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0. Introduction

Every topological space carries a relation that is called specialization: Let x, y be two points of
a topological space X. Then x is a specialization of y (and y is a generalization of x) if x € {y}; one
writes y ~» X. The specialization relation is a partial order if and only if X is a To-space. Specialization
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provides every topological space with the structure of a directed graph. The vertices are the points of
the space; the edges are the arrows of the specialization relation.

Viewed as a topological space, or as a graph, X has connected components, which are called
topological components, or graph components. The graph component of a point x is the set

Fix]l={yeX|3keN3xg,...,xp: X=X0 AN Y =X AVi: Xj_1 ~>Xj VXj ~> Xj_1}.

The graph components are the minimal nonempty subsets that contain every specialization and every
generalization of each of its points. The topological component of x is denoted by T[x]. The topolog-
ical components and the graph components form partitions of X. The corresponding quotient spaces
are denoted by X/T for the topological components, X/G for the graph components; the canonical
maps from X to the quotient spaces are denoted by pr = p%‘ :X— X/T and pg = pé : X — X/G. Ev-
ery topological component is a union of graph components. Hence there is a canonical continuous
map prc = p%(’G:X/G — X/T. The space X is graph connected if there is only one graph compo-
nent.

We study rings that are commutative, have a multiplicative unit and are reduced, i.e., have no
nilpotent elements. The prime ideals of a ring A, equipped with the Zariski topology, form a topolog-
ical space, which is denoted by Spec(A) and is called the prime spectrum. The class of prime spectra
of rings is exactly the class of spectral spaces, [10]. (Section 1 contains a short introduction to spectral
spaces.) Specialization in Spec(A) coincides with inclusion of prime ideals, i.e.,, p C q if and only if
p ~» q. We study the graph components of the prime spectrum of a ring.

The topological components of Spec(A) are determined by the idempotents of A. Every idempotent
defines a partition of Spec(A) into two closed and open subsets. The Boolean algebra of idempotents
is denoted by E(A). If p € Spec(A) then p N E(A) is a maximal ideal of E(A). This defines a surjective
spectral map pg:Spec(A) — Spec(E(A)). Its codomain is a Boolean space and is canonically homeo-
morphic to the space Spec(A)/T of topological components. The spectrum is connected if and only if
E(A) ={0, 1}, i.e., there are no nontrivial idempotents - the ring is indecomposable.

The space of graph components of Spec(A) is a finer invariant than the space of topological compo-
nents. There are indecomposable rings with only one graph component - trivial examples are integral
domains and local rings. There are also indecomposable rings with a very large number of graph com-
ponents. For example, the ring C(R; R) of continuous functions is indecomposable, but its spectrum
has uncountably many graph components.

We shall study both the space of graph components and the structure of the individual graph com-
ponents of prime spectra. From a purely topological point of view the study of the graph components
of prime spectra coincides with the study of the graph components of spectral spaces. However, we
are not only interested in topological questions. It is our goal to establish connections between prop-
erties of the graph components of the prime spectrum on the one hand and the arithmetic of a ring
on the other hand. We start with a look at spectral spaces and then turn to prime spectra.

In Section 2 we introduce three algorithms that can be used to construct the graph component
of a point in a spectral space. The termination of the algorithms plays a central role throughout.
In Section 3 we present various examples of spectral spaces to illustrate theoretical results and to
exhibit some complicated graph components. Section 4 contains basic information about the space
of graph components. The space has the Ti-property if and only if each graph component is pro-
constructible, 4.2. Recall that every graph component carries a natural metric — the distance of two
vertices is the minimal number of edges needed to connect the vertices. If there is a uniform bound
for the diameter of the graph components then the space X/G is Hausdorff, 4.6. If a spectral space
is normal (cf. [3], [22, Section 4]) then its space of maximal points is compact and is homeomorphic
to the space of graph components, 4.7. The space of graph components is Boolean if and only if the
topological components are graph connected, 4.9.

Section 5 starts the study of the connections between arithmetic properties of a ring and proper-
ties of the graph components of its prime spectrum. We consider classes of rings that are defined by
properties of the graph components of their prime spectra. For example, one may consider the class
of rings whose prime spectra have proconstructible graph components. Or, one may consider the class
of rings whose prime spectra have graph components with diameter bounded by some fixed number
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K € N. The main question that will be considered is whether such a class of rings is an elementary
class in the sense of model theory. For model theoretic purposes we always use the language of ring
theory, £ =1{0,1;+4, —,-}. A key step is to see how the termination of the algorithms of Section 2,
which are concerned with Spec(A), corresponds to arithmetic conditions about A, 5.2. Ultraproducts
of rings are used to show that various classes of rings that are defined by properties of the graph
components of their prime spectrum are not elementary, e.g., the class of rings with graph connected
prime spectrum, or the class of rings whose prime spectrum has only proconstructible graph compo-
nents. However, the classes of rings that are defined by the property that the algorithms of Section 2
terminate after at most K steps, K € N, are elementary, 5.6.

Rings with graph connected prime spectrum are analyzed in Section 6. Two infinite families of
elementary classes of rings are defined. The elements of each of these classes are characterized by
the behavior of the algorithms of Section 2, cf. 6.6, 6.7, 6.8. Explicit axioms are exhibited. In Sec-
tion 7 these results are extended to rings that are not necessarily indecomposable, but for which the
topological components of the prime spectrum are graph connected. Several families of elementary
classes of rings are defined. The main difference compared with the families of Section 6 is that now
the axioms defining the families incorporate information about the existence of idempotents. Typi-
cally the axioms say that for certain pairs X, Y of subsets of Spec(A) there is an idempotent in A
that separates the sets X and Y. Some elementary classes are characterized by the condition that the
indecomposable factor rings of their elements belong to one of the classes of Section 6, cf. 7.1.

Not all classes of rings that are considered in the present paper are new. Some of them have
already been studied in other contexts, such as von Neumann regular rings, or clean rings, or Gel'fand
rings, or almost clean rings, 7.4, 5.7, 7.6.

1. Notation, terminology, and a review of spectral spaces

In this preliminary section we fix some general conventions, and then we give a short review of
spectral spaces.

e In this paper 0 is a natural number.

e All rings are commutative, have a multiplicative unit and are reduced (or semiprime), i.e., there
are no nontrivial nilpotents.

e Suppose that G is a simple graph, oriented or not. There is a natural metric on G: Given vertices
X,y € G, their distance is oo if there is no sequence of edges that connects the vertices with
each other. If they can be connected then the distance is the length of the shortest connecting
sequence. The ball of radius k about x is denoted by B[x; k].

e Partially ordered sets will be called posets. Given a poset (L, <), a subset K C L is called an
upset if a € K, a < b implies b € K and is called a downset if b € K, a < b implies a € K. If
K C L is any subset then o(K) ={b e L|3a e K: a< b} is the smallest upset that contains K,
and y(K)={aeL|3beK: a< b} is the smallest downset that contains K. Both maps preserve
inclusion, are idempotent and send a set to a larger set, i.e., they are closure operators, [5, p. 42].

e Suppose that L = (L, <) is a poset. Then one defines another partial order <j,y, by setting a <j,y b
if and only if b < a. The new partial order is the inverse or dual partial order of the original one.
If L is a lattice with lattice operations v and A then (L, <jny) is a lattice with lattice operations
Viny and Ajny defined by a Viny b =a A b, a Ajny b =a v b. The poset, or lattice, (L, <jpy) is called
the inverse poset, or inverse lattice, and is denoted by Lijpy.

e Given a topological space X, the lattice of closed subsets is denoted by A(X).

Spectral spaces. Terminology and basic facts about prime spectra and spectral spaces will be used
throughout. General references are [10] and [6]. The book [6] is in preparation and is not yet available.
Therefore the material that is indispensable for reading the paper will be explained here.

If A is a ring then its set of prime ideals is denoted by Spec(A). If a € A then the sets D(a) =
{p € Spec(A) | a ¢ p}, a € A, are a basis of the Zariski topology on Spec(A). One also defines V (a) =
Spec(A) \ D(a). The prime spectrum or Zariski spectrum is the topological space Spec(A).
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Given any subset X C A one defines V(X) =(,cx V(a), which is a closed subset of the spec-
trum. Every closed subset of Spec(A) can be written in this form. If I = (X) is the ideal generated
by X then V(X) = V(). The canonical homomorphism 7;:A — A/I is used to define the map
Spec(rry) : Spec(A/I) — Spec(A), q — n,”(q), which is a homeomorphism onto the closed subset
V (I) C Spec(A).

The space Spec(A) is a spectral space. By definition, a topological space X is spectral if the follow-
ing conditions are satisfied, [10]:

e X is a quasi-compact To-space.

e The set of open and quasi-compact subsets is closed under finite intersections and is a basis of
the topology.

o For very nonempty closed and irreducible set C there is a point x € X such that C = {x}.

The set of open and quasi-compact subsets of X is denoted by IQC(X). This is a sublattice of the
Boolean algebra B(X), the power set of X. A subset C C X is constructible if it belongs to the Boolean
subalgebra of P(X) generated by IOC(X); the Boolean algebra of constructible sets is denoted by /C(X).
The elements of IOC(X) are the constructible sets that are open. Therefore they are frequently referred
to as the open and constructible sets. The set of complements of IOC(X) is the set K(X) of closed and
constructible sets.

The set C(X) is the basis of another topology on X, which is called the inverse topology. If T is
the topology of X then the inverse topology is denoted by 7j,y, the set X with the inverse topology
is denoted by Xij,y. It is a remarkable fact that Xj,, is a spectral space as well, [10, Proposition 8].
(The inverse topology has applications in real algebraic geometry, [19,20].) The constructible sets are
the basis for another topology on X, which is called the patch topology [10] or constructible topology.
The patch topology is denoted by 7con; the set X with the patch topology is denoted by Xcon. This
is a Boolean space, and its closed and open sets are exactly the constructible sets. Every Boolean
space is a spectral space, as one sees easily from the definition. The space X itself is Boolean if and
only if X = Xcop, if and only if IOC(X) = K(X) = K(X). In general the patch topology is generated
by the topology and the inverse topology, and IOC(XCOH) = IC(X). The elements of A(Xcon) are called
proconstructible subsets. We write IE(X) = A(Xcon)-

If X is a spectral space and if Y C X is a subset then Y carries the restriction of the topology of X.
The subset Y is proconstructible if and only if the relative topology makes Y into a spectral space.
The restriction map K(X) — K(Y), C — CNY is a homomorphism of Boolean algebras. It restricts to
surjective lattice homomorphisms K(X) — K(Y) and K(X) — K(Y).

Spectral spaces are Tp-spaces. Hence the specialization relation gives them the structure of
posets. Thus, there are the closure operators o :B(X) - P(X), 0 (C) ={xe€ X |Ize C: z~>x} and
Y PBX) - PX), y(O)={xe X |3z C: x~ z}. A subset C € X is closed under specialization if
C =0 (0C); it is closed under generalization, or generically closed, if C =y (C). The set C is closed for the
topology if and only if it is proconstructible and closed under specialization. If the set C is procon-
structible then C = o (C), and it follows that ¢ (C) is proconstructible. The same arguments, applied
with the inverse topology, show that set y(C) is proconstructible as well. Thus ¢ and y restrict to
closure operators of /C(X). The restrictions are also denoted by o and y.

The set of maximal points of the poset (X, ~) is denoted by Max(X), the set of minimal points
by Min(X). A point x is maximal if and only if the singleton set {x} is closed. The minimal points
are also called generic points. Every point specializes to some maximal point and has a generalization
that is a generic point. The subspace Max(X) € X is always quasi-compact and Tq, but need not be
Hausdorff. The subspace Min(X) C X is always Hausdorff, but need not be compact. A study of the
spaces Max(Spec(A)) and Min(Spec(A)) (where A is a ring) is contained in [22].

One defines a Priestley space to be a Boolean space X together with a partial order < such that the
following condition is satisfied, [17, p. 218]:

o If x £ y then there is a closed and open set U such that x¢ U and y € U and v < u, u € U implies
vel.



N. Schwartz / Journal of Algebra 337 (2011) 13-49 17

Given any spectral space X, the pair (Xcon, ~) is a Priestley space. Conversely, if (X, <) is a Priestley
space then the closed and open subsets of X that are downsets for the partial order are a basis for
a topology of X. The space X is spectral and its specialization order is the original partial order <.
Starting with a spectral space X, the spectral space derived from the Priestley space (Xcon, ~) coin-
cides with X. Thus, spectral spaces and Priestley spaces are the same objects, only the presentation is
different. Priestley spaces provide a convenient method for constructing examples of spectral spaces,
which will be used in Section 3.

Every finite poset, equipped with the discrete topology, is a Priestley space, hence defines a spec-
tral space. The open subsets of the spectral space are the downsets of the poset. Suppose that X is
a spectral space and that < is the inverse partial order of the specialization order. Then (Xcop, <) is
a Priestley space, and Xjpy is the corresponding spectral space.

The spectral spaces form a category, which is denoted by Spec. The morphisms have to be spec-
ified: Let X, Y be spectral spaces. A map f:X — Y of the underlying sets is a spectral map if it is
continuous for two of the three topologies 7, Ziny, Zcon, [10]. (In fact, if a map is continuous for two
of these topologies, then it is continuous for all of them.) Equivalently, f is continuous for the patch
topology and is monotonic for the specialization order.

Spectral spaces are intimately connected with bounded distributive lattices (distributive lattices that
have a largest element, ‘top’, T, and a smallest element, ‘bottom’, .L ). The bounded distributive lattices
form a category, BDLat, which is antiequivalent to the category Spec. This is the content of the Stone
duality for distributive lattices, [9, Chapter B], [17, Chapter 10]. We outline the constructions: Given
a bounded distributive lattice L, one defines Spec(L) to be the set of prime filters of L with the topol-
ogy that is generated by the closed sets V (a) = {p € Spec(L) | a € p}, a € L. Then Spec(L) is a spectral
space. Starting with a spectral space X, the lattice JC(X) is bounded and distributive. There is a canon-
ical lattice isomorphism L — KC(Spec(L)), which is given by a — V (a). Similarly, there is a canonical
homeomorphism X — Spec(X(X)), which is given by x — px) ={Ce K(X) | x € C}. A homomor-
phism ¢ : L — M of bounded distributive lattices defines a spectral map Spec(¢) : Spec(M) — Spec(L),
which sends a prime filter g € M to the prime filter ¢ ~!(q) C L. A spectral map f:X — Y defines
a lattice homomorphism K(f):XC(Y) — K(X), which sends a closed and constructible set C C Y to
the closed and constructible set f~1(C) C X.

The bounded distributive lattice L is a Boolean algebra if and only if its spectrum is a Boolean
space.

The connected components of a spectral space. The subset K (X) NK(X) = K(Xiny) NK(X) € K(X) is
the Boolean algebra of closed and open subsets of X. Every point x € X defines the ultra filter u(x) =
{C e KXiny) NK(X) | x € C}, and T[x] = ﬂCEu(X) C. (Recall that prime filters are ultra filters since we
deal with a Boolean algebra.) Conversely, if u is an ultrafilter, then (., C is a (by compactness)
nonempty connected set and is the connected component of each of its elements. Thus, we have
defined a surjective map u: X — Spec(JC(Xiny) N KC(X)), x — u(x), whose fibers are the connected
components. Hence u factors through py: X — X/T, u = iio pr (with i : X/T — Spec(}C(Xiny) NIC(X))).
The map u corresponds, under Stone duality, to the inclusion homomorphism C(Xin,) NKC(X) < IC(X)
of lattices. Thus, u is a spectral map, and u is continuous and bijective. The space X/T is Hausdorff,
hence compact. One concludes that i is a homeomorphism.

Idempotents. The connected components of the prime spectrum of a ring are determined by the
idempotents. The set of idempotents of the ring A is denoted by E(A). This is a Boolean algebra -
multiplication is the restriction of the multiplication of A, addition is given by (e, f) > e+ f—2-e- f.
If I € A is an ideal then I N E(A) is an ideal of the Boolean algebra. If I is a prime ideal then I N E(A)
is a prime (= maximal) ideal. This construction yields a spectral map pg:Spec(A) — Spec(E(A)).
Here we consider E(A) as a ring, not as a lattice. Accordingly, the points of the spectrum are prime
ideals, not prime filters.

The ring A is indecomposable if there are no nontrivial idempotents, i.e., if E(A) is the trivial
Boolean algebra. Nontrivial idempotents correspond to partitions of Spec(A) into nonempty closed
and open sets - if e € E(A) then Spec(A) = D(e) U D(1 —e). Thus, A is indecomposable if and only if
Spec(A) is connected.
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Suppose that i € E(A) is an ideal of the Boolean algebra. Then J; =i- A is an ideal of the ring,
and J; N E(A) =1i. The factor ring A/J; is reduced. Moreover, E(A/];) is canonically isomorphic to
E(A)/i. The ring A/ J; is indecomposable if and only if i C E(A) is maximal. In particular, the map pg
is surjective. The factor ring A/ J; is indecomposable if and only if V(i) = V (J;) € Spec(A) (which is
homeomorphic to Spec(A/J,)) is a connected subset. Therefore the connected component of a prime
ideal p € Spec(A) can be determined as follows: The restriction p = p N E(A) is a prime ideal. The
closed subset V(J,) € Spec(A), i.e., the fiber pEl({p}) = V(Jp) of the map pg, is the connected
component of p.

Suppose that C C Spec(A) is a constructible subset that contains a fiber pgl(p). Then
pe(Spec(E) \ C) is a closed subset of Spec(E(A)) that does not contain p. It follows that there is
an idempotent e € E(A) such that p? (p) S D(e) CC.

The prime ideals of E(A) yield an embedding /Ta: A — [, cspec(e(ay A/ Jp- We record the follow-
ing simple facts:

Fact 1.1. Let A be a ring, and pick an element a € A.

(@) ae A ifand only if ITx(a) € ([T, especce(ay A/ Jp) ™
(b) ais regular if and only if I14(a) is regular.
(c) ais an idempotent if and only if I14(a) is an idempotent.

Fact 1.2. Let A be aring, let i,j C E(A) be ideals and set € =i+ j. Then:

(a) inj={0}ifand only if J; N J; = {0}.
(b) Je=Ji+J;.
(c) The canonical map v : A — A/ Ji x a7y, A/J; is an isomorphism ifiNj = {0}.

2. The graph components of a spectral space

Let X be a spectral space. We want to determine the graph component I'[x] of a point x € X.
Several simple algorithms are exhibited that produce the graph component. The algorithms use two
actions on the subsets of X, namely the maps o : (X)) — P(X) and y : P(X) — P(X), cf. Section 1.
The compositions of the maps y and o are denoted by p =y o0 and t =0 o y.

The graph component of a point x € X is closed under specialization and generalization since I'[X]
contains all points that can be reached through a combination of specializations and generalizations
starting with x. It is clearly the smallest set that contains x and is closed under specialization and
generalization. The topological component of x is also closed under specialization and generalization,
hence I'[x] C T[x]. The topological component is the intersection of all closed and open subsets of X
that contain x.

Given a point x € X, its graph component is the union of the balls about x with finite radius,
I'[x] = Ugen BIX; k1. The balls can be constructed recursively using the closure operators o and .
Consider the following algorithm that starts with any subset X' C X:

Basic Algorithm

e B[X';0]=X".
o Suppose that the set B[X’; k] has been constructed.
e B[X;k+1]=0(B[X'; k]) Uy (B[X'; kD).

The sets B[X'; k] will be called balls of radius k about X’. The union of the balls is denoted by I'[X'].
If X' is proconstructible then each ball is proconstructible, and I"[X’] is the union of a countable
increasing sequence of proconstructible sets. The construction of the graph component I'[x] is the
special case X’ = {x}. We shall exhibit examples below to show that very little can be said about the
graph components in complete generality.
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We record the following simple fact:

Proposition 2.1. Suppose that X’ C X is a subset in a spectral space and that K € N. Consider the conditions:

(a) Each graph component I'[x], x € X', has diameter at most K.

(b) The Basic Algorithm applied to X' terminates after at most K steps (which means that B[X'; K] =
BIX'; K + 1]).

(c) If X' is proconstructible then I"[ X'] is proconstructible.

Then the implications (a) = (b) = (c) hold.

In particular, a graph component is proconstructible if its diameter is finite. We shall show with
examples that the converse of this statement is not true, i.e., there is a spectral space with a procon-
structible graph component that does not have finite diameter, 3.4. Moreover, graph components are
not proconstructible in general, 3.5, 3.6.

Proposition 2.2. Let X be a spectral space, and suppose that I' C X is a constructible graph component. Then
I is a topological component.

Proof. The graph component is constructible and closed under specialization, hence it is closed, and
it is closed under generalization, hence it is open. A closed and open set is a union of topological
components. On the other hand, the graph component I" is topologically connected. O

The converse of 2.2 is false: If a graph component is a topological component then it does not
have to be constructible. Every infinite Boolean space yields an example. The singleton subsets are
the topological components and the graph components. If they are all constructible then they are all
open, and the space is discrete. This is impossible since it is infinite and compact.

If the spectral space X is graph connected (i.e., there is only one graph component) then the graph
component is constructible and, of course, proconstructible. On the other hand, suppose that X is any
spectral space, and let I" C X be a graph component. If I" is proconstructible then the subspace I
of X is spectral, [6], and is graph connected. Thus, if one wants to analyze a single proconstructible
graph component, without regard to the ambient spectral space, then it suffices to look at graph
connected spectral spaces.

We shall be concerned mainly with the following two algorithms, which are variants of the Ba-
sic Algorithm. Their advantage compared with the Basic Algorithm is that, in the case of the prime
spectrum of a ring, they are easier to analyze using ring elements. Again, let X’ C X be a subset.

1st Algorithm

Define Co[X']=X'.

Suppose that Co[X], ..., Ck[X'] have been defined.
Define Cpy1[X'] = o (Cx[X']) if k is even.

Define Cyp+1[X'] =y (Ck[X')) if k is odd.

2nd Algorithm

Define Do[X'] = X'.

Suppose that Dg[X'], ..., D¢[X'] have been defined.
Define Dy 1[X'] =y (Dy[X']) if k is even.

Define Dy 1[X'] = o (Dk[X']) if k is odd.

If the subset X’ is closed then the Basic Algorithm coincides with the 2nd Algorithm. If the subset X’
is generically closed then the Basic Algorithm coincides with the 1st Algorithm.
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Lemma 2.3. Let X' € X be a subset of a spectral space. Then Cy[X'], Di[X'] € B[X'; k] € Cry1[X],
Dr41[X'].

Proof. The proof is by induction on k. We do it for the sequence (Ci[X'])ken. To start with, note that
X" = Co[X'] = B[X’; 0] € C1[X']. If C¢[X'] € B[X'; k] C C11[X'] then

Ces1[X'|=0(C[X']) Co(B[X';k]) Uy (B[X';k]) =B[X' . k+1]
Co(Cen[X)) Uy (Cer1[X]) = ¥ (Cus [X']) = Chp2[X]

if k is even, and

Cn[X]=v(C[X]) co )Uy (B[X';k]) = B[X'.k+1]
Co(Cor1[X]) Uy (Crs1[X]) = 0 (Chqa[X']) = Ci2[ X']
if kis odd. O

By 2.3 one may consider the sequences (Ci[X'Dren and (Dy[X'Dken as approximations of the
sequence of balls about X’:

ColX'] C1[X'] GIX] ————

\/\/\/

B[X';: 0] ———— = B[X/;1]] —————— B[X;2] ———— -~

/\/\/\

Do[X] ——————— = DilX] ———————— DX —————

The arrows in the diagram indicate containment relations. If the set X’ is generically closed then
Cr[X']1 = B[X'; k] = Dyy1[X']. If the set X’ is closed then Dy[X'] = B[X'; k] = Cgy1[X’]. Trivially,
I[X'T = Uken Ck[X'T = Uken Dr[X']. If the Basic Algorithm terminates after at most K steps then
the 1st Algorithm and the 2nd Algorithm terminate after at most K + 1 steps. Conversely, if the
1st Algorithm or the 2nd Algorithm terminates after at most K steps then so does the Basic Algo-
rithm.

Now consider a graph component I" and suppose that its diameter is finite, say K. Given a point
x € I, the largest distance from x to any point of I" is somewhere between [g] and K. Thus, the
algorithms terminate at K + 1 at the latest, but do not terminate before le

The different algorithms, and the sequences produced by them, are closely related to each other.
But they differ with regard to the point of termination. The next result (without proof) shows this
phenomenon for a few simple cases.

Proposition 2.4. Let X be a graph connected spectral space.

(a) The following conditions are equivalent:
(i) X has only one point.
(ii) The 1st Algorithm, when applied to a generic point, terminates after O steps.
(iii) The 2nd Algorithm, when applied to a maximal point, terminates after O steps.
(b) The following conditions are equivalent:
(i) X has only one generic point.
(ii) The 1st Algorithm, when applied to a generic point, terminates after at most 1 step.
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(c) The following conditions are equivalent:

(i) X has only one maximal point.

(ii) The 2nd Algorithm, when applied to a maximal point, terminates after at most 1 step.
(d) The following conditions are equivalent:

(i) Every generic point of X specializes to every maximal point.

(ii) Every maximal point of X generalizes to every generic point.

(iii) The 1st Algorithm, when applied to a generic point, terminates after at most 2 steps.

(iv) The 2nd Algorithm, when applied to a maximal point, terminates after at most 2 steps.

3. Examples of graph components in a spectral space

This section contains a collection of examples of spectral spaces. They illustrate various phenomena
and will be used to produce counterexamples to several questions that arise in the study of graph
components. We shall mostly use the method of Priestly spaces to verify that the constructions do, in
fact, yield spectral spaces.

Before starting with the examples we give a brief explanation of how they are presented. Finite
spectral spaces are usually described by drawing the specialization poset. Infinite spectral spaces are
described by drawing the specialization poset and by an explanation of the patch topology. Special-
ization is indicated by arrows.

The first example shows how the different algorithms work in a finite spectral space:

Example 3.1. Consider the following poset:

22

/ . /
The diameter of the graph is 3. The following diagrams show the progress of the algorithms, starting
with the points y1, y> and x3. Inclusions are proper if they are not said to be equal.

X3

C1ly1] Caly] Csly1] Caly1]
{y1} Bly1;1] Bly1; 2] B[y1; 3]
D1ly1] Da[y1] D3[y1]
Ci1ly2] Caly2]
\

D1[y2] Da[y2] Ds[y2]
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C1lx3] B Calxs] B Cs[xs] ~
{x3} B[x3; 1] Blx3; 2] B[x3; 3] ~
>N 7 7 T
D1[x3] D;[x3] D3[x3] D4[x3]

The next example shows several spectral spaces for which the 1st Algorithm and the 2nd Algo-
rithm terminate differently.

Example 3.2. Consider the spectral spaces

X1 X3 e X2.n—1 X2.n+1
Xon+2 \\\ / / \\
X0 X2 s X2.n X2.n+2
Yo y2 Y2 Y2.n42
Yoni2 / \\
Y1 y3 e Y2n-1 Y2n+1
20 23 22.n42
ZZ-n+3 \ / \H\\
B
Z1 23 Z2:n+1 Z2.n43

o If the 1st Algorithm is applied to xo or to xp.,42 then it terminates after 2 -n + 2 steps. If it is
applied to any other generic point of X4, then it terminates earlier. If the 2nd Algorithm is
applied to x; or to xp.,41 then it terminates after 2 -n + 1 steps. If it is applied to any other
maximal point of X,.,4 then it terminates earlier.

e If the 1st Algorithm is applied to y; or to y,.,,+1 then it terminates after 2-n+ 1 steps. If it is
applied to any other generic point of Y,.,42 then it terminates earlier. If the 2nd Algorithm is
applied to yg or to yi.,4+2 then it terminates after 2 -n + 2 steps. If it is applied to any other
maximal point of Y,.,4, then it terminates earlier.

e If the 1st Algorithm is applied to zp.,4+3 then it terminates after 2 -n + 3 steps. If it is applied to
any other generic point of Z;.,4+3 then it terminates earlier. If the 2nd Algorithm is applied to zg
then it terminates after 2 -n + 3 steps. If it is applied to any other maximal point of Z,,3 then
it terminates earlier.

Example 3.3. Normal spectral spaces. Let X be a normal spectral space, i.e., every point of X specializes
to a unique maximal point, say x — @ (x) € Max(X), [3], [22, Section 4]. Then I'[x] = B[x; 2] = C2[x] =
D;[x] = D1[pe(x)]. The diameter of a graph component is at most 2. It has the value 1 if and only if
each graph component is totally ordered under specialization.

Normal spectral spaces abound in real algebra: Real spectra of rings, [2, Chapter 7], are normal
spectral spaces. They even have a much stronger property - the set of specializations of a point is
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a chain. Spectral spaces with this property are sometimes called completely normal. A poset is a root
system if the principal upsets (those generated by elements of the set) are totally ordered. Thus,
completely normal spectral spaces are spectral spaces that are root systems. The prime spectrum of
a ring of continuous functions, more generally of a real closed ring, [18,21], is homeomorphic to its
real spectrum, hence is a normal spectral space.

The next example shows a graph connected spectral space with infinite diameter. The example
was developed in a discussion with Marcus Tressl.

Example 34. Let X be the one-point compactification of the discrete space N. The additional point is
denoted by w. It is well known (and easy to prove) that X is a Boolean space. The following diagram
exhibits a partial order on X:

SINSIN NS

We wish to show that these data define a Priestley space. Pick two points x, y € X, x £ y. We must
find a downset that is open and closed in the Boolean topology and contains y, but not x. There are
several cases to consider:

Suppose that y € N is odd: The set {y} meets the requirements.

Suppose that 2 <y € N is even: The set {y — 1, y, y + 1} meets the requirements.

Suppose that y =0: In this case 2 < xeN. The set {0,1,2-x+1,2-x+2,..., w} has the desired
properties.

e Suppose that y =w: The set {2-x+1,2-x+ 2, ..., w} has the desired properties.

We have established that X is a spectral space. It is clearly graph connected, and its diameter as
a graph is infinite.

The next example is a modification of the previous one. It shows a graph component that is not
proconstructible.

Example 3.5. Let X be the one-point compactification of the discrete space N. The additional point is
denoted by w. This is a Boolean space. The following diagram presents a partial order that makes X

into a spectral space:
0 2 4
NN
1 3 5

This spectral space has two graph components, N and {w}. The graph component N has infinite
diameter and is not proconstructible since the point w is not isolated.

The next example is another modification of the previous ones. Its significance will be explained
in Section 4.

Example 3.6. Let N and N’ be two copies of the discrete space of natural numbers. The elements of N
are denoted by 0, 1, ..., those of N’ are denoted by 0, 1/,.... Let X be the one-point compactification
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of N, X’ the one-point compactification of N'. The additional points are denoted by @ and «'. Let Y
be the topological sum of X and X’, which is a Boolean space. Again, we exhibit a partial order

\VAVAVES
SVAVAVA

The same arguments as above show that these data determine a spectral space. There are two graph
components, both with infinite diameter. They are not proconstructible.

0

e

S

0/

Example 3.7. A spectral space whose graph components have finite diameter, and the set of diameters is
unbounded. As above, let X be the one-point compactification of the discrete space N. Again, X serves
as the patch space of a spectral space. The specialization relation is defined as follows: For each
p €N, the numbers (°3'), (°3") +1,...,("3?) — 1 form a graph component, and the partial order in
the component is given by the diagrams:

¢ (L) (541 () 2 (L) 1 i pis even
e 1) (541 e 05 2 (1) <1 i pis o

The specialization relation is depicted in the following diagram:

2 4 7 9 12 14
S VANYAVAA VAN
1 3 5 6 8 11 13 15 e
The pth component, p € N, has diameter p. The additional point w is a component of its own.

4. The space of graph components of a spectral space

This section contains basic information about the topology of the space X/G of graph components
of a spectral space. Most of the results are concerned with separation properties.
First we record a trivial fact:

Proposition 4.1. For every spectral space X the space X /G is quasi-compact.
Proof. The space X /G is the image of the quasi-compact space X under the continuous map pg. O

By definition of the quotient topology, a subset M C X/G is closed (or open) if and only if
pgl(M) C X is closed (or open).
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The space of graph components may be indiscrete, even if there are several components. For an
example, consider 3.6: The space Y /G has two points, as there are two graph components. The graph
components are I'[w] and I'[w’]. There are exactly two closed subsets in Y that are unions of graph
components, namely ¢ and Y. Thus, Y /G carries the indiscrete topology.

The space X/G of 3.5 has two points as well, I'[0] and I"[w]. This time pgl(l“[a)]) = {w} is closed

and pal(F[O]) is not closed. It follows that X/G is a Tp-space with the specialization I"[0] — I'[w].

Proposition 4.2. Let X be a spectral space. The space X /G is a T1-space if and only if every graph component
is proconstructible.

Proof. A topological space has the Ti-property if and only if every singleton subset is closed. First
suppose that X/G is a Ti-space, and let I" be a graph component. The singleton subset {I"} C X/G
is closed, hence so is its inverse image I' C X. Closed sets are proconstructible. Thus, the graph
components are proconstructible.

Now suppose that the graph components are proconstructible. They are closed under specializa-
tion, hence they are closed. The definition of the quotient topology shows that each graph component,
as a point of the quotient space, is closed. O

Proposition 4.2 applies if each graph component can be constructed from one (or any) of its points
with finitely steps using the algorithms of Section 2. This is the case if and only if each graph com-
ponent has finite diameter, 2.1. Note that there exist spectral spaces with proconstructible graph
components of infinite diameter, 3.4.

We give several different descriptions of the topology of X/G for the case that the graph compo-
nents are proconstructible.

Proposition 4.3. Suppose that X is a spectral space whose graph components are proconstructible. The topol-
ogy of X is denoted by T, the inverse topology by 7in, and the patch topology by Zcon. Then the quotient
topology on X /G with respect to the map pg is the same for each of the four topologies Z¢on, T, Ziny and
T N Ty on X.

Proof. The four quotient spaces have the same underlying set, but the topologies may be different,
to start with. We use the standard notation Xcon and Xj,, and write X' = (X, Z N Jiyy). Then the
quotient spaces are X/G, Xcon/G, Xiny/G and X’/G. There is a commutative diagram of continuous
maps, all of which are the identity on the underlying sets:

X/G
f h
Xcon/G/ \X’/G
A

.

Xinv/G

If ho f=kog is a closed map then it is a homeomorphism (being bijective and continuous). The
inverses of f, g, h, k exist since the maps are bijective. If h o f is a homeomorphism then they are
also continuous since f~'=(ho f)"'oh, h™1= fo(ho f)7, etc.

To prove closedness of ho f =ko g, let M C Xcon/G be a closed set. Then pg1 (M) C (X, Zcon)
is closed, hence proconstructible. It is a union of graph components. Therefore it is closed under
specialization, which implies that it is closed for 7. It is also closed under generalization, which
implies that it is closed for 7Zj,,. But then it is closed for 7 N 7Zj,y, and one concludes that ho f(M) is
closed as a subset of X'/G. O
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Proposition 4.3 suggests a lattice theoretic interpretation of the space of graph components.

The set A(Xjny) N A(X) is a sublattice of the power set P(X). Its elements are the proconstructible
sets that are closed under specialization and generalization. Note that usually this is not a Boolean
algebra since the complement of a proconstructible set is proconstructible if and only if the set is
constructible. This observation implies that }C(Xin,) N (X) is the largest Boolean algebra that is con-
tained in A(Xjny) N A(X). Suppose now that the graph components of X are proconstructible. Then
each I'[x] is an element, in fact an atom, of the lattice A(Xjny) N.A(X). The lattice is atomic since ev-
ery nonempty C € A(Xjyy) N.A(X) is a union of graph components; the graph components are exactly
the atoms. One defines a map v : X — Spec(A(Xijnv) NA(X)) by x — {C € A(Xjny) NA(X) | x € C}. The
main properties of the map v are summarized in

Proposition 4.4. Let X be a spectral space with proconstructible graph components. The map v is defined as
above. Then:

) The fibers of v are the graph components.

) The image of v is the set Max(Spec(A(Xiny) N A(X))).

) v is continuous.

) v induces a homeomorphism v : X /G — Max(Spec(A(Xiny) N A(X))).

Proof. (a) is trivial.

(b). The maximal points of Spec(A(Xiy) N A(X)) are the ultra filters of A(Xjn) N A(X).
Given x € X, v(x) is the ultrafilter determined by the atom I'[x] € A(Xjny) N A(X). Thus, the
image of v is contained in Max(Spec(A(Xin) N A(X))). For the other inclusion, pick an ultra-
filter u C A(Xjny) N A(X). Compactness implies that D = (¢, C is nonempty. It is clear that
D € A(Xiny) N A(X). Thus, D contains a connected component I'[x]. It follows that u C v(x). One
concludes that u= v(x) since u and v(x) are both ultrafilters.

(c). Pick an element C € A(Xjn) N.A(X) and consider the basic closed set V(C) C Spec(A(Xjny) N
A(X)). It is easy to check that v—1(V(C)) = C, which is closed in X, and this proves that v is contin-
uous.

(d). It follows from (a), (b) and (c) that there is a continuous and bijective map v:X/G —
Max(Spec(A(Xiny) N A(X))) such that v =7 o pg. It remains to show that v is closed: Pick a closed
set D € X/G and set C = pgl(D). This is a closed subset of X that is a union of graph compo-
nents, hence belongs to A(Xjny) N A(X). The definition of v implies that v(D) = v(C) = V(C) N
Max(Spec(A(Xiny) N A(X))), where V(C) is the basic closed subset of Spec(A(Xjn) N .A(X)) defined
by C. O

Corollary 4.5. Let X be a spectral space with proconstructible graph components. The notation of the preceding
paragraphs remains in force. For the definition of the map i, see Section 1, the part about connected com-
ponents of a spectral space. Let ¢ : K(Xiny) N IC(X) = A(Xiny) N A(X) be the inclusion homomorphism.
Then the following diagram is commutative:

X
PG pr
PTG
X/G X/T
Max(Spec(A(Xiny) NA(X))) — Spec(A(Xiny) N A(X)) Spec(K(Xiny) N K(X))
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As a follow-up to 4.2 we give a sufficient condition for X/G to be Hausdorff:

Proposition 4.6. Let X be a spectral space whose graph components have bounded diameter. Then X /G is
Hausdorff.

Proof. Recall that the graph components are proconstructible if they have finite diameter, 2.1. Pick
points x, y € X such that the graph components I"[x] and I'[y] are distinct. We must produce two
closed sets C, D C X such that

I'x]CC, I'lylnC=4¢, and

I'lyl< D, I'ix]NnD =, and

C and D are both unions of graph components, and
CuD=X.

The graph components I'[x] and I'[y] are proconstructible (since they have finite diameter, 2.1)
and are closed under specialization and generalization. Let I/ be the set of open and constructible
neighborhoods of I'[x], let V be the set of open and constructible neighborhoods of I'[y]. Then
FixI=Nye U, TIY1=MNyey V and Nyeyy U N[yep V = 9. Quasi-compactness implies that there
are disjoint sets U e 4/ and V € V. We define ¢’ =X\ V and D' = X \ U. Note that I'[x] C C/,
I'lylnC' =@, I'lyl€ D, I'x]ND'=¢ and C' UD’ = X. Since C' and D’ are constructible we
know from 2.1 that C = I'[C'] and D = I'[D’] are proconstructible. They are also closed under spe-
cialization, hence they are closed. It is clear from the construction that C and D have the desired
properties. 0O

Next we consider normal spectral spaces. Various different characterizations are given in [3] and
in [22, Sections 4, 5]. In the present context the most useful characterization is: A spectral space
is normal if every point specializes to only one maximal point. It is immediately clear that every
connected component has diameter at most 2. Recall that the space of maximal points of a normal
spectral space is Hausdorff, [3], [22, Section 4].

Corollary 4.7. Let X be a normal spectral space. Then Max(X) is homeomorphic to X/G.

Proof. The canonical map pg: X — X/G restricts to a continuous and bijective map Max(X) — X/G.
Both spaces are compact, hence the map is a homeomorphism. O

Corollary 4.8. Every compact space is the space of graph components of a suitable spectral space.

Proof. Pick a compact space K and consider the ring C(K;R) of continuous functions. The Zariski
spectrum is a normal spectral space (even a root system), which we denote by X. The space Max(X)
is canonically homeomorphic to K, [7]. Thus, 4.7 implies that K is homeomorphic to X/G. O

The next result gives a characterization of those spectral spaces whose space of graph components
is Boolean:

Proposition 4.9. Let X be a spectral space. Then X /G is Boolean if and only if the graph components coincide
with the topological components.

Proof. One direction of the equivalence is clear since the space of topological components of
a spectral space is always Boolean. Conversely, suppose that the space of graph components is
Boolean. Let I'[x] and I'[y] be two distinct graph components. Then there is a closed and open



28 N. Schwartz / Journal of Algebra 337 (2011) 13-49

set C € X/G with I'[x] € C and I'[y] ¢ C. The set pE1(C) C X is closed and open, and I'[x] C
pgl ©), I'lyln pgl (C) =¢. It follows that I'[x] and I'[y] belong to different connected components
of X. O

The behavior of graph components under spectral maps is quite simple: Let f : X — Y be a spectral
map between spectral spaces. If C C X is topologically connected, or graph connected, then f(C) CY
is topologically connected, or graph connected. Thus, f induces continuous maps fr:X/T— Y /T and
fc:X/G— Y/G such that the following diagrams commute:

X ——=Y X —Y
PT\L lPT Pcl \LPG
X/T L Y/T X/G —=Y/G

5. The graph components of prime spectra

Let A be a ring. The graph components of its prime spectrum, Spec(A), are determined by the
specialization relation between the prime ideals. Specialization of prime ideals is the same as contain-
ment. In the present section we develop methods to study the graph components and their properties
with model theoretic methods. Difficulties arise since it is impossible to speak in 1st order model
theory about individual prime ideals of a ring. We use the algorithms of Section 2 to overcome the
problems. These methods are used to prove axiomatizability of several classes of rings that are defined
by properties of the graph components of their prime spectrum, 5.5, 5.6.

There are several 1st order formulas that will be used over and over again. Therefore we introduce
the following abbreviations:

o Orn=0O2n(@1,....a20) = NI} @2 - @21 =0 A \1_q G241 + a2 = 1.
® Oynt1 = O2n11(a1, - .-, G2n41) = O2(a1, ..., a2:n) Al2n - A2.n41 =0.

o Oy =Drp(ap,...,a2p)=0ag-a1 =0AOy,(aq,...,ad2n).

o Dypt1=P2n+1(A0, ..., 0204+1) =do - a1 =0 A Op41(a1, ..., 2n41)-

o Oy, =Dy(ap,a,...)= /\ieN az.i-azit1 =0A /\ieN ap.i—1+azi=1.

e U(x)=3z: z-x=1.

We point out how these and a few other formulas are connected to the prime spectrum of a ring:

e The formula a =0 is equivalent to V (a) = Spec(A).

The formula ¥ (a) is equivalent to D(a) = Spec(A).

The formula ag - a; =0 is equivalent to D(ag) € V (ay).

The formula a; +a; =1 implies V(a;) € D(ay).

The formula @4 (ag, a1, ...) implies D(ag) € V(ay) € D(az) CV(az)C---.

Every graph component I" C Spec(A) is determined by each of its elements. Therefore I" can
be constructed using the 1st Algorithm or using he 2nd Algorithm of Section 2, starting with any
element of I'. As I' contains both minimal prime ideals and maximal ideals one can start the
construction either with a minimal prime ideal or with a maximal ideal. As a rule, we use the
1st Algorithm if we start with a minimal prime ideal, the 2nd Algorithm if we start with a maxi-
mal ideal.

Let p C A be a minimal prime ideal. The first step of the 1st Algorithm constructs the set o ({p}) of
specializations of p, the second step constructs the set y (o ({p})) of generalizations of the elements
of o ({p}), and so on. The exact set of specializations or generalizations can be described in terms of
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ring elements. However, the description is not finitary, hence it is not suitable for our model theo-
retic purposes. Thus, instead of considering the exact set of specializations or generalizations we use
constructible subsets of Spec(A) that contain the specializations of p, the generalizations of the spe-
cializations of p, and so on. This leads us to consider sequences agp, di, ... € A such that the following
containment relations are satisfied:

D(apg) € V(a;) S D(az) S V(a3z) C---.

We cannot speak about the initial prime ideal p in a finitary manner. Therefore we replace it with the
open and constructible set D(ap), which has a finitary description by ring elements. In the next step
the closed set o ({p}) is replaced by a closed and constructible set that contains D(agp), and so on. If
p € D(ap) then o ({p}) € V(a1), p({p}) € D(az), 0 o p({p}) < V(a3), and so on. It follows that I"[p] C
Uien D(a2.) = Uiy V (@2.i+1)- Thus, the process does not determine the graph component I"[p], but
a sequence of constructible sets, alternately open and closed, that covers the graph component. Such
a sequence will be called a covering sequence for the graph component. Its union is an approximation
of the graph component.

The construction of an entire covering sequence is not finitary either. But at least each step of the
construction can be described with finitely many statements about the ring elements involved. This
can be done as follows.

The containment D(ay.;) € V(az.i+1) is equivalent to the condition D(ay.;) N D(az.i+1) = @. Since
the ring A is reduced this is equivalent to the 1st order statement ay.; - az.j+1 =0.

The containment V(az.i+1) € D(az.i+2) is equivalent to D(az.i+1) U D(az.i+2) = Spec(A). Equiva-
lently, the ideal (a.j+1, az.i4+2) is the entire ring, i.e, 3x, y: az.iy1-X+aziy2-y =1.

Lemma 5.1. Let A be a ring. Suppose that ap, ai, ... € A is a sequence of elements such that
D(ap) € V(a1) S D(az) S V(a3) <---.
Then there is a sequence by, b1, ... € A such that
D(bo) S V(b1) SD(b) S V(b3) < ---
and D(ap) = D(bo), V(ax) < V (by), holds for each k € N, and by.iy2 =1 — by.iy1 foreachi e N.
Proof. One defines bp = ap and modifies every pair ay.i;1, G2.i+2 to meet the requirements. Suppose

that ay.it1 - X2.i41 + 2.i42 - ¥2.i+2 = 1. One defines by.j11 =0a2.i+1 - X2.i+1 and by.i12 = az.iy2 - ¥2.i42- It
remains to check that all the conditions are satisfied:

e byii2=1—by.iyq holds trivially.
e V(ay) C V(by) holds for each k € N since by is a multiple of a.
e D(bg) =D(ap) S V(a1) SV (b1) S D(b2) SD(a2) SV(a3)SV(b3)S---. O

Because of 5.1 the study of covering sequences amounts to the study of sequences ag,ay,... € A
such that the infinite conjunction @ (agp, a1, ...) is satisfied.

So far the entire discussion referred to the 1st Algorithm. Symmetrically, one can use the 2nd Al-
gorithm in the same way, starting with a maximal ideal. This leads to the consideration of sequences
ai,ds,... € A such that

V(a1) S D(az) S V(a3) S D(ag) <---.
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As in 5.1, such a sequence can be modified to obtain a sequence by, by, ... € A such that
V(b1) €D(b2) SV (b3) SD(bg) C---

and V(ay) € V(by), holds for each 1 <k € N, by.iy2 =1 — byi4q for each i € N. The sequences
ai,day,... and by, by, ... can both be extended by adding any term ag or bg such that agp-a; =0
and bg - by = 0. For example, one may choose ay = 0 = by. Thus the study of the second type of cov-
erings of the graph components also amounts to the study of sequences ag,ai,... € A that satisfy
¢oo(a0, aiy,.. )

Theorem 5.2. Let A be a ring, let I' C Spec(A) be a graph component.

(a) If I is proconstructible then, for each sequence ag, ay, ... € A with @ (ap, a1, ...) and I' N D(ag) # 9,
there is some i € N such that I C D(ay.;).
(b) The following conditions are equivalent:
(i) The diameter of I" is finite and the 1st Algorithm, when applied to a minimal prime ideal p € I,
terminates after at most K steps.
(ii) For each sequence ag, ay, ... € A with & (ap, ai,...) and I' N\ D(ag) # ¥ either I’ C D(ak) if K is
even, or I' C V(ay) if K is odd.
(c) The following conditions are equivalent:
(i) The diameter of I is finite and the 2nd Algorithm, when applied to a maximal ideal m € I', terminates
after at most K steps.
(ii) For each sequence ag,ay, ... € A with @« (ag, a1, ...) and I' NV (ay) # @ either I’ C V (ag+1) if K
iseven, or I' C D(ag+1) if K is odd.

Proof. (a). The graph component is contained in |J;.y D(az2.i) since I" N D(ag) # ¥. The claim follows
since the proconstructible set I" is quasi-compact and the covering sets D(ay.;) are open.

(b). (i) = (ii). Pick a minimal prime ideal p € I N D(ap). Then {p} € D(ap), o ({p}) < V(a1),
p({p}) € D(az), and so on. Now suppose that K =2 -k. Then I' = ,ok({p}) CD(ayy).fK=2-k+1
then I' =0 o p*({p}) € V (@2.41)-

(ii) = (i). Pick a minimal prime ideal p € I and assume that the 1st Algorithm does not terminate
after at most K steps. We suppose that K =2 - k. The case of odd K can be done similarly. The
sequence

pyca({p)) co(lp)) c- cp*({p}) co o p*((p})

ascends properly. There is a maximal ideal m € o o pX({p}) \ p*({p}). The 2nd Algorithm, starting
with m, yields the properly increasing sequence

mycy(tm}) ct({m}) c--- c *({m}) C y o T*({m}).

Note that p € y o Th({m}) \ T*({m}).
Recursively one constructs a sequence ap, di, ... € A with @4 (ag, ay, ...) such that I ;(_ D(ag):

e The set y o T¥({m}) is proconstructible and t¥({m}) is a closed subset (closed even in Spec(A))
that does not contain p. Therefore there is some ag € A such that p € D(ag) and D(ap) N
™"({m}) = 0. A .

e Suppose that do,...,a,.; have been constructed with /\{;& @i - Azi41 =0 A /\{;3 azivq +
azit2 =1 and D(az.j) NI (fm}) = 2.

e The set D(ay.j) is constructible and disjoint from the generically closed and proconstructible
set y o T8~J=1({m}). Moreover, the set T¢~i~1({m}) is closed in Spec(A) and is contained in
Yo k=i=1({m}). For each maximal ideal n € T¥~J=1({m}) there is an element ¢, € A \ n such that



N. Schwartz / Journal of Algebra 337 (2011) 13-49 31

D(cp) N D(ay.j) = 9. The sets D(cp) form an open cover of the quasi-compact set =i=1(m)).
Thus, there is a finite subcover t¢~/=1({m}) < (UL, D(cy). The ideal I = Nyert-i-1qmpd S A
corresponds to the closed set t¢¥—/=1({m}). In the factor ring A/I, the ideal generated by the
elements ¢y, +1,..., ¢y + 1 is the entire ring. Hence there are elements X1, ...,x; € A such that
Cny X1+ ---+Cpy X +1=141. We define az.j11 =y - X1+ +Cpy -xp and ap.j12 =1 —ap.j41.
Note that D(az.j+1) € UzL:1 D(cy)). It follows that D(ay.j)ND(az.j+1) =, i.e., az.j-az.j+1 = 0. Thus

the sequence ao, ..., ay.j42 satisfies the condition /\{:0 az.i-a2i+1=0A /\{=0 a2.iy1 +a2i42=1.
Moreover, D(dz.j+2) N T¢I~ ({m}) = .
e The recursive construction yields the sequence ay, ..., a,, with the property /\i-:(} ay.j-0z.j41 =

0A /\2:3 a.i+1 +az.i12 =1 and with m ¢ D(ap). We extend the sequence by setting az.j;1 =0
and az.j12 =1 for j>k.

The infinite sequence ap, ay, ... € A satisfies @ (ag,a1,...), and p € I' N D(ag), m € I" \ D(ak). This
contradicts condition (ii), and the proof is finished.
(c) is proved in the same way as (b), mutatis mutandis. O

Corollary 5.3. Let A be a ring whose prime spectrum is graph connected. Then the following conditions are
equivalent:

(a) The 1st Algorithm, starting with a minimal prime ideal, terminates after at most K steps.
(b) Every sequence ¥} # D(ap) < V (a1) € D(az) C - - - becomes stationary after at most K steps.

The proof of 5.2 shows the advantage of the 1st Algorithm and the 2nd Algorithm compared with
the Basic Algorithm for the computation of graph components. The termination of the 1st Algorithm
and the 2nd Algorithm corresponds well to the termination of covering sequences of the graph com-
ponents. There is no such simple correspondence for the Basic Algorithm.

Concerning 5.2 (a) we note that there exists a ring A with the following property: The prime
spectrum has a graph component I that is not proconstructible. But if ag, ay, ... € A is any sequence
with @4 (ag,ai,...) and I" N D(ag) # ¥ then there is some i € N such that I € D(ay.;). For example,
if Spec(A) is homeomorphic to the spectral space Y of 3.6 then it has this property.

Covering sequences of graph components can be infinite: Let A be a ring whose prime spectrum
is homeomorphic to the spectral space X of 3.5. Then there are infinite sequences ag, ai, ... € A with
®(agp, ay, ...) such that the infinite graph component is not contained in any of the sets D(ay.;).

More generally: Suppose that I" is a graph component that is not proconstructible. Suppose that
there is a subset C C Spec(A) that is closed and generically closed and contains I" as an open subset.
Then there is a sequence agp,das,... € A with @4 (ag,ay,...) such that I is not contained in any
set D(ay.i).

So far the graph components of prime spectra have been studied by building them up from the
inside, using the algorithms of Section 2 and the covering sequences of the present section. For many
rings one can also produce the graph components from the outside, enclosing them in an intersection
of sets that are open and constructible and also in an intersection of sets that are closed and con-
structible. This presentation of the graph components is closely related to the considerations that led
to 4.5.

Consider a subset C C Spec(A). We define I[cr={ae A|CCV(a)} and Mc ={ae A|C C D(a)}.
Then I¢ is a radical ideal and M¢ is a saturated multiplicative subset. (A multiplicative set M is
saturated if ae M and a =b - ¢ implies b,c € M. Intersections of saturated multiplicative sets are
saturated. Therefore every multiplicative set is contained in a smallest saturated multiplicative set, its
saturation. The saturation of M is denoted by S(M).)

The set C is closed if and only if C = V (I¢). It is proconstructible and generically closed if and
only if C=D(Mc) = ﬂaeMC D(a). It is closed and generically closed if and only if C = V(I¢) and
C=D(Mc), [22, Section 5]. The sets Ic and Mc¢ are disjoint if and only if C # @.
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Proposition 5.4. Let A be a ring. The closed and generically closed subsets of Spec(A) correspond bijectively
to the pairs (I, M), where I C A is a radical ideal, M C A is a saturated multiplicative set, and the following
conditions are satisfied:

(@) VaeldbeM:a-b=0.
(b) Vae M 3bel: (a,b)=A.

Proof. We start with a closed and generically closed set C C Spec(A). Then the pair (I¢, M¢) satisfies
both conditions: First pick a € I¢. Then D(a) N C = @. Since C is generically closed and D(a) is procon-
structible there exists an element b € M¢ with D(a) N D(b) = @, which is equivalent to a-b = 0. Now
pick a € M¢. Then V(a)NC =@. Since C = V (I¢) there is an element b € I¢ such that V(a)NV (b) =9,
which is equivalent to (a,b) = A.

Now suppose that (I, M) is a pair that satisfies the conditions. We claim that V (I) = D(M). Let
p € V(I). For each a € M there is an element b € [ such that V(b) C D(a). Since p € V(I) it follows
that p € D(a). As a varies in M, we see that p € D(M). Conversely, suppose that p e D(M). If ae I
then there is an element b € M such that D(b) C V (a), which implies p € V (a). As a varies in I we
see that p € V(I).

The set V(I) is closed, and the set D(M) is generically closed. Thus V(I) = D(M) is closed and
generically closed.

If we start with a closed and generically closed set C then I¢ is a radical ideal, M¢ is a saturated
multiplicative set, the conditions (a) and (b) are satisfied, and V (I¢) = C = D(Mc).

Now suppose that the pair (I, M) satisfies all the hypotheses. The set C = V (I) = D(M) is closed
and generically closed. It defines the pair (Ic, M¢). Obviously, I € Ic and M C M. Radical ideals
correspond bijectively to the closed subsets of Spec(A). Thus, I = Ic. Now pick an element a € Mc.
Since V(a) N D(M) = ¢ there is an element b € M such that V(a) N\ D(b) = . It follows that b € +/(a),
i.e., there is some n € N and some c € A such that c-a=b" € M. Since M is saturated we conclude
thatae M. O

The set of pairs (I, M) as in 5.4 is denoted by IM(A). There is a canonical bijection with
A(Spec(A)inv) N A(Spec(A)), the lattice of closed and generically closed subsets of Spec(A). Using
the bijection with IM(A) the lattice structure can be transferred from .A(Spec(A)in) N A(Spec(A))
to IM(A). But the partial order and the lattice operations in IM(A) can also be explained di-
rectly.

One defines a partial order by (I, M) < (I’,M’) if I €I’ and M € M’. Two elements (I, M), (I', M’) €
IM(A) have a least upper bound, namely (+/I+1I',S(M - M’)), and a greatest lower bound, namely
Inr,MmnM). Thus, IM(A) is a lattice. The bijection given by C — (I¢c, M¢), is an isomorphism
between the lattices A(Spec(A)iny) N A(Spec(A)) and IM(A)iny.

Suppose that the graph components of Spec(A) are proconstructible. Then it follows from 4.5 that
the graph components correspond to the maximal elements of the lattice IM(A).

Two elements (I, M), (I', M) € IM(A) are complements of each other if and only if I +1' = A and
INT = {0}. Thus, there is an idempotent e € E(A) with [ =e-A and I’ = (1 —e) - A. The corresponding
multiplicative sets are the saturations M = S(1 —e) and M’ = S(e).

We have encountered several properties that graph components of spectral spaces may or may not
have, e.g., graph components may be proconstructible, or they may have finite diameter. Such prop-
erties define classes of rings: There is the class of rings whose prime spectra have proconstructible
graph components. Or, there is the class of rings whose prime spectra have only graph components
with finite diameter. We ask whether these classes, and many other classes of rings that are defined
similarly, are elementary (in the sense of model theory).

The following example settles several of these questions:

Example 5.5. A sequence of rings with graph connected prime spectra, and an ultraproduct that has a graph
component that is not proconstructible. Let (Ap)nen be a sequence of rings whose prime spectra have
the following form:
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Ao Poo
Aq Pn
7
P1o
Az P21
AN
P20 D22
As p31 P33
A 7
P30 P32

Let 4 be a free ultrafilter on N, and define A = ([],c An)/4L. We shall produce a graph component
of Spec(A) that is not proconstructible.

Let g, € A, be a prime ideal for each n € N. Then (An/qn)nen is a sequence of domains, hence
(ITheny An/an)/¢4 is a domain as well. The componentwise surjective homomorphism
(g - | Inexy An = [lneny An/Gn yields a surjective homomorphism rr(%n)n :A = ([Then An/qn) /4. The

kernel is a prime ideal, which is denoted by (gn|n)*. If (rx)nen is another sequence of prime ideals
and if gy ~ ry for each n then (gq|n)¥ ~ (r|m)¥.

We are now in a position to produce large numbers of prime ideals in A. For each n we extend
the list of prime ideals of A, to an infinite sequence by defining pun = Pn.n+1 = Pn.nt2 = - - . For each
i € N one defines p; = (pni[n)¥. The following diagram shows how the prime ideals specialize to each
other:

p /jpl\p /7p3\p /1175

Thus, the prime ideals in the sequence (pj)icn belong to the same graph component. It is claimed
that this graph component is not proconstructible.

Theorem 5.2 is the main tool for proving the claim. For each n one constructs a sequence (ap;)icy
in the ring Ap:

D(ano) = {pno}.
V(an1) = {pno, Pn1}.
D(an2) = {pno, Pn1, Pn2}-

D(an,n) =Spec(A) if n is even, V (a,,n) = Spec(A) if n is odd.
e Fork>1, agpik =1 if n+k is even, ay n4x =0 if n+k is odd.

It is always true that ap ».j-an 2.j+1 = 0. The sequences may be chosen such that a; 3. j41+an2.j42 =1,
5.1. For each i the element a; is defined to be the canonical image of the sequence (ani)nen € [ [en An
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in A. The sequence (aj)icn Ssatisfies @ (ag,ay,...), and pg € I'[po] N D(ap). Thus, the hypothe-
ses of 5.2 (a) are satisfied. If I'[po] is proconstructible then there must exist an index 2 - j with
I'[po]l C D(ay.j). However, the construction shows that ay.j € p2.j41, and it follows that the graph
component is not proconstructible. O

Example 5.5 shows that several classes of rings are not elementary. In each case the proof uses
the following argument: If a class of rings is elementary then it is closed under the formation of
ultraproducts, [4,11]. So, if one considers a class of rings that contains the sequence (Ap)nen of 5.5,
and if the ultraproduct A does not belong to the class, then the class cannot be elementary.

e The class of rings with graph connected prime spectrum. Note that each A, has a graph connected
prime spectrum, but the prime spectrum of A is not graph connected (since there is a graph
component that is not proconstructible).

e The class of rings for which the topological components of the prime spectrum coincide with the graph
components. We use the same argument as in the preceding item. In addition, it is only necessary
to note that the ring A is indecomposable. For, indecomposability is an elementary property and
is therefore preserved by the formation of ultraproducts.

o The class of rings whose prime spectrum has only proconstructible graph components.

o The class of rings whose prime spectrum has only graph components of finite diameter.

The negative results show that elementary classes of rings, defined by conditions about the graph
components of the prime spectrum, require strong finiteness conditions. The next result gives a posi-
tive answer in this direction:

Theorem 5.6. Let Ry be the class of rings A such that the 1st Algorithm, starting with any minimal prime
ideal, terminates after at most k steps. Let Sy, be the class of rings A such that the 2nd Algorithm, starting with
any maximal ideal, terminates after at most k steps. The classes R and Sk are elementary.

Proof. We claim that the following formula axiomatizes the class R,.x4+1 (together with the usual
axioms for reduced rings, of course):

Yao, ..., ay.k+1: do ;ﬁ (VN ¢2-k+1 (ag, ..., (,12.k+1) A A2.k+1 ;ﬁ 0—
3b1,....boky1 Act, .o, ok bokp1 FC2kp1 =1 A
D2441(a0, b1, .. b2 1) A Poky1 (@215 C1o - -+ Coeg1)-
First suppose that A € R,.k+1. Pick a sequence ay, ..., ads.x+1 € A such that the condition
g #O0A Dy py1(ao, ..., A2 41) ANl2g1 #0

is satisfied. The sequence of ring elements yields a sequence of constructible sets in Spec(A):
@ # D(ag) € V(a1) € D(az) € --- S V(azk+1) C Spec(A).

The set C = I'[D(ap)] is closed and generically closed and is contained in V(a.k+1). The set
C' =T'[D(az41)] is closed and generically closed as well (reading the sequence backwards). More-
over, C and C’ are disjoint. Let (I, M), (I'’, M") € IM(A) be the pairs that correspond to C and C’, 5.4.
There are elements by 1 € I and ¢y 1 € I’ such that by.1 + c2.x1 = 1. Using 5.4 one constructs
sequences byyi1, b2k, ..., b1 and k41, Coks - - ., €1 Such that

e bjel, ciel ifiis odd,
e bje M, cie M if i is even,
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® byjy1:b2j=0,cj41-c2j=0for j=1,...k,
° (bz.j,bz.j_1)=A, (€2.j,C2.j-1) =A for j=1,...,k

For each j one writes 1 =by.j-x+by.j_1-y. Then by.j_1-y el and V(by.j_1-y) S D(by.;-x). Therefore
by.j-x € M. Replacing by.; by by.j-x and by.j_1 by by.j_1 - y one may assume that by.; +bj.j_1 =1 for
each j. In the same way the sequence c3441,...,¢1 can be modified so that ¢5.j + ¢.j_1 = 1. Almost
all the asserted conditions about the sequences are satisfied now. It remains to check that ag-b; =0
and ay.k+1 - €1 = 0: By construction we know that D(ap) € C C V(b1) and D(az.x+1) € C' € V(c1), and
this proves the last two assertions.

Conversely, suppose that A is a ring that satisfies the formula and assume, by way of contradiction,
that A ¢ Ry.x+1. There is a minimal prime ideal p € A such that the inclusions

{pyco(ip)) c p({p}) coop(ip)) C--- Coop*({p}) C P ({p})

are proper. By 5.2 (b) there is a sequence agp,ai,... € A with @, (ap,as,...) such that p € D(ap)
and I'[p] € V (@2.k+1)- Pick an element q € D(az.441) N p"“({p}). The initial segment ao, ..., dz k41 Of
the sequence satisfies the hypothesis of the formula. Hence there exist sequences b1, ..., by 1 and
C1,...,C2k4+1 such that the conclusion is satisfied. It follows that

D(ag) € V(b1) € D(b2) C--- C V(bais1),

D(azk41) S V(c1) S D(c2) S--- SV (C2k41)-

Now p € D(ap) implies o o pk({p}) C V(ba.k+1), and q € D(azk+1) < V(c2.x+1) holds by construction.
Since V(ba.k+1) N V(c2.k+1) = ¥ we know that there is no element of V(cy.x4+1) that specializes to
an element of V(by.x11). However, q was picked inside y (V (by.k4+1)). This contradiction finishes the
proof for the class Ry.k+1-

The following three claims are proved similarly:

e If k > 0 then the class R, is axiomatized by the following formula:

Vag,...,a2k: a0 #0A Pak(ao, ..., a0k AW (a2) —
3dbq,...,byr 3c1, ..., Cok: bog-C2k=0A
Dyk(ao0, b1, ..., bog) A DAk, C1s - -, Cok).

e The class S;.41 is axiomatized by the following formula:

vay,...,akq2: —W(a1) A Pop2(0,a1, ..., G2 42) A =W (A2k42) —
3b,y, ..., b2.1<+2 dca, ..., k428 b2.1<+2 -Ck+2=0A
Dr442(0,a1, b2, ..., bagi2) A Poky2(0, 02442, C2, - - -, Coe42)-

e If k > 0 then the class Sy is axiomatized by the following formula:

vay, ..., axk+1: (a1 A Pok+1(0,a1, ..., Gak41) A2k 0 —
by, ...,boks1 3C2, ..., Cokt1t Dokt FC2kr1 =1 A
D2k+1(0,a1, b2, ..., bagey 1) A Poky1(0, a2 k15 €2, - - -, C2kp1)-

Concerning the classes Rg and Sg we refer to Remark 5.7 below. O
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Remark 5.7. For very small values of k the classes Ry and Sy are well-known classes of rings:

o If Ae Ry or if Ae Sy then there are no specializations in Spec(A). Thus, A is von Neumann
regular. On the other hand, all von Neumann regular rings clearly belong to Rg and Sp. Thus, the
class of von Neumann regular rings is Ro = Sp.

o If A € S; then every prime ideal is contained in a unique maximal ideal. Such rings are called
normal or Gel’fand rings, [22,3,12].

e If A€ R, then every prime ideal contains a unique minimal prime ideal. Such rings are called
inversely normal, [22,8].

Trivially, the following inclusion relations hold between the classes of rings: Rg CR1 SR, C -+,
and Sy € §1 € Sy C ---. Moreover, some of the classes coincide:

Proposition 5.8. Foreach k e N, Ry, = So..

Proof. Suppose that A ¢ R;.,. Then there is a shortest path that starts with a minimal prime ideal po,
has length 2 -k + 1 and zigzags between minimal prime ideals and maximal ideals:

D1 D3 e D2.k—-1 D2.k+1
bo D2 e D2k
Traversing the path in the opposite direction, one obtains a shortest path of length 2-k—+ 1 that starts

with a maximal ideal. Thus, A ¢ Sy.k.
The other inclusion is proved similarly. O

It is easy to show with examples that the there are no other inclusion relations and equalities
between the classes R, and Si. This will also be obvious from the results in the next section.

6. Rings with graph connected prime spectrum

This section is devoted to a model theoretic study of graph connected rings, i.e., rings with graph
connected prime spectrum. It is clear from 5.5 that neither the class of graph connected rings is
elementary, nor the class of graph connected rings with a prime spectrum of finite diameter. In
view of 5.6 it is not much of a surprise that there are elementary classes of rings with graph con-
nected prime spectrum if one assumes in addition that there is a bound for the termination of the
1st or 2nd Algorithm. We present explicit axiomatizations for several infinite families of classes of
rings.

We consider the following classes of rings:

o AcCyy if AEVag,...,axn: Pon(ag,...,a2n) > ap =0V ¥ (az.y).

e Ac C2An+1 if A ': Vao, cees 241t ¢2-n+1 (a(), e a2.n+1) — dg = ov AQ.n+1 = 0.

e AeDyy if AE=Vag,...,a20: Pon(ag,...,a2,) — ¥ (1 —ag) vV ¥(ayy).

e AeDyyy if AEVay,...,a2041: P2n+1@0,...,020+1) = Y (1 —ap) Vazps1 =0.

First one notes a simple important consequence of the conditions that define the classes:
Proposition 6.1. If A belongs to any one of the classes Cy or Dy, then A is indecomposable.

Proof. Assume that there is a nontrivial idempotent e. Then the sequence ay;=e, az.ir1 =1—c¢,
i € N satisfies the condition @, (ag, aq,...). If A belongs to any one of the classes then it follows that
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e=gp=0o0orl—e=aypt1=00r1—e=1—age A* or e=ay, € A* for some n. But all these
statements are false, hence there are no nontrivial idempotents. O

The ring theoretic content of the sentences defining the classes is not obvious in most cases. We
give an explanation in a few simple special cases; another case will be considered later, 6.9.

Proposition 6.2. Let A be a reduced ring.

(a) The following conditions are equivalent:
(i) A eCy.
(ii) Ais a field.
(b) The following conditions are equivalent:
(i) AeC.
(ii) Ais a domain.
(c) The following conditions are equivalent:
(i) A€ Dy.
(ii) A s local.
(d) The following conditions are equivalent:
(i) AeDs.
(ii) Every zero divisor of A belongs to the Jacobson radical.
(iii) Ifa € A then a is regular or 1 — a is a unit.

Proof. (a). The defining condition of Cy says that every element is O or a unit. But this is the same as
being a field.

(b). The condition for C; is that ap - a; =0 implies ap = 0 or a; = 0, which means that the ring is
a domain.

(c). The condition for Dy is that, given any element qa, the element itself is a unit or 1 —a is a unit,
which means that the ring is local.

(d). (i) = (iii). Suppose that A € D; and pick a zero divisor a. If a-b =0 with b#0 then 1 —a is
a unit. (iii) = (ii). Suppose that a € A is a zero divisor. Assume there is a maximal ideal m that does
not contain a. Then there is an element b € A such thata-b+m=1+m in A/m. The element a-b
is a zero divisor as well, but 1 —a- b is not a unit, a contradiction. (ii) = (i). Pick elements ap,a; € A
such that ag -a; =0 and a; # 0. Then ap =0 or qyp is a zero divisor, hence ag belongs to the Jacobson
radical. In both cases we conclude that 1 —ag is a unit. O

The different classes of rings are related to each other. We exhibit those connections between them
that can be derived readily from the definitions. Later we shall see that there are no other inclusion
relations besides those shown here.

Proposition 6.3. For everyn € N, Co.n42 = Dot 1.

Proof. Suppose that A € Cy.542. Pick a sequence ag, ..., a2.n4+1 such that &,.,41(ao, ..., a2n4+1) holds.
The inverted sequence satisfies the same condition, ®3.541(@2.n+1, ..., 00). We extend this sequence
by the term 1 — ap, and then ®;3.,42(a2.n+1,--.,00, 1 —ap) holds. Since A € Cy.,42 we conclude that

azn+1 =0 o0r 1 —agp € A, which proves the assertion.
For the other inclusion we proceed similarly: Suppose that A € Dj,y1. Pick a sequence

ap, ...,0ay.n+2 such that @;.,42(ag, ..., a2.0+2) holds. Note that aypi2 =1 — az.p1. We shorten the
sequence by omitting the last term. Then ®;.,41(ao,...,a2.,+1) holds. Inverting the shortened se-
quence we obtain @3.,41(@2.n+1,--.,00). Thus, ag =0 or azp42 =1 —azp+1 € A%, and the proof is

finished. O
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Proposition 6.4. The arrows in the following diagram indicate inclusion relations between the classes Cy

and Dy:
C1 C3 Cs
Co Cy =Dq C4=D3
Do Dy Dy
Proof. Suppose that A € Cp.,. We claim that A € Cy.n41. Let ag, ...,a2.,+1 be a sequence in A such

that @,.,41(ao, ..., a2n+1) holds. Then @,.,(ao, ..., az,) holds, and the hypothesis implies that ag =0
(and we are done) or ap., € A, which implies a.n,+1 =0 since az., - az.ny1 =0.

Suppose that A € Cy.p41. We claim that A € Cy.p42. Let ap, ..., az2.n42 be a sequence in A such that
@Dyny2(ag, ..., ax.n+2) holds. Then @,.41(ao, ..., a2n+1) holds, and the hypothesis implies that ag =0
(and we are done) or ay.,+1 = 0, which implies az.;42 € A* since a1+ azpy2 = 1.

Suppose that A € D,.,. We claim that A € Dy.41. Let ag, ..., a2.n+1 be a sequence in A such that
@y.n+1(ao, - - ., a2n+1) holds. Then @;.4(ao, ..., azy) holds, and the hypothesis implies that 1—ag € A%
(and we are done) or ay., € A*, which implies ay.,+1 =0 since az., - az.n+1 =0.

Suppose that A € Dy.p41. We claim that A € Dy.40. Let ag, ...,a2.4+2 be a sequence in A such
that @,.n42(ao, ..., a2.n42) holds. Then @;.441(ao, ..., a2.,+1) holds, and the hypothesis implies that
1—ap € A* (and we are done) or ay.,4+1 = 0, which implies az.,4+2 € A* since ay.py1 +an42=1. O

The next few results relate the classes C, and Dy to the termination of the algorithms of Section 2.
The following lemma will be extremely useful:

Lemma 6.5. Let X be a spectral space and suppose that Y, Z € X are proconstructible, Y =y (Y), Z =0 (2).
Then the following conditions are equivalent:

(@) o(Y)NZ=4¢.
(b) YNy (Z)=0.

Proof. (a) = (b). Assume that y € Y N y(Z). Then there is an element z € Z such that y ~~ z. But
then ze o (Y) N Z, a contradiction. (b) = (a) is proved similarly. O

Theorem 6.6. Let A be a reduced ring. The following conditions are equivalent:
(@) AeCrpn (=Dyp_qifn>0)

(b) The prime spectrum is graph connected, and the 1st Algorithm, starting from a minimal prime ideal, always
terminates after at most 2 - n steps.

Ifn > 0 then (a) and (b) are also equivalent to:

(c) The prime spectrum is graph connected, and the 2nd Algorithm, starting from a maximal prime ideal,
always terminates after at most 2 - n steps.

Proof. First we settle the case n =0. By 2.4 and 6.2 the conditions (a) and (b) both say that A is
a field. We may now assume that n > 0.
(b) = (c). If (c) is false then there is path in Spec(A)

0\ /12\ /ﬂZ»n\\

X2.n—1 X2.n+1
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that zigzags between maximal and minimal prime ideals and is a shortest connection from the max-
imal ideal xo to the minimal prime ideal x,,41. Traversing the path in the opposite direction one
obtains a shortest path from the minimal prime ideal x;.,41 to the maximal ideal xo. The path has
length 2 -n+ 1, which contradicts (b).

(c) = (b). The same argument as in the proof of (b) = (c) is applied to the path

X1 X3 e X2.n—1 X2.n+1
X0 X2 s X2.n
(b) = (Q). Pick ag, ...,azn € A, ag # 0, and suppose that @;,.,(ao, ..., a,) holds. We must prove
that D(ay.n) = Spec(A).
As ag # 0 there is a minimal prime ideal p € D(ag). Starting with p, one applies the 1st Algo-

rithm and obtains Spec(A) = p"({p}). Consider the sequence of inclusions given by the condition
Drn(ap, ...,a2.5):

D(ap) € V(a1) € D(az) C--- C V(az.n—1) € D(azn).
Then p(D(az.i)) € D(az.iy2) foralli=0,...,n— 1. It follows that

Spec(A) = p"({p}) € p"(D(ao)) € D(azn),

which proves the claim.

(a) = (b). By 6.1 there are no nontrivial idempotents. Now assume that the assertion is false. Then
there is a minimal prime ideal p such that p"({p}) # Spec(A). Since p"({p}) is generically closed
there is a maximal ideal m ¢ p"({p}). It follows that m ¢ o (0"~ 1({p})), hence 6.5, with Y = p"~1({p})
and Z = {m}, yields p"1({p}) N y({m}) =@. We apply 6.5 again, this time with Y = y({m}) and
Z =0 o p"2({p}), and obtain T({m}) N (p"2({p})) = ¥. The argument can be repeated and yields
eventually o ({p}) N t"~1({m}) = @. The set T"1({m}) C Spec(A) is closed. Therefore there is an ideal
I € A with V(I3) = T 1({m}). Since V(p) N V(Iy) =@ it follows that A = I, + p. Both ideals are
proper. There are elements a; € p and ay € I with 1 =a; + ay. Since a; belongs to the minimal
prime ideal there is an element ag # 0 such that ag -a; =0.

We extend the sequence dag, aq, ay: Since a; € I, it follows that V(az) D V(Iy) = t"({m}), or,
equivalently, D(az) N t"~1({m}) = ¥, which yields D(az) Ny (z"2({m})) = . We use 6.5 again with
Y = D(ay) and Z = t"2({m}) and get o (D(ay)) N " 2({m}) = @. Since o (D(ay)) and T"~2({m}) are
closed in Spec(A) there are ideals I3, I4 € A such that V(I3) = o (D(a2)) and V (I4) = t"2({m}). The
closed sets V (I3) and V (I4) are disjoint, hence there are elements as € I3 and a4 € I4 with 1 =a3+ag.
Note that V(a3) 2 V(I3) 2 D(ay), which implies ay - a3 =0.

We continue recursively in this way and find a sequence ayg,...,az., such that the condition
®y.n(ag, ..., a2,) is satisfied. Now condition (a) implies that ap = 0, which is false by construction,
or a, € A*. On the other hand, ay € I>.;. By construction, m € V(I.;), which implies ay, € m,
a contradiction. O

Theorem 6.7. Let A be a reduced ring. The following conditions are equivalent:

(@) AeConyr.
(b) The prime spectrum is graph connected, and the 1st Algorithm, starting from a minimal prime ideal, always
terminates after at most 2 - n + 1 steps.

Proof. If n =0 then both conditions say that A is a domain, 2.4, 6.2.
(b) = (a). Pick ag, ...,a2n+1 € A, ap # 0, and suppose that ®;.,4+1(ao, ..., a2.n+1) holds. We must
prove that V (az.n+1) = Spec(A).
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As ap # 0 there is a minimal prime ideal p € D(ap). Starting with p, one applies the algo-
rithm and obtains Spec(A) = y (p"({p})). Consider the sequence of inclusions given by the condition
Dyn+1(@0, - -+ Q2n41):

D(ap) € V(a1) € D(az) C--- C V(azn-1) € D(az.n) € V(azn+1)-
Then o (D(ap)) € V(a1) and t(V(az.i—1)) € V(az.iy1) foralli=1,...,n. It follows that
Spec(A) =" (o ({p})) € t"(0(D(a0))) € t"(V(a1)) € V(@2n41).

which proves the claim.

(a) = (b). By 6.1 there are no nontrivial idempotents. Assume that the assertion is false. Then
there is a minimal prime ideal p such that t" o o ({p}) # Spec(A). Since " o o ({p}) is closed under
specialization there is a minimal prime ideal q ¢ " o o ({p}). It follows that q ¢ p"({p}). We apply 6.5
with Y ={q} and Z=1""" oo ({p}) and obtain o ({g}) N " ! o o({p}) = ¥. Two more applications
of 6.5, first with Y = p"1({p}) and Z = o ({q}), then with Y = p({q}) and Z = t"% o o ({p}), yield
first p({g) N P~ 1({p}) =¥, then 7 o o ({q}) N T2 0 o ({p}) = ¥. Iteration of this process eventually
leads to ™" oo ({g}) N ({p}) =B. As T o5 ({q}) C Spec(A) is closed there is an ideal I € A such
that 7" 1 oo ({g}) = V(I32). Now V(I2) NV (p) =%, and A = p + I, follows. There are elements a; € p
and ap € I, with 1 =ay + ay. Because a; belongs to a minimal prime ideal there is an element ag # 0
such that ag-a; =0.

We extend the sequence ag, ai, ap as in the proof of 6.6: Since a; € I, it follows that V(ay) 2
V() = 1" 1o o ({q}), equivalently D(az) N "' o o ({q}) = @. It follows that D(az) N p"~1({q}) = 9.
Again, 6.5 with Y = D(ay) and Z = o o p"2({q}) yields o (D(az)) N o o p"~2({q}) = . There are ideals
I3, 14 € R with V(I3) = o (D(az)) and V (I4) =0 0 p"%({q}). Then I3+ I4 = A, and there are elements
as € I3, aq € I4 with 1 =as + ay. It follows from V(a3) 2 V(I3) 2 D(ay) that a, -as =0.

Eventually we arrive at a sequence ay, ..., a2, that satisfies @;.,. The final term a,., is picked
from an ideal I,., with V (Io.;) = o ({q}). As V(q) = o ({q}) we may choose I5., =q. As az., belongs to
a minimal prime ideal there is an element az.,4+1 7 0 such that az.p, - az.n+1 = 0. Now the condition
@Dyny1(ag, ..., a2.041) is satisfied, but ap # 0 and ay.,+1 # 0, which is a contradiction, and the proof
is finished. O

Theorem 6.8. Let A be a reduced ring. The following conditions are equivalent:

(@) A€ Dy
(b) The prime spectrum is graph connected, and the 2nd Algorithm, starting from a maximal ideal, always
terminates after at most 2 - n + 1 steps.

Proof. The case n =0 is treated separately again: Both conditions say that A is a local ring, 2.4, 6.2.
We assume now that n > 0.

(b) = (a). Pick ag, ...,a2n € A, D(1 —ag) # Spec(A), and suppose that ®,.,(qao, ..., ad2,) holds. We
must prove that ay, € A*.

As D(1 — ag) # Spec(A) there is a maximal ideal m € V(1 — ap). Note that m € D(agp). Starting
with m, one applies the algorithm and obtains Spec(A) = p" o y ({m}). Consider the sequence of in-
clusions given by the condition @,.,(ag,...,a2.4):

D(ap) € V(ay;) € D(az) C--- S V(azn-1) S D(azn).
It follows that
Spec(A) = p" o ¥ ({m}) € p"(D(ao)) € D(azn),

hence ay . is a unit, as claimed.



N. Schwartz / Journal of Algebra 337 (2011) 13-49 41

(@) = (b). By 6.1 there are no idempotents. Assume by way of contradiction that the claim is
false. There is a maximal ideal m such that p" o y({m}) # Spec(A). There is a maximal ideal | ¢
phoy({m}), hence I ¢ o 0 p" 1oy ({m}). With 6.5 it follows that o™ ' oy ({m})Ny ({I}) = @. Continuing
recursively, as in the proofs of 6.6 and 6.7 one uses 6.5 to show that p"~! o y({I}) Ny ({m}) = @.
Recall that y ({m}) = ﬂceA\{m] D(c). Using D(c) N D(c) =D(c-¢), p" oyl N ﬂceA\{m] D(c)=0
and quasi-compactness of p"~! o y({l}) one concludes that there is an element c € A\ {m} with
p" 1o y{l}) N D(c) =¢. Since m is maximal there is an element d € R with d-c+m =1+m. We
define ap =c -d. Then m € Spec(A) \ D(1 — ap).

Starting with ag we build a sequence ay, ..., ay such that @,.,(ag,...,azn) holds: Since D(ag) N
o™ 1o y({l}) =9 one can apply 6.5 and gets o (D(ag)) No o p" 2oy ({l}) =@. Let Iy, I, C A be ideals
with V(I1) = o (D(ap)), V(I2) =0 o p"~2 o y({I}). Then there are elements a; € I; and a; € I with
1 =aj +ay. Note that ag -a; =0 since D(ap) € V(I1) C V(ay). Iteration of this construction yields the
desired sequence.

Since A € Dy, it follows that 1 —ag € A* (which is impossible by construction) or a,., € A*. But,
by construction a., € Io., and V (Iz.;) = {l}, hence ay., €1, which is a contradiction. O

We have now established the connections between the classes C, and D) and the algorithms of
Section 2, hence also with the classes Ry and Sy of Section 5. For each k, Cy € Ry and Dy C S are
the subclasses of rings with graph connected prime spectrum.

We use some of the examples in Section 3 to show that there are no inclusion relations between
the classes Cx and Dy beyond those exhibited in 6.4.

e Let A be a ring whose prime spectrum is isomorphic to the spectral space X2 of 3.2. Then A
belongs Dy, \ Ca.nt1, hence also to Copy2 \ Ca.nt1 and Doy \ Dop—1.

e Let A be a ring whose prime spectrum is isomorphic to the spectral space Y;.,42 of 3.2. Then A
belongs to Cy.n+1 \ Da2.n, hence also to Dy.ptq \ Doy and Copg1 \ Cone

e Let A be a ring whose prime spectrum is isomorphic to the spectral space Z.,4+3 of 3.2. Then A
belongs C;.n4+3 N D242, but not to Co.pt2 = Dopy1.-

Finally in this section, we give a characterization of the rings in the class C3, cf. 6.2. A ring A is
called almost clean if every element is a sum of a regular element and an idempotent, [13, Defi-
nition 11].

Proposition 6.9. A ring A belongs to the class Cs if and only if it is indecomposable and almost clean.

Proof. Suppose that A € C3. Then A is indecomposable by 6.1. Now pick an element a € A that
is not regular. We claim that 1 — a is regular. Assume that this is false. Then there are minimal
prime ideals p,q € A such that 1 —a € p and a € q. The 1st Algorithm provides a path from p
to q that has length at most 3. Since both prime ideals are minimal and distinct, the length of
the path is, in fact, 2. Thus, there is a maximal ideal m that contains both p and gq. Note that
peV( —a) implies me V(1 —a). As 1 ¢ m it follows that a ¢ m. On the other hand, a € g € m,
a contradiction. Now one writes a = (a — 1) + 1, which is the sum of a regular element and an idem-
potent.

Conversely, suppose that A is indecomposable and does not belong to C3. There are minimal prime
ideals p and q such that g ¢ p({p}). For each maximal ideal m € o ({p}) there is an element a, € A
with a, ¢ m and a € q. The sets D(ap) form an open and constructible cover of p({p}). By quasi-
compactness of po({p}) there is a finite subcover, p({p}) € D(am,) U --- U D(an,). The ideal generated
by am, + p,....am, + p in A/p is the entire ring. Therefore there are elements bi,...,b; € A such
that by -am, +---+ by - am, + p =1+ p. We abbreviate ¢ = by - am, +--- + by - am,. Then ¢ € q since
each ap,; belongs to q. Moreover, 1 — ¢ € p, and therefore 1 —c is a zero divisor as well. We have
shown that ¢ cannot be written as a sum of a regular element and an idempotent (since 0 and 1 are
the only idempotents). Thus R is not almost clean. O
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7. Prime spectra with graph connected topological components

Now the results of Section 6 are extended to rings that are not necessarily indecomposable. There
are no restrictions on the number of topological components of the prime spectra anymore, but it will
be assumed that the topological components coincide with the graph components and that the graph
components can be determined with a bounded number of iterations of the 1st or 2nd Algorithms.
Again we determine several families of elementary classes of rings.

The formulas that were used to axiomatize the classes C, and Dy (in Section 6) are modified to
take idempotents into account. The following notation will be used.

Suppose that @ is any formula in the language £ and that e is an idempotent. One defines @€ to
be the formula that is obtained by multiplying every term in @ with e. In particular, we shall apply
this notation to the formulas @,f(ao, ...,ar) and ¥E€(y) of Section 5.

We define the following classes of rings:

e Ac Cz_n if it satisfies the following condition:

Yao,...,azn: Panlao,...,a2n) =

Je:e’=en(e-ap=0Vv¥an) A((1—e)-a =0V ¥ *@y)).

e A € (Cypyq if it satisfies the following condition:

Vao, RN )y BTN ¢2-n+l (ao, . az.n+1) —
Je:e’=en(e-ag=0Ve-ayn1=0)

A((1—e)-ap=0V(1—e)-azns1 =0).
e A €Dy, if it satisfies the following condition:

Yao,...,azn: Panlao,...,a2n) =

Je: e’ =e A (P°(1 —ao) vV ¥*(azn)) A (P178(1 —ag) v ¥4 (az)).

o A € Dy if it satisfies the following condition:

Vao, N )y RS I @2~n+1 (ao, ey a2.n+1) —
Je: e =e A (¥°(1 —ap) Ve arpp1 =0)
AP (1 —ag) v (1 —e)- a1 =0).
Similar to 6.3 it is not difficult to see that the classes D41 and Ca.ny2 coincide. (In view of 6.3 this
also follows from 7.1 below.) The classes C, and Dy are the subclasses of C, and D that consist of
the rings with graph connected prime spectrum.
The conditions that define the classes of rings say that certain subsets of the spectrum of a ring can

be separated by closed and open sets. We have seen in Section 6 that the formulas ®,.,(ag,...,a2n)
and @3.5,41(ap, ..., a2n+1) yield the sequences

D(ap) € V(a1) S--- < D(azn),

D(ap) € V(ay) € --- S V(az.n41).
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We extend the sequences to the left by adding the subset V(1 —ag) € D(ag). Any set in a sequence
is disjoint from the complement of any set that comes later in the sequence. The formulas say that
the first set in a sequence can be separated from the complement of the last set by an idempotent.
For example, if A € D,.; and if @2.(ao, ..., azn) is satisfied then there is an idempotent e such that
V(1 —ap) CSV(e) and V(azy) S V(1 —e).

Theorem 7.1. Let K be one of the classes Cj, and Dy, let KC be the corresponding class Cy or Dy. Let A be a ring.
Then the following conditions are equivalent:

(@) Aek.
(b) For each prime ideal p C E(A) the factor ring A/ ], belongs to K.

Proof. We prove the equivalence for the case K = Cy.,. Exactly the same arguments can be used to
prove the other cases.

(a) = (b). Let p € E(A) be a prime ideal. Note that the ring A/ J, is indecomposable. Pick elements
ao+ Jp,...,a2n+ Jp € A/Jp and suppose that ®3.,(ap + Jp, ..., a2, + Jp) holds. The set

C={peSpec(A) | A/p E Prn(@o+p.....02n + D)}

is closed and constructible in Spec(A) and contains the fiber pEl (p). Therefore there exists an element
e € E(A) such that A/p =®on(ag+p,...,a2,+p) for all p e V(e), and pgl(p) CV().lete'=1—e¢
be the orthogonal complement of e. The canonical homomorphism e’-R — ]—Ipev(e) A/p is injective. It
follows that e’ - R |= (bzefn(ag, ...,03.4). One defines a sequence by, ..., by, € R by setting by.j =€ -ay.;
fori=0,...,n and by.jy1 =€ -azj;1 +e fori=0,...,n—1. Then @, ,(bo,...,b2,) holds in R. The
hypothesis yields an idempotent f € E(A) such that

(f-bo=0v ¥/ (bam) A (1= F)-bo=0v ¥ (by))

holds. Exactly one of f and 1 — f belongs to p, say f € p. Then (1 — f)-bo=0v ¥'~f(by,) holds in
(1—f)-A.As A/]p is a factor ring of (1 — f) - A we conclude that bg + J, =0V ¥ (ba.n + J) holds
in R/ J,. This proves the assertion since ag + J, =bo + Jp and azn + Jp =bon + Jp.

(b) = (a). Suppose that A/ ], € Ca., for each prime ideal p € E(A). We want to show that A € Con.
Consider a sequence dg, ..., d., € A such that @(ag, ..., az.) holds. Then, for each p € Spec(E(A)) the
condition ®(ag + Jp,...,a2.n + Jp) holds in R/J,. By hypothesis, the condition ag + J, =0+ J, v
W (az.n + Jp) holds in R/ J,,. The sets

M; = {p € Spec(E(A)) | A/Jp =ao+ Jp =0+ Jp},
M2 = {p € Spec(E(A)) | A/ ] =¥ (@2n + Jp)}

are constructible and cover Spec(E(A)). But they are not necessarily disjoint. For each p € M; there
is a closed and constructible set V|, € Spec(A) such that pgl(p) CVyand E/p=ag+p=0+p for
all p € V,,. Thus, there exists an idempotent e, such that pgl (p) S V(ep) € Vp. The subsets V(ep)
Spec(A) are closed and open and are contained in pgl(M1). Similarly, for each p € M, there is an
idempotent e, such that p?(p) CV(ep) and V(ep) € pg](Mz).

The closed and open subsets V (ey,), p € Spec(E(A)), cover Spec(A). Hence, by compactness, there
is a finite subcover, Spec(A) = V(ep,) U---U V(ey,). There is a complete set fi,..., f; of mutually
orthogonal idempotents such that each ey, is a sum of some of the fj. Thus, for each j=1,...,r, at
least one of the conditions V (f;) € pgl(M1) and V(f;) C pgl(Mz) holds. We arrange the enumera-
tion such that V(fj) € pgl(Ml) for j=1,...,s and V(f;) C pg](Mz) for j=s+1,...,r and define
g=fi+--+ fs € E(A).
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The canonical homomorphisms (1 —g)-A — ngp A/Jp and g- A — ]_[Fgep A/ ]y are injective.
It follows from

HA/Jp = (ao+ Jp)gep = 0+ Jp)gep

gep

and

[T A/Js =¥ (@n+ Jp)1-gep)

1—gep
that (1—g)-AE=(1—-g)-ap=0and g-A = ¥&(ayy), and the proof is finished. O

Corollary 7.2. The notation is as in 7.1. Suppose that A € IC. For each ideal i € E(A) the factor ring A/ J;
belongs to KC as well.

Proof. Suppose that p/i € E(A)/i = E(A/];) is a prime ideal. Then (A/Ji)/(Jp/Ji) =~ E/ ], belongs
to /C, and the claim follows from 7.1. O

Corollary 7.3. For any k € N the class Cy, is contained in the class Ry, and the class Dy, is contained in the
class Sg41.

In 6.2 and 6.9 we gave explanations of the ring theoretic meaning of the classes Cy and Dy for
small values of k. Now we do the same for the classes C, and Dy.

Theorem 7.4. Let A be a reduced ring.

(a) A €Cq ifand only if A is von Neumann regular.

(b) A e Dy ifand only if A is clean, i.e., every element is the sum of a unit and an idempotent.

(c) A e Cy if and only if A is a weak Baer ring, i.e., the annihilator ideal of every element is generated by
idempotents.

Proof. (a). Suppose that A is von Neumann regular. For each element a € A there is an element b € A
such that a>-b=a. Then e =a-b € E(A). One checks that (e-a) - (e-b) =e, ie., ¥¢(a) is satisfied,
and (1 —e)-a=a—a?-b=0 is satisfied. We have shown that the defining condition of Cy holds
in R.

Conversely, suppose that A/ ], is a field for each p € Spec(E(A)). Then the ideals ], are maximal
in A. Let p C A be any prime ideal. Then Jpnga) € p, and it follows that p is a maximal ideal. If
every prime ideal of A is maximal then the ring is von Neumann regular.

(b). Let A be clean and pick an element a € A. By hypothesis, there are a unit u and an idempo-
tent e witha=u+e. Thene-(1—-a)=e-(1 —e —u)=—e-u, which is a unitin e - R, i.e, ¥¢(1 —a)
is satisfied, and (1 —e)-a=(1—e)-(u+e)=(1—e)-u, which is a unit in (1 —e) - R, i.e., ¥17¢(a) is
satisfied. It follows that A € Dg.

Now suppose that A € Dg. Pick an element a € R. The condition @®¢(a) is satisfied, and it follows
that there is an idempotent e such that one of e —e-a and e-a is a unit in e- A and one of (1 —e) —
(1—e)-aand (1 —e)-aisaunitin (1—e)-A. There are four cases to consider:

elfe—e-aand (1 —e)— (1 —e)-a are units then their sum, which is 1 — @, is a unit in A, and
a=1+ (a—1) is a sum of an idempotent and a unit.

e If e-a and (1 —e) - a are units, then their sum, which is @, is a unit in R, and a =a + 0 is the
desired representation.
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elfe—e-aand (1 —e)-a are units thena=((e-a—e)+ (1 —e)-a)+e is a sum of a unit and
an idempotent.

elfe-aand (1—e)—(1—e)-a are units thena=(-a+((1—e)-a—(1—e)))+ (1 —e) is a sum
of a unit and an idempotent.

(c). Suppose that A is a weak Baer ring and that ag - a; =0 in A. The hypothesis yields an idem-
potent e such that ap-e =0 and a; =b - e for some element b € A. Clearly, one may choose b = aj.
Then (1 —e) -a; =0 holds, and A satisfies the defining condition of the class Cj.

Conversely, suppose that A € C;. Pick an element a € A. We must show that Ann(a) is generated
by idempotents. So, suppose that a - b = 0. The definition of the class C; yields an idempotent e with
e-a=0ore-b=0and (1—e)-a=0o0r (1—e)-b=0.1fe-a=0and (1—e)-a=0 then a=0, and
the annihilator ideal is generated by the idempotent 1. If e-b =0 and (1 —e) -b =0 then b =0, and
b is a multiple of the idempotent 0, which belongs to Ann(a). Now suppose that a0, b#0,e-a=0
and (1—e)-b=0.Thenb=b-(e+(1—e))=b-e, ie,bee-ACAnn(a). Finally, if (1 —e)-a=0 and
e-b=0thenb=b-(1—e)e(1—e)-ACAnn(a). O

The notion of clean rings was first introduced by Nicholson, [16, p. 271]. They have received
a considerable amount of attention in the literature, in particular for rings of continuous func-
tions, see e.g., [1,13,14], [15, Section 1]. There is a long list of equivalent conditions that char-
acterize clean rings, cf. [15, Theorem 1.7]. One of the conditions is: The ring is Gel'fand, and
the space of maximal ideals is Boolean. This characterization can be recovered easily from 7.4:
If A is clean, ie. belongs to Dy, then it belongs to S;, hence is normal, 5.7, and the map
Max(Spec(A)) — Spec(A) LN Spec(E(A)) is continuous and bijective, hence a homeomorphism (since
the spaces are compact). Conversely, if the ring is Gel'fand and Max(A) is Boolean then the map
Max(Spec(A)) — Spec(A) LN Spec(E(A)) is a homeomorphism and every ring A/ J,, p € Spec(E(A)),
is local.

If A is a ring of continuous functions, A = C(X; R), then Spec(A) is a root system and, hence,
is normal. So the question of whether or not A is clean depends only on the existence of enough
idempotents. Let A* = C*(X;R) be the ring of bounded continuous functions. Both rings have the
same idempotents, and their spaces of maximal ideal are canonically homeomorphic to each other
and are homeomorphic to the Stone-Cech compactification SX [7,21]. It follows that they are both
clean or both unclean. One concludes that they are clean if and only if 8X is Boolean. (This fact has
already been proved in [13, Theorem 13].)

The formulas that define the classes Co.n, Cyn+1 and D, assert the existence of idempotents.
We present one of several other ways to introduce idempotents. The formulas ®;., and ®,.,11 of
Section 5 will be used. Consider the following classes of rings:

e Ac E if it satisfies the following condition:

vai,...,axp-1: O2p-1(a1,...,020-1) —>
Je: e? =e AVag, azn: (P2n(do, ..., a20) =

(e-ag =0V ¥(an) A ((1—e)-ao=0Vv¥'@ayn))).
o Ac &py if it satisfies the following condition:
vay,...,axn: Op(ai,...,axn) —

) .
Je: e” =e AVag, Gznt1: (P2ns1o, ..., Qong1) =

(e-ap=0Ve-ani1=0)A((1—e)-ap=0V (1 —e)- a1 =0)).
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o A€ F,, if it satisfies the following condition:

vai,...,axp-1: O2p-1(a,...,020-1) >
Je: e* = e AVag, azn: (P2n(do, ..., a20) =

(w1 —ag) v ¥ (azm) A (P81 —ag) v ¥ (azn))).
e A€ Fynq4 if it satisfies the following condition:

vai,...,ayn: Orn(ai,...,azn) —
) )
Je: e* =e AVag, aznt1: (P2nt1(o, ..., G2ng1) —

(Pe(1 —ag) Ve -arn1 =0) A (¥'7¢(1 —ag) v (1 —e)-aznt1 =0)).

As before, it is not difficult to show that F,.,11 = E2.n42; the details can be left to the reader. More-
over, the inclusions &., € Con, Exnt1 € Cong1 and Frp € Doy are obvious. The intersection of the
class of rings with graph connected prime spectrum with the class &, or with the class F, yields
the class Cy, or the class Dy.

Similar to C, and Dy, the defining conditions of & and Fj can be interpreted as separation
properties for subsets of spectra by closed and open sets. The conditions ®,.,_1(ai,...,a2,—1) and
®y.n(ay, ..., azy) yield sequences

V(a1) € D(a2) € --- S V(azn-1),

V(a1) € D(ap) S --- € D(azn).

The interior of a subset M C Spec(A) is denoted by int(M), the interior with respect to the inverse
topology is denoted by intj,, (M).

Lemma 7.5. Suppose that A is a ring and a € A. Then:

(a) int(V (@) = Uceann@ P (©)-
(b) intjyy (int(V (a))) = UceAnn(a) Va—-o.

Proof. (a). If c € Ann(a) then D(c) C V(a), hence D(c) C int(V (a)). Conversely, let p € int(V (a)). Then
there is a basic open set D(c) with p € D(c) and D(c) N D(a) = @. It follows that ¢ € Ann(a), which
proves the other inclusion.

(b). First suppose that ¢ € Ann(a). Then V(1 — c¢) € D(c). The set V(1 — ¢) is open in the
inverse topology, hence, using (a), V(1 — ¢) C intjpy(D(c)) C intjpy(int(V (a))). Now suppose that
p € intj,, (int(V (@))). Then {p} C int(V (a)). By (a) and compactness there is a finite subset F € Ann(a)
with {p} C Ucer D(c). The ideal generated in A/p by the elements ¢ + p, c € F, is the entire ring.
Therefore there are elements b. € A such that " _zb.-c+p=1+4+p.Thenb=3 _b.-c e Ann(a),
and p € V(1 —b). This proves the claim. O

If A€ &, and if ©®yn_1(aq, ..., az,—1) holds then there is an idempotent e such that D(ag) < V (e)
for any ag € Ann(ay), i.e., int(V(a;)) S V(e), 7.5 (a), and V(1 —azn—1) S V(1 —e). Or, if A€ Fy.;, and

if ®n-1(a1,...,a2n—1) then there is an idempotent e such that V(1 —ap) € V(e) for each ag €
Ann(a,), i.e., intj,(int(V(ay))) € V(e), 7.5 (b), and V(1 —azy—1) S V(1 —e). Or, if A€ &pyq and
if ®3.5(aq,...,az.,) then there is an idempotent e such that D(ag) € V (e) for any ag € Ann(ay), i.e.,

int(V(ay)) € V(e), 7.5 (a), and D(azn+1) € V(1 —e) for any az.n+1 € Ann(ay.p), ie., int(V(azn)) C
V(1 —e), 75 (a)
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For small values of k we describe the classes & and Fj in more conventional ring theoretic terms
again:

Theorem 7.6. Suppose that A is a ring.

€ & ifand only if A is a field or is a direct product of two fields.

€ Fo ifand only if A is a local ring or is a direct product of two local rings.
€ & ifand only if A is a domain or a direct product of two domains.

e & if and only if A is almost clean.

(@ A
(b) A
(c) A
(d) A

Proof. First note that the conditions ®,.,_1(ay,...,a2n—1), 1=0,1, and @y, (ay,...,az,), n=0, are
always trivially satisfied. We claim that in rings that belong to & or & or Fy there cannot be three
nontrivial mutually orthogonal idempotents.

Assume that there are three nontrivial mutually orthogonal idempotents eq, ea, e3 such that 1 =
e1 + e + e3. The hypothesis of the conditions that define the classes &, & and Fy is satisfied, as we
have noted. Therefore there is an idempotent e as stated.

First consider the class &. If we choose ag =e; then e-e; =0V 3z: e =z-e; implies that e €
(ep+e3)-Aorecer;-A,and (1—e)-eq=0v3Iz: 1—e==z-e1 implies that 1 —e e (e3 +e3)-A or
1—e ceq-A. Since e and 1—e cannot belong to the same proper ideal we see that e € (e; +e3)-A and
1—eceq- A, or vice versa. It follows that e =e; +e3, 1 —e =eq, or vice versa. The same argument
can be repeated with ag = e, and yields e = e, or e = e; + e3, which is a contradiction. The cases Fg
and &; are done in exactly the same way.

(a). If A is a field then the idempotent e =1 has the desired properties. If A= B x C is a direct
product of two fields, then the idempotent e = (1,0) satisfies the conditions. Thus, in both cases,
Acé&.

Now suppose that A € &. If A is indecomposable then it is a field. If A is not indecomposable
then let e be one of the two nontrivial idempotents. Both e and 1 — e generate prime ideals in E(A),
and A~ A/e-Ax A/(1—e)-A. As E < Cop we conclude from 7.1 and 6.2 that A/e-A and A/(1—e)-A
are both fields.

(b) and (c) are done in the same way as (a).

(d). First suppose that A is almost clean. Pick an element a; € A and define ap =1 — a;. There is
an idempotent e such that c =e — ay is a regular element. We prove that this idempotent has the
desired properties: Pick elements ag, a3 such that ap-a; =0 and a; -a3 = 0. Let p C A be a minimal
prime ideal. If ap € p thenag- (1 —e)ep.If ap ¢ p then a; e p. Asc=e —a; ¢ p we see that e ¢ p.
But then 1 — e € p, and again we obtain ap - (1 —e) € p. Thus, ap - (1 — e) belongs to every minimal
prime ideal, which implies that ag - (1 — e) = 0. Exactly the same argument shows that ay,41-e =0.
Thus, the defining condition of & is satisfied.

Conversely, let A € &. Pick an element a € A, and define a; =a, a =1 —a. If one of a and
1 —a is a regular element then there is nothing to prove. So, suppose that this is not the case. Then
there is an idempotent e as in the definition of the class. We may assume that int(V (a)) € V(e) and
int(V(1 —a)) CV(1—e). We claim that (1 —e) —a is a regular element.

Assume that (1 —e) —a € p, p a minimal prime ideal. If a € p then p € int(V (a)), hence p € V(e) =
D(1 —e). It follows that (1 —e) —a ¢ p, a contradiction. If a ¢ p then 1 —e ¢ p, hence e € p. But then
1 —a € p, which implies p € int(V(1 —a)) C V(1 —e), i.e.,, 1 —e € p - again a contradiction.

It has been shown that (1 —e) — a does not belong to any minimal prime ideal, hence is a regular
element. We can now write a = (a— (1 —e)) + (1 —e), a sum of a regular element and an idempotent,
i.e., A is almost clean. O

We close with some observations concerning the separation of subsets of Spec(A) by idempotents.
Recall: If M C Spec(A) is a proconstructible subset then y (M) is the closure of M for the inverse
topology.

Given an element a € A, the closed and constructible sets V (a) and V(1 —a) are disjoint. Consider
the following sequences of subsets:
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y(V(@) y(V(a-a)
V(a) V(1 —a
int(V (a)) int(V(1 —a))
intjpy (int(V (a))) intjpy (int(V (1 — a)))

Some of the classes of rings that occurred here can be characterized via separation of the sets in the
diagram. Note that, given an idempotent e and a proconstructible set M, the containment relations
McV(e), y(M)CV(e) and M C V(e) are equivalent to each other.

e The ring A is clean, i.e., belongs to Dy, if and only if there is an idempotent that separates
y(V(@) and y(V(1 —a)).

e The ring A belongs to &; if and only if the sets int(V (a)) and y(V (1 —a)) can be separated by
an idempotent.

o The ring A is almost clean, i.e., belongs to &3, if and only if the sets int(V (a)) and int(V (1 — a))
can be separated by an idempotent.

e The ring A belongs to F, if and only if intj,, (int(V (@))) and y(V (1 —a)) can be separated with
an idempotent.

The separation properties yield the following result, which generalizes some of the equivalences
of [13, Theorem 13].

Proposition 7.7. A ring A is clean if and only if it is Gel’fand and almost clean.

Proof. If A is clean then it is normal, cf. the observations following the proof of 7.4, and is clearly
almost clean. Conversely, suppose that A is normal and almost clean. Pick an element a € A. The
sets y(V(a)) and y(V(1 — a)) are closed and generically closed (by normality of Spec(A)) and are
disjoint. It follows that y(V (a)) = ﬂceD(Vm)) D(c), y(V(1—a)) = mdeD(V(l—a)) D(d), where D(V (x)) =
{y e A|V(x) € D(y)}. Compactness implies that there are c € D(V(a)) and d € D(V(1 — a)) with
D(c) N D(d) = @. One can modify ¢ such that c+1 =1+ I, where I C A is the radical ideal with
V(I) = y(V(a)). Now, for the element c, there is an idempotent e such that int(V(c)) € V(e) and
int(V(1 —c)) € V(1 —e). By construction y(V(a)) € V(1 —c), hence y(V(a)) € int(V(1 —c)), and
y(V(1 —a)) € D() € V(c), hence y(V(1 —a)) € int(V(c)). It follows that y(V(a)) € V(1 —e) and
y(V(1 —a)) C V(e), and the proof is finished. O
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