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1. Introduction

In this paper, we study the action of the absolute Galois group on the homology 
of the Fermat curve. Let p be an odd prime, let ζ be a chosen primitive pth root of 
unity, and consider the cyclotomic field K = Q(ζ). Let GK be the absolute Galois group 
of K. The Fermat curve of exponent p is the smooth projective curve X ⊂ P2

K of genus 
g = (p − 1)(p − 2)/2 given by the equation

xp + yp = zp.

Anderson [2] proved several foundational results about the Galois module structure of 
a certain relative homology group of the Fermat curve. These results are closely related 
to [13] [7], and were further developed in [1] [3]. Consider the affine open U ⊂ X given by 
z �= 0, which has equation xp +yp = 1. Consider the closed subscheme Y ⊂ U defined by 
xy = 0, which consists of 2p points. Let H1(U, Y ; Z/p) denote the étale homology group, 
with Z/p coefficients, of the pair (U ⊗ K, Y ⊗ K); it is a continuous module over GQ. 
There is a μp × μp action on X given by

(ζi, ζj) · [x, y, z] = [ζix, ζjy, z], (ζi, ζj) ∈ μp × μp,

which determines an action on U , preserving Y . By [2, Theorem 6], the group 
H1(U, Y ; Z/p) is a free rank one Z/p[μp×μp] module, with generator denoted β. The Ga-
lois action of σ ∈ GK is then determined by σβ = Bσβ, for some unit Bσ ∈ Z/p[μp×μp].

Let L be the splitting field of 1 − (1 − xp)p. By [2, Section 10.5], the GK action on 
H1(U, Y ; Z/p) factors through Gal(L/K). This implies that the full GK module structure 
of H1(U, Y ; Z/p) is determined by the finitely many elements Bq for q ∈ Gal(L/K).

From Anderson’s work, the description of the elements Bq is theoretically complete in 
the following sense: Anderson shows that Bq is determined by an analogue of the classical 
gamma function Γq ∈ Fp[μp] � Fp[ε]/〈εp−1〉. By [2, Theorems 7 & 9], there is a formula 
Bq = d̄′(Γq) (with d̄′ as defined in Section 2.2). The canonical derivation d : Fp[μp] →
ΩFp[μp] to the module of Kähler differentials allows one to take the logarithmic derivative 
dlog Γq of Γq. Since p is prime, dlog Γq determines Bq uniquely [2, 10.5.2, 10.5.3]. The 
function q 
→ dlog Γq is in turn determined by a relative homology group of the punctured 
affine line H1(A1 − V (

∑p−1
i=0 xi), {0, 1}; Z/p) [2, Theorem 10].

In this paper, for any odd prime p satisfying Vandiver’s conjecture, we extend Ander-
son’s work for the Fermat curve of exponent p by finding a closed form formula for Bq
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for all q ∈ Gal(L/K). This formula is valuable for calculating Galois cohomology of the 
Fermat curve and other applications.

We now describe the results of the paper in more detail. We assume throughout that 
p is an odd prime satisfying Vandiver’s Conjecture, namely that p does not divide the 
order h+ of the class group of Q(ζ + ζ−1); this is true for all p less than 163 million and 
all regular primes. Under this condition, we proved in [10] that Gal(L/K) � (Z/p)r+1

where r = (p − 1)/2. More precisely, let κ denote the classical Kummer map; i.e., for 
θ ∈ K∗, let κ(θ) : GK → μp be defined by

κ(θ)(σ) = σ p
√
θ

p
√
θ
.

Then the map

κ(ζ) ×
p−1
2∏

i=1
κ(1 − ζ−i) : Gal(L/K) → (μp)

p+1
2

is an isomorphism [10, Corollary 3.7]. We review this material and give additional infor-
mation about the extension Gal(L/Q) in Section 2.1.

In Section 2.2, we review [10, Corollary 4.2] which gives a formula for dlog Γq in 
terms of the above description of Gal(L/K), see (2.c) and (2.d). Writing dlog Γq =∑p−1

i=1 ciε
i dlog ε for ci in Fp, we note that each ci is linear in the coordinate projections 

of q viewed as an element of (Fp)
p+1
2 ∼= (μp)

p+1
2 , which is isomorphic to Gal(L/K) since 

a pth root of unity has been chosen.
In Section 3, we use this formula to compute a closed form formula for Bq in terms 

of the generators ε0 and ε1 for Λ1 = Z/p[μp × μp]. As the first step, in Proposition 3.4, 
we determine Γq ∈ Fp[μp] from dlog Γq using a truncated exponential map E0 defined 
in (3.e) and an auxiliary polynomial γ defined in (3.i). As the second step, we determine 
Bq from Γq, and re-express the result in terms of a second exponential map E1 defined 
in (3.f). Although γ has coefficients in F̄p, the resulting Bq is indeed in Λ1. This yields 
the first main result.

Theorem 1.1. (see Theorem 3.5) Suppose p is an odd prime satisfying Vandiver’s con-
jecture. Then the action of Gal(L/K) on the relative homology

H1(U, Y ;Z/p) ∼= Λ1 = Z/p[μp × μp]

of the Fermat curve is determined as follows. For q ∈ Gal(L/K) ∼= (Fp)
p+1
2 , let the 

image of q in (Fp)
p+1
2 be

q = (c0, c1, . . . , c p−1 )

2
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and for i > p−1
2 , let ci = cp−i − ic0, and c =

∑p−1
i=1 ci. Let F ∈ F̄p be a solution to the 

equation

F p − F +
p−1∑
i=1

c = 0.

Let

γ(ε) =
p−1∑
i=1

(
ci + c− F

i

)
εi −

p−1∑
i=1

ci
i
.

Then q acts by multiplication by the element Bq ∈ Λ1 with the explicit formula

Bq = E0(γ(ε0))E0(γ(ε1))
E0(γ(ε0ε1))

= E1(γ(ε0) + γ(ε1))
E0(γ(ε0ε1))

,

where E0 and E1 are the truncated exponential maps of (3.e) and (3.f), respectively.

Section 4 contains two applications of Theorem 1.1, which hold for any odd prime p
satisfying Vandiver’s conjecture. By [2, 9.6 and 10.5.2], if q ∈ Gal(L/K), then Bq − 1
lies in the augmentation ideal (1 − ε0)(1 − ε1)Λ1; this is equivalent to the statement 
that (Bq − 1)β ∈ H1(U ; Z/p). In Corollary 4.2, we provide a technical strengthening 
of [2, 9.6 and 10.5.2]. The first application, Theorem 4.6, is that the norm of Bq is 0
or, equivalently, that the norm of q acts as zero on H1(U, Y ; Z/p), for almost all q ∈
Gal(L/K); the only exception is when p = 3 and q does not fix ζ9 ∈ L. This result is 
of significant importance in computing Galois cohomology, as seen in Section 6. For the 
second application, note that Anderson’s result implies that H1(U ; Z/p) is trivialized by 
the product 

∏p−1
i=1 (Bqi − 1) for any q1, . . . , qp−1 ∈ Q; The improvement in Corollary 4.2

allows us to show in Corollary 4.10 that in fact H1(U ; Z/p) is trivialized by the product 
of only s = 
2p/3� such terms.

Having explicitly determined the action of Q = Gal(L/K), and therefore of GK , 
on M = H1(U, Y ; Z/p), we proceed to studying the zeroth and first associated Ga-
lois cohomology groups. In Section 5, we study the GK-invariants, which are just the 
Q-invariants since the action of GK factors through Q. In Proposition 5.2, we prove 
that codim(H1(U ; Z/p)Q, MQ) = 2 for all odd p and find a uniform subspace of MQ in 
Lemmas 5.1 and 5.3; we use these results in future work.

In Section 6, we work towards determining the first Galois cohomology group. Initially, 
the material in this section might seem disjoint from the earlier sections. However, these 
general results in commutative algebra will eventually play a key role in understanding 
obstructions for rational points on Fermat curves.

For the second main result, consider an extension of finite (or profinite) groups

1 → N → G → Q → 1. (1.a)
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Suppose M is a Z[G]-module on which N acts trivially. Note that this applies to G = GK , 
Q = Gal(L/K), and M = H1(U, Y ; Z/p). Consider the differential in the spectral se-
quence associated with (1.a)

d2 : H1(N,M)Q → H2(Q,M).

It gives a short exact sequence

0 → H1(Q,M) → H1(G,M) → Ker d2 → 0,

which reduces the calculation of H1(G, M) to the two simpler calculations of H1(Q, M)
and Ker d2. We address the first of these calculations in Remark 6.5, while the rest of 
Section 6 concerns the second.

When Q � (Z/p)r+1, we determine the kernel of d2 algebraically. To state the result 
about Ker(d2), fix a set of generators τ0, . . . , τr of Q. Let Nτj = 1 +τj+· · · τp−1

j denote the 
norm of τj . Let s : Q → G be a set-theoretic section of (1.a). The element ω ∈ H2(Q, N)
classifying (1.a) is determined by elements aj , cj,k ∈ N where aj = s(τj)p for 0 ≤ j ≤ r

and where, for 0 ≤ j < k ≤ r,

cj,k = [s(τk), s(τj)] = s(τk)s(τj)s(τk)−1s(τj)−1.

Here is the second main result of this paper

Theorem 1.2. (see Theorem 6.11) Suppose φ ∈ H1(N, M)Q is a class represented by a 
homomorphism φ : N → M . Then φ is in the kernel of d2 if and only if there exist 
m0, . . . , mr ∈ M such that

(1) φ(aj) = −Nτjmj for 0 ≤ i ≤ r and
(2) φ(cj,k) = (1 − τk)mj − (1 − τj)mk for 0 ≤ j < k ≤ r.

This theorem is a consequence of the general result about d2 given in Proposition 6.1, 
combined with a direct comparison of cocycle representatives coming from two different 
resolutions which compute H∗(Q, M).

The last section of this paper, Section 7, is disjoint from the main results and is not 
new, but the methods use new topological tools, and are included for this reason. We 
recover results about the zeta function mod p of the Fermat curve of exponent p over a 
finite field of coprime characteristic.

Here is the motivation for studying the first Galois cohomology group of the relative 
homology H1(U, Y ; Z/p). Let X be a smooth, proper curve over a number field k and let 
b be a geometric point of X. Let π = π1(Xk, b) denote the geometric étale fundamental 
group of X based at b, and let

π = [π]1 ⊇ [π]2 ⊇ . . . ⊇ [π]n ⊇ . . .
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denote the lower central series. Let G denote the Galois group of the maximal extension 
of k ramified only over the primes of bad reduction for X, the infinite places, and a 
chosen prime p. Using work of Schmidt and Wingberg [21], Ellenberg [11] defines a 
series of obstructions to a point of the Jacobian of a curve X lying in the image of the 
Abel–Jacobi map. Namely, X(k) and JacX(k) can be viewed as subsets of H1(G, πab

p ), 
where for a nilpotent profinite group, the p-subscript denotes the p-Sylow [20, Chapter 7]. 
The first of these obstructions

δ2 : H1(G, πab
p ) → H2(G, ([π]2/[π]3)p)

was also studied by Zarkhin [23]; it is the coboundary map associated to the p-part of 
the exact sequence

0 → [π]2/[π]3 → π/[π]3 → π/[π]2 → 0,

and has the property that Ker δ2 ⊃ X(k). Ellenberg’s obstructions are related to the 
non-abelian Chabauty methods of [16] [16] [8] [4]. The work of [6] gives interesting 
information related to the embedding JacX(k) ⊂ H1(G, πab

p ) for the Fermat curve.
To pursue this application in the case of Fermat curves, set M = H1(U, Y ; Z/p) and 

Q = Gal(L/K). In future work, we provide information about N (the Galois group of 
the maximal extension of L ramified only over the prime above p and the infinite places) 
and the elements aj , cj,k ∈ N which classify (1.a).

In the mentioned future work, to apply Theorem 1.2, we need additional information 
about the elements Bq ∈ Z/p[μp × μp] which we include in Sections 4–5. Specifically, we 
need Theorem 4.6 which states that the norm Nq of Bq is zero for all q ∈ Q and all p ≥ 5; 
Proposition 5.2 which states that codim(H1(U ; Z/p)Q, MQ) = 2; and Proposition 5.9
which is about the kernels of Bτj − 1.

2. Review and extension of previous results

Throughout this paper, p is an odd prime satisfying Vandiver’s conjecture.
In our previous paper [10], we extended results of Anderson [2] regarding the action 

of the absolute Galois group of a number field on the first homology of Fermat curves. 
In this section we briefly summarize and generalize these results.

The homology group associated to the Fermat curve of exponent p in which one sees 
the Galois action most transparently is the relative homology group H1(U, Y ; Z/p). The 
path β : [0, 1] → U(C) given by t 
→ ( p

√
t, p
√

1 − t), where p
√
− denotes the real pth root, 

determines a singular 1-simplex in H1(U, Y ; Z/p) whose class we denote by the same 
name. By [2, Theorem 6], H1(U, Y ; Z/p) is a free rank one module with generator β over 
the group ring

Λ1 = Z/p[μp × μp] = Z/p[ε0, ε1]/〈εpi − 1〉.
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Note that Λ1 itself has an action by GQ, where g ∈ GQ acts on both ε0 and ε1 as it does 
on a primitive p-th root of unity ζ in K = Q(ζ). The action of g ∈ GQ on H1(U, Y ; Z/p)
is twisted in the sense that

g · (f(ε0, ε1)β) = (g · f(ε0, ε1))(g · β) = (g · f(ε0, ε1))Bgβ.

In particular, if g fixes K, it is easier to describe the action.
Further, by [2, Section 10.5], if a Galois element fixes the splitting field L of 1 −

(1 − xp)p, then it acts trivially on H1(U, Y ; Z/p). Hence to determine the action of GQ, 
we are reduced to determining the action of the finite Galois group Gal(L/Q). To do 
this explicitly, we need to know the structure of these Galois groups; this is described in 
the first subsection.

The next subsection introduces the question of determining Bq, where q is an element 
of the Galois group Q := Gal(L/K).

2.1. The Galois groups Gal(L/K) and Gal(L/Q)

Let r = p−1
2 ; by [10, Lemma 3.3], the splitting field of L of 1 − (1 − xp)p is

L = K( p
√

ζ, p
√

1 − ζ−i|1 ≤ i ≤ r).

Let σ ∈ GK ; for an element θ of K, let p
√
θ be a choice of a primitive p-root. We define 

κ(θ)σ to be the element of Z/p such that

σ · p
√
θ = ζκ(θ)σ p

√
θ.

Then κ(θ) defines a homomorphism GK → Z/p, which factors through Gal(K( p
√
θ)/K).

From [10, Corollary 3.7], the map

C = κ(ζ) ×
r∏

i=1
κ(1 − ζ−i) : Gal(L/K) → (Z/p)r+1 (2.b)

is an isomorphism. This relationship has a geometric meaning explored further in [10, 
Section 4]. We use C to give a convenient basis of Q = Gal(L/K).

Definition 2.1. For 0 ≤ i ≤ r, let τi be the inverse image under C of the ith standard 
basis vector of (Z/p)r+1. In other words, consider the basis for L/K given by t0 = p

√
ζ

and ti = p
√

1 − ζ−i for 1 ≤ i ≤ r. Then τi acts by multiplication by ζ on ti and acts 
trivially on tj for 0 ≤ j ≤ r, j �= i.

Now we turn to studying the Galois group Gal(L/Q); note that L/Q is itself Galois 
since L is a splitting field. There is an extension
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1 → Q → Gal(L/Q) → (Z/p)∗ → 1.

Since Gal(K/Q) ∼= (Z/p)∗ has order coprime to the order of Q, the Schur–Zassenhaus 
theorem implies that Gal(L/Q) splits as a semidirect product of Q and (Z/p)∗. The next 
result determines this semidirect product.

Lemma 2.2. The extension L/Q is Galois with group Q �ψ (Z/p)∗ where ψ : (Z/p)∗ →
Aut(Q) is given by the conjugation action

ψ(a) · τi =
{

(τia)a, if i �= 0,
τ0, if i = 0.

In particular, if a is a generator of (Z/p)∗, then ψ(a) acts transitively on the set of 
subgroups 〈τi〉 for 1 ≤ i ≤ r.

Proof. We already remarked that Gal(L/Q) is a semi-direct product Q �ψ (Z/p)∗; we 
just need to determine ψ. For a ∈ (Z/p)∗, let αa ∈ Aut(K) be given by ζ 
→ ζa. For the 
case i �= 0, we need to show

αaτiα
−1
a (z) = (τia)a(z), for all z ∈ L, 0 ≤ i ≤ r.

As in Definition 2.1, let tj = p

√
1 − ζ−j

p , for 1 ≤ j ≤ r, and t0 = p
√
ζ. Since tj , 0 ≤ j ≤ r, 

generate L over K, it suffices to check the above for z = tj .
If j = ia, then (τia)a(tj) = ζatj and

αaτiα
−1
a (tia) = αaτi(ti) = αa(ζti) = ζatj .

If j �= ia, then tj is fixed by both αaτiα
−1
a and τia.

For the case i = 0, we need to show αaτ0α
−1
a (tj) = τ0(tj), for all 0 ≤ j ≤ r. For j > 0, 

tj is fixed by both τ0 and ατ0α−1. If j = 0, then τ0(t0) = ζt0 and

αaτ0α
−1
a (t0) = αaτ0(ta

−1

0 ) = αa(ζa
−1
ta

−1

0 ) = ζt0. �
2.2. Determining the action of Q on H1(U, Y ; Z/p)

The action of q ∈ Q on H1(U, Y ; Z/p) is determined by a unit Bq of Λ1, where Λ1 =
Z/p[μp×μp] ∼= Z/p[ε0, ε1]/〈εpi−1〉. Denote by Λ0 the group ring Z/p[μp] = Z/p[ε]/〈εp−1〉. 
Let Λ̄i = Λi ⊗Fp

F̄p. Define a map d̄′ : Λ̄×
0 → Λ̄×

1 by

d̄′(u(ε)) = u(ε0)u(ε1)
.

u(ε0ε1)
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By [2, Theorems 7 and 9], Bq is in the image of d̄′; in fact, Bq = d̄′(Γq), where Γq ∈ Λ̄×
0

is unique modulo the kernel of d̄′, which consists of εj , 0 ≤ j ≤ p − 1. Moreover, for such 
a Γq, if we write Γq =

∑p−1
i=0 diε

i with di ∈ F̄p, then 
∑p−1

i=0 di = 1 [10, Lemma 5.4].
The element Bq has several nice properties; it is symmetric under the involution of Λ1

exchanging ε0 and ε1. Further, by [2, 9.6, 10.5.2], Bq − 1 is in the ideal 〈(1 − ε0)(1 − ε1)〉
of Λ1, which corresponds to the homology group H1(U ; Z/p) [10, Lemma 6.1].

As we will see shortly, the image of Γq under the logarithmic derivative dlog : Λ̄×
0 →

Ω(Λ̄0) (to the Kähler differentials on Λ̄0) gives us the information needed to determine 
Γq and therefore Bq. Namely, we know from [10, Corollary 4.2] that, modulo a term 
in F̄p dlog ε,

dlog(Γq) =
p−1∑
i=1

ciε
i dlog ε, (2.c)

where ci = κ(1 − ζ−i)(q). Moreover, (2.b) along with [10, Corollary 4.4] determines the 
coefficients ci from q. Namely, let c0 = κ(ζ)(q); then c0, . . . cr are determined by the 
isomorphism C, and for i > r,

ci = cp−i − ic0. (2.d)

3. Explicit formula for the action of the Galois group

In this section, we find an explicit formula for Bq for each q ∈ Q, starting with the 
results summarized in the previous section. This is possible since Ψq := dlog Γq uniquely 
determines Bq by [2, 10.5] (see also [10, Proposition 5.1]).

3.1. Truncated exponential maps

Consider the group ring Λ0 ∼= Fp[ε]/(εp − 1); let y = ε − 1, so that Λ0 ∼= Fp[y]/〈yp〉. 
An element f ∈ Λ0 (or Λ̄0) can be written uniquely in the form f =

∑p−1
i=0 aiy

i. Let fy
be the derivative of f with respect to y. Then fy(0) = a1.

For f ∈ yΛ0 (or f ∈ yΛ̄0), we define an exponential in Λ0 by

E0(f) =
p−1∑
i=0

f i/i!. (3.e)

If f, g ∈ yΛ̄0, then E0(f)E0(g) = E0(f + g) and E0(f)−1 = E0(−f).

Lemma 3.1. If f ∈ yΛ̄0, then

dlog(E0(f)) = (1 + fy(0)p−1yp−1)df.
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Proof. Write f = yg and note that fy(0) = g(0) = a1. Then fp−1 = yp−1ap−1
1 because 

yp = 0. So E0(−f)fp−1 = yp−1ap−1
1 , again because yp = 0. Hence,

dlog(E0(f)) = E0(f)−1 dE0

df
df = E0(−f)(E0(f) − 1

(p− 1)!
fp−1)df

= (1 + E0(−f)fp−1)df = (1 + fy(0)p−1yp−1)df. �
Now we move on to the group ring Λ1 = Fp[μp×μp] ∼= Fp[ε0, ε1]/〈epi−1〉. Let yi = εi−1, 

so Λ1 = Fp[y0, y1]/〈yp0 , y
p
1〉.

Let W denote the Witt vectors over Fp (respectively F̄p). Since the characteristic of 
W[ 1p ] is zero, the usual exponential map

exp(f) =
∞∑

n=0

fn

n!

is well-defined for f ∈ W[ 1p ][y0, y1]/〈yp0 , y
p
1〉.

Lemma 3.2. If f ∈ 〈y0, y1〉 ⊂ W[y0, y1]/〈yp0 , y
p
1〉, then exp(f) ∈ W[y0, y1]/〈yp0 , y

p
1〉.

Proof. It suffices to check that fn/n! has coefficients in W for each n. This is clear 
if n < p. If n ≥ p, write f = f0y0 + f1y1 for f0, f1 ∈ W[y0, y1]/〈yp0 , y

p
1〉. Then fp =∑p−1

i=1
(
p
i

)
f i
0f

p−i
1 yn0 y

p−i
1 . Since p |

(
p
i

)
for 1 ≤ i ≤ p −1, it follows that fp/p! has coefficients 

in W. If p < n ≤ 2p − 2, then fn/n! = (fp/p!)fn−p/((p + 1)(p + 2) · · ·n) and so fn/n!
has coefficients in W. If n ≥ 2p − 1, then fn/n! = 0. �

We now define an exponential E1 for f ∈ 〈y0, y1〉 ⊂ Λ1. Let f̃ ∈ W[y0, y1]/〈yp0 , y
p
1〉 be 

any lift of f ; define

E1(f) = exp(f̃) (3.f)

where exp(f̃) denotes the image in Λ1 (or Λ̄1) of exp(f̃).

Lemma 3.3. If f, g ∈ 〈y0, y1〉 ⊂ Λ1 (or Λ̄1), then

(1) E1(f)E1(g) = E1(f + g),
(2) E1(f)−1 = E1(−f), and
(3) E1(f) =

∑2p−2
i=0 f i/i!.

Proof. First, if f, g ∈ W[ 1p ][y0, y1]/〈yp0 , y
p
1〉, then exp(f + g) = exp(f) exp(g). By 

Lemma 3.2, if f ∈ 〈y0, y1〉, then exp(f) ∈ W[y0, y1]/〈yp0 , y
p
1〉. Thus exp(f+g), exp(f), and 

exp(g) are in W[y0, y1]/〈yp0 , y
p
1〉. Reducing mod p shows that E1(f)E1(g) = E1(f + g).

Next, E1(f) is invertible because E1(f) = 1 +N for some element N of the nilradical. 
Then E1(f)−1 = E1(−f) because E1(f)E1(−f) = E1(0) = 1.

The last statement follows from the fact that f2p−1 = 0. �
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3.2. Γq from Ψq

In this subsection, we determine a formula for Γq in terms of Ψq = dlog Γq. For 
convenience, we drop the subscript q, but everything depends on this chosen element 
of Q.

Proposition 3.4. Write

Ψ =
p−1∑
i=1

ciε
i dlog ε,

and let c =
∑p−1

i=1 ci be its coefficient sum. Let F ∈ F̄p be a solution to the equation 
F p − F + c = 0, and define

γ(ε) =
p−1∑
i=1

(
ci + c− F

i

)
εi −

p−1∑
i=1

ci
i
. (3.g)

Then

Γ = E0(γ(ε)).

Proof. By (2.c) (and [10, Corollary 4.2]), dlog Γ = Ψ modulo F̄p dlog ε. We rewrite Ψ in 
the nilpotent basis, i.e.,

Ψ =
p−1∑
i=1

ciε
i dlog ε =

p−1∑
i=1

ci(y + 1)i−1dy.

To find a solution to Ψ = dlog(Γ), we find f ∈ yΛ̄0 such that Γ = E0(f); any unit in Λ0
is of this form up to scaling.

From the congruence 
(
p−1
i

)
≡ (−1)i mod p, it follows that

yp−1 = ((y + 1) − 1)p−1 =
p−1∑
i=0

(
p− 1
i

)
(y + 1)i(−1)p−1−i =

p−1∑
i=0

(y + 1)i. (3.h)

By Lemma 3.1,

dlog(E0(f)) = (1 + fy(0)p−1yp−1)df = df + fy(0)p
(

p−1∑
i=0

(y + 1)i
)
dy.

Define fi ∈ F̄p by f =
∑p−1

i=0 fi(y+1)i, and note that fy(0) =
∑p−1

i=0 ifi. For 1 ≤ i ≤ p −1, 
we need to solve the equation
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ifi +
(

p−1∑
i=0

ifi

)p

= ci

in such a way that 
∑p−1

i=0 fi = 0. This last condition comes from the fact that 
∑p−1

i=0 di = 1
if Γ =

∑p−1
i=0 diε

i, Section 2.2 (or [10, Lemma 5.4]).
Adding the first set of equations gives

c :=
p−1∑
i=1

ci = (p− 1)
(

p−1∑
i=0

ifi

)p

+
p−1∑
i=0

ifi.

Let F =
∑p−1

i=0 ifi; then F is a solution of F p − F + c = 0. Choose any of the p
solutions F, F + 1, . . . , F + (p − 1) in F̄p. Then fi = (ci + c − F )/i for i > 0 and 
f0 = − 

∑
i>0 fi = − 

∑
ci/i. �

3.3. Bq from Ψq

In this section, we determine a formula for B in terms of Ψ. Let γi = γ(εi) for i = 0, 1
and let γ01 = γ(ε0ε1), where

γ(ε) =
p−1∑
i=1

(ci + c− F

i
)εi −

p−1∑
i=1

ci
i
. (3.i)

Theorem 3.5. Suppose p is an odd prime satisfying Vandiver’s conjecture. The action 
of q ∈ Q = Gal(L/K) on the relative homology H1(U, Y ; Z/p) of the Fermat curve is 
determined by the element Bq ∈ Λ1 with the explicit formula

Bq = E0(γ0)E0(γ1)
E0(γ01)

= E1(γ0 + γ1)
E1(γ01) − T

,

where T is the “error term”

T = E1(γ01) −E0(γ01) =
2p−2∑
i=p

γi
01
i! .

Proof. By [2, Section 8.4], B = Γ(ε0)Γ(ε1)/Γ(ε0ε1) in Λ1. By Proposition 3.4, Γ(ε) =
E0(γ(ε)). If i = 0, 1, then E0(γi) = E1(γi) since γp

i = 0. By Lemma 3.3, Γ(ε0)Γ(ε1) =
E1(γ0 + γ1). Since γp

01 is not necessarily zero, the error term T appears in the denomi-
nator. �
Remark 3.6. The error term T is in the ideal 〈y0, y1〉p since γ01 ∈ 〈y0, y1〉.

In the atypical situation that γp
01 = 0, then T = 0 and Bq = E1(γ0 + γ1 − γ01).
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The next formula follows immediately from Theorem 3.5.

Bq−1 = E1(γ01 − γ0 − γ1) − E1(−γ0 − γ1)T. (3.j)

For better display in the next examples, let x = ε0 − 1 and y = ε1 − 1. We arrived at 
the formulas using Magma; it is difficult to do these calculations by hand.

Example 3.7. Let p = 3. Then Q = 〈τ0, τ1〉 = (Z/3)2.
If q = τ0, then c0 = 1, c1 = 0, and c2 = 1; hence c = 1. Let F be a solution of 

F 3 − F + 1 = 0, so f0 = 1, f1 = 1 − F , and f2 = 1 + F . Then

γτ0 = 1 + (1 − F )ε + (1 + F )ε2 = Fy + (1 + F )y2.

If q = τ1, then c0 = 0 and c1 = c2 = 1; hence c = −1. Let F be a solution to 
F 3 − F − 1 = 0, so that f0 = 0, f1 = −F , and f2 = F . Then

γτ1 = F (ε2 − ε) = F (y + y2).

After a calculation, one obtains that

Bτ0 = 1 + xy + 2xy(x + y) and Bτ1 = 1 + 2xy(x + y) + x2y2.

Example 3.8. Let p = 5; then Q = 〈τ0, τ1, τ2〉 � (Z/5)3, and we have:

Bτ0 − 1 = 4x4y4 + x4y3 + 3x4y2 + 4x4y + x3y4 + x3y3 + 2x3y2 + 4x3y

+ 3x2y4 + 2x2y3 + 3x2y + 4xy4 + 4xy3 + 3xy2;

Bτ1 − 1 = 2x4y4 + 2x4y3 + 4x4y2 + 4x4y + 2x3y4 + 2x3y3 + 4x3y2 + x3y

+ 4x2y4 + 4x2y3 + x2y2 + 4x2y + 4xy4 + xy3 + 4xy2;

Bτ2 − 1 = 2x4y4 + 3x4y3 + 3x4y2 + 3x3y4 + 4x3y3 + 4x3y2 + 4x3y

+ 3x2y4 + 4x2y3 + 4x2y2 + x2y + 4xy3 + xy2.

Example 3.9. Let p = 7; then Q = 〈τ0, τ1, τ2, τ3〉 � (Z/7)4, and we have:

Bτ0 − 1 = x6y5 + 3x6y4 + 2x6y3 + 2x6y2 + 6x6y

+ x5y6 + 2x5y5 + x5y4 + 4x5y3 + 6x5y

+ 3x4y6 + x4y5 + 5x4y4 + 2x4y2

+ 2x3y6 + 4x3y5 + 4x3y2 + 4x3y

+ 2x2y6 + 2x2y4 + 4x2y3 + 4x2y2 + 3x2y

+ 6xy6 + 6xy5 + 4xy3 + 3xy2;
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Bτ1 − 1 = 5x6y6 + 3x6y5 + 2x6y4 + 3x6y3 + 6x6y2 + 6x6y

+ 3x5y6 + 3x5y5 + 4x5y4 + 4x5y3 + 5x5y2 + x5y

+ 2x4y6 + 4x4y5 + x4y4 + 4x4y3 + 5x4y2 + 6x4y

+ 3x3y6 + 4x3y5 + 4x3y4 + 2x3y3 + 6x3y2 + x3y

+ 6x2y6 + 5x2y5 + 5x2y4 + 6x2y3 + x2y2 + 6x2y

+ 6xy6 + xy5 + 6xy4 + xy3 + 6xy2;

Bτ2 − 1 = 2x6y6 + 6x6y5 + 5x6y4 + x6y3

+ 6x5y6 + x5y5 + 5x5y4 + 2x5y3 + 3x5y2 + 6x5y

+ 5x4y6 + 5x4y5 + 4x4y4 + 5x4y2 + 2x4y

+ x3y6 + 2x3y5 + 3x3y3 + x3y2 + 4x3y

+ 3x2y5 + 5x2y4 + x2y3 + 4x2y2 + 3x2y

+ 6xy5 + 2xy4 + 4xy3 + 3xy2;

Bτ3 − 1 = 4x6y5 + 2x6y3 + 4x6y2

+ 4x5y6 + 4x5y5 + x5y4 + 6x5y3 + 3x5y2

+ x4y5 + 4x4y4 + 5x4y3 + 4x4y2 + 6x4y

+ 2x3y6 + 6x3y5 + 5x3y4 + 2x3y3 + 2x3y

+ 4x2y6 + 3x2y5 + 4x2y4 + 2x2y2 + 5x2y

+ 6xy4 + 2xy3 + 5xy2.

4. Norm equalities for general primes

For q ∈ Q, consider the unit Bq in Λ1 = Z/p[ε0, ε1]/〈εpi − 1〉. Note that Bp
q = 1 since 

q has order p. In Section 4.1, we strengthen this by proving that the norm

Nq := 1 + Bq + · · · + Bp−1
q

is zero, except in the special case that p = 3 and q does not fix ζ9 ∈ L. In Corollary 4.10, 
we study the power of Bq − 1 which trivializes H(U ; Z/p).

Throughout this section, it is again more convenient to work with the nilpotent basis 
of Λ1 given by yi = εi − 1, so that Λ1 = Z/p[y0, y1]/〈yp0 , y

p
1〉.

4.1. Vanishing norms

Before studying the norm of B = Bq, we need an auxiliary result. Write

γ̃ = γ0 + γ1 − γ01,
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where γ is as defined in (3.i), γi = γ(εi) for i = 0, 1, and γ01 = γ(ε0ε1). Note that 
γ̃ ∈ 〈y0, y1〉, since γ ∈ 〈y〉 ⊂ Λ̄0.

Proposition 4.1. If q ∈ Q, then γ̃ is in the ideal 〈y0, y1〉2. If p ≥ 5, or if p = 3 and q fixes 
ζ9 ∈ L, then γ̃ is in 〈y0, y1〉3. More precisely,

(1) γ̃ = y0y1η for some η ∈ Λ̄1;
(2) and γ̃ ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4, for some constant α ∈ Fp, unless p = 3

and q /∈ 〈τ1〉.

Proof. For part (1), suppose γ =
∑p−1

i=0 aiy
i. Then

γ̃ = γ(ε0) + γ(ε1) − γ(ε0ε1) =
p−1∑
i=0

ai(yi0 + yi1) −
p−1∑
i=0

ai(y0 + y1 + y0y1)i.

Consider the coefficient of yk0 (equivalently, yk1 ) in

γ(ε0ε1) =
p−1∑
i=0

ai(y0 + y1(1 + y0))i =
p−1∑
i=0

i∑
j=0

ai

(
i

j

)
yj0y

i−j
1 (1 + y0)i−j .

The monomial yk0 appears in this sum only when i = j, hence also j = k, and the 
coefficient is thus aj . It follows that the coefficients of yk0 and yk1 in γ̃ are zero, so γ̃ is 
divisible by y0y1.

For part (2), note that γ̃ = y0y1η, for some η ∈ Λ̄1, by part (1). The constant 
coefficient w of η equals the coefficient of y0y1 in −γ01. Write

γ =
p−1∑
i=0

fiε
i =

p−1∑
i=0

fi(y + 1)i;

then

−γ01 = −
p−1∑
i=0

fi(y0 + 1)i(y1 + 1)i, (4.k)

so it follows that

w = −
p−1∑
i=1

fii
2.

Since fi = ci+c−F
i , this simplifies to

w = −(c− F )
p−1∑
i=1

i−
p−1∑
i=1

ici = −
p−1∑
i=1

ici.

In particular, this proves that the assignment �c = (c0, c1, . . . , cp−1) → w is linear.
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Case 1: If c0 = 0 (equivalently, if q fixes ζp2), then cp−i = ci. In this case, w =
− 
∑(p−1)/2

i=1 ci(i + (p − i)) = 0.
Case 2: Suppose c0 = 1 and ci = 0 for 1 ≤ i ≤ r = p−1

2 . Then cp−j = j for 1 ≤ j ≤ r. 
So

w = −
p−1∑

i=r+1
i(p− i) = −

r∑
j=1

(p− j)j =
r∑

j=1
j2,

and w = r(r + 1)(2r + 1)/6. If p ≥ 5, then this gives w = 0.
General case: Since �c → w is linear, the above two cases prove that w = 0 for all q

when p ≥ 5. Finally, η ≡ α(y0 + y1) modulo 〈y0, y1〉2 since it is symmetric with respect 
to the involution switching y0 and y1. �

The following consequence of Proposition 4.1 will be used in Section 5.

Corollary 4.2. Suppose p ≥ 5.

(1) Then Bq−1 is in the ideal 〈y0, y1〉3 for all q ∈ Q. In fact, for some constant α ∈ Fp, 
there is a congruence Bq − 1 ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4.

(2) The coefficient α of y2
0y

1
1 in Bq −1 is non-zero for all q ∈ Q not in a linear subspace 

of codimension 1.

Proof. It suffices to show the conclusions for B−1
q − 1. By (3.j),

B−1
q = E1(−γ̃) −E1(−γ0 − γ1)T.

Now T ∈ 〈y0, y1〉p by Remark 3.6 so B−1
q − 1 ≡ E1(−γ̃) − 1 modulo 〈y0, y1〉p. Fur-

thermore, −γ̃ ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4 by Proposition 4.1. By definition, 
E1(f) =

∑2p−2
i=0 f i/i!. Thus

E1(−γ̃) − 1 = −γ̃ + γ̃2/2 + · · · ≡ −γ̃ mod 〈y0, y1〉8.

Thus B−1
q − 1 ≡ αy0y1(y0 + y1) modulo 〈y0, y1〉4, finishing item (1).

For item (2), recall that −γ̃ = γ01 − γ0 − γ1. Thus α is the coefficient of y2
0y

1
1 in γ01, 

because γ0 and γ1 have no terms divisible by y0y1. As in (3.i), γ(ε) =
∑p−1

i=1 fiε
i where 

fi = (ci + c − F )/i. By (4.k),

γ01 =
p−1∑
i=1

fi(y0 + 1)i(y1 + 1)i =
p−1∑
i=1

fi(1 + iy0 +
(
i

2

)
y2
0 + · · · )(1 + iy1 +

(
i

2

)
y2
1 + · · · ).

So the coefficient α of y2
0y1 in γ01 is
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α =
p−1∑
i=2

fi

(
i

2

)
i =

p−1∑
i=2

(ci + c− F )
(
i

2

)
.

The centered octagonal pyramid number formula is 
∑p−1

i=2
(
i
2
)

= n(4n2 − 1)/3 where 
n = (p − 1)/2. Then 4n2 − 1 ≡ 0 mod p, so (c − F ) 

∑p−1
i=2

(
i
2
)
≡ 0 mod p. Thus

α =
p−1∑
i=2

ci

(
i

2

)
.

Item (2) follows since the coefficient α is linear in �c and does not vanish when c2 =
cp−2 = 1 and all other ci = 0. �
Proposition 4.3. Let Nq−1 be the norm of Bq−1 and γ̃ = γ0 + γ1 − γ01. Then

Nq−1 = NE1(−γ̃) :=
p−1∑
i=0

E1(−γ̃)i.

Proof. By (3.j), Bq−1 = E1(γ01 − γ0 − γ1) − E1(−γ0 − γ1)T . By Remark 3.6, T 2 = 0. 
Therefore, using Lemma 3.3 repeatedly, we have

Nq−1 =
p−1∑
m=0

(E1(−γ̃) −E1(−γ0 − γ1)T )m

=
p−1∑
m=0

m∑
k=0

(−1)k
(
m

k

)
E1(−(m− k)γ̃)E1(−k(γ0 + γ1))T k

=
p−1∑
m=0

E1(−mγ̃) −
p−1∑
m=1

mE1((1 −m)γ̃ − γ0 − γ1)T

= NE1(−γ̃) −
T

E1(γ01)

p−1∑
m=1

mE1(−mγ̃).

To finish the proof, it suffices to show that the second term in the sum is 0 in Λ1. By 
Proposition 4.1, γ̃ ∈ 〈y0, y1〉2. Since T ∈ 〈y0, y1〉p, it suffices to show that

S = S(γ̃) =
p−1∑
m=1

mE1(−mγ̃)

is in the ideal I = 〈y0, y1〉p−1. By Lemma 3.3(3),

S =
p−1∑ 2p−2∑

(−1)tm
t+1γ̃t

t! .

m=1 t=0
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If t ≥ p−1
2 , then γ̃t ∈ I. Thus, modulo I,

S ≡
(p−3)/2∑

t=0
(−1)t γ̃

t

t! (
p−1∑
m=1

mt+1).

However, 
∑p−1

m=1 m
t+1 = 0 when 0 ≤ t ≤ (p − 3)/2. �

Lemma 4.4. Suppose f ∈ Λ1 is in the ideal 〈y0, y1〉. Then

NE1(f) :=
p−1∑
i=0

E1(f)i = fp−1 − f2p−2

(2p− 2)! .

Remark 4.5. Even though it is not possible to divide by p, the expression f2p−2

(2p−2)! is 
well-defined for f ∈ 〈y0, y1〉.

Proof. By Lemma 3.3,

NE1(f) =
p−1∑
i=0

E1(f)i =
p−1∑
i=0

E1(if) = 1 +
p−1∑
i=1

2p−2∑
m=0

imfm

m! .

Thus

Nf = 1 +
2p−2∑
m=0

fm

m!

( p−1∑
i=1

im
)
.

Recall that, modulo p, 
∑p−1

i=1 im = 0 unless m ≡ 0 mod p −1 in which case 
∑p−1

i=1 im =
−1. Also (p − 1)! = −1. Thus

NE1(f) = 1 −
(
1 + fp−1

(p− 1)! + f2p−2

(2p− 2)!

)
= fp−1 − f2p−2

(2p− 2)! . �
Theorem 4.6. For any q ∈ Q, the norm Nq of Bq equals γ̃p−1. In particular, Nq = 0 for 
all q ∈ Q if p ≥ 5; when p = 3, then Nq = 0 if q fixes ζ9.

Proof. The norm of Bq equals the norm of B−1
q = Bq−1 , which is Nq−1 . By Proposi-

tion 4.3, Nq−1 = NE1(−γ̃), and by Lemma 4.4,

NE1(−γ̃) = (−γ̃)p−1 − (−γ̃)2p−2

(2p− 2)! .

From Proposition 4.1, γ̃2p−2 is in the ideal 〈y0, y1〉2(2p−2), hence zero. Moreover, by 
Proposition 4.1(2) if p ≥ 5, or if q fixes ζp2 , then γ̃p−1 = 0. �
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Example 4.7. Let p = 3, and q = τ1; as seen in Example 3.7, γτ1 = F (ε2 − ε), so

γ̃τ1 = F (ε20 − ε0 + ε21 − ε1 − ε20ε
2
1 + ε0ε1) = −y2

0y
2
1 + y0y1(y0 + y1).

Thus γ̃τ1 ∈ 〈y0, y1〉3 and Nτ1 = γ̃2
τ1 = 0.

Example 4.8. Let p = 3, and q = τ0; as seen in Example 3.7,

γτ0 = 1 + (1 − F )ε + (1 + F )ε2 = Fy + (1 + F )y2.

This implies that

γ̃τ0 = y0y1 + (1 + F )y0y1(y0 + y1 − y0y1),

showing that Nτ0 = γ̃2
τ0 = y2

0y
2
1 , which is not zero.

Example 4.9. Let p = 5. Then modulo 〈y0, y1〉4:

γ̃τ0 ≡ 3y0y1(y0 + y1), γ̃τ1 ≡ 4y0y1(y0 + y1), γ̃τ2 ≡ y0y1(y0 + y1).

4.2. A second application

Let (y0y1)Λ1 = (ε0 − 1)(ε1 − 1)Λ1 denote the augmentation ideal. By [10, Propo-
sition 6.2], the homology H1(U ; Z/p) can be identified with (y0y1)Λ1β. In [2, 9.6 and 
10.5.2], for each q ∈ Q, Anderson proves that Bq − 1 ∈ (y0y1)Λ1; this implies that 
H1(U ; Z/p) is trivialized by the product 

∏p−1
i=1 (Bqi − 1) for any q1, . . . , qp−1 ∈ Q. The 

improvement in Corollary 4.2 allows us to show that in fact H1(U ; Z/p) is trivialized by 
the product of only s = 
2p/3� such terms when p ≥ 5.

Corollary 4.10. Let p ≥ 5 and s = 
2p/3� and s′ = 
(2p + 1)/3�. If T ≥ s (resp. T ≥ s′) 
and q1, . . . , qT ∈ Q, then 

∏T
i=1(Bqi − 1) trivializes H1(U ; Z/p) (resp. H1(U, Y ; Z/p)).

Proof. If p ≥ 5, then Corollary 4.2 shows that each monomial in Bq − 1 is a multiple of 
either y2

0y1 or y0y
2
1 or both. After taking the product of T such terms, each monomial is 

of the form y2a+b
0 ya+2b

1 = yT0 y
T
1 y

a
0y

b
1 for some a, b ≥ 0 such that a +b = T . The monomial 

which is least likely to be zero in Λ1 is: (y0y1)3T/2 when T is even and a = b = T/2; or 
y
(3T−1)/2
0 y

(3T+1)/2
1 when T is odd and a = (T−1)/2 and b = (T+1)/2 (or its permutation 

under the transposition of y0 and y1). To trivialize H1(U ; Z/p), it suffices to trivialize 
y0y1 ·β, which is guaranteed when 3T/2 ≥ p −1 for T even and when (3T +1)/2 ≥ p −1
when T is odd. The smallest such value is s. To trivialize H1(U, Y ; Z/p) it suffices to 
trivialize 1 · β, which is guaranteed when 3T/2 ≥ p for T even and when (3T + 1)/2 ≥ p

when T is odd. The smallest such value is s′. �
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5. The Q-invariants

Let M denote the homology group H1(U, Y ; Z/p), which can be identified with Λ1. 
Under this identification, the homology group H1(U ; Z/p) corresponds to the ideal 
〈(1 − ε0)(1 − ε1)〉 [10, Lemma 6.1]. Recall that yi = εi − 1.

The Q-invariants of M are

MQ = {m ∈ M | Bqm = m for all q ∈ Q}.

In Section 5.1, we prove that codim(H1(U)Q, MQ) = 2 for all odd p and construct a 
subspace of MQ of dimension 2p +1 for p ≥ 5. In Section 5.2, we compare the Bq-invariant 
subspaces of M for various q ∈ Q.

5.1. A subspace of MQ

For 0 ≤ k ≤ p −1, define ηk = εk1
∑p−1

i=0 εi0 and γk = εk0
∑p−1

i=0 εi1. Note that (1 −ε0)ηk =
(1 − ε1)γk = 0.

Lemma 5.1. Let L = 〈ηk, γk〉p−1
k=0, viewed as a Z/p-subspace of M . Then:

(1) dim(L) = 2p − 1;
(2) codim(L ∩H1(U), L) = 2;
(3) a basis for L is {yi00 yi11 | at least one of i0, i1 equals p − 1};
(4) and L ⊂ MQ.

Proof. (1) The elements ηk for 0 ≤ k ≤ p − 1 generate a Z/p-vector space of dimen-
sion p. Similarly, γk for 0 ≤ k ≤ p − 1 generate a Z/p-vector space of dimension p. 
The intersection 〈ηk〉 ∩ 〈γk〉 has dimension 1 with basis 

∑p−1
k=0 γk =

∑p−1
k=0 ηk. Thus 

dim(L) = 2p − 1.
(2) A basis for L is given by ηk for 0 ≤ k ≤ p − 1 and γk for 0 ≤ k ≤ p − 2. Write an 

element ξ ∈ L in the form ξ = A + B where A =
∑p−1

k=0 akηk and B =
∑p−2

k=0 bkγk.
Since A ∈ 〈1 − ε0〉, then ξ ∈ 〈1 − ε0〉 if and only if B ∈ 〈1 − ε0〉. Since 
B = (

∑p−1
i=0 εi1) 

∑p−2
k=0 bkε

k
0 , this condition is satisfied if and only if (i) 

∑p−2
k=0 bk = 0. 

Similarly, B ∈ 〈1 − ε1〉, so ξ ∈ 〈1 − ε1〉 if and only if A ∈ 〈1 − ε1〉. This condition 
is satisfied if and only if (ii) 

∑p−1
k=0 ak = 0. Since conditions (i) and (ii) are linearly 

independent, codim(L ∩H1(U), L) = 2.
(3) This follows from the fact that ηk = εk1

∑p−1
i=0 εi0 = (y1 + 1)kyp−1

0 and γk =
εk0

∑p−1
i=0 εi1 = (y0 + 1)kyp−1

1 .
(4) To show L ⊂ MQ, it suffices to show that (Bq − 1)m = 0 for each m ∈ L. By 

part (3) and symmetry, it suffices to show that (Bq − 1)yi00 yp−1
1 = 0. This is true 

since Bq − 1 ∈ H1(U) = 〈y0y1〉 for all q ∈ Q, by Corollary 4.2. �
Proposition 5.2. If p is odd, then H1(U)Q has codimension 2 in MQ.
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Proof. The result is true for p = 3 by explicit computation. If p ≥ 5, then 
codim(H1(U)Q, MQ) ≥ 2, since neither yp−1

0 and yp−1
1 are in H1(U), but they are 

linearly independent in MQ. It suffices to show that the image of the map ψ : MQ →
(M/H1(U))Q has dimension 2.

Recall that H1(U) � 〈y0y1〉. We introduce some notation in order to filter M
by powers of 〈y0y1〉. Given m ∈ M , write m =

∑
0≤i,j≤p−1 ai,jy

i
0y

j
1. Let [m]k =∑

k=min{i,j} ai,jy
i
0y

j
1. For example,

m0 = a0,0 + a1,0y0 + a0,1y1 + · · · ap−1,0y0 + a0,p−1y1.

Then m =
∑p−1

k=0[m]i and [m]i ∈ 〈y0y1〉i − 〈y0y1〉i+1. The coset of ψ(m) is represented 
by [m]0. It suffices to show that dim({[m]0 | m ∈ MQ}) = 2.

If m ∈ MQ, then (Bq − 1)m = 0 for all q ∈ Q. This implies that [(Bq − 1)m]1 = 0. 
Since Bq − 1 ∈ 〈y0y1〉, this implies that [(Bq − 1)[m]0]1 = 0.

We now isolate the term of lowest degree in [m]0. Let � be minimal such that ai,0
and a0,j are zero for all i, j < �. By Corollary 4.2(1), Bq − 1 ≡ αy0y1(y0 + y1) modulo 
〈y0, y1〉4. In fact,

Bq − 1 = y0y1

p−2∑
h=1

bh(yh0 + yh1 ) mod 〈y0y1〉2

for some coefficients bh, where b1 �= 0 for at least one q ∈ Q by Corollary 4.2(2). The 
condition [(Bq − 1)[m]0]1 = 0 implies that

0 = [[m]0
p−2∑
h=1

bh(yh0 + yh1 )]0 =
p−2∑
h=1

∑
q≥�

bh(aq,0yh+q
0 + a0,qy

h+q
1 )

This shows that � = p − 1 since b1 �= 0 and at least one of a�,0, a0,� is non-zero. �
For p ≥ 5, let s1 = yp−2

0 yp−2
1 and a1 = yp−3

0 yp−3
1 (y0 − y1).

Lemma 5.3. If p ≥ 5, then s1, a1 ∈ MQ ∩H1(U), so dim(MQ) ≥ 2p + 1 and dim(MQ ∩
H1(U)) ≥ 2p − 1.

Proof. By Corollary 4.2, if p ≥ 5, then Bq − 1 ≡ αy0y1(y0 + y1) mod 〈y0, y1〉4, for some 
constant α ∈ Fp. The given elements s1 and a1 annihilate the ideal 〈y0, y1〉4; moreover,

s1y0y1(y0 + y1) = yp−1
0 yp−1

1 (y0 + y1) = 0,

and likewise

a1y0y1(y0 + y1) = yp−2
0 yp−2

1 (y2
0 + y2

1) = 0. �
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Here is some data about MQ when p = 3, 5, 7.

Example 5.4.

p dim(MQ) dim(MQ ∩H1(U))
3 5 3
5 11 9
7 17 15

Example 5.5.

(1) When p = 3, then MQ = L = Ker(Bτ0 − 1) ⊂ Ker(Bτ1 − 1).
(2) When p = 5, then MQ = Span(L, s1, a1) As an ideal, MQ is generated by η0 = y4

0 , 
γ0 = y4

1 , and a1. Also, Ker(Bτi−1) is the same 13-dimensional subspace for 1 ≤ i ≤ 4.
(3) When p = 7, then the set {s1, a1, s2, a2} extends a basis of L to a basis of MQ, where

s2 = y3
0y

3
1(y2

0 − y0y1 + y2
1) + y4

0y
5
1 ,

a2 = y2
0y

2
1(y3

0 − y2
0y1 + y0y

2
1 − y3

1) + y3
0y

4
1(y0 − 2y1) − y4

0y
5
1 .

Also, Ker(Bτi − 1) is the same 19-dimensional subspace for 1 ≤ i ≤ 6.

Remark 5.6. We would be able to say more about MQ for p ≥ 11 if the following question 
has a positive answer.

Question 5.7. Is it true that Ker(Bτi − 1) = Ker(Bτj − 1) for all 1 ≤ i, j ≤ r? If yes, this 
would imply that MQ = Ker(Bτ0 −1) ∩Ker(Bτ1 −1). By Example 5.5, the answer is yes 
when p = 3, 5, 7.

5.2. A comparison of invariant subspaces for different automorphisms

Let Bi = Bτi where τ1, . . . , τr are the chosen generators of Q. Note that (Bia)a = Bτa
ia

. 
Let ρa ∈ Aut(M) be given by the permutation action εi0ε

j
1 
→ εia0 εja1 .

The following result does not answer the first part of Question 5.7, but still gives a 
relation between the kernels of various (Bi − 1).

Lemma 5.8. Let a ∈ (Z/p)∗. Then (Bia)a = ρa(Bi) for i �= 0 and B0 = ρa(B0).

Proof. By Lemma 2.2, we may identify a with an element of Gal(L/Q). Then

a · (Biβ) = a · (τi · β) = (aτi) · β.

Consider a ·(Biβ); recall that Bi is an element of Λ1 = Z/p[μp×μp], and the definition 
of the action of Λ1 on H1(U, Y ; Z/p) is via the map μp×μp → Aut(X) given by εi0 × εj1 :
(x, y) 
→ (εi0x, ε

j
1y). It follows that a · (Biβ) = ρa(Bi)(a · β).
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On the other hand, note that aτi = (aτia−1)a. By Lemma 2.2, we may identify 
(aτia−1) with (τia)a when i �= 0, and with τ0 when i = 0. Therefore,

ρa(Bi)(a · β) =
{

(τia)a · (a · β) = Ba
ia(a · β) if i �= 0

τ0 · (a · β) = B0(a · β) if i = 0
.

Because H1(U, Y ; Z/p) is identified with the Λ1-orbit of β, there exists an invertible 
B′

a ∈ Λ1 such that a · β = B′
aβ. In the above identification, we can cancel this element 

and obtain

ρa(Bi) =
{

(Bia)a if i �= 0
B0 if i = 0

. �

Proposition 5.9. If 1 ≤ i ≤ r and a ∈ (Z/p)∗, then Ker(τai − 1) = ρaKer(τi − 1) is an 
equality of subsets of H1(U, Y ; Z/p).

Proof. Since ((Bia)a − 1) = (Ba−1
ai . . . + B2

ai + Bai + 1)(Bai − 1), it follows that

Ker(Bai − 1) ⊆ Ker(Ba
ai − 1).

By Lemma 5.8, Ker(Ba
ai − 1) = ρaKer(Bi − 1). Thus

Ker(Bai − 1) ⊆ ρaKer(Bi − 1),

and it follows that

Ker(Bi − 1) ⊆ ρaKer(Ba−1i − 1).

Applying this equality repeatedly, we conclude

Ker(Bi − 1) ⊆ ρaKer(Ba−1i − 1) ⊆ ρ2
aKer(Ba−2i − 1) ⊆ . . . ⊆ (ρa)jKer(Ba−ji − 1)

for any j = 1, 2, . . .. Since ap−1 = 1 mod p, taking j = p − 1 allows one to conclude that 
all of the inclusions are equalities. Thus

Ker(Bai − 1) = ρaKer(Bi − 1). �
6. Galois cohomology calculations

The goal of this section is to give a method for the efficient computation of the first 
cohomology group H1(G, M), where M is the homology group H1(U, Y ; Z/p), and G
is the Galois group of a suitable extension of L over the cyclotomic field K = Q(ζ). 
In future applications, the extension of L will be its maximal extension ramified only 
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over p, or various subextensions of it. As it is difficult to know explicitly the structure 
of such a group G in general, the direct description of H1(G, M) in terms of crossed 
homomorphisms will not give an effective method for computation.

More generally, consider an extension of finite1 groups

1 → N → G → Q → 1,

and a G-module M . We are interested in determining the first cohomology group 
H1(G, M). The Lyndon–Hochschild–Serre spectral sequence gives rise to a long exact 
sequence

0 → H1(Q,MN ) inf−−→ H1(G,M) res−−→ H1(N,M)Q d2−−→ H2(Q,MN ) → . . .

in which the differential d2 can be identified with the transgression map [18, 2.4.3], and 
explicitly constructed as such. Thus the computation of H1(G, M) reduces to a compu-
tation of H1(Q, MN ), the kernel of the transgression differential d2, and the extension 
formed from those two.

We restrict our attention to the case when the normal subgroup N acts trivially on 
the module M , since our intended application satisfies that assumption.

6.1. The transgression

To begin, note that the extension G is determined by its factor set ω : Q ×Q → N [22, 
6.6.5]. Explicitly, let s : Q → G be an arbitrary set-theoretic section of the projection 
G → Q, such that s(1) = 1. Then the map

ω(q1, q2) = s(q1)s(q2)s(q1q2)−1, (6.l)

is a cocycle, which is independent of the choice of section s when viewed as an element 
of H2(Q, N) [22, 6.6.3] or [5, IV.3].

The next proposition is similar to some material in [19, Section 1].

Proposition 6.1. Let G be an extension of Q by N determined by the factor set ω, and 
let M be a G-module on which N acts trivially. Then the transgression

d2 : H1(N,M)Q → H2(Q,M)

is given by

d2(φ) = −φ ◦ ω.

1 Everything in this section works for profinite groups and continuous cohomology as well.
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Proof. By [18, 2.4.3], the transgression in the Hochschild–Serre spectral sequence is given 
by [18, 1.6.6]. By [17, 3.7 (3.9) and (3.10)], the map defined to be the transgression given 
in [17, 3.7] coincides with the map given by [18, 1.6.6].

We may thus use the description of the transgression given in [17, 3.7]. Given 
φ : N → M which represents an element in H1(N, M)Q, we construct an extension 
φ̃ : G → M as prescribed by [17, 3.7]: Fix the same section s : Q → G as in the 
definition of the factor set ω. Since N acts trivially on M , we can choose φ̃(s(q)) = 0, 
for any q ∈ Q. Any element g ∈ G can be written as g = ns(q), with n ∈ N, q ∈ Q; for 
this g we define φ̃(g) = φ(n). The transgression d2φ : Q ×Q → M is then given by

d2φ(q1, q2) = φ̃(s(q1)) + s(q1)φ̃(s(q2)) − φ̃(s(q1)s(q2)) = −φ̃(s(q1)s(q2)),

as the first two terms are both zero. Now note that

s(q1)s(q2) = s(q1)s(q2)s(q1q2)−1s(q1q2) = ω(q1, q2)s(q1q2);

since ω(q1, q2) is in N , the definition of φ̃ yields that

d2φ(q1, q2) = −φ̃(ω(q1, q2)s(q1q2)) = −φ(ω(q1, q2)). �
6.2. H∗(Q, M), when Q is elementary abelian

It is well known that the cohomology group H1(Q, M) consists of crossed homomor-
phisms Q → M modulo the principal ones. This description can be seen as coming from 
the canonical bar resolution of the trivial module Z. For our applications, however, it 
is also convenient to use the fact that Q is assumed to be elementary abelian of rank 
r + 1 (where r = p−1

2 ), i.e., Q ∼= Cr+1
p , and use the resolution coming from tensoring 

(r + 1) minimal Cp-resolutions. We will use the resulting chain complex for computing 
H1(Q, M). More importantly, in the next subsections, we will use a comparison between 
cocycles of these different resolutions in order to obtain a more direct criterion equivalent 
to Proposition 6.1 in Theorem 6.11 and Corollary 6.12. As we will delve pretty deeply 
into the inner workings of these resolutions, we start by recalling their constructions.

6.2.1. The canonical or bar resolution
For i ≥ 0, let Bi = Z[Qi+1] ∼= Z[Q]⊗(i+1). Then Bi � Z[Q] ⊗Bi−1 for i ≥ 1. Thus, Bi

is a free Z[Q]-module generated by elements of the form [q1 ⊗· · ·⊗ qi], with each qi ∈ Q. 
There is a free resolution

B• = {· · · → B2 → B1 → B0} → Z, (6.m)

where the differential d : Bn → Bn−1 is given by d =
∑n

i=0(−1)idi, and each di is the 
Z[Q]-equivariant map determined by
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d0([g1 ⊗ · · · ⊗ gn]) = g1 · [g2 ⊗ · · · ⊗ gn],

di([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn], for 1 ≤ i ≤ n− 1,

dn([g1 ⊗ · · · ⊗ gn]) = [g1 ⊗ · · · ⊗ gn−1].

In particular, d : B1 → B0 is given by d([g1]) = g1 · [1] − [1] and d : B2 → B1 is given 
by d([g1 ⊗ g2]) = g1 · [g2] − [g1g2] + [g1].

6.2.2. The tensor complex of minimal Cp-resolutions
Let τ be a generator of Cp; then the complex

C• = {· · ·Z[Cp]
1−τ−−−→ Z[Cp]

Nτ−−→ Z[Cp]
1−τ−−−→ Z[Cp]} → Z

is a free resolution of the trivial Z[Cp]-module Z. Now Z[Q] ∼= ⊗r
j=0Z[Cp]. Thus a free 

resolution of the trivial Z[Q]-module Z is given by the (totalization of the) tensor complex 
⊗r

j=0C•.
To make this brutally explicit, for 0 ≤ j ≤ r, let C•,j denote the same complex as C•

but with the generator of Cp denoted as τj . For i ≥ 0, the ith entry of the complex C•,j
is Ci,j

∼= Z[Cp], and the map di,j : Ci,j → Ci−1,j is multiplication by ±(1 − τj) if i is 
odd and multiplication by Nτj if i is even.

Therefore, A• = Tot(⊗r
i=0C•) has

An =
⊕

i0+···+ir=n

Ci0,0 ⊗ · · · ⊗ Cir,r
∼=

⊕
i0+···+ir=n

Z[Q].

In particular, A0 ∼= Z[Q], A1 ∼= Z[Q]r+1, and A2 ∼= Z[Q]ρ, where the exponent 
ρ := r+1 +

(
r+1
2
)

= (p+1)(p+3)
8 is the number of ways to partition 2 into r+1 non-negative 

integers.
We need to define A1 and A2 more explicitly in order to describe the differential maps 

d : A1 → A0 and d : A2 → A1. Since the notation is elaborate, first consider an example 
when p = 3 and r = 1. Let σ = τ0 and τ = τ1, then the complex is:

A0 A1 A2

C0 ⊗ C2Nτ

C0 ⊗ C1

1−τ

⊕
C0 ⊗ C0 ⊕ C1 ⊗ C1

−(1−σ)

1−τC1 ⊗ C01−σ ⊕
C2 ⊗ C0.Nσ

Remark 6.2. Recall that negative signs must be introduced in the totalization of a double 
complex in order to make the differentials square to zero; see for example [22, p. 8].
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More generally, recall that An is a direct sum of submodules of the form

S(�v) = Ci0,0 ⊗ · · · ⊗ Cir,r
∼= Z[Q],

where the entries of �v = (i0, . . . , ir) are non-negative numbers adding up to n. For n = 1, 
define �vj to have jth entry 1 and all other entries 0. Then

A1 =
⊕

0≤j≤r

S(�vj).

For n = 2, define �uj to have jth entry 2 and all other entries 0; and, for 0 ≤ j < k ≤ r, 
define �tj,k to have jth and kth entries 1 and all other entries 0. Then

A2 =

⎛
⎝ ⊕

0≤j≤r

S(�uj)

⎞
⎠⊕

⎛
⎝ ⊕

0≤j<k≤r

S(�tj,k)

⎞
⎠ .

The following results are now straightforward.

Lemma 6.3. Writing α1 ∈ A1 as α1 = ⊕0≤j≤rgj with gj ∈ S(�vj), the differential d :
A1 → A0 is given by

d(α1) = d(g0, . . . , gr) =
r∑

j=0
(1 − τj)gj .

Lemma 6.4. The differential d : A2 → A1 is defined using the following maps on the 
given components (and the zero map everywhere else)

d2 = Nτj : S(�uj) → S(�vj),

−d1 = −(1 − τj) : S(�tj,k) → S(�vj),

d1 = (1 − τk) : S(�tj,k) → S(�vk).

In other words, writing α2 ∈ A2 as

α2 = (⊕0≤j≤rgj ,⊕0≤j<k≤rhj,k),

with gj ∈ S(�uj) and hj,k ∈ S(�tj,k), then d(α2) = ⊕0≤j≤rβj where

βj = Nτjgj −
∑
k<j

(1 − τk)hk,j +
∑
k>j

(1 − τk)hj,k.

Again, the negative signs in front of some of the d1’s are because of Remark 6.2.
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Remark 6.5. Using Lemmas 6.3 and 6.4, it is possible to compute H1(Q, M) directly. For 
example, for small p, we used Magma to explicitly calculate H1(Q, M); here is a table 
for its dimension:

p dim(H1(Q,M))
3 9
5 33
7 68

.

More information about the relationships between the kernels and images of Bi − 1 as i
varies, as in Question 5.7, may yield a result for general p along these lines.

6.2.3. Comparison of resolutions
The resolutions A• and B• constructed above are both injective resolutions of the 

trivial Q-module Z. Therefore, by abstract nonsense, there is a quasi-isomorphism f• :
A• → B•, with each fi : Ai → Bi being Q-equivariant. The goal of this subsection is to 
construct f0, f1, f2. In fact, we will take f0 to be the identity map on A0 ∼= B0 = Z[Q]. 
The next two results determine f1 and f2 explicitly.

Lemma 6.6. Write α1 ∈ A1 as α1 = ⊕0≤j≤rgj with gj ∈ S(�vj). Define f1 : A1 → B1 by

f1(α1) = f1(g0, . . . , gr) = −
r∑

j=0
gj [τj ].

Then the following diagram commutes

A1
dA

f1

A0

id

B1
dB

B0.

Proof. Let 1j ∈ S(�vj) ⊂ A1 be the element such that gj = 1 and all other coordinates 
are zero. By Lemma 6.3, id(dA(ej)) = 1 − τj . By definition f1(ej) = −[τj ], which equals 
dB(f1(ej)) = −(τj − 1). Since {ej} generate A1 as a Z[Q]-module and all the maps are 
Q-equivariant, the diagram commutes in general. �
Lemma 6.7. Write α2 ∈ A2 as α2 = (⊕0≤j≤rgj , ⊕0≤j<k≤rhj,k), with gj ∈ S(�uj) and 
hj,k ∈ S(�tj,k). Define f2 : A2 → B2 as follows:

f2(α2) = −
r∑

j=0
gi[Nτi ⊗ τi] +

∑
0≤j<k≤r

hj,k(τk ⊗ τj − τj ⊗ τk).

Then the following diagram commutes
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A2
dA

f2

A1

f1

B2
dB

B1.

Proof. By Lemma 6.4, dA(α2) = ⊕0≤j≤rβj where

βj = Nτjgj −
∑
k<j

(1 − τk)hk,j +
∑
k>j

(1 − τk)hj,k.

Let 1j ∈ S(�uj) ⊂ A2 be the element such that gj = 1 and all other coordinates are zero. 
Then f1(dA(1j)) = −Nτj [τj ]. By definition, f2(1j) = −[Nτj ⊗ τj ]. Since Nτjτj = Nτj , 
it follows that

dB(f2(1j)) = −(Nτj [τj ] − [Nτjτj ] + [Nτj ]) = −Nτj [τj ].

Finally, let 1j,k ∈ S(�tj,k) ⊂ A2 be the element such that hj,k = 1 and all other 
coordinates are zero. Then

dA(1j,k) = (1 − τk)ej − (1 − τj)ek,

and

f1(dA(1j,k)) = f1((1 − τk)ej − (1 − τj)ek) = −(1 − τk)[τj ] + (1 − τj)[τk].

By definition, f2(1j,k) = τk ⊗ τj − τj ⊗ τk. Then

dB([τk ⊗ τj ] − [τj ⊗ τk]) = (τk[τj ] − [τkτj ] + [τk]) − (τj [τk] − [τjτk] + [τj ])

= (τk − 1)[τj ] − (τj − 1)[τk].

Since {1j , 1j,k} generate A2 as a Z[Q]-module and all the maps are Q-equivariant, the 
diagram commutes in general. �
6.3. Comparison of cocycles

In the above, we constructed two resolutions of the trivial Q-module Z, and explicitly 
constructed a map between them in low degrees. Now we investigate what this tells us 
in cohomology. Namely, we know that

H∗(Q,M) = Ext∗Z[Q](Z,M),

and the latter can be computed as either H∗ HomZ[Q](A•, M) or H∗ HomZ[Q](B•, M). 
The map f• gives us a way to compare these two approaches.
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Consider a 1-cocycle a ∈ H1(Q, M). Let φ : Q → M be a bar resolution representative 
of a, so that the class of φ in H1(Q, M) is a. Then φ can be uniquely extended to (and 
encodes the information of) a Z[Q]-module map φ̃ : Z[Q]⊗2 → M . A representative of a
in the A• resolution is the composition ψ = φ̃ ◦ f1, namely

ψ : A1 ∼= Z[Q]r+1 f1−−→ B1 ∼= Z[Q]⊗2 φ̃−→ M.

Now ψ is a Z[Q]-equivariant map determined by its values on the generators ej of A1. 
By Lemma 6.6,

mj := ψ(ej) = φ̃(−[τj ]) = −φ(τj),

giving the following result.

Lemma 6.8. In the resolution HomZ[Q](A•, M), which starts as

M → Mr+1 → Mρ → · · · ,

the tuple (m0, . . . , mr) = (−φ(τ0), . . . , −φ(τr)) ∈ Mr+1 represents the class a ∈
H1(Q, M) of the map φ : Q → M .

Next, consider a 2-cocycle b ∈ H2(Q, M). Let ϕ : Q ×Q → M represent b. The map 
ϕ uniquely determines a Z[Q]-equivariant map ϕ̃ : B2 ∼= Z[Q]⊗3 → M , by extending 
Z[Q]-linearly. A representative of b in the A• resolution is the composition

θ : A2 ∼= Z[Q]ρ f2−−→ B2
ϕ̃−→ M.

The map θ is determined by its values on the Z[Q]-generators 1j and 1j,k of A2. By 
Lemma 6.7,

nj := θ(1j) = ϕ̃([−Nτj ⊗ τj ]) = −ϕ̃(Nτj , τj) = −
p−1∑
i=0

ϕ(τ ij , τj),

nj,k := θ(1j,k) = ϕ̃([τk ⊗ τj ] − [τj ⊗ τk]) = ϕ(τk, τj) − ϕ(τj , τk),

proving the following result.

Lemma 6.9. In the resolution HomZ[Q](A•, M), which starts as

M → Mr+1 → Mρ → · · · ,

the tuple (nj , nj,k) ∈ Mρ defined above represents the class b ∈ H2(Q, M) of the map 
ϕ : Q ×Q → M .
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6.4. The kernel of d2, revisited

Using the comparison of cocycles from the previous section, we give a more direct 
description of the kernel of the transgression d2 : H1(N, M)Q → H2(Q, MN ) (compared 
to what Proposition 6.1 implies), when N acts trivially on M and Q is elementary 
abelian.

We set up some notation associated to the extension

1 → N → G → Q → 1. (6.n)

We assume that Q is elementary abelian of rank (r+1); choose generators of Q and denote 
them by τi, with 0 ≤ i ≤ r. To define the factor set ω, we used a section s : Q → G

(and noted that as a cohomology element, ω does not depend on s). Without loss of 
generality, we can assume not only that s(1) = 1, but also

s(τ t00 · · · τ trr ) = s(τ0)t0 · · · s(τr)tr , for 0 ≤ ti ≤ p− 1.

For 0 ≤ j ≤ r, define elements aj ∈ N by

aj = s(τj)p,

and for 0 ≤ j < k ≤ r, define cj,k ∈ N by

cj,k = [s(τk), s(τj)] = s(τk)s(τj)s(τk)−1s(τj)−1.

Recall that ω : Q ×Q → N was defined as

ω(q1, q2) = s(q1)s(q2)s(q1q2)−1.

Elementary calculation then yields the following result.

Lemma 6.10. If 0 ≤ j ≤ r and 0 ≤ t < p − 1, then ω(τ tj , τj) = 0 and aj = ω(τp−1
j , τj). If 

0 ≤ j < k ≤ r, then cj,k = ω(τk, τj)ω(τj , τk)−1.

Theorem 6.11. The class of φ : N → M is in the kernel of d2 if and only if the tuple 
(−φ(aj), φ(cj,k)) ∈ Mρ is in the image of the differential in HomZ[Q](A•, M),

dM : Mr+1 → Mρ

which, by Lemma 6.4, is explicitly given by

dM (m0, . . . ,mr) = (Nτjmj ,−(1 − τj)mk + (1 − τk)mj).
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Proof. Consider a class in H1(N, M)Q represented by a map φ : N → M . By Propo-
sition 6.1, φ ∈ Ker(d2) if and only if φ ◦ ω : Q × Q → M represents the zero class in 
H2(Q, M). (Note that this is the same as requiring that −φ ◦ ω represents zero.) This 
representative is given in the bar resolution, and we now translate the condition on φ ◦ω
to the A•-resolution as above.

To find a representative for φ ◦ ω in the A•-resolution, we first extend ω to a 
Q-equivariant map ω̃ : Z[Q3] → N and then take the composition ω̃ ◦f2. By Lemmas 6.7
and 6.9, φ ◦ ω is represented by the tuple (nφ

j , n
φ
j,k) ∈ Mρ, where

nφ
j = φ(ω̃(f2(1j))) = φ(ω̃(−Nτj ⊗ τj)) = −

p−1∑
i=0

φ(ω(τ ij , τj)).

By Lemma 6.10,

nφ
j = −φ(ω(τp−1

j , τj)) = −φ(aj), and

nφ
j,k = φ(ω̃(f2(1j,k))) = φ(ω̃([τk ⊗ τj ] − [τj ⊗ τk])) = φ(cj,k).

Applying Lemma 6.8 now completes the proof. �
We return now to the situation of the Fermat curve.

Corollary 6.12. Suppose that E/K is a finite Galois extension dominating L/K. In the 
extension (6.n), let Q = Gal(L/K) and G = Gal(E/K) and N = Gal(E/L). Recall that 
N acts trivially on the relative homology M = H1(U, Y ; A).

Assume p ≥ 5. Then φ : N → M represents an element in the kernel of d2 if and only 
if for all 0 ≤ j ≤ r,

φ(aj) = 0,

and there is an (r + 1)-tuple (m0, . . .mr) ∈ Mr+1, such that

φ(cj,k) = −(1 − τj)mk + (1 − τk)mj .

Proof. This follows from Theorem 6.11, since Nτi acts as zero on M by Theorem 4.6. �
Remark 6.13. We have a second, more direct proof of Theorem 6.11 as well. The converse 
direction is long, computational, and rather unenlightening, hence we decided not to 
include it. Yet we sketch the forward direction here. Note that −φ ∈ Ker(d2) if and 
only if the map φ ◦ ω : Q ×Q → M represents the zero cohomology class in H2(Q, M); 
equivalently, φ ◦ ω is of the form

dm : (q1, q2) 
→ q1m(q2) −m(q1q2) + m(q1), (6.o)

for some map m : Q → M . Let mi = m(τi).
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If dm = φ ◦ω, then the values mj = m(τj) ∈ M determine m(q) for all q ∈ Q because 
of the Q-action. Specifically, by induction, one can show m(τ t+1

j ) = (
∑t

�=0 τ
�
j ) ·mj for 1 ≤

t ≤ p −2. Then φ ◦ω(τj , τp−1
j ) = φ(aj). If φ ◦ω = dm, then φ(aj) = τj ·m(τp−1

j ) +m(τj). 
Thus −φ(aj) = −Nτj ·mj .

Next, if j < k, then m(τjτk) = τj ·mk+mj , because dm(τj , τk) = ω(τj , τk) = 0. Recall 
that φ ◦ ω(τk, τj) = φ(cj,k). If φ ◦ ω = dm, then φ(cj,k) = τk ·mj −m(τjτk) +mk, which 
simplifies to −φ(cj,k) = (1 − τk) ·mj − (1 − τj) ·mk by substitution.

7. Compatibility with points over finite fields

In this final section, we study the action of Frobenius on schemes defined over a finite 
field of cardinality �. In Section 7.1, we use motivic homotopy theory to provide congru-
ence conditions on the characteristic polynomials of Frobenius on mod p cohomology. 
In Section 7.2, we use this and information about Bq to compute the L-polynomial of 
the degree p Fermat curve modulo p. The results in this section are not new, but they 
highlight important concepts emerging in the interaction between topology and number 
theory.

7.1. Number of points modulo p

Let X be a smooth, proper scheme over F�. Let F denote the Frobenius morphism. 
Let p be a prime number not dividing �.

Let Nm denote the number of points of X defined over F�m for m ∈ N, and let Nm

denote the reduction of Nm mod p. By the Lefschetz trace formula, the values Nm are 
determined by the action of F on H∗(XF�

, Qp) and the values Nm are determined by 
the action of F on H∗(XF�

, Fp). This section contains a new proof of this fact for Nm

using realization functors which is made possible by the work of Hoyois [12].
Define Pi(t) in Qp[t] and P i(t) in Fp[t] by

Pi(t) = det(1 − Ft|Hi(XF�
,Qp)), P i(t) = det(1 − Ft|Hi(XF�

,Fp)).

Define Z(t) in Qp[[t]] and Z(t) in Fp[[t]] by

Z(t) =
∞∏
i=0

Pi(t)(−1)i+1
, Z(t) =

∞∏
i=0

P i(t)(−1)i+1
.

If Q ∈ Fp[[t]] is invertible (e.g., if Q(0) = 1), let d
dt logQ = d

dtQ/Q.
In this section, we prove the following result using motivic homotopy theory.

Proposition 7.1. The mod p number of points Nm of X over F�m is determined by 
Σ∞

m=1Nmtm−1 = d logZ(t).
dt
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Proposition 7.1 follows from [9, Section 3, Fonctions L Modulo �n et Modulo p, The-
orem 2.2 (b)]. Here is a proof using motivic homotopy theory.

Proof. Let Tr denote the trace of an endomorphism of a strongly dualizable object in a 
symmetric monoidal category. The Frobenius F is an endomorphism of X viewed as an 
object the stable A1-homotopy category of P1-Spectra over F�. As X is strongly dual-
izable, we have that Tr(Fm) lives in the Grothendieck–Witt ring GW(F�). By Hoyois’s 
generalized Lefschetz trace formula [12, Example 1.6, Theorem 1.3], Tr(Fm) = Nm. 
Applying the symmetric monoidal functor H∗((−)F�

, Fp), the trace Tr(Fm) becomes 
the trace in the symmetric monoidal category of graded Fp vector spaces, which is 
Σi(−1)i TrFm|Hi(XF�

, Fp). Applying the same functor to the endomorphism Nm of 
the sphere yields Nm regarded as an endomorphism of Fp viewed as a graded vector 
space concentrated in degree 0. It follows that

Nm = Σi(−1)i TrFm|Hi(XF�
,Fp). (7.p)

The claimed equality then follows from a formal algebraic manipulation. One could 
apply [9, Rapport sur la formula des traces 3.3.1], or to be explicit, proceed as follows.

Since P i(0) = 1, it follows that P i(t) =
∏

(1 − ai,jt) for some ai,j in Fp. Since the 
matrix corresponding to the action of F on Hi(XF�

, Fp) can be put in upper triangular 
form over Fp, it follows that the diagonal entries are the ai,j. Thus TrFm = Σami,j for 
all m.

Furthermore, P i is invertible in Fp[[t]] since P i(0) = 1. Thus

d

dt
logP (t) =

d
dtP (t)
P (t)

= −
∑
j

ai,j
1 − ai,jt

= −
∑
j

∑
m

ami,jt
m−1.

Also,

d

dt
logZ(t) =

d
dtZ(t)
Z(t)

.

Since d/dt log is a homomorphism,

d

dt
logZ(t) = −

∑
i

(−1)i+1
∑
j

∑
m

ami,jt
m−1 =

∑
i

(−1)i
∑
m

(∑
j

ami,j

)
tm−1

=
∑
i

∑
m

(−1)i
(

TrFm|Hi(XF �
,Fp)

)
tm−1

=
∑
m

Nmtm−1,

where the last equality follows from (7.p). �
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7.2. Application to the Fermat curve

Let X be the Fermat curve of exponent p over a prime � of Z[ζp]. Let F be the 
residue field of �, and F�m denote the unique degree m extension. Knowledge of Bσ for 
σ ∈ Q = Gal(L/K) and Proposition 7.1 determine the zeta function of X modulo p as 
follows.

Proposition 7.2. Let X and F be as above, and let JacX denote the Jacobian of X.

(1) Z(X/F, T ) ≡ (1 − T )2g−2 mod p. If Nm := #X(F�m), then Nm ≡ 0 mod p for all 
m ≥ 1.

(2) Z(JacX/F, T ) ≡ 1 mod p. If Nm := # JacX(F�m), then Nm ≡ 0 mod p for all 
m ≥ 1.

Proof. Note that Z(Y/F, T ) ≡ Z(Y/F, T ) mod p for Y = X or JacX.

(1) The action of the Frobenius F on M = H1(U, Y ; Fp) is given by multiplication by Bσ, 
where σ ∈ Q is the Frobenius for �. Now H1(X, Fp) is a sub-quotient of M , and M has 
a basis (namely the nilpotent basis given by monomials in yi = εi − 1) in which the 
action of Bσ is lower-triangular with diagonal entries equal to 1. Since H1(X, Fp) is 
the linear dual of H1(X, Fp), so it follows that the action of F on H1(X, Fp) satisfies 
det(1 − FT |H1(X, Fp)) = (1 − T )2g, proving the first claim. For the second claim, 
note that

Z(X/Fq, T ) ≡ (1 − T )2g

(1 − T )(1 − |F|T ) ≡ (1 − T )2g−2 mod p,

where the last equivalence follows because F has a pth root of unity, implying |F| −1 ≡
0 mod p. By Proposition 7.1,

Σ∞
m=1NmTm−1 = d/dT logZ(T ) = −(2g − 2)(1 − T )2g−3/Z(T ).

But g = (p − 1)(p − 2)/2, so 2g − 2 = p2 − 3p ≡ 0 mod p.
(2) We have seen that the action of F on H1(X, Fp) is such that 1 − F is nilpotent. 

Thus the same is true for the action of F on the ith wedge power ∧iH1(X, Fp). Since 
Hi(JacX, Fp) ∼= ∧iH1(X, Fp), it follows that det(1 −FT |Hi(JacX, Fp)) = (1 −T )di , 
where di =

(2g
i

)
is the dimension of ∧iH1(X, Fp). Thus

Z(JacX/Fq, T ) ≡ (1 − T )
∑

i(−1)i+1di ≡ 1 mod p. �
Remark 7.3. The facts in Proposition 7.2 can also be proven directly. The fact that 
Nm ≡ 0 mod p is a direct consequence of the fact that the Cp × Cp action on X has 3 
orbits of size p and all other orbits of size p2.
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For the fact about the L-polynomial, let χ be a character of F of order p. Let Ji,j =
J(χi, χj) =

∑
a+b=1 χ

i(a)χj(b). By [14, page 98], #X(F) = Lf + 1 +
∑

S J(i,j) where 
S = {(i, j) | 1 ≤ i, j ≤ p − 1, i + j �≡ 0 mod p}. Note that there are 2g = (p − 1)(p − 2)
such pairs. In fact, by [15, page 61], the eigenvalue of Frobenius on the eigenspace of 
H1(X) corresponding to (χi, χj) is −Ji,j . Lemma 7.2 can also be proven using congruence 
properties of Jacobi sums and the fact that

L(X/F, T ) =
∏
S

(1 − Ji,jT ).
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