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The action of a Coxeter group W on the set of left cosets of a 
standard parabolic subgroup deforms to define a module MJ

of the group’s Iwahori–Hecke algebra H with a particularly 
simple form. Rains and Vazirani have introduced the notion 
of a quasiparabolic set to characterize W -sets for which 
analogous deformations exist; a motivating example is the 
conjugacy class of fixed-point-free involutions in the symmet-
ric group. Deodhar has shown that the module MJ possesses 
a certain antilinear involution, called the bar operator, and a 
certain basis invariant under this involution, which generalizes 
the Kazhdan–Lusztig basis of H. The well-known significance 
of this basis in representation theory makes it natural to seek 
to extend Deodhar’s results to the quasiparabolic setting. 
In general, the obstruction to finding such an extension is 
the existence of an appropriate quasiparabolic analogue of the 
“bar operator.” In this paper, we consider the most natural 
definition of a quasiparabolic bar operator, and develop a 
theory of “quasiparabolic Kazhdan–Lusztig bases” under the 
hypothesis that such a bar operator exists. Giving content 
to this theory, we prove that a bar operator in the desired 
sense does exist for quasiparabolic W -sets given by twisted 
conjugacy classes of twisted involutions. Finally, we prove 
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several results classifying the quasiparabolic conjugacy classes 
in a Coxeter group.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let (W, S) be a Coxeter system with length function � : W → N, and let H = H(W, S)
be its Iwahori–Hecke algebra: this is the Z[v, v−1]-algebra H, with a basis given by the 
symbols Hw for w ∈ W , whose multiplication is uniquely determined by the condition 
that

HsHw =
{
Hsw if �(sw) > �(w)
Hsw + (v − v−1) ·Hw if �(sw) < �(w) for s ∈ S and w ∈ W.

Observe that H1 (which we typically write as 1 or omit) is the multiplicative unit of 
H and that Hs is invertible for each s ∈ S. There exists a unique ring homomorphism 
H → H with v �→ v−1 and Hs �→ H−1

s ; we denote this map by H �→ H, and refer to it 
as the bar operator of H.

Certain representations of W admit natural and interesting deformations to modules 
of the algebra H. For example, H viewed as a left module over itself clearly deforms 
the regular representation of W . For another example, suppose J ⊂ S is a subset of 
simple generators and let X = W/WJ be the set of left cosets of the standard parabolic 
subgroup WJ = 〈J〉 in W . Define the height of a coset to be the minimal length of any 
of its elements, i.e., set

ht(C) = min �(w) for a left coset C ∈ W/WJ .

w∈C
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Fix u ∈ {−v−1, v}. For each choice of u, there is a unique H-module structure on the 
free Z[v, v−1]-module generated by W/WJ in which Hs ∈ H for s ∈ S acts on cosets 
C ∈ W/WJ by the formula

Hs : C �→

⎧⎨⎩
sC if ht(sC) > ht(C)
sC + (v − v−1) · C if ht(sC) < ht(C)
u · C if ht(sC) = ht(C).

(1.1)

Denote these H-modules by MJ (when u = v) and N J (when u = −v−1), respectively. 
Note that if we specialize the parameter v to 1, then MJ and N J become the modules 
of the group ring ZW given by respectively inducing the trivial and sign representations 
of WJ to W .

The formulas above are well-defined if we replace X = W/WJ by the set of cosets of 
any subgroup H ⊂ W . However, the assertion that (1.1) defines an H-module structure 
only holds for some choices of H and not for others, in a fashion which is not yet very 
well understood. The following is therefore a natural question: given a W -set X with a 
height function ht : X → N, when does the free Z[v, v−1]-module generated by X have an 
H-module structure described by the obvious analogue of (1.1)? Rains and Vazirani [27]
identify a simple set of conditions which are sufficient for this phenomenon to occur, and 
call W -sets satisfying these conditions quasiparabolic. We review the precise definition 
in Section 2.1; informally, a W -set is quasiparabolic if it has a “Bruhat order” which 
is compatible with its height function and which satisfies a few technical properties 
exactly analogous to the Bruhat order on W . The W -set of left cosets of any standard 
parabolic subgroup is quasiparabolic. More exotically, some but not all conjugacy classes 
of involutions in a Coxeter group are quasiparabolic, relative to the height function 1

2�.
Let M �→ M denote a Z-linear map MJ → MJ . We call such a map a bar operator

of MJ if it fixes the unique coset in W/WJ of height zero and satisfies

HM = H ·M for all H ∈ H and M ∈ MJ . (1.2)

Define a bar operator of N J analogously. In [5,6], Deodhar shows that MJ and N J both 
admit unique bar operators, and proves that each module has a unique basis of elements 
invariant under the bar operator which is congruent to the “standard basis” of cosets 
W/WJ modulo v−1Z[v−1]-linear combinations of standard basis elements. These new 
bases are the parabolic Kazhdan–Lusztig bases of MJ and N J ; when J = ∅, they both 
may be identified with the well-known Kazhdan–Lusztig basis of H introduced in [18].

Rains and Vazirani show that the free Z[v, v−1]-module generated by a quasiparabolic 
set X may be given two H-module structures, which we denote M and N , by a for-
mula exactly analogous to (1.1). (We review the precise definitions in Section 2.2.) One 
naturally asks whether there exists a notion of a “quasiparabolic Kazhdan–Lusztig ba-
sis” for these modules, which specializes to Deodhar’s parabolic Kazhdan–Lusztig bases 
when X = W/WJ . The exploration of this question is the main topic of the present 
work. As motivation, we recall that the (parabolic) Kazhdan–Lusztig bases attached to 
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a Coxeter system display a number of remarkable properties not at all evident from 
their elementary definition, and have connections to a surprising variety of topics in 
representation theory. It seems reasonable to expect that some interesting properties 
and connections will likewise hold in the quasiparabolic setting; [27, §9] presents several 
phenomena along these lines.

The main obstruction to formulating a definition of a “quasiparabolic Kazhdan–
Lusztig basis” is proving the existence a bar operator for the H-modules M and N . 
For us, a bar operator is a Z-linear map M → M (respectively, N → N ) which fixes 
elements of minimal height in each W -orbit in X and is compatible with the bar operator 
of H in the sense of (1.2); see Definition 3.1. The following conjecture is equivalent to 
[27, Conjecture 8.4] by [27, Proposition 2.15]:

Conjecture. (See Rains and Vazirani [27].) If X is a quasiparabolic set which is bounded 
below (in the sense that the heights of the elements in any given W -orbit are bounded 
below), then the corresponding modules M and N each have bar operators.

In this paper, we develop a number of general consequences of this conjecture, and also 
prove that the conjecture holds in some motivating cases of interest. A more detailed 
outline of our results goes as follows. After stating some preliminaries in Section 2, 
we devote Section 3 to developing the general properties of bar operators, where we 
prove the following:

Theorem. (See Section 3.) Suppose X is a quasiparabolic set which is bounded below. 
If either of the corresponding modules M or N has a bar operator, then both modules 
have unique bar operators which determine each other and are involutions.

We write that X admits a bar operator if both of the corresponding modules M and 
N do; in this case, we prove that M and N each have a certain distinguished basis in 
the following sense:

Theorem. (See Theorem 3.14.) Assume X is a quasiparabolic set which is bounded below 
and admits a bar operator. Then M and N each have a unique “canonical basis,” by 
which we mean a basis of elements invariant under the corresponding bar operator which 
is congruent to the “standard basis” X modulo v−1Z[v−1]-linear combinations of standard 
basis elements.

These bases generalize Deodhar’s parabolic Kazhdan–Lusztig bases, and in Section 3.2
we show that they retain many of the same properties. In Section 3.3 we prove that the 
canonical bases of M and N define two ways of viewing the quasiparabolic set X as a 
W -graph.

For the preceding theorems to be of interest we must have other examples of quasi-
parabolic sets with bar operators, besides the motivating case X = W/WJ . In Sec-
tion 4 we describe a source of such quasiparabolic sets. Let θ : W → W be a group 
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automorphism with θ(S) = S. Then W acts on itself by the twisted conjugation 
w : x �→ w · x · θ(w)−1; an orbit under this action is a twisted conjugacy class; and 
an element x ∈ W is a twisted involution (relative to θ) if x−1 = θ(x).

Theorem. (See Theorem 4.19.) Any twisted conjugacy class of twisted involutions (rel-
ative to θ) which is quasiparabolic (relative to the height function 1

2�) admits a bar 
operator.

This result applies, in particular, to Rains and Vazirani’s motivating example of the 
conjugacy class of fixed-point-free involutions in the symmetric group, which thus index 
two “quasiparabolic Kazhdan–Lusztig bases.” In Sections 4.1 and 4.2 we prove several 
results which control which twisted conjugacy classes are quasiparabolic. Among these 
are the following statements, which show that the previous theorem’s restriction to the 
case of twisted involutions is not so limiting:

Theorem. (See Corollary 4.7.) In an arbitrary Coxeter group, all (ordinary) conjugacy 
classes which are quasiparabolic (relative to the height function 12�) consist of involutions.

Theorem. (See Theorem 4.9.) In a finite Coxeter group, all twisted conjugacy classes 
which are quasiparabolic (relative to the height function 12�) consist of twisted involutions.

There can exist quasiparabolic twisted conjugacy classes which do not consist of 
twisted involutions; we construct examples in a necessarily infinite Coxeter group in 
Section 4.2. In the last section of the paper, we list a number of open questions and 
problems.

2. Preliminaries

In this section (W, S) denotes an arbitrary Coxeter system with length function �. 
We write ≤ for the Bruhat order on W . Recall that if s ∈ S and w ∈ W then sw < w if 
and only if �(sw) = �(w) − 1.

2.1. Quasiparabolic sets

Rains and Vazirani introduce the following definitions in [27, §2].

Definition 2.1. A scaled W -set is a W -set X with a height function ht : X → Q satisfying

|ht(x) − ht(sx)| ∈ {0, 1} for all s ∈ S and x ∈ X.

Denote the set of reflections in W by R = {wsw−1 : w ∈ W and s ∈ S}.

Definition 2.2. A scaled W -set (X, ht) is quasiparabolic if both of the following properties 
hold:
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(QP1) If ht(rx) = ht(x) for some (r, x) ∈ R×X then rx = x.
(QP2) If ht(rx) > ht(x) and ht(srx) < ht(sx) for some (r, x, s) ∈ R × X × S then 

rx = sx.

Example 2.3. The set W with height function ht = � is quasiparabolic relative to its 
action on itself by left (also, by right) multiplication and also when viewed as a scaled 
W ×W -set relative to the action (x, y) : w �→ xwy−1; see [27, Theorem 3.1].

Example 2.4. Let J ⊂ S and define W J = {w ∈ W : ws > w for all s ∈ J}. It is 
well-known that any element w ∈ W has a unique factorization w = uv with u ∈ W J

and v ∈ WJ = 〈J〉. Define

s • w =
{
sw if sw ∈ W J

w otherwise
for s ∈ S and w ∈ W J .

Then • : S ×W J → W J extends to an action of W on W J , which is isomorphic to the 
natural action of W on W/WJ . The W -set W J is quasiparabolic relative to the height 
function ht = �. This example is fundamental, and motivates the name “quasiparabolic.”

Example 2.5. A conjugacy class in W is a scaled W -set relative to conjugation and the 
height function ht = �/2. This scaled W -set is sometimes but not always quasiparabolic; 
see Section 4.1.

We restate [27, Corollary 2.13] as the lemma which follows this definition:

Definition 2.6. An element x in a scaled W -set X is W -minimal (respectively, 
W -maximal) if ht(sx) ≥ ht(x) (respectively, ht(sx) ≤ ht(x)) for all s ∈ S.

Lemma 2.7. (See Rains and Vazirani [27].) If a scaled W -set is quasiparabolic, then 
each of its orbits contains at most one W -minimal element and at most one W -maximal 
element. These elements, if they exist, have minimal (respectively, maximal) height in 
their W -orbits.

Remark 2.8. This property is enough to nearly classify the quasiparabolic conjugacy 
classes in the symmetric group. Assume that W = Sn and S = {si = (i, i + 1) :
i = 1, . . . , n − 1}. Suppose K ⊂ Sn is a quasiparabolic conjugacy class (relative to the 
height function ht = �/2). Since K is finite, it contains a unique W -minimal element by 
Lemma 2.7. As every permutation is conjugate in Sn to its inverse (which has the same 
length), K must consists of involutions. There are 1 + 
n/2� such conjugacy classes: {1}
and the conjugacy classes of s1s3s5 · · · s2k−1 for positive integers k with 2k ≤ n. While 
{1} is trivially quasiparabolic, the conjugacy class of s1s3s5 · · · s2k−1 is quasiparabolic 
only if 2k = n, since otherwise s2s4s6 · · · s2k belongs to the same conjugacy class but 
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has the same (minimal) length. The only remaining conjugacy class, consisting of the 
fixed-point-free involutions in Sn for n even, is quasiparabolic by [27, Theorem 4.6].

For the rest of this section, (X, ht) denotes a fixed quasiparabolic W -set. The following 
lemma is a consequence of [27, Theorem 2.8].

Lemma 2.9. (See Rains and Vazirani [27].) Suppose x0 ∈ X is a W -minimal element. 
The set

Rht(x) def= {w ∈ W : x = wx0 such that ht(x) = �(w) + ht(x0)} (2.1)

is then nonempty for any element x in the W -orbit of x0.

Additionally, we have this definition from [27, §5], which attaches to X a certain 
partial order:

Definition 2.10. The Bruhat order on a quasiparabolic W -set X is the weakest partial 
order ≤ with x ≤ rx for all x ∈ X and r ∈ R with ht(x) ≤ ht(rx).

Remark 2.11. If (X, ht) is one of the quasiparabolic W -sets in Examples 2.3 or 2.4, then 
the Bruhat order coincides with the usual Bruhat order on W restricted to X. If X is 
a quasiparabolic conjugacy class in W as in Example 2.5, then the Bruhat order on W
restricts to an order which is equal to or stronger than the Bruhat order on X (viewed 
as a quasiparabolic set). In all known examples these two orders actually coincide, but 
showing whether this holds in general is an open problem; see the remarks following [27, 
Proposition 5.17] and also Conjecture 5.4. If these two orders were always equal, it would 
follow from [27, Proposition 5.16] that any quasiparabolic conjugacy class is a graded 
poset with respect to the order induced by the usual Bruhat order, a property which 
does not hold for arbitrary conjugacy classes in Coxeter groups.

It follows immediately from the definition that if x, y ∈ X then x < y implies ht(x) <
ht(y). Rains and Vazirani develop in [27, Section 5] several other general properties of 
the Bruhat order. Among other facts, they show that the set X is a graded poset relative 
to ≤, and that the length of every maximal chain in the Bruhat order between x ≤ y

is ht(y) − ht(x) [27, Proposition 5.16]. We note explicitly the following lemma (which 
appears as [27, Lemma 5.7]) for use later:

Lemma 2.12. (See Rains and Vazirani [27].) Let x, y ∈ X such that x ≤ y and s ∈ S. 
Then

sy ≤ y ⇒ sx ≤ y and x ≤ sx ⇒ x ≤ sy.
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2.2. Hecke algebra modules

Let A = Z[v, v−1] and recall that the Iwahori–Hecke algebra of (W, S) is the A-algebra

H = H(W,S) = A-span{Hw : w ∈ W}

defined in the introduction. For background on this algebra, see, for example, [2,17–19]. 
Observe that H−1

s = Hs + (v−1 − v) and that Hw = Hs1 · · ·Hsk whenever w = s1 · · · sk
is a reduced expression. Hence every basis element Hw for w ∈ W is invertible.

Rains and Vazirani show that the permutation representation of W on a quasiparabolic 
set deforms to a well-behaved representation of H. In detail, for any scaled W -set (X, ht)
let

M = M(X,ht) = A-span{Mx : x ∈ X} and N = N (X, ht) = A-span{Nx : x ∈ X}

denote the free A-modules with bases given by the symbols Mx and Nx for x ∈ X. 
We call {Mx}x∈X and {Nx}x∈X the standard bases of M and N , respectively. We view 
the A-modules M and N as distinct H-modules according to the following result, which 
appears as [27, Theorem 7.1].

Theorem 2.13. (See Rains and Vazirani [27].) Assume (X, ht) is a quasiparabolic W -set.

(a) There is a unique H-module structure on M such that for all s ∈ S and x ∈ X

HsMx =

⎧⎨⎩
Msx if ht(sx) > ht(x)
Msx + (v − v−1)Mx if ht(sx) < ht(x)
vMx if ht(sx) = ht(x).

(b) There is a unique H-module structure on N such that for all s ∈ S and x ∈ X

HsNx =

⎧⎨⎩
Nsx if ht(sx) > ht(x)
Nsx + (v − v−1)Nx if ht(sx) < ht(x)
−v−1Nx if ht(sx) = ht(x).

Remark 2.14. Our notation, which is patterned on Soergel’s conventions in [31, §3], trans-
lates to that of [27] on setting Hs = v−1T±(s) and Mx (respectively, Nx) = v−ht(x)T (x).

Note that the H-modules M and N are identical if sx 
= x for all s ∈ S and x ∈ X. 
Note that this occurs if and only if w ∈ W has even length whenever wx = x for some 
x ∈ X. Following Rains and Vazirani [27, Definition 3.4], we say that a W -set X is even
if it has these equivalent properties.

Denote by A1 = 〈s0〉 the unique Coxeter group with a single simple generator s0. 
Identifying s0 with the nontrivial permutation of {1, 2} gives an isomorphism A1 ∼= S2. 
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We view the product group W × A1 as a Coxeter group relative to the generating set 
S ∪ {s0}. In [27, §3], Rains and Vazirani describe a construction which attaches to any 
scaled W -set (X, ht) an even scaled W ×A1-set (X̃, h̃t), with the property that (X, ht) is 
quasiparabolic if and only if (X̃, h̃t) is quasiparabolic. Following [27], we refer to (X̃, h̃t)
as the even double cover of (X, ht). This construction is useful for reducing certain 
arguments to the even case, and so we review it here.

Fix a scaled W -set (X, ht) and define X̃ = X×F2, where F2 is the field of two elements 
viewed as the set {0, 1} with addition computed modulo 2. The groups W and A1 each 
act on X̃ by

w : (x, k) �→ (wx, k + �(w)) and s0 : (x, k) �→ (x, k + 1)

for w ∈ W and x ∈ X and k ∈ F2. These actions commute with each other and so define 
an action of W ×A1 on X̃. Define a height function h̃t on X̃ by the formula

h̃t(x, k) = ht(x) +
{

0 if ht(x) ≡ k (mod 2)
1 if ht(x) 
≡ k (mod 2).

Observe that if x0 ∈ X is W -minimal if and only if (x0, ht(x0)) ∈ X̃ is W ×A1-minimal. 
The following result appears as [27, Theorem 3.5].

Theorem 2.15. (See Rains and Vazirani [27].) If (X, ht) is a scaled W -set then (X̃, h̃t) is 
an even scaled W×A1-set, which is quasiparabolic if and only if (X, ht) is quasiparabolic.

Remember that if (X, ht) is quasiparabolic then the H(W × A1, S ∪ {s0})-modules 
M(X̃, h̃t) and N (X̃, h̃t) are isomorphic by construction. In the following lemma, which 
appears as [27, Proposition 7.7], note that Hs0 is the generator of H(A1, {s0}) ⊂
H(W ×A1, S ∪ {s0}).

Lemma 2.16. (See Rains and Vazirani [27].) Suppose every orbit in X contains a 
W -minimal element. The A-linear maps M(X, ht) → M(X̃, h̃t) and N (X, ht) →
M(X̃, h̃t) with

Mx �→ (Hs0 + v−1)M(x,ht(x)) and Nx �→ (Hs0 − v)M(x,ht(x)) for x ∈ X

are then injective homomorphisms of H(W, S)-modules.

3. Bar operators, canonical bases, and W -graphs

Everywhere in this section (W, S) is an arbitrary Coxeter system; H = H(W, S) is its 
Iwahori–Hecke algebra; (X, ht) is a fixed quasiparabolic W -set; and M = M(X, ht) and 
N = N (X, ht) are the corresponding H-modules defined by Theorem 2.13.
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3.1. Bar operators

We write f �→ f for the ring involution of A = Z[v, v−1] with v �→ v−1. A map U → V

of A-modules is A-antilinear if x �→ y implies ax �→ ay for all a ∈ A. Recall that we also 
use the notation f �→ f to denote the bar operator of H defined the beginning of the 
introduction.

Definition 3.1. A Z-linear map M → M, denoted M �→ M , is a bar operator if

HM = H ·M and Mx0 = Mx0

for all (H, M) ∈ H ×M and all W -minimal x0 ∈ X. An A-antilinear map N → N is a 
bar operator if the same conditions hold, mutatis mutandis.

Although at this point there is no obvious obstruction to the modules M and N
each having multiple bar operators, we will nevertheless always denote such maps by the 
notation X �→ X. We will soon see that in the case which interest us, if a bar operator 
exists then it is unique, which justifies this convention.

All of our results concern quasiparabolic W -sets whose orbits each contain a (unique) 
W -minimal element. Without loss of generality, we can always assume that the height 
function on such a W -set has values all greater than some fixed number, since it makes no 
difference to translate the height function by a constant on any given orbit. We therefore 
refer to quasiparabolic W -sets whose orbits all have W -minimal elements as those which 
are bounded below.

Assume (X, ht) is bounded below. The set Rht(x) ⊂ W given by (2.1) is then well-
defined for all x ∈ X, and if x0 ∈ X is the W -minimal element in the orbit of x, then 
HwMx0 = Mx and HwNx0 = Nx for all w ∈ Rht(x). Therefore, if modules M and N
have bar operators, then

Mx = HwMx0 and Nx = HwNx0 for any w ∈ Rht(x). (3.1)

The right sides of these formulas are defined unambiguously once we fix a choice of 
w ∈ Rht(x). Since the bar operator of H is an involution, this implies the following:

Proposition 3.2. Assume (X, ht) is bounded below.

(a) If M (respectively, N ) has a bar operator, then it is unique.
(b) If M (respectively, N ) has a (unique) bar operator, then it is an involution.

While (3.1) explicitly describes what the bar operators on M and N must be if 
they exist, it is difficult to show that these formulas are well-defined. We can show the 
following, however.
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Theorem 3.3. Assume (X, ht) is bounded below. Then M and N both have bar operators 
if the A-antilinear maps defined by (3.1) are well-defined, in the sense that

HaMx0 = HbMx0 and HaNx0 = HbNx0 (3.2)

whenever x0 ∈ X is W -minimal and a, b ∈ Rht(x) for some x ∈ Wx0.

Proof. First, we will show that the result holds in the case when (X, ht) is an even 
quasiparabolic set. We will then prove that if the module attached to the even double 
cover (X̃, h̃t) of (X, ht) admits a bar operator, then the modules M and N each admit 
bar operators as well. Finally, we will check that (3.2) holds for (X, ht) only if the 
analogous condition holds for (X̃, h̃t).

For the first step, assume that (X, ht) is even (so that M = N ) and that there exists 
a well-defined A-antilinear map M → M, to be denoted M �→ M , such that if x belongs 
to the orbit of the W -minimal element x0 ∈ X, then Mx = HwMx0 for any w ∈ Rht(x). 
Clearly Mx0 = Mx0 if x0 ∈ X is W -minimal since then Rht(x0) = {1}, so to show that 
this map is a bar operator, it remains just to check that Hs ·Mx = HsMx for s ∈ S and 
x ∈ X. Let x0 ∈ X be the W -minimal element in the orbit of x and choose w ∈ Rht(x). 
If ht(sx) > ht(x) so that HsMx = Msx, then clearly �(sw) > �(w) and sw ∈ Rht(sx), 
so we have HsHw = Hsw and

Hs ·Mx = Hs ·Hw ·Mx0 = HsHwMx0 = HswMx0 = Msx = HsMx.

If ht(sx) < ht(x), then Mx = HsMsx so Mx = Hs ·Msx by what we have just shown, 
and hence

Hs ·Mx = Hs ·Hs ·Msx = H1 + (v − v−1)Hs ·Msx = Msx + (v − v−1)Mx = HsMx.

Since (X, ht) is even, this suffices to show that M = N has a bar operator.
For the second part of the proof, suppose the H(W ×A1, S ∪{s0})-module M(X̃, h̃t)

admits a bar operator, defined with respect to the quasiparabolic set (X̃, h̃t). Lemma 2.16
shows that M and N may be identified with H-submodules of M(X̃, h̃t), and we claim 
that the bar operator on the latter module restricts (via these identifications) to bar 
operators on M and N . This is straightforward to prove after noting that Hs0 + v−1

and Hs0 − v are bar invariant elements of H(W ×A1, S ∪ {s0}) which commute with all 
elements of the subalgebra H(W, S), and also that x ∈ X is W -minimal if and only if 
(x, ht(x)) ∈ X̃ is W ×A1-minimal. We omit the details.

Finally suppose (3.2) holds. Fix a W -minimal element x0 ∈ X and let x belong to its 
orbit, and write M̃x0 and Ñx0 for the images of Mx0 ∈ M and Nx0 ∈ N in M(X̃, h̃t) un-
der the homomorphisms in Lemma 2.16. Observe that M̃x0−Ñx0 = (v + v−1)M(x0,ht(x0))
and note that if k ∈ F2 then Rh̃t(x, k) = {se0 · w : w ∈ Rht(x)} where e ∈ {0, 1} is such 
that e ≡ k − ht(x) (mod 2). Hence, if a, b ∈ Rh̃t(x, k), then a = se0 · a′ and b = se0 · b′ for 
some a′, b′ ∈ Rht(x), so by Lemma 2.16
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(v + v−1)HaM(x0,ht(x0)) = He
s0 ·Ha′M̃x0 −He

s0 ·Ha′Ñx0

= He
s0 ·Hb′M̃x0 −He

s0 ·Hb′Ñx0 = (v + v−1)HbM(x0,ht(x0)).

From this, we conclude that HaM(x0,ht(x0)) = HbM(x0,ht(x0)), which is what we wanted 
to show. �

As an application, we recover the following result of Deodhar from [5, §2].

Corollary 3.4. (See Deodhar [5].) If (X, ht) = (W J , �) for some J ⊂ S, then the corre-
sponding H-modules M = M(X, ht) and N = N (X, ht) both admit unique bar operators.

Proof. The condition in Theorem 3.3 holds trivially since Rht(x) = {x} for all 
x ∈ W J . �
Remark 3.5. We do not know of any examples of transitive, bounded quasiparabolic sets 
(X, ht) for which Rht(x) is always a singleton set as in the preceding proof except those 
isomorphic to (W J , �) for some J ⊂ S; see Conjecture 5.1.

Recall that ≤ denotes the Bruhat order on (X, ht), as given in Definition 2.10.

Lemma 3.6. Assume (X, ht) is bounded below and let x ∈ X.

(a) If M has a bar operator M �→ M then Mx ∈ Mx + A-span{Mw : w < x}.
(b) If N has a bar operator N �→ N then Nx ∈ Nx + A-span{Nw : w < x}.

In particular, when defined, 
{
Mx

}
x∈X

and 
{
Nx

}
x∈X

are A-bases of M and N , respec-
tively.

Proof. We only prove part (a), as the proof of (b) is identical. If x is W -minimal then 
the desired containment is automatic, so assume x is not W -minimal and that Mx′ ∈
Mx′ + A-span{Mw : w < x′} for all x′ < x in X. There is then s ∈ S such that 
ht(sx) < ht(x) (by the definition of W -minimal), so, using that Mx = HsMsx and the 
inductive hypothesis, we have

Mx = Hs ·Msx ∈ Hs

(
Msx +

∑
w<sx

A ·Mw

)
⊂ Mx + A-span{Msx} + A-span

{
HsMw : w < sx

}
.

Since Hs = Hs + v−1 − v we have HsMw ∈ A ·Mw + A ·Msw for all w ∈ X. Thus Mx

has the desired unitriangular form provided that whenever w ∈ X such that w < sx < x

we have sw < x; this property holds by Lemma 2.12. Finally, since all lower intervals in 
the poset (X, ≤) are finite, it follows from (a) and (b) that 

{
Mx

}
x∈X

and 
{
Nx

}
x∈X

are 
A-bases of M and N . �



E. Marberg / Journal of Algebra 453 (2016) 325–363 337
Write Θ : H → H for the A-linear with Θ(Hw) = (−1)�(w)Hw for w ∈ W ; one checks 
that Θ is an A-algebra automorphism. Next, define

htmin (x) = min
w∈W

ht(wx) for x ∈ X.

Note that htmin (x) = ht(x0) if there exists a W -minimal element x0 in the orbit of x, 
and that otherwise htmin (x) is undefined. Finally, when (X, ht) is bounded below and N
(respectively, M) has a bar operator, we define ΦMN : M → N and ΦMN : M → N
as the A-linear maps with

ΦMN (Mx) = (−1)ht(x)−htmin (x)Nx and ΦNM(Nx) = (−1)ht(x)−htmin (x)Mx

(3.3)

for x ∈ X. These maps are “Θ-twisted homomorphisms” of H-modules in the following 
sense.

Lemma 3.7. Assume (X, ht) is bounded below. When respectively defined, the maps ΦMN
and ΦNM are bijections such that for all (H, M, N) ∈ H ×M ×N it holds that

ΦMN (HM) = Θ(H)ΦMN (M) and ΦNM(HN) = Θ(H)ΦNM(N).

Proof. Both ΦMN and ΦNM are bijections since, by the previous lemma, they each 
map a basis to a basis. Since Θ is an algebra automorphism, to show that ΦMN has the 
desired property it is enough to check that ΦMN (HsMx) = −(−1)ht(x)−htmin (x)HsNx =
Θ(Hs)ΦMN (Mx) for s ∈ S and x ∈ X. This is straightforward; for example, if ht(sx) =
ht(x) then

ΦMN (HsMx) = ΦMN (vMx) = (−1)ht(x)−htmin (x)v−1Nx = −(−1)ht(x)−htmin (x)HsNx.

The calculations in the case when ht(sx) > ht(x) and ht(sx) < ht(x) are similar. An iden-
tical argument shows that the same property holds for ΦNM. �

We now prove the following conceptually plausible, but technically nontrivial result.

Proposition 3.8. Assume (X, ht) is bounded below. If either of the corresponding 
H-modules M or N has a bar operator, then both modules have unique bar operators.

Proof. Assume that M has a bar operator; we will show that this implies that N does as 
well. The converse implication holds by a symmetric argument. Let ΦMN : M → N be 
the map given before Lemma 3.7, and define N �→ N as the A-antilinear map N → N
with

Nx = (−1)ht(x)−htmin (x)Φ−1
NM(Mx) for x ∈ X.
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We check that this map has the defining properties of a bar operator. If x ∈ X is 
W -minimal then Mx = Mx so by definition Nx = Nx. In turn, if s ∈ S and x ∈ X then 
we claim that

ΦNM
(
Hs ·Nx

)
= −Hs · ΦNM(Nx) = Θ(Hs)ΦNM(Nx) = ΦNM(HsNx)

= ΦNM(HsNx).

To check this, observe that the first and third equalities hold by Lemma 3.7; the second 
holds by definition since the bar operator on M is an involution; and the last equality 
holds since by construction ΦNM(N) = ΦNM(N) for all N ∈ N . As ΦNM is a bijection, 
we conclude that HsNx = Hs · Nx. Since the bar operator on H is a ring involution, 
this suffices to show that Hw · Nx = HwNx for all w ∈ W and x ∈ X. We deduce by 
antilinearity that HN = H ·N for all H ∈ H and N ∈ N . Hence the map N �→ N is a 
bar operator on N , as desired. �

Given a quasiparabolic W -set (X, ht) which is bounded below, we say that (X, ht)
admits a bar operator if both (equivalently, either) of the modules M and N have a 
(unique) bar operator.

Remark 3.9. Assume (X, ht) is bounded below and admits a bar operator. Let

V = M (respectively, N ) and ac = Mc (respectively, Nc) for c ∈ X.

Also define 〈−, −〉 : V × V → A as the A-sesquilinear inner product with

〈ac, a′c〉 = δc,c′ for c, c′ ∈ X.

Combining Definition 3.1, Proposition 3.2, and Lemma 3.6 shows that the bar operator 
on V together with the inner product 〈−, −〉 and the “standard basis” {ac}c∈X are what 
Webster [37] calls a pre-canonical structure. When (X, ht) = (W, �), this pre-canonical 
structure arises from a “categorification” of the Iwahori–Hecke algebra, via the theory 
of either intersection cohomology or Soergel bimodules; see [9,10,30,32]. It would be 
interesting to have an interpretation along these lines for the pre-canonical structure 
attached to a general quasiparabolic W -set.

The following statement is clear from the proof of Theorem 3.3.

Corollary 3.10. Assume (X, ht) is bounded below. The quasiparabolic set (X, ht) then 
admits a bar operator if and only if its even double cover (X̃, h̃t) also admits a bar 
operator.

When (X, ht) is the W -set of left cosets of a standard parabolic subgroup (see Ex-
ample 2.4), the following proposition reduces to the main result of Deodhar’s paper 
[6, Theorem 2.1].
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Proposition 3.11. Assume the quasiparabolic W -set (X, ht) is bounded below and admits 
a bar operator, so that the maps ΦMN and ΦNM are both defined.

(a) The following diagrams commute:

M

ΦMN

M �→M M

ΦMN

N N �→N N

M M �→M M

N

ΦNM

N �→N N

ΦNM

(b) The following diagrams commute:

M

ΦMN

M �→M M

N N �→N N

Φ−1
MN

M M �→M M

Φ−1
NM

N

ΦNM

N �→N N

(c) The maps ΦMN and ΦNM are inverses of each other.

Proof. Parts (a) and (b) follow from Proposition 3.2 and the definitions of ΦNM and 
ΦMN , while part (c) follows from the definitions and part (a). �
3.2. Canonical bases

Everywhere in this section we assume that (X, ht) is a quasiparabolic W -set which is 
bounded below and admits a bar operator; M = M(X, ht) and N = N (X, ht) are as in 
Theorem 2.13. We begin by recalling the following well-known theorem of Kazhdan and 
Lusztig [18]:

Theorem 3.12. (See Kazhdan and Lusztig [18].) For each w ∈ W there is a unique 
Hw ∈ H with

Hw = Hw ∈ Hw +
∑
y<w

v−1Z[v−1] ·Hy.

The elements {Hw}w∈W form an A-basis for H, called the Kazhdan–Lusztig basis.

One checks that H1 = H1 = 1 and Hs = Hs + v−1 for s ∈ S. Define hx,y ∈ Z[v−1]
for x, y ∈ W such that Hy =

∑
x∈W hx,yHy. It follows by recent work of Elias and 

Williamson [9] that the polynomials hx,y actually always belong to N[v−1]. Moreover, 
when W is the Weyl group of a complex semisimple Lie algebra, these polynomials 
encode in a certain precise sense the multiplicities of simple modules in Verma modules 
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in the principal block of category O; this is the original Kazhdan–Lusztig conjecture [18, 
Conjecture 1.5].

Such phenomena suggest that it would be interesting to formulate an analogue of the 
Kazhdan–Lusztig basis for the modules M and N . For this purpose, we will need the 
following lemma:

Lemma 3.13. Let C ⊂ A be a subset such that {f ∈ C : f = f} = {0}; for example, 
v−1Z[v−1]. Then 0 is the only element of M (respectively, N ) which is both (i) invariant 
under the bar operator and (ii) a linear combination of standard basis elements with 
coefficients all in C.

Proof. Let εx ∈ C for x ∈ X be such that the element ε =
∑

x∈X εxMx (respectively, ∑
x∈X εxNx) has properties (i) and (ii). Suppose ε 
= 0; we argue by contradiction. 

Let x be maximal in (X, ≤) such that εx 
= 0. By Lemma 3.6, the coefficient of Mx

(respectively, Nx) in ε is then εx, so since ε = ε we must have εx = εx; our hypothesis 
on C now leads to the contradiction εx = 0. �

The following generalizes Theorem 3.12 and also results of Deodhar from [5, §3].

Theorem 3.14. Assume the quasiparabolic W -set (X, ht) is bounded below and admits a 
bar operator. For each x ∈ X there are unique elements Mx ∈ M(X, ht) and Nx ∈
N (X, ht) with

Mx = Mx ∈ Mx +
∑
w<x

v−1Z[v−1] ·Mw and Nx = Nx ∈ Nx +
∑
w<x

v−1Z[v−1] ·Nw

where both sums are over w ∈ X. The elements {Mx}x∈X and {Nx}x∈X form A-bases 
for M(X, ht) N (X, ht), which we refer to as the canonical bases of these modules.

Proof. The theorem follows from the general fact (first proved using different terminology 
by Du [8]) that any pre-canonical structure whose index set (X, ≤) has finite lower 
intervals admits a unique canonical basis; compare Remark 3.9 with [25, Theorem 2.5]. 
For a self-contained proof, one can adapt, almost verbatim, the argument which Soergel 
gives to prove [31, Theorem 3.1]. �

Define mx,y and nx,y for x, y ∈ X as the polynomials in Z[v−1] such that

My =
∑
x∈X

mx,yMx and Ny =
∑
x∈X

nx,yNx. (3.4)

Let μm(x, y) and μn(x, y) denote the coefficients of v−1 in mx,y and nx,y respectively. 
Observe that if x < y then mx,y and nx,y are both polynomials in v−1 without constant 
term, while if x ≮ y then mx,y = nx,y = δx,y. When (X, ht) = (W, �) as in Example 2.3, 
we have mx,y = nx,y = hx,y.
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Remark 3.15. A surprising property of the polynomials hx,y is that their coefficients 
are always nonnegative [9]. By contrast, mx,y and nx,y can each have both positive 
and negative coefficients. If (X, ht) = (W J , �) for some J ⊂ S as in Example 2.4, then 
{mx,y} ⊂ {hx,y} ⊂ N[v−1] (see [5, Proposition 3.4]), but even in this case the polynomials 
nx,y may still have negative coefficients.

The following theorem describes the action of H on the basis elements Mx and Nx.

Theorem 3.16. Let s ∈ S and x ∈ X. Recall that Hs = Hs + v−1.

(a) In M, the following multiplication formula holds:

HsMx =
{

(v + v−1)Mx if ht(sx) ≤ ht(x)
Msx +

∑
sw≤w<x μm(w, x)Mw if ht(sx) > ht(x).

(b) In N , the following multiplication formula holds:

HsNx =

⎧⎪⎨⎪⎩
(v + v−1)Nx if ht(sx) < ht(x)
Nsx +

∑
sw<w<x μn(w, x)Nw if ht(sx) > ht(x)∑

sw<w<x μn(w, x)Nw if ht(sx) = ht(x).

Proof. We first prove part (a); there are three cases to consider. First suppose ht(sx) >
ht(x). Using the definition the module M in Theorem 2.13, one checks that the linear 
combination HsMx − Msx −

∑
sw≤w<x μm(w, x)Mw is bar invariant and belongs to 

v−1Z[v−1]-span{Mw : w ∈ X}, so it must be zero by Lemma 3.13.
Next suppose sx = x. The following identity then holds, since one can check that 

the difference between the two sides is a bar invariant linear combination of standard 
basis elements Mw with coefficients in v−1Z[v−1], and the only such element is zero by 
Lemma 3.13:

HsMx = (v + v−1)Mx −
∑

sw>w<x

μm(w, x)Mw. (3.5)

Since HsHs = (v + v−1)Hs, multiplying both sides of this equation by Hs implies that

∑
sw>w<x

μm(w, x)HsMw = 0.

By considering those w ∈ X which are maximal in the Bruhat order such sw > w < x

and μm(w, x) 
= 0, and then expanding the products HsMw, it becomes clear that the 
preceding equation can only hold if μm(w, x) = 0 for all w ∈ X with sw > w < x. 
We conclude from (3.5) that HsMx = (v + v−1)Mx when sx = x.
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Finally suppose ht(sx) < ht(x). What we have already shown implies Mx = HsMsx−∑
sw≤w<sx μm(w, sx)Mw. Since HsHs = (v + v−1)Hs, we obtain by induction

HsMx = (v + v−1)HsMsx −
∑

sw≤w<sx

μm(w, sx)HsMw = (v + v−1)Mx.

This completes the proof of part (a).
The proof of part (b) is similar. The formula for HsNx when ht(sx) 
= ht(x) follows 

by arguments similar to the ones already given. When sx = x, one checks that HsNx −∑
sw<w<x μn(w, x)Nw is a bar invariant element of v−1Z[v−1]-span{Nw : w ∈ X}, and 

hence zero by Lemma 3.13. �
Define m̃x,y = vht(y)−ht(x) and ñx,y = vht(y)−ht(x)nx,y for x, y ∈ X. The preceding 

theorem translates to the following recurrences, which one can use to compute these 
polynomials.

Corollary 3.17. Let x, y ∈ X and s ∈ S.

(a) If sy = y then m̃x,y = m̃sx,y and if sy < y then

m̃x,y = m̃sx,y =
{
m̃x,sy + v2 · m̃sx,sy if sx > x

v2 · m̃x,sy + m̃sx,sy if sx ≤ x

}

−
∑

x<t<sy
st≤t

μm(t, sy) · vht(y)−ht(t) · m̃x,t.

(b) If sy < y then

ñx,y = ñsx,y =

⎧⎪⎨⎪⎩
ñx,sy + v2 · ñsx,sy if sx > x

v2 · ñx,sy + ñsx,sy if sx < x

0 if sx = x

⎫⎪⎬⎪⎭
−

∑
x<t<sy
st<t

μn(t, sy) · vht(y)−ht(t) · ñx,t.

Proof. The assertion that m̃x,y = m̃sx,y if sy ≤ y follows by comparing the coefficients 
of Mx in the identity HsMy = (v + v−1)My. The second equality in part (b) follows by 
comparing coefficients in the identity HsMsy = My +

∑
st≤t<y μm(t, y)M t. The proof 

of part (c) is similar. �
By definition mx,y = nx,y = 0 when x � y. When x ≤ y, the following parity property 

holds:
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Proposition 3.18. If x, y ∈ X with x ≤ y then

vht(y)−ht(x)mx,y = m̃x,y ∈ 1 + v2Z[v2] and vht(y)−ht(x)nx,y = ñx,y ∈ Z[v2].

Consequently, μm(x, y) = μn(x, y) = 0 whenever ht(y) − ht(x) is even.

Proof. If y is W -minimal then x ≤ y implies x = y in which case m̃x,y = ñx,y =
1 ∈ 1 + v2Z[v2]. Alternatively, suppose y is not W -minimal, so that there exists some 
s ∈ S such that sy < y. We may assume by induction that m̃x′,y′ and ñx′,y′ respectively 
belong to 1 + v2Z[v2] and v2Z[v2] for all x′, y′ ∈ X with x′ ≤ y′ < y. The coefficients 
μm(t, sy) and μn(t, sy) are then nonzero only for those t ∈ X with ht(y) − ht(t) even, 
so the recurrences in Corollary 3.17 imply via Lemma 2.12 that m̃x,y ∈ 1 + v2Z[v2] and 
ñx,y ∈ v2Z[v2]. �

Finally, we clarify that nothing is gained or lost by preferring the indeterminate v−1

over v in Theorem 3.14. Define for y ∈ X the elements

M ′
y =

∑
x∈X

(−1)ht(y)−ht(x) · nx,y ·Mx and N ′
y =

∑
x∈X

(−1)ht(y)−ht(x) ·mx,y ·Nx.

(3.6)

Write ε(x) = (−1)ht(x)−htmin (x) for x ∈ X and recall the definition of the maps ΦMN
and ΦNM from (3.3). We note the following lemma.

Lemma 3.19. For each x ∈ X it holds that

M ′
x = ε(x) · ΦNM(Nx) and N ′

x = ε(x) · ΦMN (Mx).

Proof. We have M ′
x = ε(x) ·ΦNM(Nx) and N ′

x = ε(x) ·ΦMN (Mx) by the definition of 
the maps ΦMN and ΦNM. Proposition 3.11(a) shows that these equations remain valid 
after erasing the bar operators on the right, since the canonical bases of M and N are 
bar invariant. �

Since the maps ΦNM and ΦMN are bijections, {M ′
x}x∈X and {N ′

x}x∈X are A-bases 
of M and N , respectively. These bases are uniquely characterized analogously to Theo-
rem 3.14, as follows.

Corollary 3.20. For each x ∈ X, the elements M ′
x and N ′

x are the unique ones in M
and N with

M ′
x = M ′

x ∈ Mx +
∑
w<x

vZ[v] ·Mw and N ′
x = N ′

x ∈ Nx +
∑
w<x

vZ[v] ·Nw.
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Proof. In view of Lemma 3.19, both M ′
x and N ′

x are bar invariant by Proposition 3.11(a), 
and they are given by unitriangular linear combinations of standard basis elements of the 
desired form by definition. The uniqueness of the elements with these properties follows 
from Lemma 3.13. �
Remark 3.21. To conclude this section, we explain more precisely how our results and 
notation connect to earlier work. Define Tw = v�(w)Hw ∈ H for w ∈ W . Often, for 
example in [5,18,27], formulas involving H are written in the terms of the basis {Tw}
rather than {Hw}.

• If (X, ht) = (W, �) as in Example 2.3, then M ∼= N ∼= H as left H-modules and 
mx,y = nx,y = hx,y for all x, y ∈ W . In this case the bases {Mw} and {M ′

w} of 
M may be respectively identified with the bases of H which are denoted {C ′

w} and 
{Cw} in [18].

• If (X, ht) = (W J , �) for some J ⊂ S as in Example 2.4, then M (respectively, N ) 
is isomorphic to the H-module MJ defined in [5] with u = q (respectively u = −1). 
In this case the basis which Deodhar denotes {CJ

w} corresponds to the basis {M ′
w}

(respectively, {N ′
w}).

3.3. W -graphs

Recall that A = Z[v, v−1]. Let X be an H-module which is free as an A-module. Given 
an A-basis V ⊂ X , consider the directed graph with vertex set V and with an edge from 
x ∈ V to y ∈ V whenever there exists H ∈ H such that the coefficient of y in Hx is 
nonzero. Each strongly connected component in this graph spans a quotient H-module 
since its complement spans a submodule of X . There is a natural partial order on the set 
of strongly connected components in any directed graph, and this order in our present 
context gives rise to a filtration of X . For some choices of bases of V , this filtration can 
be interesting and nontrivial.

When this procedure is applied to the Kazhdan–Lusztig basis of H (viewed as a left 
module over itself), the graph one obtains has a particular form, which serves as the 
prototypical example of a W -graph. The notion of a W -graph dates to Kazhdan and 
Lusztig’s paper [18], but our conventions in the following definitions have been adopted 
from Stembridge’s more recent work [34,35].

Definition 3.22. Let I be a finite set. An I-labeled graph is a triple Γ = (V, ω, τ) where

(i) V is a finite vertex set;
(ii) ω : V × V → A is a map;
(iii) τ : V → P(I) is a map assigning a subset of I to each vertex.

We write ω(x → y) for ω(x, y) when x, y ∈ V . One views Γ as a weighted directed 
graph on the vertex set V with an edge from x to y when the weight ω(x → y) is nonzero.
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Definition 3.23. Fix a Coxeter system (W, S). An S-labeled graph Γ = (V, ω, τ) is a 
W -graph if the free A-module generated by V may be given an H-module structure with

Hsx =

⎧⎪⎨⎪⎩
vx if s /∈ τ(x)

−v−1x +
∑

y∈V ; s/∈τ(y)

ω(x → y)y if s ∈ τ(x) for s ∈ S and x ∈ V.

The prototypical W -graph defined by the Kazhdan–Lusztig basis of H has several 
notable features; Stembridge [34,35] calls W -graphs with these features admissible. We in-
troduce the following slight variant of Stembridge’s definition.

Definition 3.24. An I-labeled graph Γ = (V, ω, τ) is quasi-admissible if

(a) it is reduced in the sense that ω(x → y) = 0 whenever τ(x) ⊂ τ(y);
(b) its edge weights ω(x → y) are all integers;
(c) it is bipartite;
(d) the edge weights satisfy ω(x → y) = ω(y → x) whenever τ(x) 
⊂ τ(y) and τ(y) 
⊂

τ(x).

The I-labeled graph Γ is admissible if its integer edge weights are all nonnegative.

Let (X, ht) denote a fixed quasiparabolic W -set which is bounded below and ad-
mits a bar operator, so that canonical bases {Mx} ⊂ M = M(X, ht) and {Nx} ⊂
N = N (X, ht) given in Theorem 3.14 are well-defined. We show below that these 
bases induce two quasi-admissible W -graph structures on the set X. Define the maps 
μm, μn : X ×X → Z as just before (3.4).

Lemma 3.25. Let x, y ∈ X with x < y.

(a) If there exists s ∈ S with sy ≤ y and sx > x, then μm(x, y) = δsx,y.
(b) If there exists s ∈ S with sy < y and sx ≥ x, then μn(x, y) = δsx,y.

Proof. Suppose s ∈ S is such that sy ≤ y (respectively, sy < y), so that Corollary 3.17
implies

mx,y = vht(x)−ht(sx)msx,y (respectively, nx,y = vht(x)−ht(sx)nsx,y). (3.7)

If sx = y > x then mx,y = nx,y = v−1 so μm(x, y) = μn(x, y) = 1. Suppose alternatively 
that sx 
= y. Lemma 2.12 then implies that sx < y, and so msx,y and nsx,y both belong 
to v−1Z[v−1]. If sx > x then it follows by (3.7) that mx,y and nx,y are contained in 
v−2Z[v−1] so necessarily μm(x, y) = μn(x, y) = 0. It remains only to show that if sx = x
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then μn(x, y) = 0; for this, we note that if sy < y and sx = x then Corollary 3.17(a) 
reduces to the formula

μn(x, y) = −
∑

x<t<sy
st<t

μn(t, sy)μn(x, t).

We may assume by induction that μn(x, t) = 0 for all t ∈ X with x < t < y and st < t, 
and so we conclude from this formula that μn(x, y) = 0 as desired. �

Define τm, τn : X → P(S) as the maps with

τm(x) = {s ∈ S : sx ≤ x} and τn(x) = {s ∈ S : sx ≥ x}

and let ωm : X ×X → Z be the map with

ωm(x → y) =
{
μm(x, y) + μm(y, x) if τm(x) 
⊂ τm(y)
0 if τm(x) ⊂ τm(y).

Define ωn : X×X → Z by the same formula, but with μm and τm replaced by μn and τn.

Theorem 3.26. Both Γm = (X, ωm, τm) and Γn = (X, ωn, τn) are quasi-admissible 
W -graphs.

Proof. To see that Γn is a W -graph, observe that Lemma 3.25(b) implies that the formula 
in Theorem 3.16(b) for the action of Hs ∈ H on Nx ∈ N for s ∈ S and x ∈ X can be 
written as

HsNx =

⎧⎨⎩
vNx if sx < x

−v−1Nx +
∑

y∈X; sy<y

(
μn(x, y) + μn(y, x)

)
Ny if sx ≥ x.

One checks that this coincides with the H-module structure described in Definition 3.23
for the maps τ = τn and ω = ωn.

To prove that Γn is a W -graph, recall the definition of the elements N ′
x ∈ N for x ∈ X

from (3.6). By Theorem 3.16 and Lemmas 3.7, 3.19, and 3.25, it holds that if s ∈ S and 
x ∈ X then

HsN
′
x =

⎧⎪⎨⎪⎩
vN ′

x +
∑

y∈X; sy≤y

(
μm(x, y) + μm(y, x)

)
N ′

y if sx > x

−v−1N ′
x if sx ≤ x.

(3.8)

The matrix of the action of Hs on the basis {N ′
x}x∈X ⊂ N is evidently the transpose 

of the action proscribed by Definition 3.23 with τ = τm and ω = ωm. Since H is the 
quotient of the free A-algebra generated by {Hs : s ∈ S} by relations which are invariant 
under taking transposes, it follows that Γm is a W -graph.
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By Proposition 3.18, the division of X into elements of even and odd height affords a 
bipartition of Γm and Γn. Properties (a) and (c) in Definition 3.24 hold by construction, 
so we conclude that Γm and Γn are both quasi-admissible. �
Remark 3.27. If (X, ht) = (W, �) then Γm = Γn and both of these graphs coincide with 
the original admissible W -graph structure on W described in [18]. If W is finite and 
(X, ht) = (W J , �) for some J ⊂ S as in Example 2.4, then Γm and Γn are distinct but 
still admissible, and are isomorphic to the subgraphs of the W -graph on W induced on 
the respective vertex sets

W J,max = {w ∈ W : ws < w for all s ∈ J} and

W J = {w ∈ W : ws > w for all s ∈ J}.

This result does not seem to be well-known, and originates in work of Couillens [4]; see 
Chmutov’s thesis [3, §1.2.4] for an exposition, as well as the related papers of Howlett 
and Yin [12,13].

In the literature on W -graphs, strongly connected components (in a W -graph Γ) are 
referred to as cells as explained at the beginning of this section, the cells of Γ define a 
filtration of its corresponding H-module, and so classifying the cells is a natural problem 
of interest. When (X, ht) = (W, �) the cells of Γm = Γn are the left cells of (W, S), 
about which there exists a substantial literature; see [2, Chapter 6] for an overview. It is 
a natural open problem to study to cells of the W -graphs Γm and Γn defined in this 
section for more general quasiparabolic sets.

4. Quasiparabolic conjugacy classes

Rains and Vazirani mention two W -actions motivating their study of quasiparabolic 
sets in [27]: the action of W on cosets of standard parabolic subgroups, and the action of 
W on itself by (twisted) conjugation. The quasiparabolic W -set coming from the former 
example is relatively well understood, having been studied, for example, in [4–6,31]. This 
section is devoted to quasiparabolic twisted conjugacy classes, about which less is known.

4.1. Necessary properties

Let Aut(W, S) denote the group of automorphisms of W which preserve the set of 
simple generators S, and for θ ∈ Aut(W, S) define sets W θ,+ and W+ by

W θ,+ = {(x, θ) : x ∈ W} = W × {θ} and W+ = W × Aut(W,S).

One gives a group structure to the set W+ via the multiplication formula

(x, α)(y, β) = (x · α(y), αβ).
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The group W+ is a semidirect product W � Aut(W, S), which we sometimes refer to as 
the extended (Coxeter) group of W . We view W and Aut(W, S) as subgroups of W+ by 
identifying x ∈ W and θ ∈ Aut(W, S) with (x, 1) and (1, θ), respectively. The group W
acts by conjugation on W+, and for each θ ∈ Aut(W, S) the subset W θ,+ ⊂ W+ is a 
union of W -conjugacy classes. The conjugation action of W on W θ,+ coincides with the 
θ-twisted conjugation action of W on itself. We identify each ordinary conjugacy class in 
W with a W -conjugacy class in the set W id,+ ⊂ W+.

Extend the length function on W to W+ by setting �(x, θ) = �(x). Any W -conjugacy 
class K in W+ is then a scaled W -set with respect to the height function ht(w) = 1

2�(w)
for w ∈ K. If this scaled W -set is quasiparabolic, then we say that K is quasiparabolic.

Example 4.1. Consider the W × W -conjugacy class of (1, θ) ∈ (W × W )+, where 
θ ∈ Aut(W ×W ) is the automorphism θ : (x, y) �→ (y, x). This conjugacy class (with the 
height function 1

2�) is isomorphic as a scaled W -set to the quasiparabolic set (W, �) from 
Example 2.3. Via this example, one can view our results concerning quasiparabolic con-
jugacy classes as generalizing constructions (e.g., the Kazhdan–Lusztig basis) attached 
to W itself.

The main object of this section is to say something about when a W -conjugacy class in 
W+ is quasiparabolic. We will need the following lemma, which is similar to a property 
Rains and Vazirani check in the course of their proof of [27, Theorem 3.1].

Lemma 4.2. Let w ∈ W+ and r ∈ R and s ∈ S.

(a) If �(wr) > �(w) and �(swr) < �(sw) then swr = w.
(b) If �(rw) > �(w) and �(rws) < �(ws) then rws = w.

Proof. We only prove part (a) since the other part is equivalent via the identity �(x) =
�(x−1). Since R is preserved by every θ ∈ Aut(W, S), to prove part (a) for all w ∈ W+

it suffices to check the given statement for w ∈ W . Proceeding, suppose w ∈ W is such 
that �(wr) > �(w) and �(swr) < �(sw). Let w = s1s2 · · · sk be a reduced expression; 
then sw = ss1s2 · · · sk is also a reduced expression since �(sw) = �(w) + 1 as �(sw) >
�(swr) ≥ �(wr) − 1 ≥ �(w). Given that �(swr) < �(sw), the Strong Exchange Condition 
[17, Theorem 5.8] implies that either swr = w or swr = ss1 · · · si−1si+1 · · · sk for some 
1 ≤ i ≤ k. The latter case cannot occur, since it implies that wr = s1 · · · si−1si+1 · · · sk
which in turn implies the contradiction �(wr) ≤ k − 1 < �(w). �

Define DesL(w) = {s ∈ S : �(sw) < �(w)} for w ∈ W+.

Theorem 4.3. Fix θ ∈ Aut(W, S) and let K ⊂ W θ,+ be a quasiparabolic W -conjugacy 
class. Suppose w = (x, θ) ∈ W+ is the unique W -minimal element of K and define 
J = DesL(w).
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(a) For all s ∈ J it holds that sws = w.
(b) The standard parabolic subgroup WJ ⊂ W is finite and preserved by θ.
(c) It holds that x = wJ where wJ denotes the longest element in WJ .

Proof. If x = 1 then J = ∅ and parts (a)–(c) hold vacuously. Therefore assume �(x) =
�(w) > 0. To prove part (a), note that if s ∈ J then we have �(w) ≤ �(sws) ≤ �(sw) +1 =
�(w) since w is minimal in its conjugacy class, so �(sws) = �(w) which implies that 
sws = w since the conjugacy class of w is quasiparabolic.

For the first assertion in part (b), observe that x−1wx = (θ(x), θ) is W -conjugate to 
w and has the same length, so since w is the unique minimal element in its conjugacy 
class we must have x = θ(x), which implies that J = θ(J).

Fix k ≥ 1 and let si ∈ J be such that s1s2 · · · sk is a reduced expression. Define 
w0 = w and wi = wi−1si = ws1s2 · · · si for i ≥ 1. We claim that �(wi) = �(w) − i for all 
0 ≤ i ≤ k. We prove this by induction on i; the claim is true if i ∈ {0, 1} by part (a), 
so assume i ≥ 2 and that �(wj) = �(w) −j when j < i. By part (a), s1wi−1 = ws2 · · · si−1
and s1wi−1si = ws2 · · · si−1si. Since s2 · · · si−1 and s2 · · · si−1si are reduced expressions 
of length less than i, it follows that

�(s1wi−1) = �(wi−2) > �(wi−1) and �(s1wi−1si) = �(wi−1)

by our inductive hypothesis. Now observe that if �(wi) = �(wi−1si) 
= �(wi−1) − 1 then 
�(wi−1si) = �(wi−1) + 1 > �(s1wi−1si), in which case the preceding lemma (with r = s1
and s = si) gives s1wi−1 = wi−1si which implies that s2 · · · si−1 = s1s2 · · · si−1si. The 
last identity contradicts our assumption that s1 · · · sk is a reduced expression, so we 
must have �(wi) = �(wi−1) − 1 = �(w) − i as desired. Our claim thus holds for all i by 
induction.

It follows from the claim just proved that if z ∈ WJ then �(wz) = �(w) − �(z). Since 
the length of wz is necessarily nonnegative, we deduce that WJ must be finite, which 
completes the proof of part (b). To prove part (c), let si ∈ S be such that x = s1 · · · sk
is a reduced expression. Since wJ = θ(wJ) by part (b), our claim implies that �(xwJ) =
�(xθ(wJ)) = �(wwJ) = �(x) − �(wJ). We may therefore assume that for some j ≥ 1 it 
holds that sjsj+1 · · · sk is a reduced expression for w−1

J = wJ . We now argue that j = 1. 
To show this, observe that s1 ∈ J = DesL(wJ), so by our claim and part (a) it follows 
that

�(s1wwJ) = �(ws1wJ) = �(w) − �(s1wJ) > �(w) − �(wJ) = �(wwJ).

Thus s1 /∈ DesL(wwJ), which clearly only holds if j = 1, since wwJ has length j− 1 and 
if j > 1 then wwJ = (s1 · · · sj−1, θ). We conclude that x = wJ which proves part (c). �

Given w ∈ W+ and H ⊂ W and θ ∈ Aut(W ), define the following subgroups:

CW (w) = {x ∈ W : xw = wx} and NW,θ(H) = {x ∈ W : xH = Hθ(x)}.
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The first subgroup is the usual centralizer while the second is a twisted normalizer.

Corollary 4.4. If w = (x, θ) ∈ W+ is the unique W -minimal element in quasiparabolic 
W -conjugacy class then CW (w) = NW,θ(WJ) where J = DesL(w).

Proof. Theorem 4.3 shows that x is both central and equal to the longest element wJ

in WJ . Pfeiffer and Röhrle have shown that usual centralizer CW (wJ) is equal to the usual 
normalizer of WJ if wJ is central in WJ [26, Proposition 2.2]; their proof of this fact carries 
over to our slightly more general twisted situation with almost no modification. �

We state below three more corollaries, after introducing some more notation. First 
define

I+ = I+(W,S) def= {w ∈ W+ : w2 = 1}.

We refer to elements of I+ as twisted involutions. Observe that a pair (x, θ) ∈ W+ is a 
twisted involution if and only if θ2 = 1 and θ(x) = x−1; in this situation; the element 
x ∈ W is sometimes referred to as a twisted involution relative to θ. Additionally, for 
θ ∈ Aut(W, S) define

ι(θ) def=
{(

x−1θ(x), θ
)
∈ W+ : x ∈ W

}
Observe that ι(θ) is the W -conjugacy class of (1, θ) ∈ W+, so ι(id) = {1} ⊂ W and 
if θ2 = 1 then ι(θ) ⊂ I+. When θ2 = 1, Hultman [16] refers to the elements of ι(θ)
as twisted identities. Both I+ and ι(θ) have a number of interesting properties; see, for 
example, [14–16,28,29,33].

Corollary 4.5. Let θ ∈ Aut(W, S) and let K ⊂ W θ,+ be a quasiparabolic W -conjugacy 
class. The operation w �→ w2 then defines a surjective map K → ι(θ2).

Proof. Let w = (x, θ) be the unique minimal element in K. By Theorem 4.3, x = wJ for 
a θ-invariant subset J ⊂ S, so x = x−1 = θ(x) and w2 = (1, θ2) ∈ ι(θ2), so the corollary 
follows. �
Corollary 4.6. If θ2 = 1 then all quasiparabolic W -conjugacy classes in W θ,+ are subsets 
of I+.

Proof. This follows from the preceding corollary since if θ2 = 1 then the preimage of 
ι(θ2) = {1} under w �→ w2 is precisely I+. �
Corollary 4.7. All quasiparabolic conjugacy classes in W are subsets of {w ∈ W :
w2 = 1}.
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Proof. This follows from the previous corollary since {w ∈ W : w2 = 1} =
W id,+ ∩ I+. �
Remark 4.8. When W is finite, this last corollary follows more directly from the well-
known fact (discussed, for example, in the introduction of [24]) that every element of W
is conjugate to its inverse, so only conjugacy classes of involutions have unique minimal 
elements. In an infinite Coxeter group an element can fail to be conjugate to its inverse.

Our last result in this section is the following theorem promised in the introduction.

Theorem 4.9. If W is finite, then all quasiparabolic conjugacy classes in W+ are subsets 
of I+.

We prove the theorem after stating two preliminary lemmas. Recall that a Coxeter 
system (W, S) is irreducible if no proper nonempty subset J ⊂ S is such that st = ts

for all s ∈ J and t ∈ S \ J . If J ⊂ S then we write WJ for the subgroup which J
generates; then (WJ , J) it itself a Coxeter system, whose length function coincides with 
the restriction of � : W → N. Define

J = J (W,S) = {J : ∅ � J ⊂ S such that (WJ , J) is irreducible}.

For each J ∈ J we denote by πJ : W → WJ the unique surjective homomorphism with 
πJ(s) = s for s ∈ J and πJ(s) = 1 for s ∈ S \ J . The map

w �→ (πJ(w))J∈J

is then an isomorphism of Coxeter systems W ∼−−→
∏

J∈J WJ , where the product group 
is interpreted as a Coxeter system relative to the generating set given by the image of S.

Fix θ ∈ Aut(W, S) and note that θ permutes the set J , in the sense that θ(J) ∈ J
for all J ∈ J . Given J ∈ J , let J1, J2, . . . , Jk be the distinct elements of the 〈θ〉-orbit 
of J , ordered such that J = J1 and θ(Ji) = Ji+1 (indices interpreted modulo k). Define 
WJ,θ = WJ1 ×WJ2 × · · · ×WJk

and let τθ be the automorphism of WJ,θ with

τθ(x1, . . . , xk−1, xk) = (θ(xk), θ(x1), . . . , θ(xk−1)) for xi ∈ WJi
.

Note that (WJ,θ, K) is a Coxeter system when K is the smallest set preserved by τθ
which contains (s, 1, . . . , 1) ∈ WJ,θ for all s ∈ J , and τθ ∈ Aut(WJ,θ, K). Define πJ,θ :
W θ,+ → (WJ,θ)τθ,+ by

πJ,θ(x, θ) = ((πJ1(x), πJ2(x), . . . , πJk
(x)) , τθ) for x ∈ W.

We now state two lemmas using this formalism.

Lemma 4.10. Fix θ ∈ Aut(W, S) and let K ⊂ W θ,+ be a W -conjugacy class.
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(a) For each J ∈ J (W, S), the image πJ,θ(K) is a WJ,θ-conjugacy class.
(b) K is quasiparabolic if and only if πJ,θ(K) is quasiparabolic for every J ∈ J (W, S).

Proof. We just sketch the idea of a proof of this result, which is intuitively clear. Part (a) 
follows by elementary considerations. The “only if” direction of part (b) follows from [27, 
Proposition 2.6] (which states that a set which is quasiparabolic relative to the action of 
a Coxeter group is also quasiparabolic relative to any of the group’s standard parabolic 
subgroups) while the “if” direction follows from [27, Proposition 3.3] (which states that 
the Cartesian product of several quasiparabolic sets is a quasiparabolic set relative to 
the Cartesian product of the acting Coxeter groups). �
Lemma 4.11. Suppose θ ∈ Aut(W, S) transitively permutes J = J (W, S). Assume 
|J | ≥ 2 and let K ⊂ W θ,+ be a W -conjugacy class.

(a) If |J | > 2 then K is not quasiparabolic.
(b) If |J | = 2 then K is quasiparabolic if and only if its minimal element is (1, θ) ∈ W+.

Hence, if K is quasiparabolic then K ⊂ I+.

Proof. Let k = |J (W, S)|. Since θ transitively permutes the elements of J (W, S), we can 
assume without loss of generality that W = W ′ × W ′ × · · · × W ′ (k factors) for some 
Coxeter system (W ′, S′) and that θ acts on W by the formula (w1, . . . , wk−1, wk) �→
(wk, w1, . . . , wk−1).

Suppose K is quasiparabolic, and let wi ∈ W ′ be the elements such that
w = ((w1, . . . , wk), θ) ∈ K is the unique element of minimal length. We then must 
have w1 = · · · = wk = 1, since if some wi 
= 1 then there would exist s ∈ S′ with 
swi < wi, and in this case one can check that if t = (1, . . . , s, . . . , 1) ∈ S is the simple 
generator with 1 in all but the ith coordinate, then twt 
= w has �(twt) ≤ �(w), con-
tradicting Lemma 2.7. Hence K must contain the element (1, θ), which is automatically 
minimal since it has length 0.

We now argue that the case k ≥ 3 leads to contradiction. For this, choose any 
r ∈ S′, and define s, t ∈ S by s = (r, 1, 1, . . .) and t = (1, r, 1, . . .). If k ≥ 3 then 
the element x = s(1, θ)s = ((s, s, 1, . . . , ), θ) ∈ K has txt = ((s, 1, s, . . .), θ) 
= x but 
ht(txt) = ht(x) = 1. This contradicts (QP1) in the definition of a quasiparabolic set, 
so we conclude that k = 2, which proves part (a) and one direction of part (b). For 
the rest of part (b), it remains to check that the W -conjugacy class of (1, θ) is in fact 
quasiparabolic when k = 2. This follows as a standard exercise from properties of the 
Bruhat order of W ; alternatively, the desired claim is a consequence of a general criterion 
of Rains and Vazirani which we will restate below as Theorem 4.13. �

Finally, we prove Theorem 4.9.
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Proof of Theorem 4.9. Let θ ∈ Aut(W, S) and suppose K ⊂ W θ,+ is a quasiparabolic 
W -conjugacy class. To show that K ⊂ I+, we reduce via Lemma 4.10 to the case when 
θ acts transitively on J (W, S). In this situation, Lemma 4.11 implies that if J (W, S)
has k ≥ 2 elements then K ⊂ I+ (and in fact k = 2). On the other hand, if θ2 = 1 then 
by Corollary 4.6 we likewise have K ⊂ I+. It thus only remains to show that K ⊂ I+ if 
(W, S) is irreducible and θ2 
= 1. This actually leaves very little left to check: for if (W, S)
is finite and irreducible and θ ∈ Aut(W, S) is not an involution, then by the classification 
results in [17, Chapter 2], (W, S) is necessarily of type D4 and θ can be identified with 
the automorphism of order three described in [11, §6.2].

Explicitly, let W be the Coxeter group of D4, i.e. the group generated by the set of 
involutions S = {s1, s2, s3, s4}, where s1, s2, s4 pairwise commute and sis3 has order 3 for 
i ∈ {1, 2, 4}. Assume θ ∈ Aut(W, S) is not an involution. Then, after possibly relabeling 
the simple generators, we may assume that θ acts on S by mapping s1 �→ s3 and s3 �→ s4
and s4 �→ s1 and s2 �→ s2. Calculations of Geck, Kim, and Pfeiffer (see [11, Table I]) 
show that only two W -conjugacy classes in W θ,+ have unique elements of minimal length, 
namely, the conjugacy classes of (1, θ) and (s2, θ). One checks that both classes violate 
(QP1) in Definition 2.2: the first class contains x = s1(1, θ)s1 = (s1s3, θ) which has the 
same length as s3xs3 
= x, while the second class contains y = s1s2s3(s2, θ)s3s2s1 which 
has the same length as s2ys2 
= y. We conclude that K ⊂ I+, as desired. �
4.2. Sufficient conditions

Rains and Vazirani prove a useful sufficient condition for a W -conjugacy class of 
twisted involutions to be quasiparabolic. Recall that R = {wsw−1 : (w, s) ∈ W × S} is 
the set of reflections in W .

Definition 4.12. A twisted involution w ∈ I+ is perfect if (rw)4 = 1 for all r ∈ R.

Observe that if w ∈ I+ is perfect then all elements in the W -conjugacy class of w are 
also perfect, so it makes sense to say that a W -conjugacy class of twisted involutions is 
perfect if any of its elements are. The following appears as [27, Theorem 4.6].

Theorem 4.13. (See Rains and Vazirani [27].) All perfect conjugacy classes in I+ are 
quasiparabolic.

As Rains and Vazirani note in [27], it is straightforward to check that all fixed-point-
free involutions in S2n are perfect. Therefore:

Corollary 4.14. (See Rains and Vazirani [27].) The conjugacy class of fixed-point-free 
involutions in the symmetric group S2n is quasiparabolic for all n.

Rains and Vazirani describe explicitly the perfect W -conjugacy classes in W+ when 
W is finite in [27, Example 9.2]. There can exist quasiparabolic conjugacy classes in I+

which are not perfect, however, even when W is finite. For example:
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• If (W, S) has type F4, then we have checked with a computer that the conjugacy 
class of the nontrivial diagram automorphism in Aut(W, S) ⊂ I+ has 72 elements 
and is quasiparabolic but not perfect.

• If (W, S) has type I2(2m), then the conjugacy classes of each simple generator are 
disjoint of size m, while the conjugacy class of the nontrivial diagram automorphism 
in Aut(W, S) ⊂ I+ has size 2m. All three conjugacy classes are quasiparabolic, but 
the first two are perfect only when m ∈ {1, 2} while the third is perfect only when 
m = 1.

By appealing to Theorem 4.9 and using a computer for the exceptional types, one can 
show that when (W, S) is an irreducible finite Coxeter system these are the only examples 
of quasiparabolic W -conjugacy classes in W+ which are not perfect. Combining this with 
Lemmas 4.10 and 4.11 and the discussion in [27, Example 9.2] would afford a classification 
of all quasiparabolic conjugacy classes in a finite (extended) Coxeter group. We do not 
pursue this topic here, however.

We can describe examples of quasiparabolic conjugacy classes which are not comprised 
of twisted involutions. A Coxeter system (W, S) is universal if st has infinite order for 
all distinct generators s, t ∈ S. Each element of a universal Coxeter group has a unique 
reduced expression.

Proposition 4.15. Suppose (W, S) is a universal Coxeter system. Let K ⊂ W+ be a 
W -conjugacy class. The following are then equivalent:

(a) K is quasiparabolic.
(b) K contains a unique minimal element.
(c) K contains an element (x, θ) ∈ W+ with x = θ(x) and x ∈ {1} ∪ S.

Remark 4.16. Note in the situation of (c) that (x, θ) has length 0 or 1 and so is necessarily 
an element of minimal length in K, as conjugation preserves length parity.

Proof. By Lemma 2.7, (a) ⇒ (b) so we only need to show that (c) ⇒ (b) and (c) ⇒ (a). 
For the first implication, suppose w = (x, θ) ∈ W+ is the unique minimal element in 
its W -conjugacy class. Since the conjugate element x−1wx = (θ(x), θ) has the same 
length as w, we must have x = θ(x). We wish to show that x ∈ {1} ∪ S. If x 
= 1
then there is a unique reduced expression x = s1s2 · · · sk where k ≥ 1. The conjugate 
element s1ws1 = (s2 · · · skθ(s1), θ) then has length �(w) or �(w) −2; since w is the unique 
minimal element in its conjugacy class, the latter case cannot occur and we must have 
s1s2 · · · sk = s2 · · · skθ(s1). Both of these expressions are reduced, so they can be equal 
only if k = 1, in which case x ∈ S.

This shows that (b) ⇒ (c) and it remains only to show that (c) ⇒ (a). For this, 
suppose w = (x, θ) ∈ W+ such that x = θ(x) ∈ {1} ∪ S, so that �(w) ∈ {0, 1}. Since W
is universal, the centralizer CW (w) = {z ∈ W : zw = wz} is given by
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CW (w) = WJ where J =
{ {x} if x ∈ S

{s ∈ S : θ(s) = s} if x = 1.

It follows by [27, Proposition 2.15] that the W -conjugacy class of w is isomorphic as a 
scaled W -set (after translating the height function by 12�(w)) to (W J , �). Since the latter 
set is quasiparabolic, so is the former, and thus (c) ⇒ (a) as required. �
Corollary 4.17. Suppose (W, S) is a universal Coxeter system. Then all W -conjugacy 
classes in I+ are quasiparabolic, but there exist quasiparabolic W -conjugacy classes in 
W+ which are not contained in I+ whenever |S| ≥ 3.

Proof. Let K ⊂ I+ be a W -conjugacy class and let w = (x, θ) ∈ K be some minimal 
element. To show that K is quasiparabolic it suffices by the proposition to show that w is 
the unique minimal element in K. If x = 1 then this is clear, so suppose x 
= 1 and choose 
s ∈ S such that �(sw) < �(w) for some s ∈ S. The minimality of w implies �(sws) =
�(w), which implies sw = ws by a straightforward argument using the (weak) Exchange 
Condition; see [15, Lemma 3.4]. The identity sw = ws is equivalent to sx = xθ(s), which 
can hold only if x = s = θ(s) since W is universal. By the proposition we therefore 
conclude that w is the unique minimal element in K as desired.

Proposition 4.15 shows that when W is universal the W -conjugacy class of (1, θ)
is quasiparabolic for any θ ∈ Aut(W, S). This conjugacy class is not a subset of I+

whenever θ2 
= 1, which can occur if |S| ≥ 3 since Aut(W, S) is isomorphic to the group 
of permutations of S. �

As noted in the proof of Proposition 4.15, if (W, S) is universal and K ⊂ W+ is a 
quasiparabolic W -conjugacy class, then (K, 12�) may be identified (after possibly trans-
lating the height function) with the quasiparabolic set (W J , �) for some J ⊂ S. Thus, 
Corollary 3.4 implies the following:

Corollary 4.18. If (W, S) is a universal Coxeter system, then all quasiparabolic 
W -conjugacy classes in W+ admit bar operators.

4.3. Bar operators for twisted involutions

Let (W, S) be any Coxeter system and write I+
QP = I+

QP(W, S) for the union of all 
quasiparabolic W -conjugacy classes in I+ ⊂ W+. This union is, by construction, a 
quasiparabolic set relative to the height function 1

2�, and it is bounded below. Given 
w ∈ W+, define

|w|m = v�min(w) and |w|n = (−v)−�min(w) = (−1)�(w)/|w|m

where �min(w) = minx∈W �(xwx−1). Note that these quantities depend only on the 
W -conjugacy class of w. Our main result in this section is the following theorem from 
the introduction.
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Theorem 4.19. The quasiparabolic set (I+
QP, 

1
2�) admits a bar operator. The (unique) bar 

operators on the corresponding H-modules M = M(I+
QP, 

1
2�) and N = N (I+

QP, 
1
2�) act 

by the formulas

M(x,θ) = |(x, θ)|m ·Hx ·M(x−1,θ) and N(x,θ) = |(x, θ)|n ·Hx ·N(x−1,θ)

for (x, θ) ∈ I+
QP.

Remark 4.20. In [20,22,23], Lusztig and Vogan study a module of the Iwahori–Hecke 
algebra of an arbitrary Coxeter system on the free A-module generated by all of I+. 
They prove (see [20, Theorems 0.2 and 0.4]) that this module possesses a “bar operator” 
admitting a unique invariant “canonical basis.” The formula for their bar operator is 
the same (up to scaling factors) as the ones given in the preceding theorem, but there 
does not appear to be any simple relationship between Lusztig and Vogan’s I+-indexed 
canonical basis and the two canonical bases we obtain for M(I+

QP, 
1
2�) and N (I+

QP, 
1
2�); 

see Problem 5.9. Indeed, the polynomial coefficients of these bases satisfy different degree 
bounds, and the two W -graph structures on I+

QP afforded by Theorems 3.26 and 4.19
can each have cells which are not subsets of the two-sided cells in W (as defined in [18]). 
By contrast, the results of [22, Section 5] show that the cells of the natural “W -graph” 
structure on I+ induced by Lusztig and Vogan’s canonical basis are always contained in 
a two-sided cell.

Proof. We prove the statement for the module M; the proof for N is very similar. First, 
we check that Mw = Mw if w = (x, θ) ∈ I+

QP is the unique element of minimal length 
in its W -conjugacy class. By Theorem 4.3 there exists a θ-invariant subset J ⊂ S such 
that x = x−1 = wJ and sws = w for all s ∈ J . In any reduced expression x = s1s2 · · · sk
every factor satisfies si ∈ J (see [17, Theorem 5.5]), and so

HxMw = H−1
s1 H−1

s2 · · ·H−1
sk

Mw = v−�(x)Mw.

As �(x) = �min(w) since w = (x, θ) is W -minimal, it follows that Mw = Mw as desired.
According to Definition 3.1, it now remains only to show that HM = H ·M for all 

H ∈ H and M ∈ M. For this it suffices to check that

HsM(x,θ) = Hs ·M(x,θ) for s ∈ S and (x, θ) ∈ I+
QP.

Set x′ = sxθ(s) so that s(x, θ)s = (x′, θ), and observe that sx < x if and only if 
θ(s)x−1 < x−1 since (x, θ) ∈ I+ implies x−1 = θ(x). As an abbreviation we define 
κ = |(x, θ)|m = |(x′, θ)|m. There are now three cases to consider, according to the 
difference in length between x and x′:

(1) If �(x′) > �(x) then HsHx = Hx′Hθ(s) and Hθ(s)M(x−1,θ) = M(x′−1,θ) so

Hs ·M(x,θ) = κ ·Hx′ ·Hθ(s) ·M(x−1,θ) = κ ·Hx′ ·M(x′−1,θ) = M(x′,θ) = HsM(x,θ).
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(2) If �(x′) < �(x) then HsHx = Hsx + (v − v−1)Hx = Hx′Hθ(s) + (v − v−1)Hx so

Hs ·M(x,θ) = κ ·Hx′ ·Hθ(s) ·M(x−1,θ) + (v−1 − v) ·M(x,θ).

Since Hθ(s)M(x−1,θ) = M(x′,θ), the right side of the preceding identity is equal to

M(x′,θ) + (v−1 − v) ·M(x,θ) = HsM(x,θ).

(3) If �(x′) = �(x) then x′ = x by condition (QP1) in Definition 2.2, so we have HsHx =
HxHθ(s) and HsM(x,θ) = vM(x,θ), and therefore

Hs ·M(x,θ) = κ ·Hs ·Hx ·M(x−1,θ) = κ ·Hx ·Hs ·M(x−1,θ) = v−1M(x,θ) = HsM(x,θ).

Hence the given A-antilinear map M → M is a bar operator, which is what we set out 
to prove. �

Assume (W, S) is a finite Coxeter system, so that W has a longest element w0. Recall 
since the longest element is unique, we have w0 = w−1

0 = θ(w0) for all θ ∈ Aut(W, S). 
Write θ0 for the inner automorphism of W given by

θ0 : w �→ w0ww0.

This map is an automorphism of the poset (W, ≤) and in particular is length-preserving 
[2, Proposition 2.3.4(ii)]; thus it belongs to Aut(W, S). In fact, θ0 lies in the center of 
Aut(W, S). Let

w+
0 = (w0, θ0) ∈ W+.

Observe that this element is a central involution in W+, and so if w = (x, θ) ∈ I+ then 
ww+

0 = w+
0 w = (xw0, θθ0) ∈ I+. Relative to this notation, we have the following lemma.

Lemma 4.21. The map w �→ ww+
0 defines a Bruhat order-reversing involution of W+

(also, of I+) which induces an involution of the set of quasiparabolic conjugacy classes 
in W+.

Proof. The map w �→ ww+
0 is an involution of W+ which preserves I+ since w+

0 is a 
central involution; the map reverses the Bruhat order on W+ by [2, Proposition 2.3.4(i)]. 
Let K ⊂ W+ be a quasiparabolic W -conjugacy class. Since w+

0 is central the set Kw+
0 =

{ww+
0 : w ∈ K} is then also a W -conjugacy class and it remains only to show that it 

is quasiparabolic. This is straightforward from Definition 2.2 since K is quasiparabolic 
and since for any x ∈ W we have �(xww+

0 x
−1) = �(xwx−1w+

0 ) = �(w0) − �(xwx−1) by 
[2, Proposition 2.3.2(ii)]. �
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Let M = M(I+
QP, 

1
2�) and N = N (I+

QP, 
1
2�) as in Theorem 4.19. For the rest of this 

section mx,y and nx,y for x, y ∈ I+
QP denote the polynomials defined from the canonical 

bases of these particular modules as in (3.4). When W is finite, one can prove an inversion 
formula for these polynomials, analogous to [18, Theorem 3.1] concerning the original 
Kazhdan–Lusztig polynomials.

We introduce some notation which will be helpful in proving this result. Let M∗ be 
the A-module of A-linear maps M → A. For w ∈ I+

QP define M∗
w ∈ M∗ as the A-linear 

map with

M∗
w(Mw′) = δw,w′ for w′ ∈ I+

QP.

When W is finite, the set of elements {M∗
w : w ∈ I+

QP} forms an A-basis for M∗. We view 
M∗ as an H-module with respect to the action defined by

(HL)(m) = L(H†m) for H ∈ H and L ∈ M∗ and m ∈ M,

where H �→ H† denotes the A-algebra anti-automorphism of H with (Hw)† = Hw−1 for 
w ∈ W .

Theorem 4.22. If W is finite, then for all x, y ∈ I+
QP it holds that

∑
w∈I+

QP

(−1)
�(x)+�(w)

2 ·mx,w · nyw+
0 ,ww+

0
= δx,y.

Remark 4.23. Recall that mx,y = nx,y = 0 unless x and y belong to the same 
W -conjugacy class, in which case �(y) − �(x) is even, so the exponentiation of −1 in 
this formula is well-defined.

Remark 4.24. An analogous inversion formula, due to Douglass [7], exists for the polyno-
mials mx,y and nx,y defined relative to the quasiparabolic set (W J , �) when W is finite 
(see Example 2.4); see [31, Proposition 3.9] for a restatement of this formula in notation 
closer to ours.

Proof. Let Υ : M → M∗ be the A-linear map with Υ 
(
Mww+

0

)
= M∗

w for w ∈ I+
QP. 

Lemmas 3.6 and 4.21 ensure that this map is a well-defined A-linear bijection. Using the 
fact that w �→ ww+

0 is an involution of I+
QP which commutes with W -conjugation and 

which reverses the Bruhat order, it is straightforward to check that Υ is moreover an 
isomorphism of H-modules. Next, denote by L �→ L the A-antilinear map M∗ → M∗

with

L(m) = L(m) for L ∈ M∗ and m ∈ M.

It follows by Lemma 3.6 that M∗
w = M∗

w if w ∈ I+
QP is W -maximal, and since H† = H†

for all H ∈ H, one easily checks that HL(m) =
(
H · L

)
(m) for all H ∈ H and L ∈ M∗



E. Marberg / Journal of Algebra 453 (2016) 325–363 359
and m ∈ M. From these properties and the fact that w �→ ww+
0 is Bruhat order-reversing 

on I+
QP, it follows that map M �→ Υ−1

(
Υ(M)

)
is a bar operator on M. Since the bar 

operator on M is unique by Proposition 3.2, it must hold that M = Υ−1
(
Υ(M)

)
or, 

equivalently, that

Υ(M) = Υ(M) for all M ∈ M. (4.1)

Now recall the definition of the element M ′
x ∈ M for x ∈ I+

QP from (3.6). Since �(xw+
0 ) −

�(ww+
0 ) = �(w) − �(x) and since M ′

xw+
0

= M ′
xw+

0
, it holds that Υ 

(
M ′

xw+
0

)
= Υ 

(
M ′

xw+
0

)
which means that

Υ
(
M ′

xw+
0

)
(My) =

∑
w∈I+

QP

(−1)
�(x)+�(w)

2 · nww+
0 ,xw+

0
·mw,y.

Since nx,y and mx,y each belong to the set δx,y + v−1Z[v−1], it follows that
Υ 
(
M ′

xw+
0

)
(My) ∈ δx,y + v−1Z[v−1]. On the other hand, Υ 

(
M ′

xw+
0

)
(My) must be 

invariant under the bar operator on A since (4.1) combined with the bar invariance of 
the elements Mx and M ′

x implies that

Υ
(
M ′

xw+
0

)
(My) = Υ

(
M ′

xw+
0

)
(My) = Υ

(
M ′

xw+
0

)
(My) = Υ

(
M ′

xw+
0

)
(My).

The only way to reconcile these observations is to conclude that

∑
w∈I+

QP

(−1)
�(x)+�(w)

2 · nww+
0 ,xw+

0
·mw,y = Υ

(
M ′

xw+
0

)
(My) = δx,y.

This identity is equivalent to the statement of the theorem: the theorem asserts that 
a matrix identity of the form AB = 1 holds for two certain square matrices A and B
whose rows and columns are indexed by I+

QP, and the preceding identity is the transpose 
of that equation. �
Corollary 4.25. If W is finite, then

Mx =
∑

w∈I+
QP

(−1)
�(x)+�(w)

2 · nxw+
0 ,ww+

0
·Mw and

Nx =
∑

w∈I+
QP

(−1)
�(x)+�(w)

2 ·mxw+
0 ,ww+

0
·Nw

for all x ∈ I+
QP, where {Mx} and {Mx} (respectively, {Nx} and {Nx}) denote the 

standard and canonical bases of the H-module M(I+
QP, 

1�) (respectively, N (I+
QP, 

1�)).
2 2
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Proof. Expand the canonical basis elements on the right as Mw =
∑

y∈I+
QP

my,wMy

and Nw =
∑

y∈I+
QP

ny,wNy, interchange the order of summation, and then apply Theo-
rem 4.22. �
5. Problems and conjectures

We mention some conjectures and problems related to our results. Recall the definition 
of the notation Rht(x) from (2.1). As we noted in Remark 3.5, it appears that the only 
bounded quasiparabolic sets which automatically admit bar operators are those arising 
from the parabolic case, in the sense of the following conjecture:

Conjecture 5.1. If (X, ht) is a quasiparabolic W -set which is transitive and bounded below, 
and if |Rht(x)| = 1 for all x ∈ X, then (X, ht) ∼= (W J , �) for some J ⊂ S.

[1, Theorem 3.11.4] summarizes a number of interpretations of the “parabolic 
Kazhdan–Lusztig bases” of M(W J , �) and N (W J , �) in a representation theoretic con-
text. Such interpretations lead to the following problem, which is related to the discussion 
in [27, §9] and [29, §10].

Problem 5.2. Find a geometric or representation-theoretic interpretation of the quasi-
parabolic conjugacy classes in W+, of the corresponding modules M and N , and their 
canonical bases.

Remark 5.3. As mentioned by an anonymous referee, there are a few case of quasi-
parabolic conjugacy classes for which the corresponding H-modules and their bases do 
admit natural representation-theoretic interpretations. These are the conjugacy classes 
of the fixed-point-free involutions in S2n, of the longest element of type D4 in the 
Weyl group of type E6, and of a perfect involution with maximal proper centralizer 
in type Dn. These classes correspond to the real semisimple Lie groups SU∗(2n), E6

−26, 
and SO(1, 2n − 1), and the associated H-module basis elements correspond to standard 
representations of these Lie groups whose central characters are the same as that of the 
trivial representation; see [21,36].

The following conjecture is stated implicitly in [27, §5], and proved in the special 
case of W -conjugacy classes of automorphisms θ ∈ Aut(W, S) ⊂ W+ which are perfect 
involutions [27, Proposition 5.17]. This conjecture seems to closely parallel the main 
result of [29].

Conjecture 5.4. The “Bruhat order” on a quasiparabolic W -conjugacy class in W+ as 
given by Definition 2.10 coincides with the restriction of the usual Bruhat order on W+.

As Rains and Vazirani note in [27], the criterion that any perfect conjugacy class of 
twisted involutions is quasiparabolic is often inadequate in applications involving infinite 
Coxeter groups.
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Problem 5.5. Formulate a version of Theorem 4.13 which can be used to prove that 
(interesting) conjugacy classes in W+ are quasiparabolic when W is infinite. Classify the 
quasiparabolic conjugacy classes in W+ when (W, S) is an affine Weyl group.

It appears that quasiparabolic W -conjugacy classes in I+ may be characterized by a 
simpler set of conditions than the ones in Definition 2.2. Specifically, we conjecture the 
following:

Conjecture 5.6. Any conjugacy class in I+ which satisfies property (QP1) in Defini-
tion 2.2 (relative to the height function ht = 1

2�) also satisfies (QP2), and hence is 
quasiparabolic.

A lot of useful technical machinery has been developed for twisted involutions in 
a Coxeter group; see, for example, [14–16,28,29,33]. One reason to expect the preced-
ing conjecture to be true is that it reduces via this machinery to the following second 
conjecture, which can be viewed as a plausible “strong exchange condition” for twisted 
involutions, analogous to Hultman’s “(weak) exchange condition” [15, Proposition 3.10]. 
Recall here that R = {wsw−1 : (w, s) ∈ W × S}.

Conjecture 5.7. Let K ⊂ I+ be a W -conjugacy class such that �(rwr) = �(w) implies 
rwr = w for all (r, w) ∈ R × K. Then �(rwr) < �(w) implies rwr < w for all (r, w) ∈
R×K.

Our results in Section 3.3 lead to the following problem.

Problem 5.8. Describe the cells of the W -graphs Γm and Γn attached via Theorem 3.26
to a quasiparabolic conjugacy class in a finite or affine Weyl group.

In the classical cases, this problem is of interest just in view of the elegant combi-
natorial description of the left cells in the symmetric group (see [2, Chapter 6]). More 
generally, it would be especially interesting to connect information about the cells in Γm

and Γn to Problem 5.2.
As discussed in Remark 4.20, Lusztig and Vogan [20,22,23] have recently studied an 

Iwahori–Hecke algebra module spanned by the entire set of twisted involutions I+ in 
a Coxeter group, which admits a “bar operator” given formally by nearly the same 
definition as for the bar operators in Theorem 4.19. Despite this, it remains unclear 
whether the canonical bases corresponding to these bar operators have any simple rela-
tionship.

Problem 5.9. How are the bases {Mx}x∈I+
QP

and {Nx}x∈I+
QP

defined by Theorems 3.14
and 4.19 related to the canonical basis indexed by I+ studied in [20,22,23]?
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