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1. Introduction

Let G be a linear reductive algebraic group over a number field K . In [1,2], M. Borovoi stud-
ied the Galois cohomology sets Hi(K , G) (i = 1,2) by relating them to certain “abelian cohomology
groups” Hi

ab(K , G). In particular, it was shown in [1] that there exists a surjective abelianization map

ab1 : H1(K , G) → H1
ab(K , G). Later, in [3, Proposition 6.6], a new proof of this fact was given which

suggested to the author the existence of a prolongation, at least for certain types of crossed mod-
ules, of L. Breen’s fundamental exact sequence [4, (4.2.2)] (reproduced here as Proposition 2.4). It
was expected that such an extension of Breen’s sequence would provide, via work of J.-C. Douai,
a common explanation for the validity of both [3, Proposition 6.5], and [2, Theorem 5.5]. The purpose
of this paper is to establish such a prolongation of Breen’s sequence over any base scheme S , thus
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confirming the above expectation (see Theorem 1.1 below). In particular, we extend Borovoi’s abelian
cohomology theory to this general setting. To be precise, let S be any scheme, let Sfl be the small
fppf site over S and let G be a reductive group scheme over S . Write Gder for the derived group of G ,
G̃ for the simply-connected central cover of Gder and μ for the fundamental group of Gder. Then G
defines a crossed module (G̃ → G) on Sfl which is quasi-isomorphic to the abelian crossed module
(Z(G̃) → Z(G)) (thus it is quasi-abelian, in the sense of Definition 3.2). The abelian (flat) cohomol-
ogy groups Hi

ab(Sfl, G) of G are by definition the fppf hypercohomology groups H
i(Sfl, Z(G̃) → Z(G)).

Now let H2(Sfl, G̃) be the second cohomology set introduced by J. Giraud in [21, Chapter IV]. It con-
tains a distinguished element εG̃ , the so-called unit class, and a subset H2(Sfl, G̃)′ of neutral classes
containing εG̃ . We regard H2(Sfl, G̃) as a pointed set with basepoint εG̃ . Analogous definitions apply
to H2(Sfl, G). Then, by using ideas of L. Breen [4], J. Giraud [21] and M. Borovoi [2], we are able to
define abelianization maps abi : Hi(Sfl, G) → Hi

ab(Sfl, G) for i = 0,1,2 (which generalize those defined
in [1,2]) so that the following theorem holds. To simplify the notation, let Hi(G) and Hi

ab(G) denote
Hi(Sfl, G) and Hi

ab(Sfl, G), respectively.

Theorem 1.1. Let G be a reductive group scheme over a scheme S. Then there exists a sequence of flat ( fppf )
cohomology sets

1 → μ(S) → G̃(S) → G(S)
ab0−−→ H0

ab(G) → H1(G̃) → H1(G)
ab1−−→ H1

ab(G)
δ1−→ H2(G̃)

→ H2(G)
ab2−−→ H2

ab(G) → H3(Z(G̃)
) → H3(Z(G)

) → ·· · ,

which is an exact sequence of pointed sets at every term except H1
ab(G), where a class y ∈ H1

ab(G) is in the

image of ab1 if, and only if, δ1(y) ∈ H2(G̃)′ .

The above theorem is, in fact, a corollary of Theorem 4.2, which is the main theorem of the paper.
When S is the spectrum of a number field K , the theorem shows, as expected, that one and the same
fact underlie the validity of both [3, Proposition 6.6], and [2, Theorem 5.5]. Namely, that all classes in
H2(Kfl, G̃) are neutral. See Section 5.

The theorem yields the following integral version of [1, Theorem 5.7].

Corollary 1.2. Let G be a reductive group scheme over the spectrum S of the ring of integers of a number field.
Then the first abelianization map ab1 : H1(Sfl, G) → H1

ab(Sfl, G) is surjective.

The following is a brief summary of the paper. In Section 2 we review basic facts from Breen’s
nonabelian cohomology theory of crossed modules. In Section 3 we introduce quasi-abelian crossed
modules and establish a part of the sequence appearing in Theorem 4.2. The basic reference for
this section is the Giraud–Grothendieck nonabelian cohomology theory [21]. In Section 4, following
M. Borovoi, we define the map ab2 and obtain the latter part of the sequence appearing in Theo-
rem 4.2. In Section 5, which concludes the paper, we discuss applications of Theorem 1.1 to linear
reductive algebraic groups over certain types of fields, especially of positive characteristic. Additional
applications are discussed in [22].

2. Preliminaries

Let E be a site and let Ẽ be the topos defined by E . We begin by recalling the basic properties of
the nonabelian cohomology theory of crossed modules developed in [4].2

2 In contrast to [4], we work with left crossed modules and right torsors throughout. See [4, p. 416], for the equivalence of
both approaches. Thus references to results from [4] below are, in fact, to their opposite-hand versions.
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Definition 2.1. A (left) crossed module on E consists of a homomorphism ∂ : F → G of groups of Ẽ
together with a left action of G on F , denoted by (g, f ) �→ g f , such that

∂
(g f

) = g∂( f )g−1

and

∂( f ) f ′ = f f ′ f −1,

for every g ∈ G and f , f ′ ∈ F .

The definition immediately implies that Ker ∂ is central in F and Im ∂ is normal in G . Further,
∂ is a G-homomorphism for the given action of G on F and the left action of G on itself via inner
automorphisms.

Crossed modules will be regarded as complexes of length two (F ∂−→ G), with F and G placed in
degrees −1 and 0, respectively.

Examples 2.2.

(i) If ∂ : F → G is a homomorphism of abelian groups of Ẽ and G acts trivially on F , then (F ∂−→ G)

is a crossed module. Such crossed modules are called abelian.
(ii) If G is a group of Ẽ , F is a normal subgroup of G and G acts on F by conjugation, then (F ↪→ G)

is a crossed module.
(iii) Let S be a scheme and let E be a standard site on S , i.e., every representable presheaf on E is a

sheaf and finite fibered products exist in E . Examples include the small fppf and étale sites over S
[10, Proposition IV.6.3.1(iii)]. Let G be a reductive S-group scheme with derived group Gder, let
G̃ be the simply-connected central cover of Gder and let ∂ : G̃ → G be the composition G̃ �
Gder ↪→ G (see [23, §4], for the existence and basic properties of G̃). Then there exists a canonical
“conjugation” action of G on G̃ so that the complex (G̃ ∂−→ G) of representable sheaves on E is a
crossed module on E . See [5, Example 1.9, p. 28]. Further, if Z(G) denotes the center of G , then
the induced action of Z(G) on G̃ is trivial.

Let (F ∂−→ G) be a crossed module. For i = −1,0,1, let Hi(E, F → G) be the sets Hi (̃E, F → Go)

defined in [4, p. 426], where Go is the opposite group of G [21, Definition III.1.1.3, p. 106]. If (F → G)

is an abelian crossed module (see Example 2.2(i)), the pointed sets Hi(E, F → G) coincide with the
usual flat hypercohomology groups of the complex of abelian groups (F → G). Further, if G is a
group of Ẽ , then the pointed sets Hi(E,1 → G), where i = 0,1, agree with the usual cohomology
sets Hi(E, G). See [4, p. 427, line 3]. In particular, H1(E,1 → G) = H1(E, G) is the set of isomorphism
classes of right G-torsors on E . We have [4, (4.2.1)],

H−1(E, F ∂−→ G) = H0(E,Ker ∂), (2.1)

which is an abelian group. Further, H0(E, F → G) is the set of isomorphism classes of “(F , G)-torsors”,
i.e., pairs (Q , t) where Q is an F -bitorsor and t : Q → G is an F -equivariant map for the right action
of F on G via ∂ . This set is naturally equipped with a group structure given by the contracted product
of F -bitorsors. See [4, p. 432]. In order to describe H1(E, F → G), we first note that the crossed
module (F → G) is functorially associated to the opposite C of the gr-stack of (F , G)-torsors on E .
See [4, Theorem 4.6, p. 433]. Then, by [4, Theorem 6.2, p. 440], H1(E, F → G) is in natural bijection
with the set H1(C) of equivalence classes of (right) C-torsors on E . The sets thus defined behave
functorially with respect to inverse images, i.e., if u : E ′ → E is a morphism of sites and i = 0,1, then
there exist maps

hi(u, F → G) : Hi(E, F → G) → Hi(E ′, u∗ F → u∗G
)

(2.2)
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which coincide with those defined in [21, Proposition V.1.5.1, p. 316], when (F → G) = (1 → G).
See [4, §6]. For ease of notation, we will sometimes write Hi(G) and Hi(F → G) for Hi(E, G) and
Hi(E, F → G), respectively.

A morphism of crossed modules (F1
∂1−−→ G1) → (F2

∂2−−→ G2) (see [4, p. 416], for the defi-
nition) is called a quasi-isomorphism if the induced group homomorphisms Ker∂1 → Ker ∂2 and
Coker∂1 → Coker∂2 are isomorphisms. Since quasi-isomorphic crossed modules define equivalent
gr-stacks (cf. [25, XVIII, 1.4.12]), a quasi-isomorphism of crossed modules (F1 → G1) → (F2 → G2)

induces bijections

Hi(E, F1 → G1)
∼−→ Hi(E, F2 → G2),

for i = −1,0,1.

Examples 2.3.

(i) Let (F ∂−→ G) be a crossed module on E such that ∂ is injective. Then (F ∂−→ G) is quasi-
isomorphic to (1 → Coker∂) and there exist canonical bijections

Hi(E, F ∂−→ G) � Hi(E,Coker ∂)

for i = 0,1.
(ii) Let (F ∂−→ G) be a crossed module on E such that ∂ is surjective. Then there exists a quasi-

isomorphism (Ker ∂ → 1) → (F ∂−→ G) which induces bijections

Hi(E, F ∂−→ G)
∼−→ Hi+1(E,Ker ∂),

where i = −1,0,1. Note that H2(E,Ker ∂) is the usual second cohomology group of the abelian
group Ker∂ of Ẽ .

Let (F ∂−→ G) be a crossed module as above. Then ∂ induces a map ∂(1) : H1(F ) → H1(G) which
maps the class of an F -torsor Q to the class of the G-torsor Q ∧F G [21, Proposition III.1.3.6, p. 116].

Proposition 2.4. Let (F ∂−→ G) be a crossed module of E. Then there exists an exact sequence of pointed sets

1 → H−1(F → G) → H0(F ) → H0(G)
ψ0−→ H0(F → G)

δ′
0−→ H1(F )

∂(1)−−→ H1(G)
ψ1−→ H1(F → G),

where the maps ψi , i = 0,1, are induced by the embedding of crossed modules (1 → G) ↪→ (F → G) and the
map δ′

0 is defined below.

Proof. See [4, (4.2.2)]. �
Remarks 2.5.

(a) The map δ′
0 is defined as follows. If a class c ∈ H0(F → G) is represented by an (F , G)-torsor

(Q , t), where Q is an F -bitorsor, then δ′
0(c) ∈ H1(F ) is represented by Q regarded only as a

right F -torsor. See [4, p. 414, line −10].
(b) The map ψ0 (which is denoted α in [4, (2.16.1), p. 414]) is a homomorphism of groups.

See [4, p. 432]. Thus it defines a right action of H0(G) on H0(F → G) and it follows without
difficulty from (a) and Proposition 2.4 that δ′

0 induces an injection

H0(F → G)/H0(G) → H1(F ).
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(c) The group H0(F → G) acts on the right on the set H1(F ) as follows. If p ∈ H1(F ) is represented
by an F -torsor P and c ∈ H0(F → G) is represented by an (F , G)-torsor (Q , t), then p · c ∈ H1(F )

is represented by P ∧F Q . This action is compatible with the map δ′
0, i.e., δ′

0(c1c2) = δ′
0(c1) · c2

for all c1, c2 ∈ H0(F → G). In particular, the action is transitive if, and only if, δ′
0 is surjective. In

addition, the given action is compatible with inverse images, i.e., if u : E ′ → E is a morphism of
sites and hi(u, F → G) are the maps (2.2), then

h1(u, F )(p · c) = h1(u, F )(p) · h0(u, F → G)(c)

in H1(E ′, u∗ F ). This follows from the fact that u∗(P ∧F Q ) � u∗ P ∧u∗ F u∗ Q [21, p. 316, line −4].

3. Quasi-abelian crossed modules

If A is a group of Ẽ , H2(E, A) will denote the second cohomology set of A defined in [21, Defini-
tion IV.3.1.3, p. 247].3 It contains a distinguished element εA , namely the class of the gerbe TORS(A) of
A-torsors on E , which is called the unit class. This class is contained in a subset H2(E, A)′ ⊂ H2(E, A)

of neutral classes [21, Definition IV.3.1.1, p. 247]. For convenience, we will sometimes write H2(A) and
H2(A)′ for H2(E, A) and H2(E, A)′ , respectively. Both H2(A) and H2(A)′ will be regarded as pointed
sets with basepoint εA .

Let (F ∂−→ G) be a crossed module on E such that G = Im ∂ · CentG(Im ∂), where CentG(Im ∂) is the
centralizer in G of Im ∂ , and the induced action of Z(G) on Z(F ) is trivial. By restricting ∂ to Z(F ),
we obtain a map ∂ ′ : Z(F ) → Z(Im ∂). On the other hand, the equality G = Im ∂ CentG(Im ∂) implies
that Z(Im ∂) = Im∂ ∩ Z(G). Thus ∂ induces a map ∂Z : Z(F ) → Z(G), namely the composition

Z(F )
∂ ′−→ Z(Im ∂) ↪→ Z(G),

and (Z(F )
∂Z−−→ Z(G)) is an abelian crossed module (see Example 2.2(i)). Further, there exists an em-

bedding of crossed modules

(
Z(F )

∂Z−→ Z(G)
)
↪→ (F ∂−→ G). (3.1)

Note that, since Ker ∂ ⊂ Z(F ), we have Ker∂Z = Ker ∂ ′ = Ker ∂ .

Definition 3.1. Let (F ∂−→ G) be a crossed module on E such that G = Im ∂ CentG(Im ∂) and Z(G)

acts trivially on Z(F ). Let i � −1 be an integer. The i-th abelian cohomology group of (F → G) is by
definition the hypercohomology group

Hi
ab(E, F → G) = H

i(E, Z(F )
∂Z−→ Z(G)

)
,

where ∂Z is as defined above.

For i = 0,1, the embedding of crossed modules (3.1) defines maps

ϕi : Hi
ab(E, F → G) → Hi(E, F → G). (3.2)

Further, the short exact sequence of complexes

0 → (
0 → Z(G)

) j−→ (
Z(F )

∂Z−→ Z(G)
) π−→ (

Z(F ) → 0
) → 0 (3.3)

3 For an excellent summary of Giraud’s theory, see [8, §1.2], and [9, §1].
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induces an exact sequence of abelian groups

· · · → Hi(Z(G)
) j(i)−−→ Hi

ab(F → G)
π(i)−−→ Hi+1(Z(F )

) ∂
(i+1)
Z−−−→ Hi+1(Z(G)

) → ·· · . (3.4)

Definition 3.2. A crossed module (F ∂−→ G) on E is called quasi-abelian if the following conditions
hold:

(i) the induced action of Z(G) on F is trivial,4

(ii) G = (Im ∂) · Z(G), and
(iii) the map ∂ ′ : Z(F ) → Z(Im ∂) induced by ∂ is surjective.

Clearly, an abelian crossed module is quasi-abelian.

Example 3.3. The crossed module (G̃ → G) considered in Example 2.2(iii) is a quasi-abelian crossed
module on Sfl (but perhaps not on S ét if μ is non-smooth). Indeed, the induced action of Z(G) on G̃
is trivial, G = Gder Z(G) by [10, XXII, 6.2.3], and ∂ ′ : Z(G̃) = G̃ ×Gder Z(Gder) → Z(Gder) is a surjective
map of fppf sheaves.

Definition 3.2 is motivated by

Proposition 3.4. Let (F → G) be a quasi-abelian crossed module on E. Then the embedding of crossed mod-
ules (3.1) is a quasi-isomorphism.

Proof. Clearly, conditions (i) and (ii) of Definition 3.2 imply that (3.1) is defined. Further, since
Z(Im ∂) = Im ∂ ∩ Z(G), there exists a canonical exact sequence

0 → Coker∂ ′ → Coker∂Z
f−→ Coker ∂ → 0,

where the map f is induced by (3.1). Now, since Coker ∂ ′ = 0 by condition (iii) of Definition 3.2, f is
an isomorphism. Since Ker ∂Z = Ker ∂ as noted above, the proof is complete. �
Remark 3.5. Conditions (i) and (ii) of Definition 3.2 imply that (Z(F ) → Z(G)) coincides with the
center of (F → G), as defined in [24, p. 171]. Thus, the following is a seemingly more general version
of Definition 3.2: a crossed module is quasi-abelian if it is quasi-isomorphic to its center.

Corollary 3.6. Let (F → G) be a quasi-abelian crossed module on E. Then the maps (3.2) are bijections.

When (F → G) is quasi-abelian, there exists a useful variant of (3.4). Namely, the short exact
sequence of complexes

0 → (
Z(F )

∂ ′
� Z(Im ∂)

) → (
Z(F )

∂Z−→ Z(G)
) → (0 → Coker ∂) → 0

induces an exact sequence of abelian groups

· · · → Hi−1(Coker ∂) → Hi+1(Ker ∂) → Hi
ab(F → G)

t(i)
ab−→ Hi(Coker ∂) → ·· · . (3.5)

4 I thank M. Borovoi for pointing out the need to assume that Z(G) acts trivially on all of F . If this is not the case, then
certain desirable properties need not hold.
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The map t(i)
ab was first considered in [2, §6.1], when i = 2. We will write c(i) : Hi(Z(G)) → Hi(Coker∂)

for the canonical map induced by the projection Z(G) → Coker∂Z = Coker∂ . Then c(i) factors as

Hi(Z(G)
) j(i)−−→ Hi

ab(F → G)
t(i)
ab−→ Hi(Coker ∂), (3.6)

where j(i) is the map appearing in (3.4).
Next, if G is a group of Ẽ , we define Inn(G) to be the quotient G/Z(G). It is canonically isomorphic

to the group of inner automorphisms of G . Now let (F ∂−→ G) be a quasi-abelian crossed module on E .
Then there exists an exact commutative diagram

1 Ker ∂ ′ Z(F )
∂ ′

Z(Im ∂) 1

1 Ker ∂ F
∂

Im ∂ 1.

Consequently, ∂ induces an isomorphism

Inn(F )
def= F/Z(F ) � Im ∂/Z(Im ∂) = Im ∂/ Im ∂ ∩ Z(G).

On the other hand, by Definition 3.2(ii),

Im ∂/ Im ∂ ∩ Z(G) � Im ∂ Z(G)/Z(G) = G/Z(G) = Inn(G).

We conclude that ∂ induces an isomorphism ∂ : Inn(F )
∼−→ Inn(G). Now, by [21, Proposi-

tion IV.4.2.12(iii), p. 285], the exact commutative diagram

1 Z(F )

∂Z

F

∂

Inn(F )

� ∂

1

1 Z(G) G Inn(G) 1

induces an exact commutative diagram

H1(Inn(F ))
dF

� ∂(1)

H2(Z(F ))

∂
(2)
Z

H1(Inn(G))
dG

H2(Z(G)),

(3.7)

where dF and dG are the second coboundary maps of [21, IV.4.2.2, p. 280], and the left-hand ver-
tical map is a bijection by [21, IV.3.1.6.2, p. 250]. By [21, Proposition IV.5.2.8, p. 300], the map dG

(respectively, dF ) may be described as follows. Let p ∈ H1(Inn(G)), choose an Inn(G)-torsor P repre-
senting p and let (H, u : lien(H)

∼−→ lien(G)) be the representative of lien(G) defined by P . Thus H
is the twist of G by P , where Inn(G) acts on G in the natural way, and u is the isomorphism de-
fined in [21, proof of Corollary IV.1.1.7.3, p. 188, lines 6–8]. Then dG(p) is the class of the Z(G)-gerbe
BITORS(H, G)(u) of H–G-bitorsors Q on E such that the isomorphism π(Q ) of [21, Corollary IV.5.2.6,
p. 298], equals u−1.
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Now, by [21, Proposition IV.4.2.8(i), p. 283]5 (see also [21, Remark IV.4.2.10, p. 284]6), and [21,
Proposition IV.3.2.6, p. 255], there exist exact sequences of pointed sets

H1(G)
b(1)

G−−→ H1(Inn(G)
) dG−→ H2(Z(G)

)
(3.8)

and

H1(G)
b(1)

G−−→ H1(Inn(G)
) nG−→ H2(G)′ → 1, (3.9)

where bG : G → Inn(G) is the canonical map and the map nG is defined as follows: if p and (H, u)

are as above, then nG(p) ∈ H2(G)′ is the class of the gerbe TORS(H) of H-torsors on E , which is a
G-gerbe via u.

Next, condition (ii) of Definition 3.2 implies, in fact, that CentG(Im ∂) = Z(G). We conclude that
the morphism of liens lien(∂) : lien(F ) → lien(G) satisfies the hypotheses of [21, Proposition IV.3.1.5,
p. 249]. Consequently, ∂ induces a map ∂(2) : H2(F ) → H2(G) which maps H2(F )′ into H2(G)′ . On the
other hand, by [21, Theorem IV.3.3.3(i), p. 257], there exists a simply-transitive action of H2(Z(G)) on
H2(G) given by the map

H2(Z(G)
) × H2(G) → H2(G), (x, r) �→ x · r, (3.10)

where x · r is the class of the contracted product X ∧Z R , where Z = Z(G) and X and R are repre-
sentatives of x and r, respectively. By [21, Corollary IV.3.3.4(ii), p. 258], the map ∂(2) is compatible
with ∂

(2)
Z and the actions (3.10), i.e., the following diagram commutes

H2(Z(F )) × H2(F )

(∂
(2)
Z ,∂(2))

H2(F )

∂(2)

H2(Z(G)) × H2(G) H2(G).

(3.11)

Proposition 3.7. Let dG and nG be the maps appearing in (3.7) and (3.9), respectively. Then, for every
p ∈ H1(Inn(G)),

nG(p) = dG(p) · εG .

Proof. As noted above, nG(p) and εG are represented by TH := TORS(H) and TG := TORS(G), respec-
tively. On the other hand, dG(p) is represented by the Z(G)-gerbe BITORS(H, G)(u). Now, by [21,
Theorem IV.3.3.3(ii), p. 257], the unique element x ∈ H2(Z(G)) such that nG(p) = x · εG is represented
by the Z(G)-gerbe HOMG(TG,TH). Thus, it suffices to check that there exists a Z(G)-equivalence
of Z(G)-gerbes HOMG(TG,TH) � BITORS(H, G)(u). This follows from [21, Proposition IV.5.2.5(iii),
p. 297]. �

The proposition has the following corollary, previously noted in [8, p. 584].

Corollary 3.8. The image of dG : H1(Inn(G)) → H2(Z(G)) is the set of all elements x ∈ H2(Z(G)) such that
x · εG ∈ H2(G) is neutral. In particular, dG is surjective if, and only if, every class of H2(G) is neutral.

5 When applying this proposition recall that H2(Z(G))′ = {0} by [21, IV.3.3.2.2, p. 257].
6 Note that the exact sequence appearing in [21] contains an unfortunate misprint: the “map” a(2) appearing there is only a

relation (as in [21, Definition IV.3.1.4, p. 248]), even when A is central in B .
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Proof. This follows from the proposition, the existence of (3.10) and the exactness of (3.9). �
Now, for i = 0,1, we define the i-th abelianization map

abi : Hi(G) → Hi
ab(F → G) (3.12)

as the composite

Hi(G)
ψi−→ Hi(F → G)

ϕ−1
i−−→ Hi

ab(F → G),

where ψi is the map of Proposition 2.4 and ϕi is the bijection (3.2). Further, let δ0 : H0
ab(F → G) →

H1(F ) be the composite

H0
ab(F → G)

ϕ0−→ H0(F → G)
δ′

0−→ H1(F ),

where δ′
0 is the map described in Remark 2.5(a). Thus δ0 maps the class of a (Z(F ), Z(G))-torsor

(Q , t) to the class of the F -torsor Q ∧Z F , where Z = Z(F ).

Remarks 3.9.

(a) If (F ∂−→ G) is a quasi-abelian crossed module on E such that ∂ is surjective, then H1
ab(F → G)

can be identified with H2(Ker ∂) (see Example 2.3(ii)). Under this identification, ab1 corresponds
to the coboundary map H1(G) → H2(Ker ∂) induced by the central extension 1 → Ker ∂ → F →
G → 1.

(b) The right action of H0(F → G) on H1(F ) described in Remark 2.5(c) induces, via ϕ0, a right action
of H0

ab(F → G) on H1(F ) which can be described as follows. If p ∈ H1(F ) is represented by an
F -torsor P and c ∈ H0

ab(F → G) is represented by a (Z(F ), Z(G))-torsor (Q , t), then p · c ∈ H1(F )

is represented by the F -torsor P ∧F (Q ∧Z F ) � P ∧Z Q , where Z = Z(F ) (for the isomorphism,
see [21, III, 1.3.1.3, p. 115, 1.3.5, p. 116 and 2.4.5, p. 149]). As in Remark 2.5(c), the above action is
compatible with inverse images and with the map δ0. In particular, the given action is transitive
if, and only if, the map δ0 is surjective.

The following statement is immediate from Proposition 2.4 and the definitions of abi and δ0.

Proposition 3.10. Let (F → G) be a quasi-abelian crossed module on E. Then there exists an exact sequence
of pointed sets

1 → H−1(F → G) → H0(F ) → H0(G)
ab0−−→ H0

ab(F → G)

δ0−→ H1(F )
∂(1)−−→ H1(G)

ab1−−→ H1
ab(F → G).

We now discuss twisting. Let P be a (right) G-torsor. For any G-object X of E , let P X be the
twist of X by P [21, Proposition III.2.3.7, p. 146]. Now let P ∂ : P F → P G be the twist of ∂ by P [21,
III.2.3.3.1, p. 142]. Further, let θP : H1(G)

∼−→ H1(P G) be the bijection defined in [21, Remark III.2.6.3,
p. 154]. If P o denotes the G-torsor opposite to P [21, III.1.5.5.2, p. 122], and Q represents the class
q ∈ H1(G), then θP (q) is represented by the P G-torsor Q ∧G P o [21, Proposition III.2.6.1(i), p. 153].
Let P ab1 denote the composite

H1(P G
) P ψ1−−→ H1(P F → P G

) P ϕ−1
1−−−→ H1

ab

(P F → P G
) = H1

ab(F → G).
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Proposition 3.11. Let P be a G-torsor and let p ∈ H1(G) be its class. Then there exists a commutative dia-
gram

H1(G)
ab1

θP

H1
ab(F → G)

rP

H1(P G)
P ab1

H1
ab(F → G),

where rP is given by rP (x) = x − ab1(p) for x ∈ H1
ab(F → G).

Proof. (C. Demarche) Let C be the gr-stack associated to (F → G), so that H1(F → G) � H1(C), and
let P be a C-torsor representing the class in H1(C) which corresponds to ψ1(p) ∈ H1(F → G). Simi-
larly, let Cab be the gr-stack associated to (Z(F ) → Z(G)), so that H1(Z(F ) → Z(G)) � H1(Cab), and
let Pab be a Cab-torsor representing the class in H1(Cab) corresponding to ab1(p) = ϕ−1

1 (ψ1(p)) ∈
H1(Z(F ) → Z(G)). Consider the diagram

H1(G)

ψ1

θP
H1(P G)

P ψ1

H1(F → G) = H1(C)

ϕ−1
1

θP
H1(P F → P G) = H1(PC)

P ϕ−1
1

H1(Z(F ) → Z(G)) = H1(Cab)

=

θPab

H1(Z(P F ) → Z(P G)) = H1(P
abCab)

=

H1(Z(F ) → Z(G))
rP

H1(Z(F ) → Z(G)).

The left- and right-hand vertical compositions equal ab1 and P ab1, respectively. Now, by functoriality
of twisting [21, III.2.6.3.2, p. 155], the above diagram commutes except perhaps for the bottom square.
But by [21, Remark III.2.6.3, p. 154] (which extends easily to commutative gr-stacks), the bottom
square is commutative as well. This completes the proof. �

By [21, Remark III.3.4.4(2), p. 166], there exists an action of H1(Z(G)) on H1(G) given by the map

H1(Z(G)
) × H1(G) → H1(G), (p,q) �→ p · q, (3.13)

where p · q is the class of P ∧Z Q , where Z = Z(G) and P and Q are representatives of p and q,
respectively. Now recall from (3.4) the map j(1) : H1(Z(G)) → H1

ab(F → G).

Corollary 3.12. For any p ∈ H1(Z(G)) and q ∈ H1(G),

ab1(p · q) = j(1)(p) + ab1(q).

Proof. (After C. Demarche) Let Q be a representative of q. By the proposition

Q ab1(θQ (p · q)
) = rQ

(
ab1(p · q)

) = ab1(p · q) − ab1(q).



C.D. González-Avilés / Journal of Algebra 369 (2012) 235–255 245
On the other hand, by [21, Proposition III.3.4.5(ii), p. 167], θQ (p · q) = (Q i)(1)(p), where Q i : Z(G) →
Q G is the Q -twist of the canonical embedding i : Z(G) → G . The corollary now follows from the
commutativity of the diagram

H1(Z(G))
j(1)

(Q i)(1)

H1(Z(F ) → Z(G))

Q ϕ1

H1(Q G)
Q ψ1

H1(Q F → Q G). �
The following result is similar to [21, Lemma III.3.3.4, p. 163].

Lemma 3.13. Let P be an F -torsor and let Q = P ∧F G. Then there exists an exact commutative diagram

H0(G)
ab0

H0
ab(F → G)

δ0
H1(F )

∂(1)

θP

H1(G)
ab1

θQ

H1
ab(F → G)

H0(Q G)
Q ab0

H0
ab(F → G)

P δ0
H1(P F )

P ∂(1)

H1(Q G)
Q ab1

H1
ab(F → G).

(3.14)

Furthermore, if p ∈ H1(F ) is the class of P and c is any class in H0
ab(F → G), then

θP (p · c) = P δ0(c).

Proof. The commutativity of the left-hand square is [21, III.2.6.3.2, p. 155], and that of right-
hand square is a particular case of Proposition 3.11. Now, if c ∈ H0

ab(F → G) is represented by
a (Z(F ), Z(G))-torsor (Q , t) then, by Remark 3.9(b), θP (p · c) is represented by the P F -torsor
(Q ∧Z P ) ∧F P 0 � Q ∧Z P F , where Z = Z(F ). See [21, Corollary III.1.6.5(1), p. 125]. This completes
the proof. �
Proposition 3.14. Let (F ∂−→ G) be a quasi-abelian crossed module on E.

(a) Let p ∈ H1(F ), let P be an F -torsor representing p and let Q = P ∧F G. Then the stabilizer of p in
H0

ab(F → G) is the image of Q ab0 : H0(Q G) → H0
ab(F → G).

(b) The map ∂(1) induces an injection

H1(F )/H0
ab(F → G) → H1(G)

whose image is the kernel of ab1 .

Proof. If c ∈ H0
ab(F → G) satisfies p · c = p then, by the lemma, P δ0(c) = θP (p · c) = θP (p) is the unit

class of H1(P F ) [21, Remark III.2.6.3, p. 154], whence c is in the image of Q ab0 by the exactness
of the bottom row of diagram (3.14). Assertion (a) follows. That the image of the map in (b) is the
kernel of ab1 is immediate from the exactness of the top row of (3.14). To prove its injectivity, let
p, p′ ∈ H1(F ) be such that ∂(1)(p) = ∂(1)(p′). Then the commutativity of (3.14) and the exactness of
its bottom row show that θP (p′) = P δ0(c) = θP (p · c) for some c ∈ H0

ab(F → G). Thus p′ = p · c, which
completes the proof. �
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Corollary 3.15. Let P be a G-torsor and let p ∈ H1(G) be its class. Then the map θ−1
P ◦ P ∂(1) : H1(P F ) →

H1(G) induces a bijection

H1(P F
)
/H0

ab(F → G)
∼−→ {

p′ ∈ H1(G): ab1(p′) = ab1(p)
}
.

Proof. Injectivity follows from the injectivity of θ−1
P and part (b) of the proposition applied to the

crossed module (P F
P ∂−−→ P G). To prove surjectivity, let p′ ∈ H1(G) be such that ab1(p′) = ab1(p) and

let P ′ and P be representatives of p′ and p, respectively. Then, by Proposition 3.11,

P ab1(θP
(

P ′)) = rP

(
ab1(p′)) = ab1(p′) − ab1(p) = 0.

Thus, by Proposition 3.10 applied to (P F
P ∂−−→ P G), θP (P ′) is in the image of P ∂(1) . This completes the

proof. �
Recall from (3.7) and (3.8) the maps ∂(1) and b(1)

G and let b̃(1)
G : H1(G) → H1(Inn(F )) be the com-

position

H1(G)
b(1)

G−−→ H1(Inn(G)
) ∂(1)−1−−−→ H1(Inn(F )

)
. (3.15)

Recall also from (3.4) the map π(1) : H1
ab(F → G) → H2(Z(F )).

Lemma 3.16. The diagram

H1(G)
ab1

b̃(1)
G

H1
ab(F → G)

π(1)

H1(Inn(F ))
dF

H2(Z(F ))

commutes.

Proof. (After C. Demarche) Let p be a class in H1(G), let P be a G-torsor representing p and let Q
be an Inn(F )-torsor representing b̃(1)

G (p). Then (dF ◦ b̃(1)
G )(p) is represented by the Z(F )-gerbe K (Q )

of liftings of Q to F [21, IV.4.2.2, p. 280]. Now recall the gr-stack Cab associated to (Z(F ) → Z(G)),
so that H1

ab(F → G) � H1(Cab), and let Pab be a Cab-torsor representing the class in H1(Cab) cor-

responding to ab1(p). Then π(1)(ab1(p)) is represented by the Z(F )-gerbe K (Pab) of liftings of Pab

to Z(G) (see (3.3)). Thus, by [21, Corollary IV.2.2.7, p. 216], it suffices to define a Z(F )-morphism
of Z(F )-gerbes m : K (Q ) → K (Pab). Let R be a lift of Q to F , let r ∈ H1(F ) be its class and set
t = ∂(1)(r) ∈ H1(G). The commutativity of the diagram

H1(F )
∂(1)

b(1)
F

H1(G)

b(1)
G

H1(Inn(F ))
∂(1)

H1(Inn(G))

shows that b(1)
G (t) = ∂(1)(b(1)

F (r)) = ∂(1)(b̃(1)(p)) = b(1)
G (p). Thus, by [21, Proposition III.3.4.5, (iii)

and (iv), p. 167], there exists a class z ∈ H1(Z(G)), which is uniquely determined modulo the im-
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age of the coboundary map P dG : H0(P Inn(G)) → H1(Z(G)), such that p = z · t . Note that, since P dG

factors as

H0(P Inn(G)
) (P ∂(0))−1−−−−−→ H0(P Inn(F )

) P dF−−→ H1(Z(F )
) ∂

(1)
Z−−→ H1(Z(G)

)
,

z is uniquely determined modulo the image of ∂
(1)
Z ◦ P dF . Let X be a Z(G)-torsor representing z. Since

ab1(t) = ab1(∂(1)(r)) = 0, Corollary 3.12 yields j(1)(z) = ab1(z · t) = ab1(p). Thus X is a lift of Pab to
Z(G) and we set m(R) = X . It is not difficult to check that lien(m) is the identity of Z(F ), which
completes the proof. �

We now recall from (3.4) the map π(1) : H1
ab(F → G) → H2(Z(F )) and define

δ1 : H1
ab(F → G) → H2(F ) (3.16)

by the formula δ1(y) = π(1)(y) · εF for every y ∈ H1
ab(F → G).

Proposition 3.17. A class y ∈ H1
ab(F → G) is in the image of ab1 if, and only if, δ1(y) ∈ H2(F )′ .

Proof. Let q ∈ H1(G). By Lemma 3.16 and Proposition 3.7 (applied to F ),

δ1
(
ab1(q)

) = π(1)
(
ab1(q)

) · εF = dF
(
b̃(1)(q)

) · εF = nF
(
b̃(1)(q)

) ∈ H2(F )′.

Conversely, let y ∈ H1
ab(F → G) be such that δ1(y) = π(1)(y) · εF ∈ H2(F )′ . Then π(1)(y) = dF (x) for

some x ∈ H1(Inn(F )) by the exactness of (3.9) and Proposition 3.7. Now, by the exactness of (3.4) and
the commutativity of (3.7),

0 = ∂
(2)
Z

(
π(1)(y)

) = ∂
(2)
Z

(
dF (x)

) = dG
(
∂(1)(x)

)
.

We conclude that ∂(1)(x) = b(1)(z) for some z ∈ H1(G) by the exactness of (3.8). Thus x = b̃(1)(z) by
the definition of b̃(1) (3.15), and Lemma 3.16 yields

π(1)(y) = dF (x) = dF
(
b̃(1)(z)

) = π(1)
(
ab1(z)

)
.

Now the exactness of (3.4) shows that y − ab1(z) = j(1)(w) for some w ∈ H1(Z(G)), whence

y = j(1)(w) + ab1(z) = ab1(w · z),

by Corollary 3.12. The proof is now complete. �
Proposition 3.18. The sequence

H1
ab(F → G)

δ1−→ H2(F )
∂(2)−−→ H2(G)

is exact.

Proof. Let y ∈ H1
ab(F → G). By the definition of δ1, the commutativity of (3.11) and the exactness

of (3.4), we have

∂(2)
(
δ1(y)

) = ∂
(2)
Z

(
π(1)(y)

) · εG = 0 · εG = εG .
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Conversely, assume that s = z ·εF ∈ H2(F ) (where z ∈ H2(Z(F ))) is such that ∂(2)(s) = ∂
(2)
Z (z) ·εG = εG .

Then ∂
(2)
Z (z) = 0, whence z = π(1)(y) for some y ∈ H1

ab(F → G) by the exactness of (3.4). Thus s =
π(1)(y) · εF = δ1(y) ∈ Im δ1. �
4. The main theorem

Let (F ∂−→ G) be a quasi-abelian crossed module on E . The second abelianization map of (F → G) is
the map

ab2 : H2(G) → H2
ab(F → G) (4.1)

defined as follows: if s ∈ H2(G) and x is the unique element of H2(Z(G)) such that s = x · εG (3.10),
then ab2(s) = j(2)(x), where j(2) : H2(Z(G)) → H2

ab(F → G) is the map appearing in (3.4).
We will also need the map

t := t(2)

ab ◦ ab2 : H2(G) → H2(Coker ∂), (4.2)

where t(2)

ab is the map appearing in (3.5). If s and x are as above, then t(s) = t(2)

ab ( j(2)(x)) = c(2)(x),

where c(2) : H2(Z(G)) → H2(Coker∂) is the canonical map induced by the projection Z(G) →
Coker∂Z = Coker∂ (see (3.6)).

We now extract from (3.4) the subsequence

H2
ab(F → G)

π(2)−−→ H3(Z(F )
) ∂

(3)
Z−−→ H3(Z(G)

) → ·· · . (4.3)

Then the following holds.

Proposition 4.1. The sequence

H2(F )
∂(2)−−→ H2(G)

ab2−−→ H2
ab(F → G)

π(2)−−→ H3(Z(F )
) ∂

(3)
Z−−→ H3(Z(G)

) → ·· ·

is exact.

Proof. Since (4.3) is exact, we need only check the exactness of the given sequence at H2(G) and
H2

ab(F → G). Exactness at H2
ab(F → G) is not difficult: we have π(2) ◦ ab2 = π(2) ◦ j(2) = 0, and if

y ∈ H2
ab(F → G) is such that π(2)(y) = 0, then (by the exactness of (3.4)) there exists an element

x ∈ H2(Z(G)) such that y = j(2)(x) = ab2(x · εG) ∈ Im ab2. To check exactness at H2(G), let t = y · εF ∈
H2(F ), where y ∈ H2(Z(F )). Then, by the commutativity of (3.11), ∂

(2)
Z (y) is the unique element x

of H2(Z(G)) such that ∂(2)(t) = x · εG . Consequently ab2(∂(2)(t)) = j(2)(x) = j(2)(∂
(2)
Z (y)) = 0, since

(3.4) is exact. On the other hand, if s ∈ H2(G) is such that ab2(s) = j(2)(x) = 0, where x is the unique
element of H2(Z(G)) such that s = x · εG , then x = ∂

(2)
Z (y) for some y ∈ H2(Z(F )) by the exactness

of (3.4). Thus, again by the commutativity of (3.11),

s = ∂
(2)
Z (y) · εG = ∂(2)(y · εF ) ∈ Im ∂(2).

This completes the proof. �
Combining the above proposition with Propositions 3.10, 3.17 and 3.18, we obtain the main result

of this paper:
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Theorem 4.2. Let (F ∂−→ G) be a quasi-abelian crossed module on E. Then

1 → H−1(F → G) → H0(F ) → H0(G)
ab0−−→ H0

ab(F → G)

δ0−→ H1(F )
∂(1)−−→ H1(G)

ab1−−→ H1
ab(F → G)

δ1−→ H2(F )
∂(2)−−→ H2(G)

ab2−−→ H2
ab(F → G)

π(2)−−→ H3(Z(F )
) ∂

(3)
Z−−→ H3(Z(G)

) → ·· ·

is an exact sequence of pointed sets at every term except H1
ab(F → G), where a class y ∈ H1

ab(F → G) is in the

image of ab1 if, and only if, δ1(y) ∈ H2(F )′ .

Remark 4.3. The exact sequence of the theorem is compatible with inverse images, i.e., if u : E ′ → E
is a morphism of sites, then there exists an exact commutative diagram

· · · ∂(1)

H1(E, G)
ab1

H1
ab(E, F → G)

δ1
H2(E, F )

∂(2)

· · ·

· · · (∂(1))′
H1(E ′, u∗G)

(ab1)′
H1

ab(E ′, u∗ F → u∗G)
δ′

1
H2(E ′, u∗ F )

(∂(2))′ · · ·

whose rows are the exact sequences of the theorem over E and over E ′ and whose vertical maps
are given by (2.2) and [21, Definition V.1.5.1, p. 316]. This follows from the definitions of the various
horizontal maps involved, Remark 3.9(b) and [21, Proposition V.1.5.2(ii), p. 317].

Regarding the map ab2, the following holds.

Lemma 4.4. H2(G)′ ⊂ Ker ab2 .

Proof. By the theorem, we need to check that H2(G)′ is contained in the image of ∂(2) . Let s ∈ H2(G)′ .
By the exactness of (3.9) and Proposition 3.7, there exists an element p ∈ H1(Inn(G)) such that s =
dG(p) ·εG . On the other hand, by the surjectivity of ∂(1) and the commutativity of diagram (3.7), there
exists an element q ∈ H1(Inn(F )) such that

dG(p) = dG
(
∂(1)(q)

) = ∂
(2)
Z

(
dF (q)

)
.

Thus, by the commutativity of (3.11),

s = dG(p) · εG = ∂(2)
(
dF (q) · εF

) ∈ Im ∂(2). �
Since ∂(2) : H2(F ) → H2(G) maps H2(F )′ into H2(G)′ , Theorem 4.2 and the above lemma yield

inclusions

∂(2)
(

H2(F )′
) ⊂ H2(G)′ ⊂ Ker ab2 = ∂(2)

(
H2(F )

)
.

Thus, the following is an immediate consequence of Theorem 4.2.

Corollary 4.5. Let (F → G) be a quasi-abelian crossed module on E such that every class of H2(F ) is neutral.
Then

(i) the abelianization map ab1 : H1(G) → H1
ab(F → G) is surjective, and

(ii) a class s ∈ H2(G) is neutral if, and only if, ab2
G(s) = 0.
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5. Applications

Let S be a scheme and let Sfl be the small fppf site over S . An S-group scheme G is called reductive
(respectively, semisimple) if it is affine and smooth over S and its geometric fibers are connected
reductive (respectively, semisimple) algebraic groups [10, XIX, Definition 2.7]. As noted in Example 3.3,
the composition ∂ : G̃ � Gder ↪→ G defines a quasi-abelian crossed module (G̃ ∂−→ G) on Sfl. We have
Ker ∂ = μ and Coker ∂ = Gtor as sheaves on Sfl, where μ is the fundamental group of G and Gtor =
G/Gder is the coradical of G [10, XXII, 6.2]. Set Hi

ab(Sfl, G) = Hi
ab(Sfl, G̃ → G), which will also be

denoted by Hi
ab(G) to simplify some statements. If G has trivial fundamental group (respectively, if G

is semisimple), then Hi
ab(G) = Hi(Gtor) (respectively, Hi

ab(G) = Hi+1(μ)). See Examples 2.3. If K is a
field and G is a (connected) reductive algebraic group over K , H1(K , G) will denote the first Galois
cohomology set of G . Note that there exists a canonical bijection H1(K , G) � H1(Kfl, G) [28, Remark
III.4.8(a), p. 123].7 If G is, in addition, commutative and i � 1, then Hi(K , G) will denote the i-th
Galois cohomology group of G .

By (2.1) and Theorem 4.2, the following holds.

Theorem 5.1. Let G be a reductive group scheme over a scheme S. Then there exists a sequence of flat ( fppf )
cohomology sets

1 → μ(S) → G̃(S) → G(S)
ab0−−→ H0

ab(G)
δ0−→ H1(G̃)

∂(1)−−→ H1(G)
ab1−−→ H1

ab(G)

δ1−→ H2(G̃)
∂(2)−−→ H2(G)

ab2−−→ H2
ab(G) → H3(Z(G̃)

) → H3(Z(G)
) → ·· · ,

which is an exact sequence of pointed sets at every term except H1
ab(G), where a class y ∈ H1

ab(G) is in the

image of ab1 if, and only if, δ1(y) ∈ H2(G̃)′ .

Recall that, if G is a reductive group scheme, Gad is the standard notation for Inn(G).

Definition 5.2. A scheme S is called of Douai type if, for every semisimple and simply-connected
S-group scheme G , the coboundary map

dG : H1(Sfl, Gad) → H2(Sfl, Z(G)
)

(induced by the central extension 1 → Z(G) → G → Gad → 1) is surjective. Equivalently (see Corol-
lary 3.8), every class of H2(Sfl, G) is neutral. If S = Spec A is affine, then we will also say that A is of
Douai type.

Remark 5.3. By Remark 3.9(a), the map dG appearing in the above definition can be identified with
the first abelianization map ab1 for the adjoint group Gad.

Examples 5.4. The following are examples of schemes of Douai type.

(i) S = Spec K , where K is a complete discretely-valued field with finite residue field. See [11,
Chapter VI, Theorems 1.4, p. 80, 1.6, p. 81, and 2.1, p. 87]. See also [12, Theorem 1.1 and Remark
on p. 322].

(ii) S = Spec K , where K is a global field, i.e., K is either a number field or a function field in one
variable over a finite field. See [11, Theorem VIII.1.2, p. 108]. See also [13].

7 In fact, the natural map H1(S ét, G) → H1(Sfl, G) is bijective for any S by the smoothness of G . See [28].
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(iii) S is a nonempty open subscheme of either the spectrum of the ring of integers of a number
field or a smooth, complete and irreducible curve over a finite (respectively, algebraically closed)
field. See [14, Theorem 1.1 and Remark (b), p. 326], and note that Lemma 1.1 from [14] holds
over any S as above by, e.g., [29, proof of Proposition II.2.1, p. 202].

(iv) S = Spec K , where K is a function field in one variable over a quasi-finite field k of positive
characteristic which is algebraic over its prime subfield k0 and satisfies [k : k0] = ∏

pnp , where
np < ∞ for every prime p. See [16, proof of Proposition 1.1 and Remark 1.2].

(v) S is a smooth, complete and irreducible curve over a quasi-finite field k with function field K ,
where k and K are as in (iv). See [16, proof of Lemma 3.1 and Remark 3.2(1) and (3)].

(vi) S = Spec K , where K is a field of characteristic zero and of (Galois) cohomological dimension
� 2 such that, for central simple algebras over finite extensions of K , exponent and index coin-
cide. Indeed, it is shown in [7, proof of Theorem 2.1(a)], that dG : H1(Kfl, Gad) → H2(Kfl, Z(G)) is
surjective for every semisimple and simply-connected K -group G . Note that, by [27], examples
of such fields include the “fields of types (gl), (ll) and (sl)” considered in [7] (see below for the
definitions of types (gl) and (ll)). See [7, Theorems 1.3–1.5].

(vii) S is a regular and integral two-dimensional scheme equipped with a proper birational mor-
phism S → Spec A, where A is an excellent, Henselian, two-dimensional local domain with
algebraically closed residue field of characteristic 0. See [18].

(viii) S is a projective, smooth and geometrically irreducible curve over a p-adic field. See the forth-
coming paper [19].

Theorem 5.5. Let S be a scheme of Douai type and let G be a reductive group scheme over S.

(i) The group H0
ab(Sfl, G) acts on the right on the set H1(Sfl, G̃) compatibly with the map δ0 : H0

ab(Sfl, G) →
H1(Sfl, G̃) and there exists an exact sequence of pointed sets

1 → H1(Sfl, G̃)/H0
ab(Sfl, G)

∂(1)−−→ H1(Sfl, G)
ab1−−→ H1

ab(Sfl, G) → 1,

where the map ∂(1) (which is induced by ∂(1)) is injective.
(ii) A class ξ ∈ H2(Sfl, G) is neutral if, and only if, ab2

G(ξ) = 0.

Proof. The surjectivity of ab1 and assertion (ii) are immediate from Corollary 4.5 and Definition 5.2.
The action mentioned in (i) is defined in Remark 3.9(b), and the exactness of the sequence in (i)
follows from Proposition 3.14(b) and the surjectivity of ab1. �
Remarks 5.6.

(a) The exact sequence in part (i) of the theorem is compatible with inverse images, i.e., if S ′ → S is
a morphism of schemes of Douai type, then the diagram

1 → H1(Sfl, G̃)/H0
ab(Sfl, G) H1(Sfl, G) H1

ab(Sfl, G) 1

1 → H1(S ′
fl, G̃)/H0

ab(S ′
fl, G) H1(S ′

fl, G) H1
ab(S ′

fl, G) 1

commutes. This follows from Remark 4.3, and the fact that the action of H0
ab(Sfl, G) on H1(S ét, G̃)

is compatible with inverse images. See Remark 3.9(b).
(b) Let S and G be as in the theorem and let Cab be the gr-stack associated to (Z(G̃) → Z(G)), so

that there exists a bijection H1
ab(Sfl, G) � H1(Cab). For each class ξ ∈ H1

ab(Sfl, G), let Pab be a

ξ
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Cab-torsor representing its image in H1(Cab) and let P ξ be a lift of Pab
ξ

to G . Then part (i) of the
theorem and Corollary 3.15 yield a (non-canonical) bijection

H1(Sfl, G) �
∐

ξ∈H1
ab(Sfl,G)

H1(Sfl,
P

ξ G̃
)
/H0

ab(Sfl, G).

(c) The theorem holds if S is any scheme and G is a reductive group scheme over S such that every
class of H2(Sfl, G̃) is neutral. For example, if S is a ruled surface of the type considered in [15,
Corollary 3.14, p. 76],8 and G is split, then the theorem holds for G (and part (i) generalizes [15,
Corollary 3.15]). However, we have chosen to work with schemes S of Douai type because we
want our statements to apply uniformly to all reductive group schemes over S .

(d) By Example 5.4(iii), the theorem holds if S is the spectrum of the ring of integers of a number
field. Thus Corollary 1.2 of the Introduction is contained in part (i) of the theorem.

Let S be a scheme and let L be an Sfl-lien which is locally represented by a reductive group
scheme over S . Let ab2

L : H2(Sfl, L) → H2
ab(Sfl, L) be the map defined in [17, p. 23]. It is not difficult

to check that, if L = lien(G) is represented by a group G of the topos S̃fl, then ab2
L coincides with the

map ab2
G considered above. The following result generalizes [2, Theorem 5.5].

Corollary 5.7. Let S be a scheme of Douai type and let L be an Sfl-lien which is locally represented by a
reductive S-group scheme. Then a class ξ ∈ H2(Sfl, L) is neutral if, and only if, ab2

L(ξ) = 0.

Proof. Assume that L is locally represented by a reductive S-group scheme G . By [17, Proposition 1.2,
p. 22] (see also [12, Lemma 1.1], and [11, V.3.1, p. 74]), L is, in fact, globally represented by a quasi-
split form G L of G , i.e., L � lien(G L). The result now follows by applying part (ii) of the proposition
to G L . �
Theorem 5.8. Let K be a field of Douai type and of Galois cohomological dimension � 2. Let G be a (connected)
reductive algebraic group over K .

(i) If H1(K , H) is trivial for every semisimple and simply-connected K -group H,9 then the first abelianization
map ab1 : H1(K , G) → H1

ab(Kfl, G) is bijective.
(ii) There exists an exact sequence of pointed sets

1 → H2(Kfl, G)′ → H2(Kfl, G)
t−→ H2(K , Gtor) → 1,

where t is the map (4.2).

Proof. (i) The hypothesis and Corollary 3.15 show that ab1 is injective. Since it is surjective by Theo-
rem 5.5(i), it is in fact bijective.

(ii) Since K has cohomological dimension � 2 and both μ and Z(G̃) are commutative and finite
K -group schemes, Hi(Kfl,μ) = Hi(Kfl, Z(G̃)) = 0 for every i � 3 by [31, Theorem 4, p. 593]. Thus
Theorem 5.1 and Theorem 5.5(ii) yield an exact sequence

1 → H2(Kfl, G)′ → H2(Kfl, G)
ab2−−→ H2

ab(Kfl, G) → 1.

On the other hand, (3.5) shows that t(2)

ab : H2
ab(Kfl, G) → H2(K , Gtor) is an isomorphism. Thus, since

t = t(2)

ab ◦ ab2, the sequence of the statement is indeed exact. �
8 We do not know if these schemes are of Douai type.
9 By Serre’s conjecture II (see [20]), this is expected to follow from the hypothesis cd K � 2.
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Remarks 5.9.

(a) A field which is either a complete and discretely-valued field with finite residue field or a global
field without real primes satisfies the hypotheses, and therefore the conclusions, of the theorem.
See Examples 5.4(i) and (ii), [30, Theorems 6.4 and 6.6, pp. 284 and 286], [6, Theorem 4.7(ii)],
and [26, Theorem A, p. 125].

(b) The conclusion in part (i) of the theorem for the fields of types (gl), (ll) and (sl) mentioned
in Example 5.4(vi) was previously established in [3, Theorem 6.7] (provided that G contains no
factors of type E8 in the (gl) case).

(c) Let K be either a global function field or the completion of such a field at one of its primes.
Let G be a semisimple algebraic group over K . Then ab1 can be identified with the coboundary
map H1(K , G) → H2(Kfl,μ) induced by the central extension 1 → μ → G̃ → G → 1 (see Re-
mark 3.9(a)). Thus part (i) of the theorem generalizes [32, Theorem A, p. 458] (from semisimple
to arbitrary connected reductive groups over K ).

Now let K be a global field and let G be a (connected) reductive algebraic group over K . Set

X1(K , G) = Ker

[
H1(K , G) →

∏
all v

H1(K v , G)

]

and

X1
ab(K , G) = Ker

[
H1

ab(Kfl, G) →
∏
all v

H1
ab(K v,fl, G)

]
.

Corollary 5.10. Let G be a (connected) reductive algebraic group over a global field K . Then the abelianization
map ab1 : H1(K , G) → H1

ab(Kfl, G) induces a bijection

X1(K , G) �X1
ab(K , G).

Proof. The number field case is due to M. Borovoi [1, Theorem 5.13]. The function field case
is obtained by applying Theorem 5.8(i) over K and over the various completions of K . See Re-
mark 5.9(a). �
Remarks 5.11.

(a) A result similar to the above is known to hold over the fields of type (ll) mentioned in Exam-
ple 5.4(vi). See [3, Theorem 7.1].

(b) The corollary generalizes the function field case of [16, Corollary 2.2], from semisimple to arbi-
trary (connected) reductive groups.

We now recall from [7] that a field K is called of type (gl) if it is the function field of a smooth,
projective and connected surface over an algebraically closed field k of characteristic zero. It is called
of type (ll) if it is the field of fractions of an excellent, Henselian, two-dimensional local domain A with
residue field k as above. If X is a smooth projective model of K over k (respectively, if X is a regular
and integral two-dimensional scheme equipped with a proper birational morphism X → Spec A) and
v is a discrete valuation associated to a point of codimension 1 on X , K v will denote the completion
of K at v . See [7, §1], for a description of these fields. Let G be a (connected) reductive algebraic
group over a field of type (gl) or (ll). For any prime v of K , let resv : H2(Kfl, G) → H2(K v,fl, G) and
resab,v : H2

ab(Kfl, G) → H2
ab(K v,fl, G) be the maps of pointed sets induced by Spec K v → Spec K . Fur-

ther, we will write ab2
v : H2(K v,fl, G) → H2

ab(K v,fl, G) for the second abelianization map associated to
G ×K K v .
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The next corollary is analogous to [2, Theorem 6.8].10

Corollary 5.12. Let K be either a field of type (gl), (ll) or a global function field. Let G be a (connected) reductive
algebraic group over K such that X2(K , Gtor) = 0.11 Then a class ξ ∈ H2(Kfl, G) is neutral if, and only if,
resv(ξ) ∈ H2(K v,fl, G) is neutral for every prime v of K .

Proof. This is immediate from Theorem 5.8(ii) (applied over K and over K v for every prime v
of K ). �

The following proposition complements the results of [2] and concludes this paper.

Proposition 5.13. Let G be a (connected) reductive algebraic group over a number field K . Then a class ξ ∈
H2

ab(Kfl, G) is in the image of ab2 if, and only if, resab,v(ξ) ∈ H2
ab(K v,fl, G) is in the image of ab2

v for every real
prime v of K .

Proof. If ξ is in the image of ab2, then resab,v(ξ) is in the image of ab2
v for every prime v of K by

the commutativity of the diagram

H2(Kfl, G)
ab2

resv

H2
ab(Kfl, G)

resab,v

H2(K v,fl, G)
ab2

v
H2

ab(K v,fl, G)

(see Remark 4.3). On the other hand, by Proposition 4.1, Im ab2 is a subgroup of H2
ab(Kfl, G) and the

corresponding quotient group Coker ab2 injects as a subgroup of H3(K , Z(G̃)). The proposition now
follows from the fact that the canonical map

H3(K , Z(G̃)
) →

∏
v real

H3(K v , Z(G̃)
)

is an isomorphism [29, Theorem I.4.10(c), p. 70]. �
Acknowledgments

I am very grateful to Mikhail Borovoi and Lawrence Breen for their enlightening comments. I am
also very grateful to Cyril Demarche, who read a preliminary version of this paper and suggested
proofs of Proposition 3.11, Corollary 3.12 and Lemma 3.16. Finally, I thank Jean-Claude Douai for send-
ing me copies of some of his papers (including his thesis), and Rick Jardine and Dino Lorenzini for
additional bibliographical assistance.

References

[1] M. Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (626) (1998).
[2] M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1) (1993) 217–239.
[3] M. Borovoi, B. Kunyavskiı̆, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric

fields, with an Appendix by P. Gille, J. Algebra 276 (2004) 292–339.

10 Case (ll) of Corollary 5.12 is implicit in [7, proof of Theorem 5.5].
11 Sufficient conditions for the vanishing of X2(K , Gtor) can be found in [7, Theorem 5.5(ii)–(iv)], and [2, Theorem 7.3(ii)–(vi)].



C.D. González-Avilés / Journal of Algebra 369 (2012) 235–255 255
[4] L. Breen, Bitorseurs et cohomologie non abélienne, in: The Grothendieck Festschrift, vol. I, in: Progr. Math., vol. 86,
Birkhäuser Boston, Boston, MA, 1990, pp. 401–476.

[5] L. Breen, On the classification of 2-gerbes and 2-stacks, Asterisque 225 (1994).
[6] F. Bruhat, J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie ga-

loisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (3) (1987) 671–698.
[7] J.-L. Colliot-Thélène, P. Gille, R. Parimala, Arithmetic of linear algebraic groups over two-dimensional geometric fields, Duke

Math. J. 121 (2) (2004) 285–341.
[8] P. Dèbes, J.-C. Douai, Gerbes and covers, Comm. Algebra 27 (2) (1999) 577–594.
[9] R. Debremaeker, Non abelian cohomology, Bull. Soc. Math. Belg. 29 (1977) 57–72.

[10] M. Demazure, A. Grothendieck (Eds.), Schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962–1964
(SGA 3), Lecture Notes in Math., vols. 151–153, Springer, Berlin, Heidelberg, New York, 1972.

[11] J.-C. Douai, 2-Cohomologie Galoisienne des groupes semi-simples, Thèse de doctorat d’etat, Université de Lille, 1976, Édi-
tions universitaires européennes, 2010, available from http://www.amazon.com.

[12] J.-C. Douai, 2-Cohomologie Galoisienne des groupes semi-simples définis sur les corps locaux, C. R. Acad. Sci. Paris Sér. A
280 (1975) 321–323.

[13] J.-C. Douai, Cohomologie Galoisienne des groupes semi-simples définis sur les corps globaux, C. R. Acad. Sci. Paris Sér. A
281 (1975) 1077–1080.

[14] J.-C. Douai, Cohomologie des schémas en groupes semi-simples sur les anneaux de Dedekind et sur les courbes lisses,
complètes, irréductibles, C. R. Acad. Sci. Paris Sér. A 285 (5) (1977) 325–328.

[15] J.-C. Douai, Suites exactes déduites de la suite spectrale de Leray en cohomologie non abélienne, J. Algebra 79 (1) (1982)
68–77.

[16] J.-C. Douai, Cohomologie des schémas en groupes sur les courbes définis sur les corps quasi-finis et loi de réciprocité,
J. Algebra 103 (1) (1986) 273–284.

[17] J.-C. Douai, Espaces homogènes et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, J. Théor.
Nombres Bordeaux 7 (1) (1995) 21–26.

[18] J.-C. Douai, Sur la 2-cohomologie non abélienne des modèles réguliers des anneaux locaux henséliens, J. Théor. Nombres
Bordeaux 21 (1) (2009) 119–129.

[19] J.-C. Douai, 2-Cohomology of schemes of semi-simple simply connected groups over curves defined over p-adic fields, talk
delivered at the 27th Journées Arithmétiques, Vilnius, June 2011.

[20] Ph. Gille, Serre’s conjecture II: a survey, in: Quadratic Forms, Linear Algebraic Groups, and Cohomology, in: Dev. Math.,
vol. 18, Springer, 2010, pp. 41–56, available at http://www.math.ens.fr/~gille/publis/hyderabad.pdf.

[21] J. Giraud, Cohomologie non abélienne, Grundlehren Math. Wiss., vol. 179, Springer-Verlag, Berlin, New York, 1971.
[22] C. González-Avilés, Abelian class groups of reductive group schemes, arXiv:1110.4542v2 [math.NT].
[23] C.D. González-Avilés, Flasque resolutions of reductive group schemes, arXiv:1112.6020v2 [math.NT].
[24] A.R. Grandjean, M. Ladra, H2(T , G, ∂) and central extensions for crossed modules, Proc. Edinb. Math. Soc. 42 (1999) 169–

177.
[25] A. Grothendieck, J. Verdier (Eds.), Théorie de Topos et Cohomologie Etale des Schémas, Séminaire de Géométrie Algébrique

du Bois Marie 1963–1964 (SGA 4), Lecture Notes in Math., vol. 305, Springer, Berlin, Heidelberg, New York, 1972.
[26] G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen, III, J. Reine Angew. Math. 274–275 (1975)

125–138.
[27] J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004) 71–94.
[28] J.S. Milne, Étale Cohomology, Princeton University Press, Princeton, 1980.
[29] J.S. Milne, Arithmetic Duality Theorems, Perspect. Math., vol. 1, Academic Press Inc., Orlando, 1986.
[30] V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press Inc., 1994.
[31] S. Shatz, The cohomological dimension of certain Grothendieck topologies, Ann. of Math. 83 (3) (1966) 572–595.
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