so
that: (i) I A and I have the same Rees integers (with possibly
different cardinalities), and (ii) A P is unramified over R P∩R for
each asymptotic prime divisor P of I A. Indeed, if H is a regular
ideal in R such that each asymptotic prime divisor of H is
contained in an asymptotic prime divisor of I , then (ii) holds
for H A. If Card(Rees H) � Card(Rees I), we prove that (i) also holds
for H A and H . If I = (b1, . . . ,bg)R and b1, . . . ,bg is an asymptotic
sequence, we prove that b1, . . . ,bg is a Rees-good basis of I .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

All rings in this paper are commutative with a unit 1 �= 0. Let I be a regular proper ideal of the
Noetherian ring R , that is, I contains a regular element of R and I �= R . The set Rees I of Rees valu-
ation rings of I is a finite set of rank one discrete valuation rings (DVRs) that determine the integral
closure (Ik)a of Ik for every positive integer k and is the unique minimal set of DVRs having this
property. Recall that (Ik)a = {x ∈ R | there exists a positive integer h and elements i j ∈ Ikj, for j =
1, . . . ,h, such that xh + i1xh−1 + · · · + ih = 0}. If (V 1, N1), . . . , (Vn, Nn) are the Rees valuation rings
of I , then the integers (e1, . . . , en), where I V i = Nei

i , are the Rees integers of I .
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We introduce the following terminology.

Definition 1.1. Let I be a regular proper ideal in a Noetherian ring R . An element b ∈ I is said to be
Rees-good for I in case bV = I V for all Rees valuation rings V of I . A basis b1, . . . ,bg of I is said to
be Rees-good in case bi is Rees-good for I for i = 1, . . . , g .

If R is a Noetherian integral domain, the existence of an element b ∈ I that is Rees good for I
implies that all the Rees valuation rings of I are obtained as localizations of the integral closure of
R[I/b] at height-one primes containing b. Thus the existence of a Rees good element b for I allows
one to focus on the one affine piece R[I/b] of the blowup Proj R[It] of R along I , cf. [20, pp. 194–195].
Concerning Rees-good bases, H.T. Muhly and M. Sakuma prove in [11, Lemma 3.1] that some power Ik

of I contains an element b such that bV = Ik V for all Rees valuation rings V of I , or equivalently
of Ik . It then follows that bh has the analogous property for Ikh for all positive integers h. It is shown
in [4, (3.19) and (3.20)] that if either (i) R contains an infinite field, or (ii) R is a local ring with an
infinite residue field, then every ideal I in R has a Rees-good basis. On the other hand, it is asked
in [4, (3.9)] if there always exists a power Ik of I that has a Rees-good basis. Theorem 3.7 of [4]
shows that if I has a Rees-good basis and if the least common multiple of the Rees integers of I
is a unit of R , then there exists a finite free integral extension ring A of R such that J := Rad(I A)

is projectively equivalent to I A and all the Rees integers of J are equal to one. This motivates our
interest in the question of the existence of Rees-good bases. In this paper we examine this question
and consider properties of the Rees integers of I and of I A, where A is a finite free integral extension
ring of R .

In Section 2 we give several sufficient conditions for I to have a Rees-good basis, and demonstrate
in Example 2.3 the existence of a Gorenstein local ring (R, M) of altitude one such that no power
of M has a Rees-good basis. Recall that an ideal J is projectively equivalent to I if (Im)a = ( Jn)a for
some positive integers m and n. In addition to the papers [2–4] and the references listed there, further
interesting results concerning projective equivalence can be found in [6, Proposition 2.1], [7–9]. We
also use the following definition, see [10] and [20, p. 111].

Definition 1.2. (1.2.1) Let A∗(I) = {P ∈ Spec(R) | P ∈ Ass(R/(I i)a) for some positive integer i}. Then
A∗(I) is the set of asymptotic prime divisors of I .

(1.2.2) The sequence of elements b1, . . . ,bg in R is an asymptotic sequence provided that
(b1, . . . ,bg)R �= R and for each i ∈ {1, . . . , g} the element bi is not in any asymptotic prime divisor of
(b1, . . . ,bi−1)R . (In particular, b1 is not in any minimal prime ideal in R .)

Theorem 2.14 shows that if for each asymptotic prime divisor p of I that is a maximal ideal of R
one has Card(R/p) � Card(Rees I), then every ideal H projectively equivalent to I has a Rees-good
basis. In the final part of Section 2 it is shown that a similar approach can be used to prove that if
a commutative ring R contains a set of n − 1, n > 2, units u1, . . . , un−1 such that ui − u j is a unit in R
for all i �= j in {1, . . . ,n − 1}, then no finitely generated R-module is the union of any k � n proper
submodules.

Recall that a ring (R, M) is quasi-local if M is the unique maximal ideal of R and R is not neces-
sarily Noetherian. We use Definition 1.3 in Section 3.

Definition 1.3. (1.3.1) A quasi-local ring (R ′, M ′) is unramified over a quasi-local ring (R, M) in case R
is a subring of R ′ , M ′ = M R ′ , and R ′/M ′ is separable over R/M . A prime ideal p′ of R ′ is unramified
over p′ ∩ R in case R ′

p′ is unramified over R p′∩R .
(1.3.2) R(R, I) denotes the Rees ring of R with respect to I , so R(R, I) is the graded subring R[u, t I]

of R[u, t], where t is an indeterminate and u = 1
t .

(1.3.3) Let z1, . . . , zr be the minimal prime ideals z in R such that z + I �= R , for i = 1, . . . , r
let Ri = R/zi , let Fi be the quotient field of Ri , let R′

i be the integral closure in Fi(u) of Ri =
R(Ri, (I + zi)/zi) (see (1.3.2)), let pi,1, . . . , pi,hi be the (height-one) prime divisors of uR′

i , let wi, j be
the valuation of the discrete valuation ring W i, j = R′

i p , let ei, j = wi, j(u), let V i, j = W i, j ∩ Fi , and de-

i, j
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fine vi, j on R by vi, j(x) = wi, j(x+ zi). Then the Rees valuations of I are the valuations v1,1, . . . , vr,hr ,
and the Rees valuation rings of I are the rings V 1,1, . . . , Vr,hr . We use Rees I to denote the set
{V i, j | i = 1, . . . , r and j = 1, . . . ,hr} of all the Rees valuation rings of I .

(1.3.4) If Rees I = {(V 1, N1), . . . , (Vn, Nn)} and I V i = Nei
i , then ei is the Rees integer of I with

respect to V i .

We prove in Theorem 3.7 that there always exists a simple free integral extension ring A of R such
that I A has a Rees-good basis. Moreover, A may be constructed so that, for each regular ideal H in R
whose asymptotic prime divisors are contained in the union of the asymptotic prime divisors of I
and for which Card(Rees H) � Card(Rees I), A P is unramified over R P∩R for each asymptotic prime
divisor P of H A and H A has a Rees-good basis and the same Rees integers as H (with possibly
different cardinalities). It follows from Theorem 3.7 that the assumption that I has a Rees-good basis
in [3] and [4] is, in fact, superfluous. In this connection, see also [5, Theorem 4.1].

If I = (b1, . . . ,bg)R and b1, . . . ,bg is an asymptotic sequence, we prove in Theorem 4.2 that
b1, . . . ,bg is a Rees-good basis of I .

Our notation is as in [12] and [21]. Thus, for example, a basis of a module or ideal is a set of
elements that generate the module or ideal, and the altitude of a ring is the maximal length of
a chain of prime ideals in the ring.

2. Rees-good bases for ideals

Recall that if I is a regular ideal of a Noetherian ring R , then

Rees I =
⋃

{Rees I R/z | z is a minimal prime ideal of R such that I + z �= R}.

See for example [2, (2.2)(c) and (2.4)]. Thus if (V , N) ∈ Rees I , then V is a valuation ring of the
quotient field of R/z for some minimal prime ideal z of R and the center of V in R is φ−1(N) =
φ−1(N ∩ (R/z)), where φ : R → R/z is the canonical map. If H ⊆ V is an ideal of V , we sometimes
write φ−1(H) as H ∩ R .

We fix the following notation.

Notation 2.1. Let I be a regular proper ideal in a Noetherian ring R and let {(V i, Ni)}n
i=1 be the set of

Rees valuation rings of I . For j ∈ {1, . . . ,n} let H j = {x ∈ I | xV j � I V j}.

Lemma 2.2 describes the relation between Rees-good elements b ∈ R and the sets Hi of Nota-
tion 2.1, and also gives two cases when I has a Rees-good basis.

Lemma 2.2. With the notation of (2.1), the following hold:

(2.2.1) Hi = Hi V i ∩ I is an ideal in R that is properly contained in I for i = 1, . . . ,n.
(2.2.2) An element b ∈ I is Rees-good for I if and only if b /∈ H1 ∪ · · · ∪ Hn.
(2.2.3) If either I is principal or n = 1, then I has a Rees-good basis.

Proof. Using Notation 2.1 and Definition 1.1, (2.2.1) and (2.2.2) follow from basic properties of valua-
tions.

For (2.2.3), if I = bR is principal, then it is clear that b is a Rees-good basis of I . On the other hand,
if I has only one Rees valuation ring V and if c1, . . . , cg is an arbitrary basis of I , then ci V = I V for
some i ∈ {1, . . . , g}. We may assume by renumbering that ci V = I V for i = 1, . . . ,k, where 1 � k � g .
It is then readily checked that c1, . . . , ck, ck+1 + c1, . . . , cg + c1 is a Rees-good basis for I . �

Example 2.3 exhibits a Gorenstein local ring (R, M) of altitude one such that M has no Rees-good
elements and such that no power of M has a Rees-good basis.
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Example 2.3. Let F be the field with two elements, let X, Y be independent indeterminates over F , let
R = F � X, Y �/(XY (X +Y )), and let x, y denote the images in R of X , Y , respectively. Then M = (x, y)R
has three Rees valuation rings

V 1 := F � X, Y �/(X), V 2 := F � X, Y �/(Y ), and V 3 := F � X, Y �/(X + Y ).

With notation as in (2.1), notice that

H1 = xR + M2, H2 = yR + M2, and H3 = (x + y)R + M2.

Therefore M = H1 ∪ H2 ∪ H3, so M does not have any Rees-good elements, by Lemma 2.2.2. Since
xy(x + y) = 0 and F is of characteristic two, one has x2 y = xy2, and for n � 3

xn−1 y = xn−2 y2 = · · · = xyn−1.

Thus {xn, xn−1 y, yn} is a minimal basis of Mn for every n � 2. It follows that the only Rees-good
element for Mn , up to congruence mod Mn+1, is xn + xn−1 y + yn , for every n � 2. For g ∈ Mn can
be written g = axn + bxn−1 y + cyn + h with a,b, c ∈ F and h ∈ Mn+1, and g is a Rees-good element
for Mn if and only if a = b = c = 1.

Remark 2.4. For M as in Example 2.3, there exist principal ideals that are projectively equivalent to M .
Therefore there exist ideals projectively equivalent to M that have a Rees-good basis.

Our main interest in this paper is to determine when I has a Rees-good basis. In view of (2.2.3)
we assume throughout the remainder of this section that n > 1; that is, that I has more than one
Rees valuation ring.

Lemma 2.5. With the notation of (2.1), let u, v ∈ R and x, y ∈ I . Then the following hold:

(2.5.1) If x + uy, x + v y ∈ H1 and if (u − v)V 1 = V 1 , then x, y ∈ H1 .
(2.5.2) If x ∈ H1 and y /∈ H1 , then rx + wy /∈ H1 for all elements r, w ∈ R with w V 1 = V 1 .

Proof. For (2.5.1), if x + uy, x + v y ∈ H1, then (u − v)y ∈ H1. Since (u − v)V 1 = V 1, it follows that
y ∈ H1. Therefore x = (x + uy) − uy ∈ H1.

For (2.5.2), if x ∈ H1 and rx + wy ∈ H1, then wy ∈ H1. Since w V 1 = V 1, it follows that y ∈ H1. �
Lemma 2.5.1 applied to each V i suggests the following definition.

Definition 2.6. With the notation of (2.1), let U = {u1, . . . , un} ⊆ R , n � 2. Assume first that R is an
integral domain with quotient field F and let D = ⋂n

i=1 V i . Then U is said to be a set of D-units with
D-unit-differences in case u1, . . . , un and the ui − u j are units in D for all i �= j in {1, . . . ,n}. If R is
not an integral domain, then by abuse of terminology we continue to say that U is a set of D-units
with D-unit-differences in case the images in Vk (k = 1, . . . ,n) of u1, . . . , un and the ui − u j are units
in Vk for all i �= j in {1, . . . ,n}. If u1, . . . , un and the ui − u j are, in fact, units in R , then it is said that
U is a set of R-units with R-unit-differences.

Using the notation of Definitions 1.2.1 and 2.6, we have

Lemma 2.7.

(2.7.1) Ass(R/(I i)a) ⊆ Ass(R/(I i+1)a) for every positive integer i, and A∗(I) is a finite set.
(2.7.2) The prime ideals in A∗(I) are precisely the prime ideals that are the center in R of some Rees valuation

ring of I .
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(2.7.3) Let u1, . . . , un ∈ R. Then u1, . . . , un are D-units with D-unit-differences if and only if {u1, . . . , un} ∪
{ui − u j | i �= j ∈ {1, . . . ,n}} ⊆ R \ ⋃{P | P ∈ A∗(I)}.

Proof. (2.7.1) is proved in [17, (2.4) and (2.7)].
(2.7.3) follows immediately from (2.7.2), and (2.7.2) follows from the construction/definition of

Rees valuation rings given in [2, Definition 2.3]. �
Lemma 2.8. With the notation of (2.1), if there exists a set U = {u1, . . . , un−1} ⊆ R, n � 3, of D-units with
D-unit-differences, then I �= ⋃n

i=1 Hi .

Proof. By possibly removing some of the Hi , we may assume that no Hi is contained in H j with i �= j.
First observe that I �= H1 ∪ H2. Indeed, if x1 ∈ H1 \ H2 and x2 ∈ H2 \ H1, then by (2.5.2), x1 + x2 ∈
I \ (H1 ∪ H2).

Now assume that 2 � h < n and I �= Hi1 ∪ · · · ∪ Hih for any subset {Hi1 , . . . , Hih } ⊆ {H1, . . . , Hn}.

Suppose I = H1 ∪ · · · ∪ Hh+1. Then there exist x1 ∈ H1 \ ⋃h+1
i=2 Hi and x2 ∈ ⋃h+1

i=2 Hi \ H1. So x1 +
ui x2 /∈ H1 for i = 1, . . . ,n − 1, by (2.5.2).

Also, x2 ∈ Hm for some m ∈ {2, . . . ,h + 1}, so x1 + ui x2 /∈ Hm for i = 1, . . . ,n − 1, by (2.5.2). There-
fore, since h + 1 � n, at least one of the h − 1 (� n − 2) submodules Hl (with l ∈ {2, . . . ,m − 1,

m + 1, . . . ,h + 1}) must contain x1 + ui x2 and x1 + u j x2 for some i �= j ∈ {1, . . . ,n − 1}. But this, to-
gether with (2.5.1), implies that x1 ∈ Hl , contradicting the choice of x1. Thus I �= H1 ∪ · · · ∪ Hh+1. �
Lemma 2.9. With the notation of (2.1), assume that n � 2 and that there exists a set U = {u1, . . . , un} ⊆ R
of D-units with D-unit-differences. Let c1, . . . , cg be a (not necessarily minimal) basis of I , and assume that
there exists an integer k such that: (a) 1 � k < g; and, (b) ci /∈ H1 ∪ · · · ∪ Hn if and only if i = 1, . . . ,k. Then
there exists x ∈ I such that x /∈ H1 ∪ · · · ∪ Hn and c1, . . . , ck, x, ck+2, . . . , cg is a basis of I .

Proof. For h = 1, . . . ,n let xh = ck+1 +uhc1, so c1, . . . , ck, xh, ck+2, . . . , cg is a basis of I for h = 1, . . . ,n.
Also, by (b) there exists at least one j ∈ {1, . . . ,n} such that ck+1 ∈ H j . Since uhc1 /∈ H j for h, j ∈
{1, . . . ,n}, by (b) (since uh is a D-unit in R), it follows from (2.5.2) that xh = ck+1 + uhc1 /∈ ⋃{H j |
ck+1 ∈ H j} for h = 1, . . . ,n. Also, by the hypotheses on c1 and the uh , it follows from (2.5.1) that
each H j can contain at most one of the n elements xh , so it follows that there exists at least one
h ∈ {1, . . . ,n} such that xh /∈ H1 ∪ · · · ∪ Hn . Therefore the conclusion follows by letting x = xh . �
Remark 2.10. It follows from Lemma 2.9 and its proof that if c1, . . . , cg is a basis of I such that (a)
and (b) hold, and if U = {u1, . . . , un} is as in (2.9), then there exist not necessarily distinct D-units
v1, . . . , v g−k in U such that xV j = I V j for each x ∈ {c1, . . . , ck, ck+1 + v1c1, . . . , cg + v g−kc1}, that is,
by Definition 1.1, such that c1, . . . , ck, ck+1 + v1c1, . . . , cg + v g−kc1 is a Rees-good basis for I .

Proposition 2.11. With the notation of (2.1), assume that n � 2 and that there exists a set U = {u1, . . . , un} ⊆
R of D-units with D-unit-differences. Then I has a Rees-good basis.

Proof. By (2.2.3) it may be assumed that each basis b1, . . . ,bg of I has g > 1. Let c1, . . . , cg be an
arbitrary basis of I and let H1, . . . , Hn be as in (2.1). If c1, . . . , cg /∈ H1 ∪ · · · ∪ Hn , then the conclusion
holds with bi = ci for i = 1, . . . , g by (1.1) and (2.2.2). On the other hand, if ci ∈ H1 ∪· · ·∪ Hn and c j /∈
H1 ∪· · ·∪ Hn for some i, j ∈ {1, . . . , g}, then it may be assumed that c1, . . . , ck /∈ H1 ∪· · ·∪ Hn and that
ck+1, . . . , cg ∈ H1 ∪· · ·∪ Hn , so the conclusion follows from Remark 2.10. Therefore it may be assumed
that c1, . . . , cg ∈ H1 ∪· · ·∪ Hn . Then it follows from Lemma 2.8 that there exists b1 ∈ I \ (H1 ∪· · ·∪ Hn).
Then b1, c1, . . . , cg is a basis of I with b1 /∈ H1 ∪ · · · ∪ Hn and c1, . . . , cg ∈ H1 ∪ · · · ∪ Hn , so the
conclusion follows from Remark 2.10. �
Remark 2.12. Let c1, . . . , cg be an arbitrary basis of I and let U = {u1, . . . , un}, n � 2, be a set of
D-units with D-unit-differences. The proof of Proposition 2.11 shows:
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(i) If c1, . . . , cg /∈ H1 ∪ · · · ∪ Hn , then c1, . . . , cg is a Rees-good basis of I .
(ii) If c1, . . . , ck /∈ H1 ∪ · · · ∪ Hn and ck+1, . . . , cg ∈ H1 ∪ · · · ∪ Hn , then there exist not necessarily

distinct D-units v1, . . . , v g−k in U such that c1, . . . , ck, ck+1 + v1c1, . . . , cg + v g−kc1 is a Rees-
good basis for I .

(iii) If c1, . . . , cg ∈ H1 ∪ · · · ∪ Hn , then there exists b1 ∈ I \ (H1 ∪ · · · ∪ Hn) and not necessarily distinct
D-units v1, . . . , v g in U such that b1, c1 + v1b1, . . . , cg + v gb1 is a Rees-good basis for I .

Remark 2.13. Let R be a Noetherian ring. With the terminology as in Definition 2.6, assume that there
exists in R a set U = {u1, . . . , un}, n � 2, of R-units with R-unit-differences. Then Proposition 2.11 im-
plies that every regular proper ideal I in R such that Card(Rees I) � n has a Rees-good basis. Moreover,
the proof of Proposition 2.11 shows how to obtain such a basis.

Theorem 2.14. With the notation of (2.1) and (1.2), assume that n � 2. The following properties are equivalent.

(1) Card(R/p) > n for each p ∈ A∗(I) that is a maximal ideal of R.
(2) There exists a set U = {u1, . . . , un} ⊆ R of D-units with D-unit-differences.

If these equivalent properties hold, then each regular ideal H in R such that
⋃{q | q ∈ A∗(H)} ⊆ ⋃{p |

p ∈ A∗(I)} and Card(Rees H) � Card(Rees I) has a Rees-good basis. In particular, each ideal H of R that is
projectively equivalent to I has a Rees-good basis.

Proof. (1) ⇒ (2) The ideals pi = Ni ∩ R , i = 1, . . . ,n, are the (not necessarily distinct) elements
of A∗(I), by Lemma 2.7.2, so let p1, . . . , pk be the (distinct) maximal members of A∗(I), and let
T = R \ ⋃{p | p ∈ A∗(I)}. Then RT is semi-local with maximal ideals p1 RT , . . . , pk RT , I RT is con-
tained in the Jacobson radical of RT , and Rees I RT = Rees I , by [17, (6.5) and (6.8)] and the definition
of T . For i = 1, . . . ,k let ui,1, . . . , ui,n ∈ RT be such that their images in RT /pi RT are nonzero
and distinct. These exist by hypothesis if pi is a maximal ideal of R . Otherwise, R/pi is infinite.
For j = 1, . . . ,n there exists u j ∈ RT such that u j − ui, j ∈ pi RT for i = 1, . . . ,k, by comaximal-
ity (see [21, Theorem 31, p. 177]). Let t ∈ T be such that tu j ∈ R for j = 1, . . . ,n. We claim that
{tu1, . . . , tun} is a set of D-units in R with D-unit-differences. To see this it suffices to show for each
Rees valuation ring (V i, Ni) of I that the images of tu1, . . . , tun in V /Ni are nonzero and distinct.
If pi = Ni ∩ R is maximal in A∗(I), they are nonzero and distinct in R/pi by construction, and thus
nonzero and distinct in V i/Ni . If pi = Ni ∩ R is not maximal in A∗(I), we have a homomorphism
R/pi → R/p j for some prime ideal p j that is maximal in A∗(I). Since the images of tu1, . . . , tun are
nonzero and distinct in R/p j , their images in R/pi must be nonzero and distinct, and thus nonzero
and distinct in V i/Ni .

(2) ⇒ (1) If p ∈ A∗(I) is a maximal ideal of R , then we have homomorphisms R → R/p → V i/Ni

and the elements of U map to n distinct nonzero elements of V i/Ni by hypothesis. Thus the elements
of U map to n distinct elements of R/p. So Card(R/p) > n.

It follows from Proposition 2.11 that the condition (2) implies that I has a Rees-good basis.
But conditions (1) and (2) depend only on the set of maximal asymptotic prime divisors of I ,
so it follows that each regular ideal H in R such that

⋃{q | q ∈ A∗(H)} ⊆ ⋃{p | p ∈ A∗(I)} and
Card(Rees H) � Card(Rees I) also has a Rees-good basis. The last statement follows from this, since
projectively equivalent ideals have the same asymptotic prime divisors, by [2, Theorem 3.4]. �

The next two corollaries follow immediately from Theorem 2.14.

Corollary 2.15. Let I be a regular proper ideal in a Noetherian ring R and assume that no member of A∗(I) is
a maximal ideal of R. Then I has a Rees-good basis.

Corollary 2.16. Let R be a Noetherian ring and assume that R/M is infinite for all maximal ideals M in R.
Then every regular proper ideal in R has a Rees-good basis.
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In the final three results in this section we show that, with a slight change of perspective, there
is a useful result analogous to Lemma 2.8 concerning modules equal to a finite union of proper
submodules.

The proof of Lemma 2.17 is similar to the proof of Lemma 2.5, so it is omitted.

Lemma 2.17. Let R be a commutative ring, let M be a finitely generated R-module, let N be a submodule of M,
and let u, v ∈ R and x, y ∈ M. Then the following hold:

(2.17.1) If x + uy, x + v y ∈ N and if u − v is a unit in R, then x, y ∈ N.
(2.17.2) If x ∈ N and y /∈ N, then, for all elements r and units w in R, rx + wy /∈ N.

Theorem 2.18. Let R be a commutative ring, let U = {u1, . . . , un−1} (n � 3) be a set of R-units with R-
unit-differences, let M be a finitely generated R-module, and let N1, . . . , Nn be proper submodules of M. Then
M �= ⋃n

i=1 Ni .

Proof. The proof is similar to the proof of Lemma 2.8, using Lemma 2.17 in place of Lemma 2.5, so
we omit the details. �

Proposition 2.19 is a variation of Theorem 2.18.

Proposition 2.19. Let R be a commutative ring, let v1, . . . , vn+1 (n � 1) be elements in R such that vi − v j
is a unit in R for i �= j in {1, . . . ,n + 1}, let M be a finitely generated R-module, and let N1, . . . , Nn be proper
submodules of M. Then M �= ⋃n

i=1 Ni .

The proof is similar to the proof of Theorem 2.18, but since it is not assumed that v1, . . . , vn+1 are
units in R , (2.17.2) cannot be used to assume that no x1 + vi x2 is in N1, and (2.17.2) cannot be used
to assume that no x1 + vi x2 is in Nm .

Results which are related to (2.18) and (2.19) for the case that R contains an uncountable set
{uλ | λ ∈ Λ} with unit differences are given in [19, (2.5) and (2.6)].

3. Rees-good bases in finite integral extensions

We use Lemma 3.1 in Proposition 3.2.

Lemma 3.1. Let I = (b1, . . . ,bg)R be a proper ideal in a Noetherian ring R with each bi regular and let A be
a finite integral extension ring of R.

(1) Let (V , N) ∈ Rees I and let z be the unique minimal prime ideal of R such that (V , N) ∈ Rees I R/z. Let w
be a (necessarily minimal) prime ideal of A lying over z and let (W , Q ) be a DVR overring of A/w such
that W ∩ K = V , where K is the quotient field of R/z. Then (W , Q ) ∈ Rees I A.

(2) Let (W , Q ) ∈ Rees I A and let w be the unique minimal prime ideal of A such that (W , Q ) ∈ Rees I A/w,
and assume that w ∩ R = z is minimal in Ass(R). Then W ∩ K = V ∈ Rees I , where K is the quotient field
of R/z.

Proof. (1) After exchanging R ⊆ A for R/z ⊆ A/w , we may assume that R and A are integral domains
with quotient fields K and F respectively. For some i ∈ {1, . . . , g}, we have V = (R[I/bi]′)P for some
height-one prime ideal P of the integral closure R[I/bi]′ of R[I/bi]. Then R[I/bi]′ ⊆ A[I/bi]′ is an
integral extension of domains, and since W ∩ K = V = (R[I/bi]′)P , we have A[I/bi]′ ⊆ W and Q ∩
R[I/bi]′ = P . Thus P ′ = Q ∩ A[I/bi]′ is a prime ideal of A[I/bi]′ lying over P , so P ′ is a height-one
prime ideal of A[I/bi]′ and (A[I/bi]′)P ′ ⊆ W . Since (A[I/bi]′)P ′ is a DVR, we have W = (A[I/bi]′)P ′ ∈
Rees I A.

(2) Again, after exchanging R ⊆ A for R/z ⊆ A/w , we may assume that R and A are integral
domains with quotient fields K and F respectively. Then W = (A[I/bi]′)P ′ for some i ∈ {1, . . . , g}
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and some height-one prime ideal P ′ of A[I/bi]′ . Since R[I/bi]′ ⊆ A[I/bi]′ satisfies going-down,
[12, (10.13)], it follows that P = P ′ ∩ R[I/bi]′ also has height-one. Therefore W ∩ K �= K , (R[I/bi]′)P ⊆
W ∩ K , and (R[I/bi]′)P ∈ Rees I , hence W ∩ K = (R[I/bi]′)P ∈ Rees I . �
Proposition 3.2. Let I be a regular proper ideal in a Noetherian ring R and let A be a finite integral extension
ring of R. Assume that some prime ideal P in A that contains I is unramified over P ∩ R. There exists a Rees
valuation ring (W , Q ) of I A whose center in A is contained in P , and for each such W there exists a Rees
valuation ring (V , N) of I such that W is an extension of V . Moreover, W is unramified over V , so the Rees
integer of I A with respect to W is the Rees integer of I with respect to V .

Proof. Since I A ⊆ P , the prime ideal P contains some minimal associated prime ideal p of I A, and
it is clear p (and every minimal prime divisor of I A) is in A∗(I A). Also, A∗(I A) = {Q ′ ∩ A | Q ′ is the
maximal ideal of some Rees valuation ring W ′ of I A}, by Lemma 2.7.2, so there exists at least one
Rees valuation ring (W , Q ) of I A such that Q ∩ A ⊆ P . Further, since by hypothesis A P is unramified
over R P∩R , it follows from [12, (38.6)] that minimal prime ideals in A P contract to minimal prime
ideals in R P∩R . Therefore it follows from Lemma 3.1 that the Rees valuation rings of I A whose centers
in A are contained in P are among the extensions of the Rees valuation rings of I whose centers in R
are contained in P ∩ R . Let (V , N) be the Rees valuation ring of I such that W is an extension of V .

To see that W is unramified over V , let q = Q ∩ A and let p = N ∩ R , so q ∩ R = p. Since, by
hypothesis, q ⊆ P and A P is unramified over R P∩R , it follows from [12, (38.8)] that Aq is unramified
over R p . Let w be the minimal prime ideal in A such that W is a Rees valuation ring of I A/w . Then
w ⊂ Q ∩ A = q, so Aq/w Aq is unramified over R p/(w Aq ∩ R p), by [12, (38.7)], and z = (w Aq ∩ R p)∩ R
is a minimal prime ideal in R that is the unique minimal prime ideal z′ in R such that V is a Rees
valuation ring of I R/z′ . Therefore it may be assumed that Aq and R p are integral domains.

It follows from [12, (38.6)] that Aq is unramified over R p if and only if there exists an element
u ∈ Aq for which Aq is a ring of quotients of R p[u] and for which there is a polynomial f (X) ∈ R p[X]
with derivative f ′(X) such that f (u) ∈ q Aq and f ′(u) /∈ q Aq . Since Aq is unramified over R p , such
an element u and polynomial f (X) exist for Aq with respect to R p . We have Aq ⊆ W since R p ⊆ V .
Also Q ∩ Aq = q Aq implies that f ′(u) maps to a nonzero element in the subfield Aq/q Aq of W /Q .
Therefore u and f (X) imply by [12, (38.6)] that V [u]Q ∩V [u] is unramified over V . It follows that
(Q ∩ V [u])V [u]Q ∩V [u] = N V [u]Q ∩V [u] is principal, so V [u]Q ∩V [u] is a DVR contained in W and with
the same quotient field as W , so V [u]Q ∩V [u] = W . Hence W is unramified over V . �
Corollary 3.3. Let I be a regular proper ideal in a Noetherian ring R and let A be a finite integral extension
ring of R. Assume that each maximal ideal P in A that contains I is unramified over P ∩ R. Then each Rees
valuation ring of I A is an extension of a Rees valuation ring of I over which it is unramified, so the Rees integers
of I and I A are the same (with possibly different cardinalities).

Proof. Lemma 3.1 implies that the Rees valuation rings of I A are the extensions of the Rees valuation
rings of I , so Corollary 3.3 follows from Proposition 3.2. �

The following remark also follows immediately from Proposition 3.2.

Remark 3.4. With the notation and assumptions of Corollary 3.3, let H be a regular ideal in R such
that

⋃{q | q ∈ A∗(H)} ⊆ ⋃{p | p ∈ A∗(I)} and Card(Rees H) � Card(Rees I). Then each Rees valuation
ring of H A is an extension of a Rees valuation ring of H over which it is unramified, so the Rees
integers of H and H A are the same (with possibly different cardinalities).

Proposition 3.5. Let (S, M1, . . . , Mm) be a semi-local ring. Then the following hold:

(3.5.1) For each positive integer k there exists a simple free integral extension ring Sk = S[xk] of S that
contains a set Uk of 2k − 1 Sk-units with Sk-unit-differences. Moreover, Sk may be chosen so that:
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(a) Sk has exactly m maximal ideals; and (b) for i = 1, . . . ,m, the unique maximal ideal in Sk that lies
over Mi is, depending on i, either Mi Sk or (Mi, xk)Sk.

(3.5.2) For each positive integer k the ring S has a simple free integral extension ring Sk = S[xk] that contains
a set Uk of 2k − 1 Sk-units with Sk-unit-differences and each prime ideal P in Sk is unramified over
P ∩ S, so for each regular proper ideal I in S, the ideals I and I Sk have the same Rees integers (with
possibly different cardinalities).

Proof. For (3.5.1), if Card(S/Mi) � 2k for each i ∈ {1, . . . ,m}, let Ui = {ui,1, . . . , ui,2k−1} ⊆ S be such
that the images of the ui, j in S/Mi are distinct and nonzero. For each i and j, we may choose w j

such that, for i = 1, . . . ,m, w j ≡ ui, j mod Mi , by comaximality (see [21, Theorem 31, p. 177]). Then
U = {w1, . . . , u2k−1} is a set of 2k − 1 S-units with S-unit-differences.

Therefore assume that m′ ∈ {1, . . . ,m} is such that Card(S/Mi) < 2k for i = 1, . . . ,m′ and
Card(S/Mi) � 2k for i = m′ + 1, . . . ,m. For i = 1, . . . ,m let Fi = S/Mi , for i = 1, . . . ,m′ let f i(X)

be a monic irreducible polynomial of degree k in Fi[X], and for i = m′ + 1, . . . ,m let f i(X) = Xk . By
comaximality we may choose a monic f (X) ∈ S[X] of degree k such that, for i = 1, . . . ,m, its image
in Fi[X] is f i(X). Then f (X) is irreducible of degree k.

For i = 1, . . . ,m′ let Ni = (Mi, f (X))S[X], and for i = m′ + 1, . . . ,n let Ni = (Mi, X)S[X]. Then
for i = 1, . . . ,n, Ni is a maximal ideal, since, for i = 1, . . . ,m′ , S[X]/Ni ∼= Fi[X]/( f i(X)), while for
i = m′ + 1, . . . ,n, S[X]/Ni ∼= S/Mi . Therefore Sk = S[xk] = S[X]/( f (X)) is a simple free integral ex-
tension ring of S and, for i = 1, . . . ,m′ , Pi = Mi Sk = Ni/( f (X)S[X]) (resp., for i = m′ + 1, . . . ,m,
Pi = (Mi, xk)Sk = Ni/( f (X)S[X])) is the only maximal ideal in Sk that lies over Mi . It therefore fol-
lows that Sk is a semi-local ring such that (a) and (b) hold and for each maximal ideal P of Sk

we have Card(Sk/P ) � 2k . It now follows, as in the first paragraph of this proof that Sk contains a
subset U of 2k − 1 Sk-units with Sk-unit-differences.

For (3.5.2), if all S/Mi are infinite, then it follows from the first paragraph of the proof of (3.5.1)
that (3.5.2) holds with Sk = S[1] = S for all positive integers k, so it may be assumed that
S/M1, . . . , S/Md are finite and S/Md+1, . . . , S/Mm are infinite. Since S/Mi is finite for i = 1, . . . ,d,
there exists for each positive integer k a monic irreducible and separable polynomial f i(X) ∈
(S/Mi)[X] of degree k. Fix k and for i = d + 1, . . . ,m let f i(X) = (X − si,1) · · · (X − si,k), where
si,1, . . . , si,k are distinct nonzero elements in S/Mi (this is possible, since S/Mi is infinite). By the
Chinese Remainder Theorem there exists a monic polynomial f (X) ∈ S[X] of degree k such that f (X)

modulo Mi S[X] is equal to f i(X) for i = 1, . . . ,m. Let Sk = S[xk] = S[X]/( f (X)).
Then, for i = 1, . . . ,d, it follows as in the second preceding paragraph that Q i = Mi Sk is a maximal

ideal, and S[xk]Q i is integral over SMi since Q i is the only maximal ideal in Sk that lies over Mi .
Also Sk/Q i is separable over S/Mi by the choice of f i(X), so S[xk]Q i is unramified over S Pi . For
the remaining i the field S/Mi is infinite and the ideal Mi Sk factors into a product of k distinct
maximal ideals Q i,1, . . . , Q i,k such that Q i, j S[xk]Q i, j = Mi S[xk]Q i, j and Sk/Q i, j ∼= S/Pi , so S[xk]Q i, j is
unramified over S Pi . Therefore it follows from [12, (38.8)] that each prime ideal P in Sk is unramified
over P ∩ S , and it follows from (3.2) that the Rees integers of I and I Sk are the same (with possibly
different cardinalities) for each regular proper ideal I in S .

Finally, it follows from the last paragraph of the proof of (3.5.1) that Sk contains a set Uk of 2k − 1
Sk-units with Sk-unit-differences. �
Remark 3.6. (3.6.1) In (3.5.1), assume1 that, for i = m′ +1, . . . ,n, there exists an irreducible polynomial
gi(X) of degree k in (S/Mi)[X]. Then it follows immediately from the third paragraph of the proof
of (3.5.1) that, by choosing gi(X) in place of f i(X) = Xk , the maximal ideals in Sk are the ideals Mi Sk ,
i = 1, . . . ,n.

1 S/Mi may have no extension field K with [K : (S/Mi)] = k; for example, it is shown in [18, Example 3] that if {p1, . . . , ph}
is a finite set of distinct prime integers, then there exist fields F of characteristic zero having the property that F admits an
extension field of degree k if and only if none of the pi divides k.
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(3.6.2) If each S/Mi has a separable extension field of degree k (for example, if each S/Mi is
finite), then it follows from the proof of (3.5.2) that Sk may be chosen so that S and Sk have the
same number of maximal ideals in (3.5.2).

(3.6.3) In (3.5), assume that I is a regular proper ideal in a Noetherian ring R , that T = R \ ⋃{p |
p ∈ A∗(I)}, and that S = RT . Then I S is contained in the Jacobson radical of S , A∗(I S) = {pS |
p ∈ A∗(I)}, by [17, (6.5) and (6.8)], and it follows from the definition of Rees valuation rings (for
example [2, (2.2)(c) and (2.4)]) that Rees I = Rees I S and that I and I S have the same Rees integers.
Also, by Proposition 3.5, the Rees integers of I S and of I S[xk] are the same (with possibly differ-
ent cardinalities). Further, since xk is integral over S and S[xk] is a simple free integral extension ring
of S , there exists t1 ∈ T such that t1xk is integral over R and R[t1xk] is a simple free integral extension
ring of R such that S[xk] = (R[t1xk])T . Moreover, the centers in R[t1xk] of the Rees valuation rings of
I R[t1xk] are disjoint from T (by integral dependence, the definition of T , and [10, Proposition 3.22]),
so it follows as just above that Rees I S[xk] = Rees I R[t1xk] and that I S[xk] and I R[t1xk] have the same
Rees integers, hence I and I R[t1xk] have the same Rees integers (with possibly different cardinalities).
Finally, if U = {u1, . . . , un} is a set of D∗-units with D∗-unit-differences in S[xk] (here, D∗ is, in the
domain case, the intersection of the Rees valuation rings of I S[xk]), then there exists t2 in T such
that {t2u1, . . . , t2un} is a set of D∗-units with D∗-unit-differences in R[t2xk], so if we let t = t1t2,
then t ∈ T is such that R[txk] is a simple free integral extension ring of R , {tu1, . . . , tun} is a set of
D∗-units with D∗-unit-differences in R[txk], and the Rees integers of I and I R[txk] are the same (with
possibly different cardinalities).

Theorem 3.7 is the main result in this paper.

Theorem 3.7. Let I be a regular proper ideal in a Noetherian ring R. There exists a simple free integral extension
ring A of R such that:

(1) For each regular ideal H in R whose asymptotic prime divisors are contained in the union of the asymptotic
prime divisors of I and for which Card(Rees H) � Card(Rees I), the ring A P is unramified over R P∩R for
each asymptotic prime divisor P of H A;

(2) Each Rees valuation ring of H A is unramified over its contraction to a Rees valuation ring of H; and
(3) The ideal H A has a Rees-good basis and the same Rees integers as H (with possibly different cardinalities).

In particular, these properties hold for the ideal H = I .

Proof. Let T = R \ ⋃{p | p ∈ A∗(I)} and S = RT . Then I S is contained in the Jacobson radical
of S , A∗(I S) = {pS | p ∈ A∗(I)}, and Rees I S = Rees I , by the first part of (3.6.3). Also, it follows
from (3.6.3) that if there exists a finite free integral extension ring A∗ of S that contains a set
of Card(Rees I A∗) D∗-units with D∗-unit-differences, then there exists a finite free integral exten-
sion ring A of R that contains a set of Card(Rees I A) D-units with D-unit-differences. Further, since
A∗(I S) = {pS | p ∈ A∗(I)}, it follows from the definitions that if the asymptotic prime divisors (resp.,
the Rees valuation rings) of H A∗ are unramified over their contractions to S (resp., the total quotient
ring of S), then the asymptotic prime divisors (resp., the Rees valuation rings) of H A are unramified
over their contractions to R (resp., the total quotient ring of R), hence the Rees integers of H A and H
are the same. Therefore it may be assumed to begin with that R is semi-local with I contained in
the Jacobson radical of R , and it suffices (by Remark 3.6.3, Corollary 3.3, and Remark 3.4) to construct
a finite free integral extension ring A of R such that: (a) A contains a set of Card(Rees I A) D-units
with D-unit-differences; and, (b) each maximal ideal M in A is unramified over M ∩ R .

To construct such a ring A such that (a) holds, let h0 be the number of minimal prime ideals
in R , so h0 � 1, and let n = Card(Rees I) (so n � 1). If n = 1, then the conclusion follows with A = R ,
by (2.2.3), so it may be assumed that n � 2. Since the integers h0 and n are fixed, for all large
integers k it holds that

2k > h0nk2. (3.7.1)
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Fix such an integer k, and let A = Rk , where Rk = R[X]/ f (X)R[X] is as in (3.5), so A has a set U of
2k − 1 A-units with A-unit-differences. Therefore, to show that (a) holds for A, it remains to show
that Card(Rees I A) � 2k − 1.

For this, let z1, . . . , zh0 be the minimal prime ideals in R . Then the degree of the image g j(X)

of f (X) in (R/z j)[X] is k and g j(X) is monic, so g j(X) has at most k minimal prime divisors in
(R/z j)[X], so f (X) has at most kh0 minimal prime divisors in R[X]. Therefore A has at most kh0
minimal prime ideals and for each minimal prime ideal z j in R there are at most k minimal prime
ideals w in A that lie over z j . Let w1, . . . , wh be the minimal prime ideals in A, so

h � kh0 (3.7.2)

and [
(A/w j)(0) : (R/(w j ∩ R)

)
(0)

]
� k for j = 1, . . . ,h. (3.7.3)

The Rees valuation rings of (I A + w j)/w j are the extensions of the Rees valuation rings of (I + (w j ∩
R))/(w j ∩ R) to the quotient field (A/w j)(0) of A/w j . By [22, Theorem 19, p. 55] each Rees valuation
ring of (I + (w j ∩ R))/(w j ∩ R) has at most [(A/w j)(0) : (R/(w j ∩ R))(0)] extensions to (A/w j)(0) .
Using (3.7.3), it follows that

r j � kq j, (3.7.4)

where r j is the number of Rees valuation rings of (I A + w j)/w j , and q j is the number of Rees
valuation rings of (I + (w j ∩ R))/(w j ∩ R). It is clear that r1 + · · · + rh = Card(Rees I A), so it follows
from (3.7.4) that Card(Rees I A) = r1 + · · · + rh � kq1 + · · · + kqh � k(hn) (since q j � n for j = 1, . . . ,h).
Since h � kh0, by (3.7.2), it follows that Card(Rees I A) � khn � k(kh0)n = h0nk2 � 2k − 1, by (3.7.1), as
desired.

Finally, to see that (b) holds for A, since R is semi-local, (3.5.2) implies that A may be constructed
so that each prime ideal P in A is unramified over P ∩ R . Hence by Corollary 3.3 and Remark 3.4 each
Rees valuation ring of H A is unramified over its contraction to a Rees valuation ring of H , so it follows
that the ideals H A and H have the same Rees integers (with possibly different cardinalities). �
Remark 3.8. (3.8.1) Concerning the conclusion of Theorem 3.7, if H is an ideal in R that is projectively
equivalent to I , then H and I have the same Rees valuation rings, by [2, Theorem 3.4], hence it follows
from (3.7) that H A has a Rees-good basis and the same Rees integers as H (with possibly different
cardinalities).

(3.8.2) It follows from (3.7) and its proof that if M1, . . . , Mk are finitely many regular maximal
ideals in a Noetherian ring R and if n is a given positive integer, then there exists a simple free
integral extension ring An of R such that, for all ideals I in R with

⋃{p | p ∈ A∗(I)} ⊆ M1 ∪ · · · ∪ Mk
and Card(Rees I) � n, the ideal I An has a Rees-good basis and the same Rees integers as I (with
possibly different cardinalities).

4. An asymptotic sequence is a Rees-good basis

Let I = (b1, . . . ,bg)R be a regular ideal in the Noetherian ring R . An interesting result of Swanson
and Huneke [20, Proposition 10.2.6] asserts that if (R, M) is a quasi-unmixed local ring of altitude g
and b1, . . . ,bg are analytically independent modulo each minimal prime of R , then b1, . . . ,bg is
a Rees-good basis of I . We prove in this section a related result. Theorem 4.2 asserts that if b1, . . . ,bg

is an asymptotic sequence, then b1, . . . ,bg is a Rees-good basis of I . We collect in Remark 4.1 facts
used to prove this.

Remark 4.1. Let b1, . . . ,bg be an asymptotic sequence in a Noetherian ring R and let I = (b1, . . . ,bg)R .
Then:
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(4.1.1) [15, (2.3.3)]: For each i ∈ {1, . . . , g}, we have ht((b1, . . . ,bi)R) = i.
(4.1.2) [15, (6.1)]: For each minimal prime ideal z in R , the z-residue classes of b1, . . . ,bg is an

asymptotic sequence in R/z.
(4.1.3) [15, (2.9.1)]: If S is a multiplicatively closed subset of R such that I R S �= R S , then the

images of b1, . . . ,bg in R S is an asymptotic sequence in R S .
(4.1.4) Assume that R is local with maximal ideal M . If M ∈ A∗(I), then b1, . . . ,bg is a maximal

asymptotic sequence in R (by either Definition 1.2.2 or [15, (2.9.3)]).
(4.1.5) [15, (2.11)]: Assume that R is local and let R̂ denote the completion of R . If b1, . . . ,bg is

a maximal asymptotic sequence in R , then

min
{

altitude(R̂/z)
∣∣ z is a minimal prime ideal in R̂

} = g.

(4.1.6) Assume that R is an integral domain. It is shown in [16, (2.5.3) and (2.5.4)] that there exists
a prime ideal H in R g−1 = R[X1, . . . , Xg−1], where the Xi are independent indeterminates, such that

R[ b2
b1

, . . . ,
bg
b1

] ∼= R g−1/H and H ⊂ pR g−1 for each minimal prime divisor p of I . Therefore, for each
prime ideal P in R such that I ⊆ P it follows from the factor-of-a-factor isomorphism theorem that

R

[
b2

b1
, . . . ,

bg

b1

]/(
P R

[
b2

b1
, . . . ,

bg

b1

])
∼= R g−1/(P R g−1) ∼= (R/P )[X1, . . . , Xg−1].

(4.1.7) Assume that R is local with maximal ideal M , let z be a minimal prime ideal in R , and let
R̂ be the M-adic completion of R . If R/z is quasi-unmixed, then since R̂/z is isomorphic to R̂/zR̂ it
follows from the definition of quasi-unmixed that for every minimal prime divisor z∗ of zR̂ one has
altitude(R̂/z∗) = altitude(R/z).

(4.1.8) Assume that (R, M) is a local domain and let (R̂, M̂) be the M-adic completion of R . Let

C = R[ b2
b1

, . . . ,
bg
b1

], and let C∗ = R̂[ b2
b1

, . . . ,
bg
b1

]. It is shown in [14, Lemma 3.2] that there exists a
one-to-one correspondence between the prime ideals Q in C such that Q ∩ R = M and the prime
ideals Q ∗ in C∗ such that Q ∗ ∩ R̂ = M̂ , and then Q ∗ = Q C∗ , Q = Q ∗ ∩ C , and C Q is a dense subspace
of C∗

Q ∗ .
(4.1.9) [13, Proposition 3.5]: Assume that (R, M) is a local domain and let R̂ be the M-adic com-

pletion of R . There exists a height-one maximal ideal in the integral closure of R if and only if there
exists a minimal prime z of R̂ such that altitude(R̂/z) = 1.

(4.1.10) [13, Corollary 2.14 and Theorem 3.1]: Assume that R is a Noetherian integral domain and
that A is a finitely generated extension domain of R . If R is locally quasi-unmixed, then A is locally
quasi-unmixed.

Theorem 4.2. Let I = (b1, . . . ,bg)R be a regular ideal in a Noetherian ring R. If b1, . . . ,bg is an asymptotic
sequence, then it is a Rees-good basis for I .

Proof. Let (V , N) be a Rees valuation ring of I . It suffices to show that bi V = I V for i = 1, . . . , g .
There exists a minimal prime ideal z in R such that R/z ⊆ V ⊆ F , where F is the quotient field
of R/z. By Remark 4.1.2, the z-residue classes of b1, . . . ,bg is an asymptotic sequence in R/z, and V
is a Rees valuation ring of (I + z)/z, by construction/definition (see [20, Section 10.1]), so it may be
assumed to begin with that R is an integral domain.

Let (L, M) = (RN∩R , (N ∩ R)RN∩R). By Remark 4.1.3, b1, . . . ,bg is an asymptotic sequence in L,
and V is a Rees valuation ring of I L, by construction/definition (see [20, Section 10.1]), so it may
also be assumed to begin with that R is a local domain such that its maximal ideal M = N ∩ R .
Thus M ∈ A∗(I), by Lemma 2.7.2. Therefore b1, . . . ,bg is a maximal asymptotic sequence in R , by
Remark 4.1.4. Let R̂ denote the M-adic completion of R . Remark 4.1.5 implies that

min
{

altitude(R̂/z)
∣∣ z is a minimal prime of R̂

} = g. (4.2.1)
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Since V is a valuation ring and I = (b1, . . . ,bg)R , there exists i ∈ {1, . . . , g} such that I V = bi V , so by
possibly relabeling it may be assumed that b1 V = I V . Then V = C ′

p′ , where C ′ is the integral closure

of C = R[ b2
b1

, . . . ,
bg
b1

] in F and p′ is a height-one prime divisor of b1C ′ . Now p′ ∩ R = M , by the start
of this paragraph, so Remark 4.1.6 shows that C/MC ∼= R g−1/(M R g−1) ∼= (R/M)[X1, . . . , Xg−1], where
the Xi are independent indeterminates.

Assume it is known that MC = N ∩ C . Then R ⊆ C ⊆ V and N ∩ C = MC imply that C/MC ⊆ V /N

and the MC-residue classes of b2
b1

, . . . ,
bg
b1

are algebraically independent over R/M . In particular, the

N-residue classes of the g − 1 elements b2
b1

, . . . ,
bg
b1

are nonzero, so b2
b1

, . . . ,
bg
b1

are units in V ; that

is, bi
b1

V = V for i = 1, . . . , g , so bi V = b1 V = I V (by the preceding paragraph) for i = 1, . . . , g , hence
b1, . . . ,bg is a Rees-good basis of I . Therefore it remains to show that MC = N ∩ C .

For this, let P = N ∩ C . Then MC ⊆ P , and it remains to show that P = MC . Suppose, by way of
contradiction, that MC � P . Since C/(MC) ∼= (R/M)[X1, . . . , Xg−1], there exists a nonzero polynomial

f (X1, . . . , Xg−1) ∈ R[X1, . . . , Xg−1]

such that f ( b2
b1

, . . . ,
bg
b1

) ∈ P \ MC , so the P -residue classes of b2
b1

, . . . ,
bg
b1

are not algebraically indepen-
dent over R/(P ∩ R) = R/M . Hence

trans. deg.
(
(C/P )/(R/M)

)
< g − 1. (4.2.2)

Since (R̂, M̂) is the M-adic completion of (R, M), let C∗ = R̂[ b2
b1

, . . . ,
bg
b1

], and let P∗ = P C∗ . By Re-
mark 4.1.8, P∗ is a prime ideal such that P∗ ∩ C = P and C P is a dense subspace of C∗

P∗ . Let D = C P

and let D∗ = C∗
P∗ . Remark 4.1.8 implies that the P D-adic completion D̂ of D is also the P∗D∗-adic

completion of D∗ . Notice that C ′
(C\P ) is the integral closure D ′ of D in its quotient field and p′D ′ is

a height-one maximal ideal in D ′ , since p′D ′ ∩ D = P D , the maximal ideal of D . By Remark 4.1.9,
there exists a minimal prime ŵ in D̂ such that altitude(D̂/ŵ) = 1.

Let w∗ = ŵ ∩ D∗ , z = ŵ ∩ C∗ , and w = ŵ ∩ R̂ . Using that D̂ is the P∗D∗-adic completion of D∗ ,
w∗ is a minimal prime ideal in D∗ , so z is a minimal prime ideal in C∗ and w is a minimal prime
ideal in R̂ (since C∗ and R̂ have the same total quotient ring), hence it follows from (4.2.1) that

altitude(R̂/w) � g. (4.2.3)

Since R̂/w is a complete local domain and therefore unmixed and quasi-unmixed, Remark 4.1.10
implies that C∗/z is locally quasi-unmixed, so D∗/w∗ is quasi-unmixed. Since ŵ is a minimal prime
divisor of w∗ D̂∗ and altitude(D̂∗/ŵ) = 1, it follows from Remark 4.1.7 that altitude(D∗/w∗) = 1, so
ht(P∗D∗/w∗) = 1, hence

ht(P∗/z) = 1. (4.2.4)

Since R̂/w is quasi-unmixed, [13, Theorem 3.1] implies that R̂/w satisfies the altitude formula. Hence

ht(P∗/z) + trans. deg.
(
(C∗/P∗)/(R̂/M̂)

) = ht(M̂/w) + trans. deg.
(
(C∗/z)/(R̂/w)

);
that is

1 + t = altitude(R̂/w) + 0, (4.2.5)

by (4.2.4), where t = trans. deg.((C∗/P∗)/(R̂/M̂)). Since C P is a dense subspace of C∗
P∗ , it follows that

C∗/P∗ = C/P (and R̂/M̂ = R/M), so t < g − 1, by (4.2.2), and altitude(R̂/w) � g , by (4.2.3), and this
contradicts (4.2.5). Therefore the supposition in the preceding paragraph is false, so P = N ∩ C = MC ,
hence b1, . . . ,bg is a Rees-good basis of I . �
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Remark 4.3. Let b1, . . . ,bg be an asymptotic sequence in a Noetherian ring R , let C = R[ b2
b1

, . . . ,
bg
b1

],
and let P be a prime ideal in C such that b1 ∈ P . Then it follows from the proof of Theorem 4.2 that
if P ∩ R ∈ A∗((b1, . . . ,bg)R) (equivalently, P ∈ A∗(b1C)), then: P = (P ∩ R)C ; the P -residue classes of
b2
b1

, . . . ,
bg
b1

are algebraically independent over R/(P ∩ R); and, there exists a height-one prime ideal p′
in the integral closure C ′ of C such that p′ ∩ C = P .

We obtain as a corollary the following result of Swanson and Huneke [20, Proposition 10.2.8].

Corollary 4.4. Let b1, . . . ,bg be an R-sequence in a locally quasi-unmixed Noetherian ring R and let I =
(b1, . . . ,bg)R. Then I has a Rees-good basis.

Proof. This follows immediately from Theorem 4.2, since an R-sequence is a strong version of an
asymptotic sequence, by [15, (2.3.5)]. �

In the next corollary, an ideal I is of the principal class in case I has a basis consisting of h = ht(I)
elements.

Corollary 4.5. Let I be a regular proper ideal of the principal class in a locally quasi-unmixed Noetherian
ring R. Then each basis {b1, . . . ,bh} for I with h = ht(I) is a Rees-good basis for I .

Proof. It is shown in [15, (2.3.6)] that if I = (b1, . . . ,bh)R is an ideal with h = ht(I) in a locally quasi-
unmixed Noetherian ring then b1, . . . ,bh is an asymptotic sequence. So this follows immediately from
Theorem 4.2. �

Corollaries 4.6 and 4.7 are somewhat analogous to [1, Theorem 1] and also to [16, (2.13)], in
that all four results concern chains of radical ideals. These corollaries are also sharpened versions
of [4, (3.18)]. In these two corollaries, an ideal I is projectively full in case the only integrally closed
ideals J that are projectively equivalent to I are the ideals (I i)a , where i is an arbitrary positive inte-
ger. We use the following notation in Corollaries 4.6 and 4.7. If m is a positive integer and b1, . . . ,bg

are regular elements of the Noetherian ring R , we let Am = R[X1, . . . , Xg]/(Xm
1 − b1, . . . , Xm

g − bg) =
R[x1, . . . , xg] where xi is the residue class of Xi in Am for each i.

Corollary 4.6. Let b1, . . . ,bg be an asymptotic sequence in a Noetherian ring R, for i = 1, . . . , g let Ii =
(b1, . . . ,bi)R, let e∗

i be the least common multiple of the Rees integers of Ii , and let m be a common multiple
of e∗

1, . . . , e∗
g . Assume that m is a unit in R and for i = 1, . . . , g, let Bi = (x1, . . . , xi)Am. Then Am is a finite

free integral extension ring of R and for i = 1, . . . , g, (Bi)a is a projectively full radical ideal that is projectively
equivalent Ii Am and the Rees integers of Bi are all equal to one.

Proof. By Theorem 4.2, b1, . . . ,bi is a Rees-good basis of Ii , since b1, . . . ,bi is an asymptotic sequence
in R . Also, m is a unit in R that is a multiple of e∗

i , so it follows from [4, Theorem 3.7] that the subring
Ci = R[x1, . . . , xi] of Am is a finite free integral extension ring of R and ((x1, . . . , xi)Ci)a is a projec-
tively full radical ideal that is projectively equivalent to Ii Ci and the Rees integers of (x1, . . . , xi)Ci
are all equal to one. Also, the g − i elements bi+1,bi+2, . . . ,bg are not in the centers in R of the
Rees valuation rings of Ii , so there is no ramification in the extension of the Rees valuation rings of
(x1, . . . , xi)Ci to the Rees valuation rings of Bi , by [4, Corollary 3.2], and the conclusion readily follows
from this. �
Corollary 4.7. Let I be an ideal contained in the Jacobson radical of a semi-local ring (R; M1, . . . , Mh), assume
that I is generated by an asymptotic sequence b1, . . . ,bg of regular elements in R, and for each of the 2g − 1
ideals G ∈ G = {(bπ(1), . . . ,bπ(i))R | π is an arbitrary permutation of {1, . . . , g} and i = 1, . . . , g} let eG

be the least common multiple of the Rees integers of G. Let m be a common multiple of the integers in {eG |
G ∈ G}, and assume that m is a unit in R. For i = 1, . . . , g let Am = R[x1, . . . , xg] as above, and for each
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G = (bπ(1), . . . ,bπ(i))R ∈ G let BG = (xπ(1), . . . , xπ(i))Am. Then Am is a finite free integral extension ring of R
and for each G ∈ G it holds that (BG)a is a projectively full radical ideal that is projectively equivalent G Am

and the Rees integers of BG are all equal to one.

Proof. Since an asymptotic sequence contained in the Jacobson radical of a Noetherian ring is a per-
mutable asymptotic sequence, by [15, (2.10)], the proof is similar to the proof of Corollary 4.6. �
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