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1. Introduction

All rings in this paper are commutative with a unit 1 # 0. Let I be a regular proper ideal of the
Noetherian ring R, that is, I contains a regular element of R and I # R. The set ReesI of Rees valu-
ation rings of I is a finite set of rank one discrete valuation rings (DVRs) that determine the integral
closure (I¥), of I¥ for every positive integer k and is the unique minimal set of DVRs having this
property. Recall that (I¥), = {x € R | there exists a positive integer h and elements i je M, for j=
1,...,h, such that x" +i;x"1 4+ ... 44, = 0). If (V1,N1),...,(Vn, Ny) are the Rees valuation rings
of I, then the integers (e1, ..., en), where IV; = Nf", are the Rees integers of I.
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We introduce the following terminology.

Definition 1.1. Let | be a regular proper ideal in a Noetherian ring R. An element b € [ is said to be
Rees-good for I in case bV =1V for all Rees valuation rings V of I. A basis b1, ...,bg of I is said to
be Rees-good in case b; is Rees-good for [ fori=1,...,g.

If R is a Noetherian integral domain, the existence of an element b € I that is Rees good for I
implies that all the Rees valuation rings of I are obtained as localizations of the integral closure of
R[I/b] at height-one primes containing b. Thus the existence of a Rees good element b for I allows
one to focus on the one affine piece R[I/b] of the blowup Proj R[It] of R along [, cf. [20, pp. 194-195].
Concerning Rees-good bases, H.T. Muhly and M. Sakuma prove in [11, Lemma 3.1] that some power I
of I contains an element b such that bV = IXV for all Rees valuation rings V of I, or equivalently
of I¥. It then follows that b has the analogous property for I¥" for all positive integers h. It is shown
in [4, (3.19) and (3.20)] that if either (i) R contains an infinite field, or (ii) R is a local ring with an
infinite residue field, then every ideal I in R has a Rees-good basis. On the other hand, it is asked
in [4, (3.9)] if there always exists a power I¥ of I that has a Rees-good basis. Theorem 3.7 of [4]
shows that if I has a Rees-good basis and if the least common multiple of the Rees integers of I
is a unit of R, then there exists a finite free integral extension ring A of R such that ] :=Rad(I/A)
is projectively equivalent to IA and all the Rees integers of | are equal to one. This motivates our
interest in the question of the existence of Rees-good bases. In this paper we examine this question
and consider properties of the Rees integers of I and of 1A, where A is a finite free integral extension
ring of R.

In Section 2 we give several sufficient conditions for I to have a Rees-good basis, and demonstrate
in Example 2.3 the existence of a Gorenstein local ring (R, M) of altitude one such that no power
of M has a Rees-good basis. Recall that an ideal J is projectively equivalent to I if (I™), = (J"), for
some positive integers m and n. In addition to the papers [2-4] and the references listed there, further
interesting results concerning projective equivalence can be found in [6, Proposition 2.1], [7-9]. We
also use the following definition, see [10] and [20, p. 111].

Definition 1.2. (1.2.1) Let A*(I) = {P e Spec(R) | P € Ass(R/(I');) for some positive integer i}. Then
A*(I) is the set of asymptotic prime divisors of I.

(1.2.2) The sequence of elements bq,...,bg in R is an asymptotic sequence provided that
(b1,...,bg)R#R and for each i € {1, ..., g} the element b; is not in any asymptotic prime divisor of
(b1, ...,bj—1)R. (In particular, by is not in any minimal prime ideal in R.)

Theorem 2.14 shows that if for each asymptotic prime divisor p of I that is a maximal ideal of R
one has Card(R/p) > Card(ReesI), then every ideal H projectively equivalent to I has a Rees-good
basis. In the final part of Section 2 it is shown that a similar approach can be used to prove that if

a commutative ring R contains a set of n—1, n > 2, units uy, ..., up—q such that u; —uj is a unit in R
for all i # j in {1,...,n — 1}, then no finitely generated R-module is the union of any k < n proper
submodules.

Recall that a ring (R, M) is quasi-local if M is the unique maximal ideal of R and R is not neces-
sarily Noetherian. We use Definition 1.3 in Section 3.

Definition 1.3. (1.3.1) A quasi-local ring (R’, M’) is unramified over a quasi-local ring (R, M) in case R
is a subring of R’, M’ = MR’, and R'/M’ is separable over R/M. A prime ideal p’ of R’ is unramified
over p' N R in case R, is unramified over Rpnp.

(1.3.2) R(R, I) denotes the Rees ring of R with respectto I, so R(R, I) is the graded subring R[u, tI]
of R[u, t], where t is an indeterminate and u = %

(1.3.3) Let zq,...,z- be the minimal prime ideals z in R such that z+ 1 #R, fori=1,...,r
let R; = R/z;, let F; be the quotient field of R;, let R; be the integral closure in Fj(u) of R; =
R(R;i, (I +zj)/z;) (see (1.3.2)), let pj1,..., pin; be the (height-one) prime divisors of uRl’., let w; j be
the valuation of the discrete valuation ring W; j = R;pij. let e; j = w; j(u), let V; j = W; ;N F;, and de-
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fine v; j on R by v; j(X) = w; j(x+z;). Then the Rees valuations of I are the valuations vy 1, ..., Vr .,
and the Rees valuation rings of I are the rings Vi 1,...,V,p. We use Rees I to denote the set
{(Vijli=1,...,rand j=1,...,hs} of all the Rees valuation rings of I.

(1.3.4) If ReesI = {(V1,N1),...,(Vy,Np)} and IV; = Nfi, then e; is the Rees integer of | with
respectto V;.

We prove in Theorem 3.7 that there always exists a simple free integral extension ring A of R such
that IA has a Rees-good basis. Moreover, A may be constructed so that, for each regular ideal H in R
whose asymptotic prime divisors are contained in the union of the asymptotic prime divisors of I
and for which Card(Rees H) < Card(ReesI), Ap is unramified over Rpng for each asymptotic prime
divisor P of HA and HA has a Rees-good basis and the same Rees integers as H (with possibly
different cardinalities). It follows from Theorem 3.7 that the assumption that I has a Rees-good basis
in [3] and [4] is, in fact, superfluous. In this connection, see also [5, Theorem 4.1].

If I =(b1,...,bg)R and by,...,bg is an asymptotic sequence, we prove in Theorem 4.2 that
by, ...,bg is a Rees-good basis of I.

Our notation is as in [12] and [21]. Thus, for example, a basis of a module or ideal is a set of
elements that generate the module or ideal, and the altitude of a ring is the maximal length of
a chain of prime ideals in the ring.

2. Rees-good bases for ideals

Recall that if I is a regular ideal of a Noetherian ring R, then
Rees| = U{Rees IR/z| z is a minimal prime ideal of R such that I 4+ z # R}.

See for example [2, (2.2)(c) and (2.4)]. Thus if (V,N) € ReesI, then V is a valuation ring of the
quotient field of R/z for some minimal prime ideal z of R and the center of V in R is ¢~ (N) =
¢~ (NN (R/z)), where ¢:R — R/z is the canonical map. If H C V is an ideal of V, we sometimes
write ¢~ 1(H) as HNR.

We fix the following notation.

Notation 2.1. Let I be a regular proper ideal in a Noetherian ring R and let {(V;, N;)}?_; be the set of
Rees valuation rings of I. For je{1,...,n} let Hj={xel|xV; CIV;}.

Lemma 2.2 describes the relation between Rees-good elements b € R and the sets H; of Nota-
tion 2.1, and also gives two cases when I has a Rees-good basis.

Lemma 2.2. With the notation of (2.1), the following hold:

(2.2.1) H; = H;V;N1isanideal in R that is properly containedin [ fori=1,...,n.
(2.2.2) Anelementb € I is Rees-good for I ifand only if b ¢ Hy U --- U H,.
(2.2.3) Ifeither I is principal or n = 1, then I has a Rees-good basis.

Proof. Using Notation 2.1 and Definition 1.1, (2.2.1) and (2.2.2) follow from basic properties of valua-
tions.
For (2.2.3), if I = bR is principal, then it is clear that b is a Rees-good basis of I. On the other hand,

if I has only one Rees valuation ring V and if c1, ..., cg is an arbitrary basis of I, then ¢;V =1V for
some i € {1,...,g}. We may assume by renumbering that ¢;V =1V fori=1,...,k, where 1<k < g.
It is then readily checked that cq, ..., ck, Ck41 +C1,...,Cg +C1 is a Rees-good basis for I. O

Example 2.3 exhibits a Gorenstein local ring (R, M) of altitude one such that M has no Rees-good
elements and such that no power of M has a Rees-good basis.
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Example 2.3. Let F be the field with two elements, let X, Y be independent indeterminates over F, let
R=F[X,Y]/(XY(X+Y)), and let x, y denote the images in R of X, Y, respectively. Then M = (x, y)R
has three Rees valuation rings

Vi:=F[X,Y]/(X), Vo :=F[X,Y]/(Y), and V3:=F[X,Y]/(X+Y).
With notation as in (2.1), notice that
Hi=xR+M? ~ Hy=yR+M? and Hz=(x+y)R+ M>.

Therefore M = Hy1 U Hy U H3, so M does not have any Rees-good elements, by Lemma 2.2.2. Since
xy(x+y) =0 and F is of characteristic two, one has x>y = xy?, and for n >3

Thus {x*,x"~'y, y"} is a minimal basis of M" for every n > 2. It follows that the only Rees-good
element for M", up to congruence mod M"*1, is x* + x"~1y 4 y", for every n > 2. For g € M" can
be written g =ax" 4+ bx""'y + cy" + h with a,b,c € F and h € M"*!, and g is a Rees-good element
for M" if and only ifa=b=c=1.

Remark 2.4. For M as in Example 2.3, there exist principal ideals that are projectively equivalent to M.
Therefore there exist ideals projectively equivalent to M that have a Rees-good basis.

Our main interest in this paper is to determine when [ has a Rees-good basis. In view of (2.2.3)
we assume throughout the remainder of this section that n > 1; that is, that I has more than one
Rees valuation ring.

Lemma 2.5. With the notation of (2.1), letu, v € R and x, y € I. Then the following hold:

(2.51) Ifx+uy,x+vyeHyandif (u—v)Vy=Vy, thenx,y € Hy.
(2.5.2) Ifx€ Hy and y ¢ H1, thenrx + wy ¢ H1 for all elementsr, w € R with wV{ = V.

Proof. For (2.5.1), if x+uy,x+ vy € Hy, then (u — v)y € Hy. Since (u — v)Vq1 = Vj, it follows that
y € Hy. Therefore x = (x + uy) —uy € Hy.
For (2.5.2), if x€ Hy and rx+ wy € Hy, then wy € Hy. Since wV{ = Vq, it follows that y e H;. O

Lemma 2.5.1 applied to each V; suggests the following definition.

Definition 2.6. With the notation of (2.1), let U = {u1,...,us} S R, n > 2. Assume first that R is an
integral domain with quotient field F and let D = ("_; V;. Then U is said to be a set of D-units with
D-unit-differences in case uq,...,u, and the u; —u; are units in D for all i # j in {1,...,n}. If R is
not an integral domain, then by abuse of terminology we continue to say that U is a set of D-units
with D-unit-differences in case the images in Vi (k=1,...,n) of uq,...,u, and the u; —u; are units
in Vi forallisjin{1,...,n}.Ifuq,...,u, and the u; —uj are, in fact, units in R, then it is said that
U is a set of R-units with R-unit-differences.

Using the notation of Definitions 1.2.1 and 2.6, we have
Lemma 2.7.
(2.71) Ass(R/(Ii)a) C Ass(R/(Ii“)a) for every positive integer i, and A* (1) is a finite set.

(2.7.2) The prime ideals in A*(I) are precisely the prime ideals that are the center in R of some Rees valuation
ring of I.
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(2.7.3) Letuy,...,un € R. Then uy, ..., un are D-units with D-unit-differences if and only if {u1, ..., un} U
{ui—ujli#je{l,....,n}} SR\ U(P|PeA*(D).

Proof. (2.7.1) is proved in [17, (2.4) and (2.7)].
(2.7.3) follows immediately from (2.7.2), and (2.7.2) follows from the construction/definition of
Rees valuation rings given in [2, Definition 2.3]. O

Lemma 2.8. With the notation of (2.1), if there exists a set U = {u1,...,uy—1} € R, n > 3, of D-units with
D-unit-differences, then I # | J{_; Hi.

Proof. By possibly removing some of the H;, we may assume that no H; is contained in H; with i # j.
First observe that I # Hq U Hj. Indeed, if x; € Hy \ Hy and x; € H \ Hy, then by (2.5.2), x; +x; €
I\ (H1 U Hy).

Now assume that 2 <h <n and I # H;, U---U H;, for any subset {H;,,..., H;,} € {H1,..., Hp}.
Suppose I = Hy U --- U Hp1q. Then there exist x; € Hy \U?jz1 H; and x, € U?izl H; \ Hi. So x1 +
ujxp ¢ Hy fori=1,...,n—1, by (2.5.2).

Also, x; € Hpy, for some me {2,...,h+ 1}, s0 xy +ujxy ¢ Hy fori=1,...,n—1, by (2.5.2). There-
fore, since h + 1 < n, at least one of the h — 1 (< n — 2) submodules H; (with [ €{2,...,m — 1,
m+1,...,h+1}) must contain X1 4 ujxo and x; + u;jx; for some i # j e {1,...,n — 1}. But this, to-
gether with (2.5.1), implies that x; € Hj, contradicting the choice of xy. Thus [# H1U---UHp;. O

Lemma 2.9. With the notation of (2.1), assume that n > 2 and that there exists a set U = {uq,...,us} C R
of D-units with D-unit-differences. Let c1, ..., cg be a (not necessarily minimal) basis of I, and assume that
there exists an integer k such that: (a) 1 <k < g; and, (b)c; ¢ H1 U---UH, ifand only ifi =1, ...,k Then

there exists x € I such thatx ¢ HiU---UHyandcy, ..., Ck, X, Ck42, . . ., Cg 1S a basis of I.
Proof. For h=1,...,n let X = Cg41+UpC1, S0 C1, ..., Ck, Xp, Ck42, .., Cg isabasisof I forh=1,...,n.
Also, by (b) there exists at least one j € {1,...,n} such that c,;q € H;. Since upc1 ¢ Hj for h, j e

{1,...,n}, by (b) (since uy is a D-unit in R), it follows from (2.5.2) that xp = cx41 + upc1 ¢ U{H; |
ck+1 € Hj} for h=1,...,n. Also, by the hypotheses on c; and the uy, it follows from (2.5.1) that
each H; can contain at most one of the n elements x;, so it follows that there exists at least one
he{1,...,n} such that x, ¢ H; U---U H,,. Therefore the conclusion follows by letting x =x,. O

Remark 2.10. It follows from Lemma 2.9 and its proof that if c1,...,cg is a basis of I such that (a)
and (b) hold, and if U = {uq,...,u,} is as in (2.9), then there exist not necessarily distinct D-units
Vi,...,Vg_ in U such that xV;j =1V; for each x € {c1, ..., Ck, Ck-1 + V1C1, ..., Cg + Vg_kC1}, that is,
by Definition 1.1, such that c1, ..., ¢, Ck+1 + V1€1, ..., Cg + Vg_kC1 is a Rees-good basis for I.

Proposition 2.11. With the notation of (2.1), assume that n > 2 and that there exists aset U = {uq, ..., up} C
R of D-units with D-unit-differences. Then I has a Rees-good basis.

Proof. By (2.2.3) it may be assumed that each basis bq,...,bg of I has g > 1. Let cy,...,cg be an
arbitrary basis of I and let Hy, ..., Hy be as in (2.1). If ¢q,...,cg ¢ Hy U---U Hy, then the conclusion
holds with b; =¢; fori=1,..., g by (1.1) and (2.2.2). On the other hand, if ¢; € H{U---UHy and c; ¢
H{U---UH, for some i, j € {1, ..., g}, then it may be assumed that cq,...,cx ¢ H1U---UH, and that
Ck+41,---,Cg € H{U---UHy, so the conclusion follows from Remark 2.10. Therefore it may be assumed
that ¢1,...,cg € H{U---UHj;. Then it follows from Lemma 2.8 that there exists by € I\ (H{U---UHp).
Then by,cq,...,cg is a basis of I with by ¢ H{U---UH;, and c1,...,¢cg € H{ U--- U Hp, so the
conclusion follows from Remark 2.10. O

Remark 2.12. Let c1,...,cg be an arbitrary basis of I and let U = {uq,...,up}, n > 2, be a set of
D-units with D-unit-differences. The proof of Proposition 2.11 shows:
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(i) If ¢q,...,cg¢ H{U---UHy, then cq, ..., cg is a Rees-good basis of I.

(ii) If ¢q,...,ck ¢ HHU---UHy and Cgq1,...,Cg € Hy U--- U Hy, then there exist not necessarily
distinct D-units vq,..., Vg in U such that c1,...,c, Cepq1 + Vi€1,...,Cg + Vg_iCq is a Rees-
good basis for I.

(iii) If ¢1,...,cg € H{ U---U Hp, then there exists by € I \ (H1 U---U Hy) and not necessarily distinct
D-units v1,...,vg in U such that by, cq 4+ v1ib1,...,cg 4+ vgby is a Rees-good basis for I.

Remark 2.13. Let R be a Noetherian ring. With the terminology as in Definition 2.6, assume that there
exists in R a set U = {uq, ..., uy}, n > 2, of R-units with R-unit-differences. Then Proposition 2.11 im-
plies that every regular proper ideal I in R such that Card(Rees ) < n has a Rees-good basis. Moreover,
the proof of Proposition 2.11 shows how to obtain such a basis.

Theorem 2.14. With the notation of (2.1) and (1.2), assume that n > 2. The following properties are equivalent.

(1) Card(R/p) > n for each p € A*(I) that is a maximal ideal of R.
(2) There exists aset U = {uq, ..., us} € R of D-units with D-unit-differences.

If these equivalent properties hold, then each regular ideal H in R such that | J{q | q € A ()} < Uip |
p € A*(I)} and Card(Rees H) < Card(ReesI) has a Rees-good basis. In particular, each ideal H of R that is
projectively equivalent to I has a Rees-good basis.

Proof. (1) = (2) The ideals p; = N;NR, i =1,...,n, are the (not necessarily distinct) elements
of A*(I), by Lemma 2.7.2, so let pi,...,px be the (distinct) maximal members of A*(I), and let
T=R\U{p|peA*()). Then Rt is semi-local with maximal ideals piRrt,..., pxRt, IRT is con-
tained in the Jacobson radical of R7, and Rees IRt =Rees|, by [17, (6.5) and (6.8)] and the definition
of T. For i=1,...,k let u;1,...,uin € Rt be such that their images in Rr/p;Rr are nonzero
and distinct. These exist by hypothesis if p; is a maximal ideal of R. Otherwise, R/p; is infinite.
For j=1,...,n there exists uj € Rt such that uj —u;; € p;Rt for i =1,...,k by comaximal-
ity (see [21, Theorem 31, p. 177]). Let t € T be such that tu; € R for j=1,...,n. We claim that
{tuq, ..., tuy} is a set of D-units in R with D-unit-differences. To see this it suffices to show for each
Rees valuation ring (V;, N;) of I that the images of tuq,...,tu, in V/N; are nonzero and distinct.
If p; = N; N R is maximal in A*(I), they are nonzero and distinct in R/p; by construction, and thus
nonzero and distinct in V;/N;. If p; = N; N R is not maximal in A*(I), we have a homomorphism
R/pi — R/p; for some prime ideal p; that is maximal in A*(I). Since the images of tuq, ..., tu, are
nonzero and distinct in R/pj, their images in R/p; must be nonzero and distinct, and thus nonzero
and distinct in V;/N;.

(2) = (1) If p € A*(I) is a maximal ideal of R, then we have homomorphisms R — R/p — V;/N;
and the elements of U map to n distinct nonzero elements of V;/N; by hypothesis. Thus the elements
of U map to n distinct elements of R/p. So Card(R/p) > n.

It follows from Proposition 2.11 that the condition (2) implies that I has a Rees-good basis.
But conditions (1) and (2) depend only on the set of maximal asymptotic prime divisors of I,
so it follows that each regular ideal H in R such that | J{q | q € A*(H)} € U{p | p € A*(I)} and
Card(Rees H) < Card(Rees ) also has a Rees-good basis. The last statement follows from this, since
projectively equivalent ideals have the same asymptotic prime divisors, by [2, Theorem 3.4]. O

The next two corollaries follow immediately from Theorem 2.14.

Corollary 2.15. Let I be a regular proper ideal in a Noetherian ring R and assume that no member of A*(I) is
a maximal ideal of R. Then I has a Rees-good basis.

Corollary 2.16. Let R be a Noetherian ring and assume that R/M is infinite for all maximal ideals M in R.
Then every regular proper ideal in R has a Rees-good basis.
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In the final three results in this section we show that, with a slight change of perspective, there
is a useful result analogous to Lemma 2.8 concerning modules equal to a finite union of proper
submodules.

The proof of Lemma 2.17 is similar to the proof of Lemma 2.5, so it is omitted.

Lemma 2.17. Let R be a commutative ring, let M be a finitely generated R-module, let N be a submodule of M,
and let u, v € R and x, y € M. Then the following hold:

(2171) If x+uy,x+ vy e Nandifu — visaunitin R, thenx, y € N.
(217.2) Ifxe N and y ¢ N, then, for all elements r and units w in R, rx + wy ¢ N.

Theorem 2.18. Let R be a commutative ring, let U = {u1,...,us—1} (n > 3) be a set of R-units with R-
unit-differences, let M be a finitely generated R-module, and let N1, ..., N, be proper submodules of M. Then

M= UL, Ny

Proof. The proof is similar to the proof of Lemma 2.8, using Lemma 2.17 in place of Lemma 2.5, so
we omit the details. O

Proposition 2.19 is a variation of Theorem 2.18.

Proposition 2.19. Let R be a commutative ring, let v, ..., vpy1 (n > 1) be elements in R such that v; — v
isaunitin R fori+# jin{1,...,n+ 1}, let M be a finitely generated R-module, and let N1, ..., Ny be proper
submodules of M. Then M # | Ji_; N;.

The proof is similar to the proof of Theorem 2.18, but since it is not assumed that vq, ..., vy41 are
units in R, (2.17.2) cannot be used to assume that no x; + v;x is in Ny, and (2.17.2) cannot be used
to assume that no xq + vixy is in Np,.

Results which are related to (2.18) and (2.19) for the case that R contains an uncountable set
{u, | A € A} with unit differences are given in [19, (2.5) and (2.6)].

3. Rees-good bases in finite integral extensions
We use Lemma 3.1 in Proposition 3.2.

Lemma 3.1. Let I = (b1, ..., bg)R be a proper ideal in a Noetherian ring R with each b; regular and let A be
a finite integral extension ring of R.

(1) Let (V, N) € Rees I and let z be the unique minimal prime ideal of R such that (V, N) € ReesIR/z. Let w
be a (necessarily minimal) prime ideal of A lying over z and let (W, Q) be a DVR overring of A/w such
that W N K =V, where K is the quotient field of R/z. Then (W, Q) € ReesIA.

(2) Let (W, Q) € ReesIA and let w be the unique minimal prime ideal of A such that (W, Q) € ReesIA/w,
and assume that w N R = z is minimal in Ass(R). Then W N K = V € Rees I, where K is the quotient field
of R/z.

Proof. (1) After exchanging R C A for R/z C A/w, we may assume that R and A are integral domains
with quotient fields K and F respectively. For some i € {1,..., g}, we have V = (R[I/b;]")p for some
height-one prime ideal P of the integral closure R[I/b;]" of R[I/b;]. Then R[I/b;] € A[I/b;]" is an
integral extension of domains, and since W N K =V = (R[I/b;]')p, we have A[I/b;j] €W and Q N
R[I/b;] = P. Thus P’ = Q N A[I/b;]’ is a prime ideal of A[I/b;]’ lying over P, so P’ is a height-one
prime ideal of A[I/b;]" and (A[I/b;])pr € W. Since (A[I/b;])p: is a DVR, we have W = (A[I/b;]")p' €
Rees[A.

(2) Again, after exchanging R € A for R/z C A/w, we may assume that R and A are integral
domains with quotient fields K and F respectively. Then W = (A[I/b;])p: for some i € {1,..., g}
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and some height-one prime ideal P’ of A[I/b;]’. Since R[I/b;]" C A[I/b;] satisfies going-down,
[12, (10.13)], it follows that P = P’ N\ R[I/b;]" also has height-one. Therefore W NK # K, (R[I/bi])p C
W NK, and (R[I/b;])p € ReesI, hence W N K = (R[I/b;])p €Reesl. O

Proposition 3.2. Let I be a regular proper ideal in a Noetherian ring R and let A be a finite integral extension
ring of R. Assume that some prime ideal P in A that contains I is unramified over P N R. There exists a Rees
valuation ring (W, Q) of 1A whose center in A is contained in P, and for each such W there exists a Rees
valuation ring (V, N) of I such that W is an extension of V. Moreover, W is unramified over V, so the Rees
integer of 1 A with respect to W is the Rees integer of I with respect to V.

Proof. Since IA C P, the prime ideal P contains some minimal associated prime ideal p of IA, and
it is clear p (and every minimal prime divisor of IA) is in A*(IA). Also, A*(IA) ={Q'N A | Q’ is the
maximal ideal of some Rees valuation ring W’ of 1A}, by Lemma 2.7.2, so there exists at least one
Rees valuation ring (W, Q) of IA such that Q N A C P. Further, since by hypothesis Ap is unramified
over Rpng, it follows from [12, (38.6)] that minimal prime ideals in Ap contract to minimal prime
ideals in Rpng. Therefore it follows from Lemma 3.1 that the Rees valuation rings of IA whose centers
in A are contained in P are among the extensions of the Rees valuation rings of I whose centers in R
are contained in P N R. Let (V, N) be the Rees valuation ring of I such that W is an extension of V.

To see that W is unramified over V, let q=Q N A and let p=NNR, so g N R = p. Since, by
hypothesis, ¢ € P and Ap is unramified over Rpng, it follows from [12, (38.8)] that Ay is unramified
over Rj. Let w be the minimal prime ideal in A such that W is a Rees valuation ring of IA/w. Then
w C QNA=q,so Ag/wAq is unramified over R, /(WAqNRp), by [12, (38.7)], and z= (WAGNRp)NR
is a minimal prime ideal in R that is the unique minimal prime ideal z’ in R such that V is a Rees
valuation ring of IR/Z'. Therefore it may be assumed that A; and R, are integral domains.

It follows from [12, (38.6)] that Aq is unramified over R, if and only if there exists an element
u € Aq for which Ay is a ring of quotients of Rp[u] and for which there is a polynomial f(X) € Rp[X]
with derivative f’(X) such that f(u) € qAq and f'(u) ¢ qAq. Since Aq is unramified over Rp, such
an element u and polynomial f(X) exist for A; with respect to R,. We have A; € W since R, C V.
Also Q N Ag =qAq implies that f’(u) maps to a nonzero element in the subfield A;/qAq of W/Q.
Therefore u and f(X) imply by [12, (38.6)] that V[u]gnvy is unramified over V. It follows that
(Q NV[uVIulgnviu = NVIulgnvr is principal, so V[ulgnv is @ DVR contained in W and with
the same quotient field as W, so V[ulgnv = W. Hence W is unramified over V. O

Corollary 3.3. Let I be a regular proper ideal in a Noetherian ring R and let A be a finite integral extension
ring of R. Assume that each maximal ideal P in A that contains I is unramified over P N R. Then each Rees
valuation ring of 1 A is an extension of a Rees valuation ring of I over which it is unramified, so the Rees integers
of I and 1A are the same (with possibly different cardinalities).

Proof. Lemma 3.1 implies that the Rees valuation rings of IA are the extensions of the Rees valuation
rings of I, so Corollary 3.3 follows from Proposition 3.2. 0O

The following remark also follows immediately from Proposition 3.2.

Remark 3.4. With the notation and assumptions of Corollary 3.3, let H be a regular ideal in R such
that (J{glqe A*(H)} C Ulplpe A*()} and Card(Rees H) < Card(Rees I). Then each Rees valuation
ring of HA is an extension of a Rees valuation ring of H over which it is unramified, so the Rees
integers of H and HA are the same (with possibly different cardinalities).

Proposition 3.5. Let (S, M1, ..., M) be a semi-local ring. Then the following hold:

(3.5.1) For each positive integer k there exists a simple free integral extension ring Sy = S[xx] of S that
contains a set Uy of 2X — 1 Sy-units with Sy-unit-differences. Moreover, S may be chosen so that:
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(a) S has exactly m maximal ideals; and (b) fori =1, ..., m, the unique maximal ideal in Sy, that lies
over M; is, depending on i, either M; Sy or (Mj, xi) Sk.

(3.5.2) For each positive integer k the ring S has a simple free integral extension ring Sy = S[xy] that contains
a set Uy of 2¥ — 1 Sy-units with Sy-unit-differences and each prime ideal P in Sy, is unramified over
P N S, so for each regular proper ideal I in S, the ideals I and IS; have the same Rees integers (with
possibly different cardinalities).

Proof. For (3.5.1), if Card(S/M;) > 2% for each i € {1,...,m}, let U; = {ui1, ...,uiyzkfl} C S be such
that the images of the u; ; in S/M; are distinct and nonzero. For each i and j, we may choose w
such that, for i=1,...,m, w; = u; j mod M;, by comaximality (see [21, Theorem 31, p. 177]). Then
U={w1,...,ux_4} is a set of 2k — 1 S-units with S-unit-differences.

Therefore assume that m’ € {1,...,m} is such that Card(S/M;) < 2¥ for i =1,...,m’ and
Card(S/M;) > 2% for i=m' +1,...,m. For i=1,...,m let F; = S/M;, for i=1,....,m" let f;i(X)
be a monic irreducible polynomial of degree k in F;[X], and for i=m’ +1,...,m let fi(X) = X*. By
comaximality we may choose a monic f(X) € S[X] of degree k such that, for i =1, ...,m, its image
in Fi[X] is fi(X). Then f(X) is irreducible of degree k.

For i=1,...,m' let N; = (M;, f(X))S[X], and for i=m’ +1,...,n let N; = (M;, X)S[X]. Then
for i=1,...,n, N; is a maximal ideal, since, for i =1,...,m’, S[X]/N; = F;[X]/(fi(X)), while for
i=m +1,...,n, S[X]/N;j = S/M,;. Therefore Sy = S[xx] = S[X]/(f(X)) is a simple free integral ex-
tension ring of S and, for i =1,...,m’, P; = M;S, = N;/(f(X)S[X]) (resp., for i =m' +1,...,m,
P; = (M, x¢) Sk = Ni/(f(X)S[X])) is the only maximal ideal in Sy that lies over M;. It therefore fol-
lows that Sy is a semi-local ring such that (a) and (b) hold and for each maximal ideal P of S
we have Card(Sg/P) > 2. It now follows, as in the first paragraph of this proof that S; contains a
subset U of 2 — 1 S-units with Sj-unit-differences.

For (3.5.2), if all S/M; are infinite, then it follows from the first paragraph of the proof of (3.5.1)
that (3.5.2) holds with S, = S[1] = S for all positive integers k, so it may be assumed that
S/Mi,...,S/Mgy are finite and S/Mgy1,...,S/Mp are infinite. Since S/M; is finite for i =1,...,d,
there exists for each positive integer k a monic irreducible and separable polynomial f;(X) €
(S/Mi)[X] of degree k. Fix k and for i=d+1,...,m let f;(X) = (X —si1)--- (X — six), where
Si1,...,Sik are distinct nonzero elements in S/M; (this is possible, since S/M; is infinite). By the
Chinese Remainder Theorem there exists a monic polynomial f(X) € S[X] of degree k such that f(X)
modulo M;S[X] is equal to f;(X) fori=1,...,m. Let Sy = S[xx] = S[X]/(f(X)).

Then, for i =1, ...,d, it follows as in the second preceding paragraph that Q; = M;S}, is a maximal
ideal, and S[xi]q; is integral over Sy, since Q; is the only maximal ideal in Sy that lies over M;.
Also Sk/Q; is separable over S/M; by the choice of fi(X), so S[xxlg; is unramified over Sp,. For
the remaining i the field S/M; is infinite and the ideal M;Sy factors into a product of k distinct
maximal ideals Q; 1, ..., Q; such that Qi,jS[Xk]Q,-_j = Mis[xk]Q,-yj and Sk/Qi,j =S/Pj, so S[Xk]QiJ is
unramified over Sp,. Therefore it follows from [12, (38.8)] that each prime ideal P in Sy is unramified
over PN S, and it follows from (3.2) that the Rees integers of I and ISy are the same (with possibly
different cardinalities) for each regular proper ideal I in S.

Finally, it follows from the last paragraph of the proof of (3.5.1) that Sj contains a set U of 2K —1
Sk-units with Si-unit-differences. 0O

Remark 3.6. (3.6.1) In (3.5.1), assume! that, for i =m’+1, ..., n, there exists an irreducible polynomial
gi(X) of degree k in (S/M;)[X]. Then it follows immediately from the third paragraph of the proof
of (3.5.1) that, by choosing g;(X) in place of f;(X) = X, the maximal ideals in S are the ideals M;S,
i=1,...,n

1 §/M; may have no extension field K with [K : (S/M;)] =k; for example, it is shown in [18, Example 3] that if {p1,..., Pn}
is a finite set of distinct prime integers, then there exist fields F of characteristic zero having the property that F admits an
extension field of degree k if and only if none of the p; divides k.
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(3.6.2) If each S/M; has a separable extension field of degree k (for example, if each S/M; is
finite), then it follows from the proof of (3.5.2) that S, may be chosen so that S and Sy have the
same number of maximal ideals in (3.5.2).

(3.6.3) In (3.5), assume that [ is a regular proper ideal in a Noetherian ring R, that T =R\ U{p |
p € A*()}, and that S = Rr. Then IS is contained in the Jacobson radical of S, A*(IS) = {pS |
p € A*()}, by [17, (6.5) and (6.8)], and it follows from the definition of Rees valuation rings (for
example [2, (2.2)(c) and (2.4)]) that ReesI = Rees IS and that I and IS have the same Rees integers.
Also, by Proposition 3.5, the Rees integers of IS and of IS[x] are the same (with possibly differ-
ent cardinalities). Further, since x is integral over S and S[x] is a simple free integral extension ring
of S, there exists t1 € T such that t1x; is integral over R and R[tqx,] is a simple free integral extension
ring of R such that S[x;] = (R[t1x¢])T. Moreover, the centers in R[t1x,] of the Rees valuation rings of
IR[t1xy] are disjoint from T (by integral dependence, the definition of T, and [10, Proposition 3.22]),
so it follows as just above that Rees IS[x;] = Rees IR[t1x,] and that IS[x,] and IR[t1x,] have the same
Rees integers, hence I and IR[t1x,] have the same Rees integers (with possibly different cardinalities).
Finally, if U = {uq,...,u,} is a set of D*-units with D*-unit-differences in S[x] (here, D* is, in the
domain case, the intersection of the Rees valuation rings of IS[xi]), then there exists t; in T such
that {touq,...,touy} is a set of D*-units with D*-unit-differences in R[t2x;], so if we let t = t1to,
then t € T is such that R[txy] is a simple free integral extension ring of R, {tuq,...,tu,} is a set of
D*-units with D*-unit-differences in R[tx,], and the Rees integers of I and IR[tx,] are the same (with
possibly different cardinalities).

Theorem 3.7 is the main result in this paper.

Theorem 3.7. Let I be a regular proper ideal in a Noetherian ring R. There exists a simple free integral extension
ring A of R such that:

(1) Foreachregularideal H in R whose asymptotic prime divisors are contained in the union of the asymptotic
prime divisors of I and for which Card(Rees H) < Card(ReesI), the ring Ap is unramified over Rpnp for
each asymptotic prime divisor P of HA;

(2) Each Rees valuation ring of HA is unramified over its contraction to a Rees valuation ring of H; and

(3) Theideal H A has a Rees-good basis and the same Rees integers as H (with possibly different cardinalities).

In particular, these properties hold for the ideal H = I.

Proof. Let T=R\ J{p|p € A*(I)} and S = Ry. Then IS is contained in the Jacobson radical
of S, A*(IS) = {pS | p € A*()}, and ReesIS = ReesI, by the first part of (3.6.3). Also, it follows
from (3.6.3) that if there exists a finite free integral extension ring A* of S that contains a set
of Card(ReesIA*) D*-units with D*-unit-differences, then there exists a finite free integral exten-
sion ring A of R that contains a set of Card(ReesIA) D-units with D-unit-differences. Further, since
A*(IS) = {pS | p € A*(])}, it follows from the definitions that if the asymptotic prime divisors (resp.,
the Rees valuation rings) of HA* are unramified over their contractions to S (resp., the total quotient
ring of S), then the asymptotic prime divisors (resp., the Rees valuation rings) of HA are unramified
over their contractions to R (resp., the total quotient ring of R), hence the Rees integers of HA and H
are the same. Therefore it may be assumed to begin with that R is semi-local with I contained in
the Jacobson radical of R, and it suffices (by Remark 3.6.3, Corollary 3.3, and Remark 3.4) to construct
a finite free integral extension ring A of R such that: (a) A contains a set of Card(ReesIA) D-units
with D-unit-differences; and, (b) each maximal ideal M in A is unramified over M N R.

To construct such a ring A such that (a) holds, let hg be the number of minimal prime ideals
in R, so hp > 1, and let n = Card(ReesI) (so n > 1). If n =1, then the conclusion follows with A =R,
by (2.2.3), so it may be assumed that n > 2. Since the integers hy and n are fixed, for all large
integers k it holds that

2K > honk?. (3.7.1)
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Fix such an integer k, and let A = Ry, where Ry, = R[X]/f(X)R[X] is as in (3.5), so A has a set U of
2k — 1 A-units with A-unit-differences. Therefore, to show that (a) holds for A, it remains to show
that Card(Rees [A) < 2% — 1.

For this, let zi,...,zp, be the minimal prime ideals in R. Then the degree of the image g;(X)
of f(X) in (R/z;)[X] is k and g;(X) is monic, so g;(X) has at most k minimal prime divisors in
(R/zj)[X], so f(X) has at most khg minimal prime divisors in R[X]. Therefore A has at most kho
minimal prime ideals and for each minimal prime ideal z; in R there are at most k minimal prime

ideals w in A that lie over z;. Let wq, ..., wy be the minimal prime ideals in A, so
h < khg (3.7.2)
and
[(A/w)o : (R/(w;n R))(O)] <k forj=1,...,h. (3.7.3)

The Rees valuation rings of (IA+ wj)/w; are the extensions of the Rees valuation rings of (I +(w;N
R))/(w;jNR) to the quotient field (A/w )y of A/w;. By [22, Theorem 19, p. 55] each Rees valuation
ring of (I + (w; NR))/(w; N R) has at most [(A/wj)) : (R/(Wj N R))©)] extensions to (A/w;) ).
Using (3.7.3), it follows that

rj <kqj, (3.7.4)

where r; is the number of Rees valuation rings of (IA 4+ wj)/wj, and q; is the number of Rees
valuation rings of (I 4+ (w;NR))/(w;NR). It is clear that ry 4 --- 4 r, = Card(ReesA), so it follows
from (3.7.4) that Card(ReesIA) =11+ --- 41, <kqi + --- + kqy <k(hn) (since gj <n for j=1,...,h).
Since h < khg, by (3.7.2), it follows that Card(Rees IA) < khn < k(khg)n = honk? < 2% — 1, by (3.7.1), as
desired.

Finally, to see that (b) holds for A, since R is semi-local, (3.5.2) implies that A may be constructed
so that each prime ideal P in A is unramified over P N R. Hence by Corollary 3.3 and Remark 3.4 each
Rees valuation ring of HA is unramified over its contraction to a Rees valuation ring of H, so it follows
that the ideals HA and H have the same Rees integers (with possibly different cardinalities). O

Remark 3.8. (3.8.1) Concerning the conclusion of Theorem 3.7, if H is an ideal in R that is projectively
equivalent to I, then H and I have the same Rees valuation rings, by [2, Theorem 3.4], hence it follows
from (3.7) that HA has a Rees-good basis and the same Rees integers as H (with possibly different
cardinalities).

(3.8.2) It follows from (3.7) and its proof that if My,..., M are finitely many regular maximal
ideals in a Noetherian ring R and if n is a given positive integer, then there exists a simple free
integral extension ring A, of R such that, for all ideals I in R with (J{p | p € A*(I)) S M U---U My
and Card(Rees!) < n, the ideal IA, has a Rees-good basis and the same Rees integers as I (with
possibly different cardinalities).

4. An asymptotic sequence is a Rees-good basis

Let I = (b1, ...,bg)R be a regular ideal in the Noetherian ring R. An interesting result of Swanson
and Huneke [20, Proposition 10.2.6] asserts that if (R, M) is a quasi-unmixed local ring of altitude g
and bq,...,bg are analytically independent modulo each minimal prime of R, then bi,...,bg is
a Rees-good basis of I. We prove in this section a related result. Theorem 4.2 asserts that if by, ..., bg
is an asymptotic sequence, then b1, ..., b is a Rees-good basis of I. We collect in Remark 4.1 facts
used to prove this.

Remark4.1. Let by, ..., bg be an asymptotic sequence in a Noetherian ring R and let I = (bq,...,bg)R.
Then:
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(41.1) [15, (2.3.3)]: For each i € {1, ..., g}, we have ht((by,...,b;)R) =i.

(4.1.2) [15, (6.1)]: For each minimal prime ideal z in R, the z-residue classes of by,...,bg is an
asymptotic sequence in R/z.

(41.3) [15, (2.9.1)]: If S is a multiplicatively closed subset of R such that IRs # Rs, then the
images of by, ...,bg in Rs is an asymptotic sequence in Rs.

(4.1.4) Assume that R is local with maximal ideal M. If M € A*(I), then by, ..., bg is a maximal
asymptotic sequence in R (by either Definition 1.2.2 or [15, (2.9.3)]).

(4.1.5) [15, (2.11)]: Assume that R is local and let R denote the completion of R. If by, ..., bg is
a maximal asymptotic sequence in R, then

min{altitude(ﬁ/z) | z is a minimal prime ideal in ’Ii} =g

(4.1.6) Assume that R is an integral domain. It is shown in [16, (2.5.3) and (2.5.4)] that there exists

a prime ideal H in Rg_1 = R[X1,..., Xg_1], where the X; are independent indeterminates, such that
R[g—f, Z—f] = Rg_1/H and H C pRg_1 for each minimal prime divisor p of I. Therefore, for each

prime ideal P in R such that I C P it follows from the factor-of-a-factor isomorphism theorem that

by be by be T\ ~ -
R[E,..., E]/(PR[E,..., ED = Rg_1/(PRg_1) = (R/P)[X1,..., Xg—1]-

(4.1.7) Assume that R is local with maximal ideal M, let z be a mmlmal prime ideal in R, and let
R be the M-adic completion of R. If R/z is quasi-unmixed, then since R/z is isomorphic to R/ZR it
follows from the definition of quasi-unmixed that for every minimal prime divisor z* of zR one has
altitude(R/z*) = altitude(R/2).

(4.1.8) Assume that (R, M) is a local domain and let (ﬁ, 1\71) be the M-adic completion of R. Let
C= R[g—f,..., ’;—f]. and let C* :ﬁ[g—f,..., Z—f]. It is shown in [14, Lemma 3.2] that there exists a
one-to-one correspondence between the prime ideals Q in C such that Q "R =M and the prime
ideals Q* in C* such that Q*HR M, and then Q*=QC* Q=Q*NC, and Cq is a dense subspace
of C*Q*

(4.1.9) [13, Proposition 3.5]: Assume that (R, M) is a local domain and let R be the M-adic com-
pletion of R. There exists a height-one maximal ideal in the integral closure of R if and only if there
exists a minimal prime z of R such that altitude(ﬁ/z) =1.

(4.1.10) [13, Corollary 2.14 and Theorem 3.1]: Assume that R is a Noetherian integral domain and
that A is a finitely generated extension domain of R. If R is locally quasi-unmixed, then A is locally
quasi-unmixed.

Theorem 4.2. Let | = (by, ..., bg)R be a regular ideal in a Noetherian ring R. If by, ..., bg is an asymptotic
sequence, then it is a Rees-good basis for I.

Proof. Let (V,N) be a Rees valuation ring of I. It suffices to show that b;V =1V fori=1,...,g.
There exists a minimal prime ideal z in R such that R/z C V C F, where F is the quotient field
of R/z. By Remark 4.1.2, the z-residue classes of by, ..., b is an asymptotic sequence in R/z, and V
is a Rees valuation ring of (I + z)/z, by construction/definition (see [20, Section 10.1]), so it may be
assumed to begin with that R is an integral domain.

Let (L, M) = (Rnnr, (N N R)Rnnr). By Remark 4.1.3, by,...,bg is an asymptotic sequence in L,
and V is a Rees valuation ring of IL, by construction/definition (see [20, Section 10.1]), so it may
also be assumed to begin with that R is a local domain such that its maximal ideal M = N N R.
Thus M e A*(I), by Lemma 2.7.2. Therefore by,...,bg is a maximal asymptotic sequence in R, by
Remark 4.1.4. Let R denote the M-adic completion of R. Remark 4.1.5 implies that

min{altitude(ﬁ/z) | zis a minimal prime ofﬁ} =g (4.2.1)



W,. Heinzer et al. / Journal of Algebra 323 (2010) 839-853 851

Since V is a valuation ring and I = (b1, ..., bg)R, there exists i € {1, ..., g} such that IV =b;V, so by
possibly relabeling it may be assumed that b1V =1V. Then V = C;,, where C’ is the integral closure

of C = R[%, e, b—f] in F and p’ is a height-one prime divisor of b;C’. Now p’ N R = M, by the start
of this paragraph, so Remark 4.1.6 shows that C/MC = Rg_1/(MRg_1) = (R/M)[X1, ..., Xg_1], where

the X; are independent indeterminates.
Assume it is known that MC=NNC. Then RCC<V and NNC = MC imply that C/MC C V/N

and the MC-residue classes of Z—f Z—f are algebraically independent over R/M. In particular, the
N-residue classes of the g — 1 elements g—f, e, gg are nonzero, so g—f,..‘, Zg are units in V; that

is, ,’j—;’V =V fori=1,...,g8 50 b;V =b;V =1V (by the preceding paragraph) for i =1,..., g, hence
b1, ...,bg is a Rees-good basis of I. Therefore it remains to show that MC =NNC.

For this, let P = NN C. Then MC C P, and it remains to show that P = MC. Suppose, by way of
contradiction, that MC C P. Since C/(MC) = (R/M)[X1, ..., Xg_1], there exists a nonzero polynomial

fX1,..., Xg—1) € R[X1, ..., Xg_1]

such that f(z—f, ey b] £) € P\ MC, so the P-residue classes of ey ,t; are not algebraically indepen-
dent over R/(P N R) =R/M. Hence

trans. deg.((C/P)/(R/M)) < g — 1. (4.2.2)

Since (ﬁ, 1\71) is the M-adic completion of (R, M), let C* =§[g—f,..., l;—f], and let P* = PC*. By Re-
mark 4.1.8, P* is a prime ideal such that P* NC =P and Cp is a dense subspace of C%.. Let D =Cp
and let D* = Cj.. Remark 4.1.8 implies that the PD-adic completion D of D is also the P*D*-adic
completion of D*. Notice that CQC\P) is the integral closure D’ of D in its quotient field and p’D’ is
a height-one maximal ideal in D’, since p 'D'’ND = PD, the maximal ideal of D. By Remark 4.1.9,
there exists a minimal prlme W in D such that altltude(D/w) =1

Let w* =W N D* z=wNC* and w=wNR. Using that D is the P*D*-adic completion of D*,
w* is a minimal prime ideal in D*, so z is a minimal prime ideal in C* and w is a minimal prime
ideal in R (since C* and R have the same total quotient ring), hence it follows from (4.2.1) that

altitude(R/w) > g. (4.2.3)
Since ﬁ/w is a complete local domain and therefore unmixed and quasi-unmixed, Remark 4.1.10
implies that C*/z is locally quasi-unmixed, so D*/w* is quasi-unmixed. Since W is a minimal prime

divisor of w*D* and altitude(fﬁ/@) =1, it follows from Remark 4.1.7 that altitude(D*/w*) =1, so
ht(P*D*/w™*) =1, hence

ht(P*/z) =1. (4.2.4)
Since ﬁ/w is quasi-unmixed, [13, Theorem 3.1] implies that ﬁ/w satisfies the altitude formula. Hence
ht(P*/2) + trans. deg.((C*/P*)/(R/M)) = ht(M/w) + trans. deg.((C*/2)/(R/w));
that is
1+t = altitude(R/w) + 0, (4.2.5)
by (4.2.4), where t = trans. deg.((C*/P* )/(R/M)) Since Cp is a dense subspace of C}., it follows that
C*/P*=C/P (and R/M R/M), sot < g—1, by (4.2.2), and altltude(R/w) > g, by (4.2.3), and this

contradicts (4.2.5). Therefore the supposition in the preceding paragraph is false, so P=NNC = MC,
hence b1, ..., bg is a Rees-good basis of I. O
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Remark 4.3. Let by, ...,bg be an asymptotic sequence in a Noetherian ring R, let C = R[%, el I;—f],
and let P be a prime ideal in C such that by € P. Then it follows from the proof of Theorem 4.2 that
if PN R e A*((b1,...,bg)R) (equivalently, P € A*(b;()), then: P = (P NR)C; the P-residue classes of
g—f, cey ’;—f are algebraically independent over R/(P N R); and, there exists a height-one prime ideal p’
in the integral closure C’ of C such that p’NC = P.

We obtain as a corollary the following result of Swanson and Huneke [20, Proposition 10.2.8].

Corollary 4.4. Let by, ...,bg be an R-sequence in a locally quasi-unmixed Noetherian ring R and let I =
(b1, ...,bg)R. Then I has a Rees-good basis.

Proof. This follows immediately from Theorem 4.2, since an R-sequence is a strong version of an
asymptotic sequence, by [15, (2.3.5)]. O

In the next corollary, an ideal I is of the principal class in case I has a basis consisting of h = ht(I)
elements.

Corollary 4.5. Let I be a regular proper ideal of the principal class in a locally quasi-unmixed Noetherian
ring R. Then each basis {b1, ..., by} for I with h = ht(I) is a Rees-good basis for I.

Proof. It is shown in [15, (2.3.6)] that if [ = (b1, ...,bp)R is an ideal with h = ht(I) in a locally quasi-
unmixed Noetherian ring then b1, ..., by is an asymptotic sequence. So this follows immediately from
Theorem 4.2. O

Corollaries 4.6 and 4.7 are somewhat analogous to [1, Theorem 1] and also to [16, (2.13)], in
that all four results concern chains of radical ideals. These corollaries are also sharpened versions
of [4, (3.18)]. In these two corollaries, an ideal I is projectively full in case the only integrally closed
ideals J that are projectively equivalent to I are the ideals (I')q, where i is an arbitrary positive inte-

ger. We use the following notation in Corollaries 4.6 and 4.7. If m is a positive integer and by, ..., bg
are regular elements of the Noetherian ring R, we let Ay = R[X1,..., Xg]/(X[" — b1, ..., ng” —bg) =
R[x1,...,xg] where x; is the residue class of X; in Ap for each i.

Corollary 4.6. Let by, ...,bg be an asymptotic sequence in a Noetherian ring R, fori=1,...,g let I; =

(b1,...,bi)R, let e} be the least common multiple of the Rees integers of I;, and let m be a common multiple
ofef,..., e; Assume that misa unitin R and fori =1, ..., g, let Bj = (X1, ..., X;)Am. Then Ap, is a finite
free integral extension ringof R and fori =1, ..., g, (Bj)q is a projectively full radical ideal that is projectively

equivalent I; A, and the Rees integers of B; are all equal to one.

Proof. By Theorem 4.2, by, ..., b; is a Rees-good basis of I;, since by, ..., b; is an asymptotic sequence
in R. Also, m is a unit in R that is a multiple of ej, so it follows from [4, Theorem 3.7] that the subring
Ci = R[x1,...,x;] of Ay is a finite free integral extension ring of R and ((x1,...,X;)Ci)q iS a projec-
tively full radical ideal that is projectively equivalent to I;C; and the Rees integers of (x1,...,%;)C;
are all equal to one. Also, the g —i elements bji1,bii2,...,bg are not in the centers in R of the
Rees valuation rings of I;, so there is no ramification in the extension of the Rees valuation rings of
(x1, ..., x;)C; to the Rees valuation rings of Bj, by [4, Corollary 3.2], and the conclusion readily follows
from this. O

Corollary 4.7. Let I be an ideal contained in the Jacobson radical of a semi-local ring (R; M1, ..., My), assume
that I is generated by an asymptotic sequence by, ..., bg of regular elements in R, and for each of the 28 — 1
ideals G € G = {(bz 1), ..., bz))R | 7w is an arbitrary permutation of {1,...,g}andi=1,..., g} let eg
be the least common multiple of the Rees integers of G. Let m be a common multiple of the integers in {e¢ |
G € G}, and assume that m is a unit in R. Fori =1, ..., g let Ay, = R[x1, ..., Xg] as above, and for each
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G=(rqa) ..., bzi)R eGlet B¢ = (Xz(1), ..., Xz (i)) Am. Then Ay, is a finite free integral extension ring of R
and for each G € G it holds that (B¢)q is a projectively full radical ideal that is projectively equivalent GAp
and the Rees integers of B are all equal to one.

Proof. Since an asymptotic sequence contained in the Jacobson radical of a Noetherian ring is a per-
mutable asymptotic sequence, by [15, (2.10)], the proof is similar to the proof of Corollary 4.6. O
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