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Introduction

Factorization systems surely form a conspicuous part of modern category theory; 
this is especially because they provide the category where they live in with a rather 
rich structure, and they are commonly found (although very few of them can be easily 
built): for example, a trace of what we would today call a factorization system on the 
category of groups appears in the pioneering [18], published in 1948; more interestingly, 
as acknowledged by [22], any “synthetic” approach to homotopy theory inevitably relies 
on the notion of a –weak– factorization system.

Soon after having reached a consensus on the definition for these gadgets [7], category 
theorists wanted to make explicit the evident tight relation between (weak) factoriza-
tion systems and (weakly) reflective subcategories on a same ambient category C: this 
culminated with the proof, given in [4], that under mild assumptions the reflective sub-
categories of C are in bijection with the so-called reflective pre-factorization systems
on C.

Let us briefly recall this notion: a morphism f in C is left orthogonal to another 
morphism g (or g is right orthogonal to f), in symbols f ⊥ g, if for any commutative 
square of solid arrows

·
f

·
g

·
d

·

there is a unique morphism d that makes the two above triangles commute (this defines 
strong orthogonality; in case at least one such d exist, we speak of weak orthogonality). 
Then,

• for a class X ⊆ C2 (where C2 is the arrow category) we let ⊥X (resp., X⊥) be the 
class of morphisms which are left (resp., right) orthogonal to each element in X ;

• a pre-factorization system (pfs for short) on C is a pair (E , M) of sub-classes of C2

such that E = ⊥M and E⊥ = M;
• a pre-factorization system F = (E , M) on C such that every map f ∈ C2 can 

be factored as a composition f = mf ◦ ef , for mf ∈ M and ef ∈ E is called a 
factorization system (fs for short; we call a morphism that can be factored by a pfs

an F-crumbled arrow: then, a factorization system is a pfs in which every arrow is 
F-crumbled);

• a class X of morphisms of C is said to have the 3-for-2 property if, given two com-
posable morphisms · f−→ · g−→ · in X , if two elements of the set {f, g, g ◦ f} belong to 
X , so does the third.
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A pfs F = (E , M) is said to be reflective if M has the 3-for-2 property and if any map 

of the form 
[
X
↓
0

]
is F-crumbled. For such a pfs, the associated reflective subcategory of 

C is

M/0 :=
{
X ∈ C |

[
X
↓
0

]
∈ M

}
⊆ C

(uniqueness of lifts ensures that there is a functorial choice of an object in M/0 for each 
X ∈ C, precisely the object such that X eX−−→ RX

mX−−−→ 0). It is a remarkable result that 
all the reflective subcategories of C arise in fact in this way: given such a subcategory 
S, there is a reflective pfs generated by all morphisms of S.

The authors of [4] then specialize this result attempting to describe the tight relation 
between factorization systems and torsion theories, under similarly mild assumptions on 
C. This approach has been extended sensibly in [21].

A factorization system F = (E , M) on C is said to be a torsion theory (tth for short) 
if both E and M have the 3-for-2 property. This gives (thanks to the above result and 
its dual) a pair of subcategories M/0 and 0/E whose inclusions in C admit respectively 
a left and a right adjoint: these two subcategories form the classes of so-called torsion
and torsion-free objects respectively, and relate to the classical notion of a torsion theory
given in [5].

Suppose indeed that C is an abelian category. A tth F = (E , M) on C is said to be 
normal if taking the F-factorization

X
e−→ RX

m−→ 0

of the final map X → 0 for a given object X ∈ C, and then taking the pullback

T
�

X

e

0 RX

(0.1)

we have 
[
T
↓
0

]
∈ E .

Applying the definitions, one can show that the pair (0/E , M/0) is a classical torsion 
theory (i.e. a torsion theory as defined in [5]). In fact, it is also true that every torsion 
theory arises this way (see [21]); this gives a bijection between classical torsion theories 
and normal tths.

Switching to the triangulated context, the rôle played by classical tths in abelian 
categories is now played by t-structures ([1,12]). The analogy between these two concepts 
was made completely formal by Beligiannis and Reiten [3] where they introduced torsion 
pairs in pre-triangulated categories. In fact, if the pre-triangulated structure is inherited 
from the abelian-ness of the ambient category, then torsion pairs correspond bijectively 
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to classical tths, while if the pre-triangulated structure is triangulated, then torsion 
pairs correspond bijectively to t-structures.

The strong analogies between classical tths and t-structures suggests that there 
should be a way to describe them in terms of some kind of factorization systems, just 
like for tths in abelian categories. In fact, pursuing a similar characterization in the 
non-abelian setting is acknowledged in [21] as one of the most natural generalization of 
this technology. Nevertheless, the authors are not able to show a correspondence between 
t-structures on triangulated categories and factorization systems.

Somehow, this result has been prevented by a certain number of awkward properties 
of triangulated categories (see the introduction of [17] for a good account on this). 
In this respect, it is remarkable that such a theorem can be stated and proved quite 
naturally by getting rid of all these unwieldy features, ascending to the realm of stable 
(∞, 1)-categories: the proof that t-structures on (the homotopy category of) a stable 
quasicategory correspond bijectively to normal torsion theories, regarded as particular 
∞-categorical factorization systems, has been the central result of the first author’s PhD 
thesis [13].1

Our first point in this paper is that the reason for the absence of this theorem from 
the setting of triangulated categories D is that there is no notion of triangulated orthog-
onality �≈ for a pair of morphisms in D, with formal properties comparable to those of 
the orthogonality relation ⊥ but mindful of the triangulated structure.

The present work aims to fill this gap and solve the problem of finding a class of 
suitably defined triangulated factorization systems on D in bijection with the class of 
t-structures on D.

We start Section 1 describing the homotopy orthogonality relation f �≈ g for two 
morphisms in a triangulated category D (see Def. 1.1). After proving some natural 
properties, we mimic the classical theory showing that this definition is sound, in that it 
recovers basically all the formal properties enjoyed by the ⊥-orthogonality relation (see 
1.6–1.9). We introduce triangulated pfss via triangulated orthogonality, triangulated
fss, triangulated tths and, finally, normal triangulated tths as the corresponding of 
each of the classical definitions.

We believe that this is the correct path to follow, as Def. 1.1 is exactly an orthogonality 
condition that keeps track of the triangulated structure of D: as an example of this 
flexibility, normality for a triangulated tth can be introduced exactly as normality for a
tth but taking a homotopy cartesian square (see 1.8 for the definition) in (0.1) instead 
of a pullback square. So apparently the definition really captures the best of both worlds.

With the theory of triangulated fss at hand, in 2.11 we prove the following

1 The fact that few triangulated categories generate an interesting poset of factorization systems is proba-
bly due to the fact that a nice factorization system on a category A interacts with co/limits on A, and it is 
somehow generated by them: few triangulated categories have interesting co/limits, hence the fact that (for 
example) every proper factorization system, where the left class is contained in the class of epimorphisms, 
although really natural in a generic category must be trivial in a triangulated one.
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Main Theorem: For a triangulated category D, the following map is bijective:

{ normal triangulated
tths on D

} {
t-structures

on D

}

(E ,M)
(
0/E ,Σ(M/0)

)

As mentioned above, [8] proved a ∞-categorical version of the above theorem in the 
setting of stable quasicategories. In fact, quasicategories support a fairly natural theory 
of fss, as rich as the classical one; we refer to [10] and [14].

Once quasicategorical fss are defined, one can mimic the definition of normal tth in 
this setting. The main results contained in [13] tells us that, for a stable quasicategory 
C, the normal tths on C are in bijection with t-structures on the triangulated category 
Ho(C). An exercise in translation between models shows how the same result remains 
true

• in the setting of stable model categories, where one can speak about homotopy factor-
ization systems following [2,11]; this leads to the definition of homotopy t-structures
on stable model categories M as suitable analogues of normal torsion theories in the 
set hfs(M) of homotopy factorization systems on a model category M;

• in the setting of dg-categories, where we speak about factorization systems (enriched 
in the sense of [6,16]); this leads to the definition of dg-t-structures as enriched 
analogues of normal torsion theories in the set of enriched factorization systems on 
a dg-category D.

In both these settings, it is possible to recover a theorem that characterizes what, from 
time to time, you would like to call t-structures as a class in bijection with normal torsion 
theories defined in that specific model.

In subsequent work [15] we will frame our Main Theorem in a different model of a 
stable homotopy theory, namely stable derivators: this has to be regarded as the nontriv-
ial step towards a model-independence proof saying that t-structures are indeed normal 
torsion theories whatever our preferred model for stable homotopy theory is.

Acknowledgments The first author thanks prof. J. Rosický, because it was possible to 
finish the hardest part of the present paper mainly thanks to the pleasant environment of 
Masaryk University. Both authors would like to express their gratitude to F. Mattiello, 
because he surely is a moral third author of this work.

1. Triangulated factorization systems

Throughout this section we let D be a (fixed but arbitrary) triangulated category, 
with shift functor Σ: D �−→ D. For a general background and notation on triangulated 
categories we refer to [20] and [9, Appendix A].
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1.1. Homotopy orthogonality of morphisms

Our first task is to build a notion of orthogonality of morphisms mindful of the 
triangulated structure on D.

Definition 1.1 (Homotopy orthogonality). Let E0
e−→ E1 and M0

m−→ M1 be two maps in 
D, and complete them to triangles

E0
e−→ E1

αe−−→ Ce
βe−−→ ΣE0 and M0

m−→ M1
αm−−→ Cm

βm−−→ ΣM0. (1.1)

We say that e is left homotopy orthogonal to m (while m is right homotopy orthogonal
to e), in symbols e �≈m, if the following conditions are satisfied:

ho1. the following map is trivial:

D(Ce,Σ−1Cm) D(E1,M0)

(Ce
ϕ−→ Σ−1Cm) (E1

αe−→ Ce
ϕ−→ Σ−1Cm

Σ−1βm−→ M0) ;

ho2. the following map is injective:

D(Ce, Cm) D(E1,ΣM0)

(Ce
ϕ−→ Cm) (E1

αe−→ Ce
ϕ−→ Cm

βm−→ ΣM0) .

The concept of homotopy orthogonality seems quite artificial, but this notion arises 
naturally in the setting of stable derivators: we investigate the matter in a subsequent 
work [15]. Notice also that one can prove by standard arguments that homotopy orthog-
onality does not depend on the choice of triangles in (1.1).

Remark 1.2. Condition 1.1.ho2 can be substituted by the following one:

ho2’. The unique morphism ϕ completing a morphism (a, b) : e → m in D2 to a mor-
phism of triangles, as in the following diagram, is ϕ = 0:

E0
e

a

E1
αe

b

Ce

βe

ϕ

ΣE0

M0
m

M1
αm

Cm

βm ΣM0.

To see this equivalence, suppose that condition 1.1.ho2 is satisfied. Then, the map 
D(Ce, Cm) → D(E1, ΣM0) sends ϕ to βmϕαe = βmαmb = 0; so by the injectivity 
of this map, we deduce that ϕ = 0. On the other hand, suppose ho2’ is satisfied and 
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consider a morphism ψ ∈ D(Ce, Cm) such that βmψαe = 0; we have to show that ψ = 0. 
Indeed, since βmψαe = 0 we can construct a morphism of triangles as follows:

0 E1

∃b

E1

ψαe

0

M0
m

M1
αm

Cm

βm ΣM0.

Now one can complete the central square in the following diagram to a morphism of 
triangles:

E0
e

∃a

E1
αe

b

Ce

βe

ψ

ΣE0

M0
m

M1
αm

Cm

βm ΣM0.

Then, by ho2’, ψ = 0 as desired.

In what follows we verify some properties that one should expect from any well-
behaved notion of orthogonality. Let us start with the following property, whose proof 
is an easy exercise:

Lemma 1.3. The following are equivalent for f ∈ D2

(i) f is an isomorphism;
(ii) f �≈ D2;
(iii) D2 �≈ f ;
(iv) f �≈ f .

The above proposition adopted an harmless abuse of notation, that is, it denoted 
H �≈ K the fact that each h ∈ H is left �≈-orthogonal to every morphism of K. To make 
this statement precise we introduce the following definitions.

Notation 1.4 ( �≈-Orthogonal of a class). We denote 
�≈( ) 	 ( ) �≈ the (antitone) Galois 

connection induced by the relation �≈ on full subcategories of D2; more explicitly, we 
denote

X �≈ := {f ∈ D2 | x �≈ f, ∀x ∈ X}
�≈X := {f ∈ D2 | f �≈ x, ∀x ∈ X}. (1.2)

Remark 1.5 ( �≈-Locality). There is a related notion of orthogonality between an object 
X and a morphism f ∈ D2, based on the fact that we can blur the distinction between 
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objects and their initial or terminal arrows; given these data, we say that X is right-
orthogonal to f (or that X is an f -local object) if the hom functor D(−, X) inverts f ; 

in fact, the map D(f, X) is injective if and only if the pair (f, 
[
X
↓
0

]
) satisfies condition 

1.1.ho1, while it is surjective if and only if (f, 
[
X
↓
0

]
) satisfies condition 1.1.ho2. (Obvi-

ously, there is a dual notion of left orthogonality between f and B ∈ D, or a notion of 
a f -colocal object B which reduces to left orthogonality with respect to 0 → B).

By the above remark, it is natural to say that two objects B and X are homotopy 

orthogonal if 
[

0
↓
B

]
�≈

[
X
↓
0

]
. In fact, it is not difficult to show that this happens if and 

only if D(B, X) = 0, that is, B ⊥ X in the usual sense.
The following lemma can be easily verified by hand:

Lemma 1.6. Let {fi}i∈I , g ∈ D2. If fi �≈ g for all i ∈ I, then 
∐

i fi
�≈ g. On the other 

hand, if g �≈ fi for all i ∈ I, then g �≈
∏

i fi.

Lemma 1.7. Let f, g ∈ D2 and let f ′ be a retract of f , that is, there is a commutative 
diagram

F ′
0 i0

f ′

id

F0 p0

f

F ′
0

f ′

F ′
1 i1

id

F1 p1 F ′
1

If f �≈ g, then f ′ �≈ g.

Proof. Let (a, b) : f ′ → g be a morphism in D2 and consider the following commutative 
diagram, whose columns are triangles:

F ′
0

i0

f ′

F0
p0

f

F ′
0

a

f ′

G0

g

F ′
1

i1

αf′

F1
p1

αf

F ′
1

b

αf′

G1

αg

Cf ′
i

βf′

Cf

p

βf

Cf ′
ϕ

βf′

Cg

βg

ΣF ′
0 ΣF0 ΣF ′

0
Σa ΣG0
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and notice that the composition p ◦ i is an isomorphism. To verify 1.1.ho2 we should 
prove that ϕ = 0, but in fact, ϕp = 0 for the same condition applied to the pair (f, g), 
so that ϕ ∼= ϕp i = 0. On the other hand, to verify 1.1.ho1, consider a morphism 
ψ : Cf ′ → Σ−1Cg, then Σ−1(βg)ψαf ′ ∼= Σ−1(βg)ψp iαf ′ = Σ−1(βg)ψpαf i1 = 0 ◦ i1 = 0, 
where Σ−1(βg)ψpαf = 0 by the same condition applied to the pair (f, g). �

Remark 1.8. To simplify the formulation of some of our forthcoming observations, let us 
recall that a homotopy cartesian square in D is a commutative diagram

X

�
φ

α

Y

β

X ′
φ′

Y ′

(1.3)

such that there exists a distinguished triangle X → X ′ ⊕ Y → Y ′→ΣX, where the map 
X → X ′ ⊕ Y is 

(
α
−φ

)
, while the map X ′ ⊕ Y → Y ′ is (φ′, β). We call β the homotopy 

pushout of α, and α the homotopy pullback of β. We refer to [20, Ch. 1] for more details 
on this construction.

Lemma 1.9. Let (ψ : Y0 → Y1) ∈ D2 and consider a homotopy cartesian square:

X0

�
s

φ

X ′
0

φ′

X1
t

X ′
1

Then the following statements hold true:

(1) if the pair (φ, ψ) satisfies 1.1.ho2, so does the pair (φ′, ψ);
(2) if the pair (φ, ψ) satisfies 1.1.ho1 and (φ, Σ−1ψ) satisfies 1.1.ho2, then

D(Cφ′ , Σ−1Cψ) = 0;
(3) if φ �≈ ψ and φ �≈ Σ−1ψ, then φ′ �≈ ψ.
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Proof. (1) Given a morphism (a, b) : φ′ → ψ, we get a commutative diagram:

X0

�

s

φ

X ′
0

a

φ′

Y0

ψ

X1
t

α

X ′
1

b

α′

Y1

αψ

Cφ
∼=
ϕ

β

Cφ′
ψ

β′

Cψ

βψ

ΣX0 ΣX ′
0 ΣY0

we should prove that ψ = 0. By 1.1.ho2 applied to (φ, ψ) we get ψϕ = 0, but since ϕ is 
an isomorphism this allows us to conclude.

(2) Our two assumptions tell us that the map D(Cφ, Σ−1Cψ) → D(X1, Y0) is both 
trivial and injective, so that D(Cφ′ , Σ−1Cψ) ∼= D(Cφ, Σ−1Cψ) = 0.

(3) By part (1) and φ �≈ψ, the pair (φ′, ψ) satisfies 1.1.ho2. Furthermore, by part (2) 
and our assumptions, D(Cφ′ , Σ−1Cψ) = 0, so the map D(Cφ′ , Σ−1Cψ) → D(φ′

1, Y0) is 
clearly trivial. �

Let x : X0 → X1 and y : Y0 → Y1 be morphisms in D, and consider x and y as objects 
in D2. A morphism f = (f0, f1) : x → y in D2 is a commutative square of the form

X0
x

f0

X1

f1

Y0
y

Y1

Now, given a choice of completions of x and y to triangles,

X0
x

X1 c(x) ΣX0 and Y0
y

Y1 c(y) ΣY0,

it seems legit to call a cone for f any map c : c(x) → c(y) that makes the following 
diagram commute, that is, such that (f0, f1, c) is a morphism of triangles:

X0

f0

x
X1

f1

c(x)

c

ΣX0

Σf0

Y0
y

Y1 c(y) ΣY0
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It is now natural to ask whether or not the classes {c} �≈ and �≈{c} are determined by f
or if they depend on the choices made. In fact, as shown by the following example, it 
turns out that a different choice of c can produce very different orthogonal classes:

Example 1.10. Let X ∈ D be non-trivial and consider the following diagram:

X
0

0

0

0

0 ΣX
idΣX ΣX

0

X
(idX ,0)t

X ⊕ ΣX
(0,idΣX)

ΣX
0 ΣX

where both rows are triangles and the square on the left-hand side trivially commutes. 
Now, any map ΣX → ΣX can be used to complete the above solid diagram to a mor-
phism of triangles. In particular, both the trivial map 0ΣX : ΣX → ΣX and the identity 
idΣX : ΣX → ΣX are valid choices. Since X is non-trivial, idΣX is an isomorphism while 
0ΣX is not and so, by Lemma 1.3, {idΣX} �≈ = D2 
= {0ΣX} �≈.

In order to avoid pathologies like the one in the above example, we now recall the 
notion of middling good morphism of triangles; this notion will allow us to describe 
properties like “closure under homotopy colimits” in the correct way (see Lemma 1.12). 
Indeed, recall from [19] that a morphism of triangles

A0
φ0

a

B0
ψ0

b

C0

c

ΣA0

Σa

A1
φ1

B1
ψ1

C1 ΣA1

(1.4)

is said to be middling good if it can be completed to a 3 × 3 diagram whose rows and 
columns are triangles and where everything commutes but the lower right square, which 
anti-commutes:

A0
φ0

a

B0
ψ0

b

C0

c

ΣA0

Σa

A1

αa

φ1
B1

αb

ψ1
C1

αc

ΣA1

Ca

ϕa

βa

Cb

ϕb

βb

Cc

βc

ΣCa

ΣA0 ΣB0 ΣC0 Σ2C0

(1.5)
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Let us recall that, given a morphism (a, b) : φ0 → φ1 in D2, one can always choose a 
morphism c : C0 → C1 such that (a, b, c) is a middling good morphism of triangles. Let 
us remark that it is not clear to us whether or not, given two middling good morphisms 
of triangles (a, b, c) and (a, b, c′), the classes {c} �≈ and {c′} �≈ (resp., �≈{c} and �≈{c′}) are 
equal.

Lemma 1.11. Let (χ : Y0 → Y1) ∈ D2 and consider a middling good morphism of triangles 
as in (1.4). If a, Σa, c, Σc, Σ−1c �≈ χ, then b �≈ χ.

Proof. By Lemma 1.9, a, Σa �≈ χ implies D(Ca, Σ−1Cχ) = 0, while c, Σc �≈ χ implies 
D(Cc, Σ−1Cχ) = 0. Hence, D(Cb, Σ−1Cχ) = 0. On the other hand, for a morphism 
(d, e) : b → χ, we get a commutative diagram whose columns are triangles:

A0
φ0

a

B0
d

b

Y0

χ

A1
φ1

αa

B1
e

αb

Y1

αχ

Ca

ϕa

βa

Cb

ϕ

βb

Cχ

βχ

ΣA0 ΣB0 ΣY0

Since a �≈ ψ, then ϕϕa = 0, which implies that there exists f : Cc → Cχ such that 
f ◦ ϕb = ϕ. By c, Σ−1c �≈ χ we get D(Cc, Cχ) = 0, so f = 0, which implies ϕ = 0. �
Lemma 1.12. Let ψ ∈ D2 and consider two countable chains of morphisms A• = {A0

j0−→
A1

j1−→ A2
j2−→ . . . } and B• = {B0

k0−−→ B1
k1−−→ B2

k2−−→ . . . }. If there is a natural 
transformation α : A• ⇒ B• such that αi, Σαi, Σ2αi

�≈ ψ for all i ∈ N, then any map 
ϕ : hocolim A• → hocolim B• completing the following diagram to a middling good map 
of triangles is such that ϕ �≈ ψ

∐
i∈N Ai

∐
i∈N Ai hocolim A•

ϕ

+

∐
i∈N Bi

∐
i∈N Bi hocolim B• +

Proof. By Lemma 1.6, 
∐

i∈N αi, Σ 
∐

i∈N αi, Σ2 ∐
i∈N αi

�≈ ψ, so it is enough to apply 
Lemma 1.11. �
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1.2. Triangulated factorization systems

Using the notion of homotopy orthogonality we can define triangulated factorization 
systems as follows:

Definition 1.13. Let F = (E , M) be a pair of classes of morphisms in D.

(1) F is a triangulated pre-factorization system ( �pfs for short) if
– E �≈ = M and 

�≈M = E ;
– φ ∈ E implies Σφ ∈ E .

(2) F is a triangulated factorization system (�fs for short) if it is a �pfs, and if any 
morphism in D is F-crumbled, i.e. it can be factored as a composition φ = m ◦e with 
e ∈ E , m ∈ M.

Notice that in the second condition defining a �pfs we could have equivalently asked 
that φ ∈ M implies Σ−1φ ∈ M.

Remark 1.14 (Left- and right-generated �pfs). It is evident that a class of morphism 
X ⊆ D2 which is closed under negative shifts (i.e., x ∈ X implies Σ−1x ∈ X ) induces 
a �pfs ( �≈X , ( �≈X ) �≈) on D. Dually, if X is closed under shifts, then ( �≈(X �≈), X �≈) is a 
�pfs.

By the properties proved in Section 1.1 we obtain the following closure properties for 
the classes composing a �pfs:

Proposition 1.15. Let F = (E , M) be a �pfs. Then

(1) E and M are closed under isomorphisms in D2;
(2) E ∩M is the class of all isomorphisms;
(3) E is closed under arbitrary coproducts and M is closed under arbitrary products;
(4) E and M are closed under retracts;
(5) E is closed under homotopy pushouts and M is closed under homotopy pullbacks;
(6) E is closed under homotopy colimits in the sense that, in the same setting of Lemma 

1.12, if αi ∈ E for any i ∈ N, then ϕ ∈ E. A dual property regarding homotopy limits 
holds for M.

The following two definitions are of capital importance for us, as they determine the 
class of factorization systems we are interested in:

Definition 1.16 (Triangulated torsion theory). A �fs F = (E , M) is said to be a trian-
gulated torsion theory (for short, �tth) if both E and M are 3-for-2 classes.
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Definition 1.17 (Normal �fs). Let F = (E , M) be a �fs in D. We say that F is normal
if, whenever we have a factorization of a final map X → 0 as follows

X
e−→ T

m−→ 0 with e ∈ E , m ∈ M ,

and a triangle of the form R → X
e−→ T → ΣR, the map (R → 0) belongs to E .

2. The triangulated Rosetta stone

As in Section 1, let us fix throughout this section a triangulated category D with shift 
functor Σ: D �−→ D.

Definition 2.1. Recall that a t-structure in D is a pair t = (D≤0, D≥0) of full sub-
categories of D that satisfy the following properties, where D≤n := Σ−nD≤0 and 
D≥n := Σ−nD≥0, for any n ∈ Z:

t1) D(X, Y ) = 0 for any X ∈ D≤0 and Y ∈ D≥1;
t2) D≤−1 ⊆ D≤0 and D≥1 ⊆ D≥0;
t3) for any X ∈ D there is a distinguished triangle

X≤0 → X → X≥1 → ΣX≤0,

with X≤0 ∈ D≤0 and X≥1 ∈ D≥1.

Given a t-structure t = (D≤0, D≥0) in D, one obtains two functors

τ≤0 : D → D≤0 and τ≥1 : D → D≥1,

that are respectively the right adjoint to the inclusion D≤0 → D and the left adjoint to 
the inclusion D≥1 → D.

Notation 2.2. For an object X ∈ D we will generally write X≤0 for τ≤0X and X≥1 for 
τ≥1X. Furthermore, we will generally denote the unit of the co-reflection τ≤0 and the 
co-unit of the reflection τ≥1 by the following symbols:

X≤0 σX−−→ X
ρX−−→ X≥1.

For any n ∈ Z, we let τ≤n := Σ−nτ≤0Σn and τ≥n := Σ−nτ≥0Σn. We adopt similar 
notational conventions for these shifted functors.

Remark 2.3. We can equally define a t-structure as a single full additive subcategory 
t ⊆ D such that
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• Σt ⊆ t;
• each object X ∈ D fits into a distinguished triangle Xt → X → Xt⊥ → ΣXt such 

that Xt ∈ t, Xt⊥ ∈ t⊥ = {Y | D(X, Y ) = 0, ∀X ∈ t}.

This equivalent description of t-structures calls t an aisle and t⊥ a coaisle. We will usually 
blur the distinction between a t-structure and its aisle, since the correspondence between 
the two is obviously bijective under D≤0 � aisle.

2.1. The induced �fs of a t-structure

Fix a t-structure t = (D≤0, D≥0) in D, and consider the following two classes of 
morphism

Et := {φ ∈ D2 | τ≥1φ is an iso}
Mt := {ψ ∈ D2 | τ≤0ψ is an iso}. (2.1)

This subsection is devoted to the proof of the fact that Ft := (Et, Mt) is a �fs.

Lemma 2.4 (Cartesian characterization of Ft). In the above setting, a morphism (φ : X →
Y ) ∈ D2 belongs to Et if and only if the square

X≤0

φ≤0

X

φ

Y ≤0 Y

(2.2)

is homotopy cartesian. Thus, if φ ∈ Et, the cone of φ belongs to D≤0. Dually, (ψ : X →
Y ) ∈ D2 belongs to Mt if and only if the square

X

ψ

X≥1

ψ≥1

Y Y ≥1

is homotopy cartesian. Thus, if ψ ∈ Mt, the cone of ψ belongs to D≥0.

Proof. Suppose first that φ ∈ Et. By [20, Remark 1.3.15], the square in (2.2) can be 
completed to a good morphism of triangles

X≤0

φ≤0

X

φ

X≥1 ΣX

Y ≤0 Y Y ≥1 ΣY
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while by [1, Prop. 1.1.9], the unique map completing the above square to a morphism of 
triangles is τ≥1φ. Thus, we get that the following candidate triangle is in fact a triangle

X≤0 ⊕ Σ−1Y ≥1 → X ⊕ Y ≤0 → X≥1 ⊕ Y → ΣX ⊕ Y ≥1.

The above triangle is the direct sum of the following candidate triangles (see [20, Lemma 
1.2.4])

Σ−1Y ≥1 → 0 → X≥1→̃Y ≥1 and X≤0 → X ⊕ Y ≤0 → Y → ΣX,

showing that the candidate triangle on the right-hand-side is a distinguished triangle 
(as it is a summand of a distinguished triangle). The existence of such a triangle means 
exactly that the square in (2.2) is homotopy cartesian.

On the other hand, suppose the square in (2.2) is homotopy cartesian. By [20, Remark 
1.4.5], this can be completed to a good morphism of triangles

X≤0

φ≤0

X

φ

X≥1

∼=

ΣX

Y ≤0 Y Y ≥1 ΣY

Invoking again [1, Prop. 1.1.9], we obtain that τ≥1φ is an iso. �
Lemma 2.5. Consider a homotopy cartesian square

X

�φ

Y

ψ

X ′ Y ′

If φ≥0 is an isomorphism, then ψ≥0 is an isomorphism. Dually, if ψ≤0 is an isomor-
phism, then φ≤0 is an isomorphism. In other words, Et is closed under homotopy pushouts 
and Mt is closed under homotopy pullbacks.

Proof. Suppose first that φ≥0 is an isomorphism. This means that D≥0(φ≥0, B) is an 
isomorphism for any B ∈ D≥0 or, equivalently, D(φ, B) is an isomorphism for any 
B ∈ D≥0. We have to show the same property holds for ψ. Consider the following 
morphism of triangles:

Z X

�φ

Y

ψ

ΣZ

Z X ′ Y ′ ΣZ
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For any given B ∈ D≥0, we obtain a morphism of long exact sequences:

· · · D(ΣX ′, B)

∼=

D(ΣZ,B) D(Y ′, B) D(X ′, B)

∼=

D(Z,B) · · ·

· · · D(ΣX,B) D(ΣZ,B) D(Y,B) D(X,B) D(Z,B) · · ·

where D(Σφ, B) is an isomorphism because D(φ, Σ−1B) is an isomorphism, since 
Σ−1B ∈ D≥1 ⊆ D≥0. Now, by the Five Lemma we obtain that D(ψ, B) is an iso-
morphism for any B ∈ D≥0, that is, ψ≥0 is an isomorphism. The proof of the second 
part of the statement is dual. �

Lemma 2.6. Any morphism in D is Ft-crumbled.

Proof. Take a map φ : X → Y in D, and let us prove that φ is Ft-crumbled. Let us start 
taking a homotopy pullback of the maps φ≥1 and ρY :

P

φm �

X≥1

φ≥1

Y
ρY

Y ≥1

By Lemma 2.4, φm ∈ Mt. Consider also the following commutative solid diagram

X

∃φe

ρX

φ
P

�

X≥1

φ≥1

Y
ρY

Y ≥1

Then there exists a (non-unique, see [20, p. 54]) map φe : X → P that makes the diagram 
commute. Finally consider the following diagram, where the dotted arrow is obtained 
completing to a good map of triangles:
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X≤0 σX

X

φe

ρX

X≥1 ΣX≤0

Y ≤0 P

φm �

X≥1

φ≥1

ΣY ≤0

Y ≤0
σY

Y
ρY

Y ≥1 ΣY ≤0

By construction φ = φmφe. It remains to show that φe ∈ Et. By Lemma 2.4, we have 
to verify that the top left square is homotopy cartesian. Indeed, take the following map-
ping cone, which is distinguished since we took a good morphism of triangles in our 
construction:

X ⊕ Y ≤0 → P ⊕X≥1 → X≥1 ⊕ ΣX≤0 → ΣX ⊕ ΣY ≤0.

This triangle is the direct sum of the following two candidate triangles (see [20, Lemma 
1.2.4]):

0 → X≥1 → X≥1→0,

X ⊕ Y ≤0 → P → ΣX≤0→ΣX ⊕ ΣY ≤0,

showing that X≤0 → X ⊕ Y ≤0 → P → ΣX≤0 is distinguished. �
Lemma 2.7. Given e ∈ Et and m ∈ Mt, we have e �≈m.

Proof. Complete e and m to triangles as follows:

E0
e−→ E1

αe−−→ Ce
βe−−→ ΣE0 M0

m−→ M1
αm−−→ Cm

βm−−→ ΣM0,

By Lemma 2.4, there are morphisms of triangles, with φ = e≤0 and ψ = m≥1,

X0

�φ

E0

e

M0

�m

Y0

ψ

X1

α′
e

E1

αe

M1

αm

Y1

α′
m

Ce

β′
e

Ce

βe

Cm

βm

Cm

β′
m

ΣX0 ΣE0 ΣM0 ΣY0
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where X0, X1 ∈ D≤0 and Y0, Y1 ∈ D≥1. Using the closure properties of D≤0 and D≥1, 
one can show that Ce ∈ D≤0 and Σ−1Cm ∈ D≥1. Thus, D(Ce, Σ−1Cm) = 0 by condition 
2.1.t1), giving us 1.1.ho1. It remains to verify condition 1.1.ho2, that is, suppose we have 
a map f : Ce → Cm whose image in D(E1, ΣM0) is trivial and let us prove that f = 0. 
Indeed, we know that βmfαe = 0, so also β′

mfα′
e = 0 and thus we can find a morphism 

of triangles as follows

0 X1

f1

X1

fα′
e

0

Y0 Y1
α′

m

Cm

β′
m ΣY0

showing that fα′
e = α′

mf1 for some f1 : X1 → Y1. But D(X1, Y1) = 0 by 2.1.t1), so 
f1 = 0, showing that fα′

e = 0. Hence, we can find a morphism of triangles as follows

X0
e

X1
α′

e

Ce

β′
e

f

ΣX0

f2

Σ−1Cm 0 Cm Cm

showing that f = f2β
′
e, for some f2 : ΣX0 → Cm. Now, since ΣX0 ∈ D≤−1 and Cm ∈

D≥0, f2 = 0 and so also f = 0, as desired. �
Proposition 2.8. The pair of sub categories Ft = (Et, Mt) defines a �fs.

Proof. We have already seen that any morphism is Ft-crumbled and that Et ⊆ �≈Mt. 
Let us show the converse inclusion. Indeed, let (φ : X → Y ) ∈ �≈Mt and choose a 
factorization φ = φmφe with φe ∈ Et and φm ∈ Mt. By the usual 3 × 3-lemma in 
triangulated categories, we can complete the commutative square

X
φe

φ

p

φm

Y Y

to a diagram where all the rows and columns are distinguished triangles, and where 
everything commutes but the top left square, that anti-commutes:
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Σ−1Ce Σ−1Cφ Σ−1Cm Ce

Σ−1Ce X

φ

φe

P

φm

Ce

0 Y Y 0

Ce Cφ Cm ΣCe

Now, since φ ∈ �≈Mt, it follows by 1.1.ho2’ that the map Cφ → Cm in the above 
diagram is the trivial map. Thus, ΣCe

∼= Cm ⊕ ΣCφ, in particular Cm is a summand 
of ΣCe ∈ ΣD≤0 = D≤−1. Hence, Cm ∈ D≤−1 ∩ D≥0 = 0, showing that φm is an 
isomorphism, so that φ ∼= φe ∈ Et. �
2.2. t-structures are normal �tth

We now concentrate on showing how each t-structure on D naturally induces a �tth

and vice-versa; the basic idea is to mimic the proof of [13, Thm. 3.1.1] tailoring the 
argument to the triangulated setting.

Lemma 2.9. Ft = (Et, Mt) is a normal �tth.

Proof. We have already proved that Ft is a �fs, while the fact that Et and Mt are 3-for-2
classes is a trivial consequence of their definition, as they are the pre-image (under τ≥1

and τ≤0, respectively) of the class of all isomorphisms, which is a 3-for-2 class. It remains 
to show that Ft is normal. Consider a factorization of a final map X → 0 as follows

X
e−→ T

m−→ 0 with e ∈ Et, m ∈ Mt,

and a triangle of the form R → X
e−→ T → ΣR. We should prove that the map (R → 0)

belongs to Et, that is, that R ∈ D≤0. By Lemma 2.4, T ∈ D≥1. Since e ∈ Et and using 
Lemma 2.4, we can construct a commutative diagram as follows:

X≤0

�

X

e

X≥1

∼=

ΣX≤0

T≤0 T T≥1 ΣT≤0

Since T ∈ D≥1, we get T≤0 = 0 and T ∼= T≥1 ∼= X≥1, so the fact that the square 
on the left-hand-side in the above diagram is homotopy cartesian provides us with a 
distinguished triangle of the form
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X≤0 → X → T → ΣX≤0.

In particular, R ∼= X≤0 ∈ D≤0 as desired. �
Lemma 2.10. For a normal �tth F = (E , M) in D, tF := (0/E , Σ(M/0)) is a 
t-structure. Furthermore, given X ∈ D and taking an F-factorization X e→ T

m→ 0
of the final map X → 0, we have that T ∈ M/0 and e : X → T is the reflection of X
into M/0 (the coreflection of an object into 0/E is constructed dually).

Proof. We verify the three axioms of a t-structure:

• Let X ∈ 0/E and Y ∈ M/0, we have to show that D(X, Y ) = 0. Indeed, let 
ϕ : X → Y and consider the following diagram

0 0

X
ϕ

Y

X
ϕ

Y

0 0

Notice that (0 → X) ∈ E . Furthermore, 0 → 0 is an isomorphism so it belongs to 
M, as well as Y → 0; since M is a 2-for-3 class, this means that also 0 → Y belongs 
to M. By condition 1.1.ho2, we get ϕ = 0.

• Let X ∈ 0/E . Reasoning as in verifying 2.1.t1) above, one can show that the 2-for-3
property of E implies that X → 0 belongs to E . Consider now the following homotopy 
cartesian square:

X

�

0

0 ΣX

By Proposition 1.15, the map 0 → ΣX belongs to E , that is Σ(0/E) ⊆ 0/E . One 
verifies similarly that M/0 ⊆ Σ(M/0).

• Let X ∈ D, consider a factorization of the map X → 0 as follows:

X
e−→ T

m−→ 0 with e ∈ E , m ∈ M.

Now we can complete the map e to a triangle to get
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R → X
e−→ T → ΣR.

By the normality of F, R ∈ 0/E and T ∈ M/0. �
Theorem 2.11 (The triangulated Rosetta stone). Let D be a triangulated category, then 
there is a bijective correspondence

Φ :
{ normal triangulated

tths on D

} {
t-structures

on D

}
: Ψ

(E ,M)
(
0/E ,Σ(M/0)

)

(Et,Mt) t.

Proof. We have already verified in the previous subsections that Φ and Ψ are well-
defined. Consider now a t-structure t and let us show that t = ΦΨt, that is, we should 
verify that D≤0 = 0/Et. But this is true since clearly X ∈ D≤0 if and only if 0 → X

belongs to Et, that is, X ∈ 0/Et.
On the other hand, let F = (E , M) and let us show that F = ΨΦF. Let φ ∈ EtF , that 

is, φ≥1 is an isomorphism and consider the following commutative square:

X
ρX

φ

X≥1

φ≥1

Y
ρY

Y ≥1

Notice that ρX and ρY belong to E by Lemma 2.10. The composition ρY φ = φ≥1ρX
belongs to E since φ≥1 ∈ E (as E contains any isomorphism) and we have already 
observed that ρX ∈ E . For the 3-for-2 property this means that φ ∈ E . This shows that 
EtF ⊆ E . One proves in the exact same way that MtF ⊆ M, but these two conditions 
together mean that F = FtF , as desired. �
References

[1] Alexander A. Beilinson, Joseph Bernstein, Pierre Deligne, Faisceaux pervers, in: Analysis and Topol-
ogy on Singular Spaces, I, Luminy, 1981, in: Astérisque, vol. 100, 1982, pp. 5–171.

[2] A.K. Bousfield, Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (2) 
(1977) 207–220.

[3] Apostolos Beligiannis, Idun Reiten, Homological and homotopical aspects of torsion theories, Mem. 
Am. Math. Soc. 188 (883) (2007), viii+207, MR2327478 (2009e:18026).

[4] C. Cassidy, M. Hébert, G.M. Kelly, Reflective subcategories, localizations and factorization systems, 
J. Aust. Math. Soc. Ser. A 38 (3) (1985) 287–329, MR779198 (86j:18001).

[5] Spencer E. Dickson, A torsion theory for abelian categories, Trans. Am. Math. Soc. 121 (1) (1966) 
223–235.

[6] B.J. Day, G. Max Kelly, On Adjoint-Functor Factorisation, Category Seminar, Lecture Notes in 
Mathematics, vol. 420, Springer, Berlin Heidelberg, 1974, pp. 1–19 (English).

[7] P.J. Freyd, G.M. Kelly, Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972) 169–191, 
MR0322004 (48 #369).

http://refhub.elsevier.com/S0021-8693(20)30029-6/bib424244s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib424244s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib626F75736669656C6431393737636F6E737472756374696F6E73s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib626F75736669656C6431393737636F6E737472756374696F6E73s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib62656C696769616E6E69732D72656974656Es1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib62656C696769616E6E69732D72656974656Es1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib43484Bs1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib43484Bs1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib6469636B736F6E31393636746F7273696F6Es1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib6469636B736F6E31393636746F7273696F6Es1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib44617931393734s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib44617931393734s1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib464Bs1
http://refhub.elsevier.com/S0021-8693(20)30029-6/bib464Bs1


F. Loregian, S. Virili / Journal of Algebra 550 (2020) 219–241 241
[8] Domenico Fiorenza, Fosco Loregiàn, t-structures are normal torsion theories, Appl. Categ. Struct. 
24 (2) (2016) 181–208.

[9] Mark Hovey, John H. Palmieri, Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Am. 
Math. Soc. 128 (610) (1997), x+114, MR1388895 (98a:55017).

[10] André Joyal, Notes on quasi-categories, preprint, 2008.
[11] André Joyal, The Theory of Quasi-Categories and Its Applications, Citeseer, 2008.
[12] Bernhard Keller, Derived categories and tilting, Lond. Math. Soc. Lect. Note Ser. 332 (2007) 49.
[13] F. Loregiàn, t-structures in stable (∞, 1)-categories, Ph.D. thesis, sissa, 2016, http://urania .sissa .

it /xmlui /handle /1963 /35202.
[14] Jacob Lurie, Higher Topos Theory, Annals of Mathematics Studies, vol. 170, Princeton University 

Press, Princeton, NJ, 2009, MR2522659.
[15] Fosco Loregian, Simone Virili, Factorization systems on (stable) derivators.
[16] Rory B.B. Lucyshyn-Wright, Enriched factorization systems, Theory Appl. Categ. 29 (18) (2014) 

475–495, MR3256462.
[17] Georges Maltsiniotis, La K-théorie d’un dérivateur triangulé, in: Categories in Algebra, Geometry 

and Mathematical Physics, in: Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, 
pp. 341–368, MR2342836 (2008i:18008).

[18] S. Mac Lane, Groups, categories and duality, Proc. Natl. Acad. Sci. USA 34 (1948) 263–267, 
MR0025464 (10, 9c).

[19] Amnon Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1) (1991) 221–255, 
MR1106349 (92b:18011).

[20] Amnon Neeman, Triangulated Categories, Princeton University Press, Princeton, NJ, 2001 (En-
glish).
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