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1. Introduction

Let k be a field of characteristic p, where p is a prime number or 0.
Let G be a finite group, let B(G) be the Grothendieck group of G-sets (Definition 11) and let

Πk(G) be the Grothendieck group of permutation kG-modules (Definition 13). We can define a map
θG : B(G) → Πk(G) which is natural and surjective by definition. Now if we tensor everything with
C and if G varies, CB and CΠk become C-linear biset functors and θ : CB → CΠk is a natural
transformation.

Recall that the simple biset functors S H,V are parametrized by pairs (H, V ), where H is a finite
group and V a simple C Out(H)-module. If k = Q then we have that CΠQ = CRQ , where RQ(G) is
the ordinary Grothendieck group of QG-modules, and Serge Bouc proves that CRQ = S1,C is a simple
biset functor [1, Proposition 4.4.8].

We want to generalize this to an arbitrary field k. More precisely, we want to find the composition
factors of CΠk . In order to do this, we need the composition factors of CB . They were determined by
Serge Bouc and they are the simple functors S H,C , where H is a B-group. A B-group is defined by a
technical condition (see Definition 16).
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Recall that a p-hypo-elementary group is the semi-direct product of a p-group with a cyclic p′-
group. If p = 0, this means that the group is cyclic.

In this article, we will prove the following two theorems:

Theorem 1. The composition factors of the functor CΠk are the simple functors S H,C , where H is a p-hypo-
elementary B-group and where C is the trivial C Out(H)-module.

Theorem 2. Let G ∼= P � Cn be a p-hypo-elementary group (P is a p-group and Cn a cyclic p′-group). Then
G is a B-group if and only if :

(i) P is elementary abelian;
(ii) In a decomposition of P as a direct sum of simple Fp Cn-modules, every simple Fp Cn-module appears at

most one time, except the trivial module, which appears 0 or 2 times;
(iii) The action of Cn on P is faithful.

Serge Bouc proved that any finite group G has a largest quotient β(G) = G/N which is a B-group,
uniquely determined by G . In the course of the proof of Theorem 1, we also prove the following
result:

Theorem 3. Let G be a finite group. Then β(G) is p-hypo-elementary if and only if G itself is p-hypo-
elementary.

This article begins with some background results. Then we define a natural transformation θ be-
tween the Burnside functor CB and the functor of permutation modules CΠk . Using this map and
the classification of the composition factors of CB obtained by Serge Bouc [2] (see also Chapter 5
of [1]), we will find the composition factors of the functor of permutation modules CΠk . So we will
have the proof of Theorem 1. Then we make a classification of the p-hypo-elementary groups which
are B-groups (Theorem 2).

All groups are supposed finite, all vector spaces are finite dimensional and all modules are finitely
generated left modules. Let G and H be finite groups. We write G � H if H is isomorphic to a
quotient of G . By H �G G , we denote a subgroup H of G , up to conjugacy (in G). All G-sets and
all (H, G)-bisets are finite. We denote by [U ] the isomorphism class of U (where U can be a group,
a vector space, a module, a G-set, an (H, G)-biset, . . .).

2. Background on biset functors

2.1. The category of biset functors

Definition 4. Let G and H be finite groups. Then B(H, G) is the Grothendieck group of the isomor-
phism classes of finite (H, G)-bisets (for the disjoint union).

Notation 5. Let G be a group. We denote by IdG the (G, G)-biset G where the two actions are defined
by left and right multiplication in G . We also denote by IdG the image of IdG in B(G, G).

Definition 6. (See [1], Definition 3.1.6.) We define the category C as follows:

• The objects of C are all finite groups;
• If G and H are finite groups, then

HomC (G, H) = C ⊗Z B(H, G);
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• The composition of morphisms in C is the C-linear extension of the composition in B(H, G),
defined by v ◦ u = v ×H u for all finite groups G, H and K , for all morphisms u ∈ B(H, G) and for
all morphisms v ∈ B(K , H);

• For any finite group G , the identity morphism of G in C is equal to IdC ⊗Z IdG .

Definition 7. (See [1], Definition 3.2.2.) A biset functor defined on C with values in C−mod is a C-linear
functor from C to the category C−mod of all finite dimensional C-vector spaces.

Biset functors over C , with values in C−mod, are the objects of a category, denoted by F , where
morphisms are natural transformations of functors, and composition of morphisms is composition of
natural transformations.

Remark 8. For convenience, we have tensored everything with C. But actually we only need a field of
characteristic 0 which contains all roots of unity.

Proposition 9. (See [1], Proposition 3.2.8.) The category F is a C-linear abelian category. In particular, if θ is
a morphism of biset functors and G is a finite group, then

(Ker θ)(G) = Ker θG , (Coker θ)(G) = Coker θG .

The simple objects of the category F are labeled by pairs (G, V ), where G is a finite group and
V a simple C Out(G)-module. We denote by SG,V the simple functor associated to (G, V ). If F ∈ F
is a simple functor, then F ∼= SG,V where G is the smallest group (unique up to isomorphism) such
that F (G) 	= {0} and V = F (G). We can define a notion of isomorphism on those pairs such that two
simple functors are isomorphic if and only if the corresponding pairs are isomorphic [1, Theorem
4.3.10].

Proposition 10. (See [1], Lemma 4.3.9.) Let G be a finite group and V a simple C Out(G)-module. If H is a
finite group such that SG,V (H) 	= {0}, then G is isomorphic to a subquotient of H.

2.2. Three biset functors

In this section, we want to define three biset functors.

Definition 11. Let G be a finite group. Then B(G) is the Grothendieck group of the set of isomorphism
classes of finite G-sets (for disjoint union). Then B(G) is a ring (called the Burnside ring of G), where
the multiplication is defined by

[U ] · [V ] = [U × V ]

for all G-sets U and V (extended to B(G) by bilinearity).
Let G et H be two finite groups. For every (finite) (H, G)-biset U , we can define the following

map:

B
([U ]): B(G) → B(H),

[V ] 
→ [U ×G V ]

for every (finite) G-set V . This extends by C-linearity to a map CB([U ]) : CB(G) → CB(H), where
CB(G) = C ⊗Z B(G).

Now we can define CB(u) for every u ∈ C ⊗Z B(H, G). Let u = ∑n
i=1 λi[Ui] where λi ∈ C and Ui

is an (H, G)-biset, for every i = 1, . . . ,n. Then B(u) = ∑n
i=1 λi B([Ui]). This defines a structure of biset

functor CB .
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If G is a finite group, then {[G/K ] | K �G G} is a C-basis of CB(G). But in the rest of this article,
we will use another C-basis, which is the following:

Theorem 12. (See Gluck [3], Yoshida [4].) Let G be a finite group. If H is a subgroup of G, denote by eG
H the

element of CB(G) defined by

eG
H = 1

|NG(H)|
∑
K�H

|K |μ(K , H)[G/K ],

where μ is the Möbius function of the poset of subgroups of G.
Then eG

H = eG
K if the subgroups H and K are conjugate in G, and the elements eG

H , for H �G G, are the
primitive idempotents of the C-algebra CB(G).

In particular {eG
H | H �G G} is a C-basis of CB(G).

In the next two definitions, the Grothendieck groups are taken with respect to direct sums, that is,
with respect to the relations [M ⊕ N] − [M] − [N].

Definition 13. We define Πk(G) as the Grothendieck group of the set of isomorphism classes of per-
mutation kG-modules with respect to direct sums. For every (H, G)-biset U we define:

Πk([U ]): Πk(G) → Πk(H),

[kP ] 
→ [kU ⊗kG kP ] = [
k(U ×G P )

]

for every permutation kG-module kP . As for B , we can extend scalars to C and define CΠk(u) :
CΠk(G) → CΠk(H) for u ∈ C ⊗Z B(H, G), where CΠk(G) = C ⊗Z Πk(G). This defines a structure of
biset functor CΠk .

Definition 14. We define ppk(G) as the Grothendieck group of the set of isomorphism classes of p-
permutation kG-modules (i.e. direct sums of indecomposable trivial source kG-modules) with respect
to direct sums. For every (H, G)-biset U we define:

ppk([U ]): ppk(G) → ppk(H),

[M] 
→ [kU ⊗kG M]

for every trivial source kG-module M . As for B and Πk , we can extend scalars to C and define
C ppk(u) : C ppk(G) → C ppk(H) for u ∈ C ⊗Z B(H, G), where C ppk(G) = C ⊗Z ppk(G). This defines a
structure of biset functor C ppk .

Moreover, the functor CΠk is a subfunctor of Cppk .

Remark 15. In the case p = 0, every kG-module is a p-permutation kG-module and C ppk(G) is the
ordinary Grothendieck group of kG-modules.

2.3. The Burnside biset functor

We describe in this section the composition factors of the functor CB .
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Definition 16. (See [1], Notation 5.2.2 and Definition 5.4.6.) If N is a normal subgroup of G , we define
the number mG,N by

mG,N = 1

|G|
∑

X N=G

|X |μ(X, G) ∈ Q,

where μ is the Möbius function of the poset of subgroups of G .
A finite group G is a B-group (over C) if for every non-trivial normal subgroup N of G , we have

mG,N = 0.
We denote by B-gr(C) the class of all finite B-groups and by [B-gr(C)] a set of representatives of

isomorphism classes of finite B-groups.
A subset A of [B-gr(C)] is closed if for G ∈ A and H ∈ [B-gr(C)] with H � G , we have H ∈ A.

Remark 17. (See [1], Example 5.2.3.) We have that mG,N = mG,NΦ(G) , for all normal subgroups N of G .
In particular, mG,Φ(G) = mG,1 = 1. This implies that if G is a B-group, then the Frattini subgroup Φ(G)

of G is trivial.

Definition 18. (See [1], Theorem 5.4.11.) Let G be a finite group. Then β(G) is defined to be the
quotient G/N of G , where N is a normal subgroup of G such that mG,N 	= 0 and G/N is a B-group.

Remark 19. In the above definition, β(G) is well defined, up to group isomorphism. But the normal
subgroup N is in general not unique.

Notation 20. (See [1], Notation 5.4.3.) Let G be a finite group. Then eG denote the subfunctor of CB
generated by eG

G ∈ CB(G), where eG
G is the idempotent defined in Theorem 12.

Theorem 21. (See [1], Proposition 5.5.1.)

1. Let G be a B-group. Then the subfunctor eG of CB has a unique maximal subfunctor, equal to

jG =
∑

H∈[B-gr(C)]
H�G, H�G

eH ,

and the quotient eG/jG is isomorphic to the simple functor SG,C .
2. If F ⊆ F ′ are subfunctors of CB such that F ′/F is simple, then there exists a unique G ∈ [B-gr(C)] such

that eG ⊆ F ′ and eG � F . In particular, eG + F = F ′ , eG ∩ F = jG , and F ′/F ∼= SG,C .

Remark 22. (See [1], Remark 5.5.2.) The “composition factors” (i.e. the simple subquotients) of the
Burnside functor CB on C are exactly the functors SG,C , where G is an object of C (i.e. a finite group)
which is a B-group.

Theorem 23. There is an isomorphism of lattices between the poset of subfunctors of CB and the poset of
closed subsets of [B-gr(C)].

Proof. This bijection is a consequence of Theorem 5.4.14 and Proposition 5.5.3 of [1]. �
To be more precise, here is a description of this bijection: Let A be a closed subset of [B-gr(C)].

We want to define the subfunctor F A of CB associated to the set A. We set B = B A by

B = {
G ∈ C

∣∣ β(G) ∈ A
} = {G ∈ C | ∃ H ∈ A, G � H}.
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Then, for every group G , we have

F A(G) =
⊕

H�G G
H∈B

CeG
H =

⊕
H�G G

β(H)∈A

CeG
H .

More precisely, the set {eG
H | H �G G, H ∈ B} = {eG

H | H �G G, β(H) ∈ A} is a C-basis of F A(G).
Conversely, if F is a subfunctor of CB , we define the associated closed subset A of [B-gr(C)] by

A = {
H ∈ [

B-gr(C)
] ∣∣ eH

H ∈ F (H)
}
.

Remark that the functor CB corresponds to the set [B-gr(C)].

3. The biset functor of permutation modules

We want to construct a morphism between CB and CΠk and then use this morphism and the
composition factors of CB to find those of CΠk .

Proposition 24. There is a morphism of biset functor (i.e. a C-linear natural transformation) θ between CB
and CΠk such that

θG
([G/L]) = [

k(G/L)
]

for all finite group G and every subgroup L of G, where we denote by θG the map θ(G) : CB(G) → CΠk(G)

and [G/L], [k(G/L)] are the isomorphism classes of the G-set G/L and the kG-module k(G/L), respectively.

Proof. We extend by C-linearity the definition of θG to CB(G) and then it is easy to check that θ is
well defined and a C-linear natural transformation. �
Remark 25. We know that (Coker θ)(G) = Coker θG for all finite group G (Proposition 9), consequently
the image of the natural transformation θ is CΠk .

Definition 26. A group H is said to be p-hypo-elementary (or cyclic modulo p) if the quotient H/O p(H)

is cyclic (O p(H) is the largest normal p-subgroup of G); in other words, H has a normal p-subgroup
for which the quotient is a cyclic p′-group.

If p = 0, a 0-hypo-elementary group is a cyclic group.
We denote by H the set of all finite p-hypo-elementary groups.

The aim now is to determine the kernel of θ . We will use the fact that (Ker θ)(G) = Ker θG (Propo-
sition 9) and that the set {eG

H | H �G G} is a basis of CB(G) for all finite groups G . To do this, we
need the following lemma, due to Conlon. We denote by k the algebraic closure of k.

Lemma 27. Let G be a finite group and E be the set of conjugacy classes of pairs (H, g), where H is a p-hypo-
elementary subgroup of G and g a generator of H/O p(H). Then we have an isomorphism

C ppk(G) ∼=
⊕

(H,g)∈E

C.
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Moreover, we have the following commutative diagram:

CB(G)
∼=

θG

⊕
H�G G C

λ

C ppk(G)
∼= ⊕

(H,g)∈E C

We still write eG
H for the primitive idempotent in

⊕
H�G G C which is the image of the primitive idem-

potent eG
H ∈ CB(G). We write εH,g for the primitive idempotents in

⊕
(H,g)∈E C. The map λ sends eG

H to∑
(H,g)∈E εH,g if H is p-hypo-elementary, and zero otherwise.

Remark 28. The map θG is defined between CB(G) and CΠk(G), but as CΠk is a subfunctor of C ppk ,
we can extend it to C ppk by composing with the inclusion.

Proof. A proof of this result in characteristic p 	= 0 can be found in [5], p. 188. The case p = 0 is
completely straightforward. �
Proposition 29. Let G be a finite group. The set

BKer = {
eG

H

∣∣ H �G G, H /∈ H
}

is a basis of Ker θG . Moreover, the set

B Im = {
θ
(
eG

H

) ∣∣ H �G G, H ∈ H
}

is a basis of Im θG .

Proof. We considered the following composition of applications

CB(G) → CΠk(G)
f−→ CΠk(G)

ı−→ C ppk(G),

where f is the scalar extension from k to k and ı is the inclusion. Clearly, the map ı is injective. Let
M and N be two permutation kG-modules such that f ([M]) = f ([N]), that is k ⊗k M ∼= k ⊗k N . As
M and N are finitely generated, this implies that L ⊗k M ∼= L ⊗k N , for some finite dimensional field
extension L of k. But, by Exercise 2, p. 138 of [6], this implies that M ∼= N . So, we have that f is also
injective.

Now the composition map g = ı ◦ f ◦ θG is exactly the map θG of Lemma 27, and so BKer is a
subset of Ker g and the set {g(eG

H ) | H �G G, H ∈ H} is linearly independent. As ı ◦ f is injective, this
implies that BKer is a subset of Ker θG and the set B Im is linearly independent. We already know that
BKer is a linearly independent set. If n is the number of conjugacy classes of subgroups of G , we have
that:

n = dimC CB(G) = dimC Ker θG + dimC Im θG � |BKer| + |B Im| = n

and so we must have equality, which proves the result. �
We now have a basis of Ker θG and Im θG for every finite group G and we will use this to study

the image of the composition factors of CB .
Let G be a finite B-group. If G is not a p-hypo-elementary group, then eG

G ∈ Ker θG , hence eG ⊆
Ker θ . So we can assume that G is a p-hypo-elementary group. Now the functor θ(eG)/θ(jG ) is a
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quotient of the simple functor eG/jG ∼= SG,C . Hence it is either 0 or isomorphic to SG,C . It is zero if
and only if θ(eG) = θ(jG ), i.e. if eG ⊆ jG + Ker θ . But eG

G ∈ eG(G), and eG
G /∈ jG(G) + Ker θG , as G ∈ H.

Hence θ(eG) 	= θ(jG ) and θ(eG)/θ(jG) ∼= SG,C .
Now we found the image of every composition functor of CB in CΠk and as every composition

factor has a preimage in CB , this gives us the complete list of composition factors of CΠk . So we
have proved the following theorem.

Theorem 30. The composition factors of the functor CΠk are the simple functors S H,C , where H is a p-hypo-
elementary B-group and where C is the trivial C Out(H)-module.

Remarks 31.

1. With the same method, we can find an infinite sequence of subfunctors of CΠk such that every
successive quotient is simple. But to do this we need to make a choice. This sequence is finite if
we evaluate it in a finite group.

2. With the same method, we can find the description of all the subfunctors of CΠk . We use the
description of the subfunctors of CB and we obtain a bijection between the subfunctor of CΠk
and the closed subset of [B-gr(C)] ∩ H.

3. If p = 0, the unique B-group which is cyclic is 1 so we obtain that CΠk
∼= S1,C , which is Propo-

sition 4.4.8 of [1].

Moreover, the above proof implies the next theorem:

Theorem 32. Let G be a finite group. Then β(G) is p-hypo-elementary if and only if G itself is p-hypo-
elementary.

Proof. Let G be a finite group and H be a subgroup of G . By Corollary 29, we know that eG
H is an

element of ker θG if and only if H /∈ H.
On the other hand, using the bijection between the subfunctors of CB(G) and the closed subsets

of [B-gr(C)], we find that the kernel Ker θ corresponds to the set N = [B-gr(C)] ∩ {G | G /∈ H}. But this
implies that eG

H is in ker θG if and only if there exists L ∈ N such that H � L, which is equivalent to
β(H) � L. But this implies that eG

H ∈ ker θG if and only if β(H) ∈ N (because N is closed), that is, if
and only if β(H) /∈ H.

If we put together those two results, we obtain that H /∈ H if and only if β(H) /∈ H, which proves
that H ∈ H if and only if β(H) ∈ H. �
4. B-groups and p-hypo-elementary groups

Now, to make precise Theorem 30, we want to find which p-hypo-elementary groups are also
B-groups. Recall that the rational number mG,N is defined in Definition 16.

Proposition 33. (See [1], Proposition 5.6.4.) If N is a minimal normal abelian subgroup of G, then

mG,N = 1 − |KG(N)|
|N|

where KG(N) is the set of complements of N in G.
In particular, if the group G is solvable, then G is a B-group if and only if |KG(N)| = |N| for all minimal

normal subgroups N of G.

Remark 34. As all p-hypo-elementary groups are solvable, we will use the second part of this propo-
sition to determine which p-hypo-elementary groups are B-groups.
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The aim is to find necessary and sufficient conditions for a p-hypo-elementary group to be a
B-group. In order to do this, we need some results that can be stated in a more general case. We
suppose that G = P � H where P is a p-group of order pm and H a p′-group of order n. This notation
is kept throughout this section.

Proposition 35. The Frattini subgroup Φ(G) contains Φ(P ).

Proof. Let M be a maximal subgroup of G . We have to show that Φ(P ) is contained in M . Clearly,
P is the unique p-Sylow subgroup of G , consequently P is the set of p-elements of G . So if we set
S = M ∩ P , then S is a normal p-Sylow subgroup of M . If S = P , then it is clear that Φ(P ) ⊆ P ⊆ M ,
so we can suppose that S 	= P . As Φ(P ) is a characteristic subgroup of P and P is a normal subgroup
of G , G normalizes Φ(P ). As a consequence, Φ(P ) · S and Φ(P ) · M are subgroups. We now have the
following diagram:

G

P Φ(P ) · M

Φ(P ) · S M

Φ(P ) S

As M is maximal we have that Φ(P ) · M is either M or G . But

(
Φ(P ) · M

) ∩ P = Φ(P ) · S 	= P

(because S 	= P ) so Φ(P ) · M must be M , which implies that Φ(P ) ⊆ M . �
Corollary 36. If G is a B-group, then P is an elementary abelian group.

Proof. This is a consequence of Proposition 35 and Remark 17. �
So we suppose now that P is an elementary abelian group. So P is an Fp-vector space on which

H acts, namely an Fp H-module. As H is a p′-group, P is a semi-simple Fp H-module.

Proposition 37. Suppose that H is a cyclic group of order n. If G is a B-group, then the group H acts faithfully
on P .

Proof. The case n = 1 is clear, so we can suppose that n � 2. Let d be the divisor of n such that
Kerϕ = Cd , where ϕ : H → Aut(P ) is the action of H on P . To show that the action is faithful, we
have to show that d = 1.

So we suppose that d > 1. As Cd acts trivially on P and H is abelian, Cd is a central subgroup of G ,
and so in particular a normal subgroup. As d > 1, there exists a minimal normal subgroup N of Cd
(it is even central). But then N has at most one complement in G: If C is a complement of N in G ,
then C contains the unique Sylow p-subgroup P of G . Consequently, we have that C = P � L, where
L is a subgroup of H . But then L is a complement of N in H , which is cyclic, so there is at most one
possibility for L.



M. Baumann / Journal of Algebra 344 (2011) 284–295 293
But N should have |N| > 1 complements in G because G is a B-group (Proposition 33). So we
must have that d = 1, that is, the action is faithful. �
Lemma 38. Let G be a finite group and let H, K and L be subgroups of G such that H � K � H · L. Then
K = H(K ∩ L).

Proof. Clear. �
Proposition 39. If H acts faithfully on P , then a minimal normal subgroup N of G is always contained in P .

Proof. Let N be a minimal normal (non-trivial) subgroup of G . If N ∩ P 	= 1 then by minimality of
N , we have that N ⊆ P . We can now suppose that N ∩ P = 1. Then, as N and P are normal in G ,
[N, P ] = 1, which implies that N ⊆ CG(P ).

We have that P � CG(P ) � P · H so by Lemma 38 we have that CG(P ) = P ·(CG (P )∩ H) = P ·C H (P ).
But as H acts faithfully on P , C H (P ) = 1 so that N ⊆ CG(P ) = P . This is impossible because this
implies that N = 1, which contradicts the assumption on N . �
Proposition 40. Let N be a normal subgroup of G contained in P . Then every complement of N is of the form
S � Q , where S is a normal subgroup of G which is a complement of N in P and Q is a subgroup of G conjugate
to H.

Proof. Let C be a complement of N in G (i.e. N ∩ C = 1 and N · C = G). We define S = C ∩ P , which
is a normal p-Sylow subgroup of C . By the Schur–Zassenhaus theorem [7, Theorem 7.41], there exists
a subgroup Q of C such that C = S � Q . Notice that the order of Q is n so that Q is conjugate to H
(by the second part of the Schur–Zassenhaus theorem [7], Theorem 7.42). Now S is normal in C and
in P (which is abelian) so also in G = P � Q .

Conversely, let C = S � Q such that S is a normal subgroup of G which is a complement of N in P
and Q is a subgroup of G of order n (hence conjugate to H). Clearly, we have that N ∩ C = N ∩ S = 1
and N ·C = N ·(S � Q ) = (N · S)� Q = P � Q = G , which proves that C is a complement of N in G . �
Remark 41. We will need those results in the following case: If G is a p-hypo-elementary group
(i.e. H is cyclic) and a B-group, then, by Proposition 37, the action of H on P is faithful. Let N be
a minimal normal subgroup of G . Then, by Proposition 39, N is contained in P and Proposition 40
applies.

For the rest of this part, G = P � H is a p-hypo-elementary group. This means that H is a cyclic
group. We suppose that it is a B-group, so we know that P is elementary abelian, P is a semi-simple
Fp H-module and H acts faithfully on P . We now decompose P into his isotypic components (see [6],
pp. 46–47 for a definition):

P ∼=
t⊕

i=1

Pi

and for each isotypic component, there exists a simple Fp H-module Si and an integer mi such that

Pi
∼=

mi⊕
j=1

Si .

We can suppose that S1 is the trivial Fp H-module (if necessary, we add P1 = {0}). For each 1 � i � t ,
there exists an integer si such that |Si| = psi .
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We are now able to find the number of complements of a minimal normal subgroup N of G and
find the necessary and sufficient condition such that this number is |N|.

Let N be a minimal normal subgroup of G . By Proposition 39, N is a subgroup of P on which H
acts, i.e. an Fp H-submodule of P . Furthermore, the minimality of N implies that N is simple. So there
exists an integer 1 � l � t such that N ∼= Sl . Then N is a submodule of Pl . We know by Proposition 40
that a complement of N in G is of the form C � Q where C is a normal subgroup of G which is
a complement of N in P and Q is a cyclic subgroup of G of order n. So C is a complement of N
in P not only as a group but also as a module. Our first step will be to determine the number of
possibilities for C . In order to do this, we use the fact that the isotypic components are unique up to
isomorphism [6, pp. 46–47] which implies that a complement of N in P (as a module) is of the form

Hl ⊕
t⊕

i=1
i 	=l

P i

where Hl is a complement (as a module) of N in Pl .
By using the isomorphism Fp H ∼= Fp[t]/〈tn〉 and the Chinese remainder theorem, we can see that

the simple Fp H-modules can be seen as fields and this field structure contains the structure of Fp H-
module. So we can see N ∼= Sl as the field Fpsl and the module Pl as a vector space over this field.
Moreover, in order to find the number of complements of N in Pl , it is sufficient to count the number
of complements as Fpsl -vector space. This is an easy exercise: N has

psl(ml−1)

complements in Pl and so also in P .
As every complement of N is of the form C � Q and we know the number of possibilities for C ,

we only need to find the number of possibilities for Q (when C is fixed). In fact, this is equal to the
number of complements of P in G divided by the number of complements of C in C � Q , where Q
is an arbitrary subgroup of G conjugate to H . In order to make this calculation, we need the next
lemma:

Lemma 42. The number of complements of P in G is equal to pm−m1 .

Proof. We have to find the number of conjugates of H . Let E be the set of conjugates of H . By the
Schur–Zassenhaus theorem [7, Theorem 7.41], we know that P acts transitively on E . Let S be the
stabilizer of H in P . Then the number of conjugates of H is equal to |P |/|S|. So, in order to conclude,
we have to determine the order of S . After some easy calculation, we can find that S = P1 and
consequently the number of conjugates of H is pm−m1 . �

This gives us the two numbers we have to divide: The number of complements of P in G is pm−m1

and the number of complements of C in C � Q for a fixed Q is:

{
pm−s1−(m1−1) = pm−m1 if l = 1,

pm−sl−m1 if l 	= 1.

So the number of possibilities for Q is

{
1 if l = 1,

psl if l 	= 1.
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To conclude, the number of complements of N in G is:

{
pm1−1 if l = 1,

pslml if l 	= 1.

But for G to be a B-group, we must have that the number of complements of N is |N| = psl . So
if l = 1, m1 = 2 (or m1 = 0 if P1 = 0) and if l 	= 1 then ml = 1, which concludes the proof of the
following theorem:

Theorem 43. Let G ∼= P � Cn be a p-hypo-elementary group (P is a p-group and Cn a cyclic p′-group). Then
G is a B-group if and only if :

(i) P is elementary abelian;
(ii) In a decomposition of P as a direct sum of simple Fp Cn-modules, every simple Fp Cn-module appears at

most one time, except the trivial module, which appears 0 or 2 times;
(iii) The action of Cn on P is faithful.

Remarks 44.

1. The above theorem can be generalized to other groups (P � H , where P is a p-group and H a
solvable p′-group). For more details, see [8].

2. If p = 0, we have proved that the only cyclic B-group is 1. So we recover a known result given
in [2], Example 7.2.5.
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