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0. Introduction and main results

Let G be a locally compact (l.c.), compactly generated group. λ denotes a Haar 
measure on G and V a compact neighbourhood of the identity e, generating G. The 
group G is said to be of polynomial growth, if there exists d ∈ N such that λ(V n) = O(nd)
for n ∈ N. The group G is called almost nilpotent, if it has a nilpotent subgroup H such 
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that G/H is compact. A classical result of Gromov [11] asserts that a finitely generated 
discrete group has polynomial growth if and only if it is almost nilpotent. Any almost 
nilpotent group has polynomial growth, but it is well known that the converse is no 
longer true in the non-discrete case (see [17] 1.4.3 for explicit examples). Nevertheless, 
it turns out that there are very close relations between the two classes and this will be 
the main object of the present paper.

If G is any compactly generated l.c. group of polynomial growth, it has a maximal 
compact normal subgroup C ([17] Prop. 1). Therefore, we will formulate the main theo-
rems for groups having no non-trivial compact normal subgroups. G/C is always a Lie 
group ([16] Th. 2). Any compactly generated Lie group G of polynomial growth has a 
maximal nilpotent normal subgroup N , the (non-connected) nilradical of G, denoted by 
N = nil(G) ([17] Prop. 3). In the discrete case, this is called the Fitting subgroup ([23]
p. 15).

Theorem 1. Let G be a compactly generated l.c. group of polynomial growth having no 
non-trivial compact normal subgroups. N = nil(G) shall be its (non-connected) nilradical. 
Then there exists a closed subgroup L of G such that G = NL and L/ nil(L) is compact 
(in particular, L is almost nilpotent).

For discrete polycyclic groups there is a similar result about nilpotent almost–
supplements for the Fitting subgroup ([23] Sec. 3C; see our Remark 3.1 for further 
discussion).

Theorem 2. Let G be a compactly generated l.c. group of polynomial growth having no 
non-trivial compact normal subgroup. Then G can be embedded as a closed subgroup into 
a semidirect product G̃ = Ñ � K such that K is compact, Ñ is a connected, simply 
connected nilpotent Lie group, K acts faithfully on Ñ and G̃/G is compact.

Then G̃ is also a Lie group; but G need not be normal in G̃ (see Example 4.12 (c), (f)). 
Thus, although G need not be almost nilpotent, it is always contained as a co-compact 
subgroup in an almost nilpotent (and almost connected) group G̃. For G connected, this 
was shown in [2] Th. 3.6 (see also Remark 4.11 (b)).

It follows that any group G as in Theorem 2 has a faithful linear representation 
(Corollary 3.6), G is isomorphic to a distal linear group (as considered in [1]). G̃ is 
isomorphic to a real-algebraic linear group which is (for G̃ minimal) an algebraic hull of 
G in the sense of [20] Def. 4.39 (see Remark 4.11 (a) for further discussion).

It turns out that the minimal extensions G̃ as above (or more specifically, with K
chosen minimal) are determined uniquely up to isomorphism.

Theorem 3. Let G, G̃, G̃′ be l.c. groups, j : G → G̃, j′ : G → G̃′ shall be continuous, 
injective homomorphisms such that j(G), j′(G) are closed, G̃/j(G), G̃′/j′(G) compact, 
G̃ = Ñ � K, G̃′ = Ñ ′ � K ′ with K, K ′ compact, Ñ , Ñ ′ connected, simply connected 
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nilpotent, Ñj(G) dense in G̃ and K ′ acting faithfully on Ñ ′.
Then there exists a unique continuous homomorphism Φ : G̃ → G̃′ such that Φ ◦ j = j′. 
Φ is surjective iff Ñ ′j′(G) is dense in G̃′. Φ is injective iff K acts faithfully on Ñ .

Thus, if G̃, G̃′ are given as in Theorem 2 and Ñj(G), Ñ ′j′(G) are both dense (which 
can always be attained by minimizing K, K ′), then Φ is an isomorphism. Due to this 
uniqueness, we call a group G̃ as in Theorem 2 with ÑG dense in G̃, the algebraic hull
of G and Ñ = nil(G̃) the connected nil-shadow of G.

Theorem 1 and 2 are based on the splitting techniques introduced by Malcev and 
developed further by Wang, Mostow and Auslander (see also [3]). We build upon [26]
and extend it in Section 2 for our purpose (see 2.1, Remark 3.7 and Remarks 4.11 for 
further discussion). Section 3 contains the proofs of Theorem 1 and 2. In Section 4
the proof of Theorem 3 is given, based on various structural properties of subgroups of 
semidirect products like those appearing in Theorem 2. Examples 4.12 contains various 
examples for the algebraic hull and related objects.

1. Notations and auxiliary results

1.1. If B is a group acting on G by automorphisms, then G is said to be an FC−
B -group 

if the orbits {α(x) : α ∈ B} are relatively compact in G for all x ∈ G. For B the inner 
automorphisms, G is called an FC−-group. G is called a generalized FC-group if there 
exists a series G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = (e) of closed normal subgroups of G such that 
Gi/Gi+1 is an FC−-group and compactly generated for i = 0, . . . , n −1 (see [17] 1.2.1 for 
further discussion and references). Any compactly generated group of polynomial growth 
is a generalized FC-group. As worked out in [17], generalized FC-groups have some nice 
algebraic properties, the class contains all discrete polycyclic groups, connected solvable 
groups and compact groups (thus it should allow unified formulations for some results 
of [20] Ch. III that are developed there separately for the discrete and the connected 
case). Conversely, every generalized FC-group can be built up from members of these 
subclasses.

1.2. We refer to [4] and [27] for basic results on the algebraic theory of nilpotent groups. If 
G is a connected nilpotent Lie group, then G is simply connected iff it is torsion free ([25]
Th. 3.6.1). If g denotes the Lie algebra of G, then the exponential function exp: g → G

is always surjective and if G is simply connected, then exp defines a homeomorphism.
If N is any compactly generated, torsion free nilpotent group, it can always be em-

bedded as a closed subgroup into a connected, simply connected nilpotent Lie group 
NR such that NR/N is compact (but N need not be normal). NR is called the (real) 
Malcev-completion of G (see [4] Ch. 4, [27] Sec. 11, 12, [3] Ch. II and [20] Ch. II). NR is 
determined uniquely up to isomorphism. If ϕ : N → G is any continuous homomorphism 
into a connected, simply connected nilpotent Lie group G, it has a unique extension 
ϕR : NR → G.



4 V. Losert / Journal of Algebra 554 (2020) 1–40
1.3. Semidirect products: G = H � K means that H, K are closed subgroups of the l.c. 
group G, H normal, G = HK, H ∩K = {e} (“internal product”). In most cases we will 
follow [15] (2.6) (i.e., the left factor is normal). The restrictions of the inner automor-
phisms define a continuous action of K on H, we write k ◦ h = k h k−1. Conversely, if 
l.c. groups H, K are given and a continuous action of K on H (i.e., a continuous homo-
morphism K → Aut(H) - compare [13] III.3) one can define the (“external”) semidirect 
product H � K by considering the cartesian product H × K of the topological spaces 
with group multiplication (h1, k1) (h2, k2) = (h1(k1 ◦h2), k1k2). Then H is isomorphic to 
the closed normal subgroup {(h, e) : h ∈ H}, similarly for K. For σ-compact l.c. groups 
both viewpoints are equivalent (respectively, they lead to isomorphic groups) and we will 
not distinguish further on.

Next, we give a result on combining two group extensions (“pasting of two groups 
along a common subgroup”). This is probably known, but we could not find a refer-
ence.

Proposition 1.4. Let G, H1 be l.c. groups such that H = G ∩H1 (with induced topology 
from G) is a closed normal subgroup of G and a subgroup of H1 for which the inclusion 
H → H1 is continuous. Assume that G acts continuously on H1 by automorphisms (see 
1.3) such that x ◦ h = x h x−1 whenever (x, h) ∈ (H ×H1) ∪ (G ×H).
Then there exists a l.c. group G1 and continuous homomorphisms j : G → G1, j1 :
H1 → G1 such that j1(H1) is a closed normal subgroup of G1, j = j1 on H, G1 =
j1(H1) j(G), j(H) = j1(H1) ∩ j(G), j1(x ◦h) = j(x) j1(h) j(x)−1 for all x ∈ G, h ∈ H1. 
If H is closed in H1, then j(G) is closed in G1.

If H is closed in H1, and the topologies of G and H1 coincide on H, it will result from 
the proof that j defines a topological isomorphism of G and j(G), similarly for j1. For 
this reason, we will skip j, j1 in general and consider G, H1 as subgroups of G1. Then 
the properties amount to G1 = H1 G, H1 � G1, x ◦ h = x h x−1 for all x ∈ G, h ∈ H1.

Proof. Put G∗ = H1� G (with respect to the given action, see 1.3) and H∗ = { (x−1, x) :
x ∈ H}. Then by easy computations, it follows from the properties of the action 
that H∗ is a closed normal subgroup of G∗ (e.g., the subgroup property follows from 
(x−1, x) (y−1, y) = (x−1(x ◦ y−1), xy) = (y−1x−1, xy) for x, y ∈ H, since by assumption, 
x ◦ y−1 = x y−1x−1 for x ∈ H). Put G1 = G∗/H∗, j(x) = (e, x)H∗ for x ∈ G, j1(h) =
(h, e)H∗ for h ∈ H1. This satisfies the properties stated above. �
1.5. See [15] for basic properties of l.c. groups and [25] for Lie groups. e will always denote 
the unit element of a group G. Z(G) stands for the centre of G, Aut(G) will denote the 
group of topological automorphisms of G with its standard topology (see [15] (26.3)). 
G0 denotes the connected component of the identity.
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2. The splitting technique

2.1. In this section, we use the following setting. G shall be a (not necessarily connected) 
Lie group whose topological commutator group [G,G]− is compactly generated, nilpo-
tent, torsion free and such that G/G0 is nilpotent (0 denoting the connected component 
of the identity). In particular, G is an extension of a nilpotent group by an abelian group 
and therefore solvable.

In addition, we consider a fixed closed subgroup H ⊇ [G,G]− such that H is compactly 
generated, nilpotent and torsion free. Then G/H0 is nilpotent (observe that G0/[G,G]−0

is central in G/[G,G]−0, hence G/[G,G]−0 is nilpotent). In principle, the proofs could 
also be done without specifying such an H, but this approach makes it easier to use 
the results of [26]. If G is compactly generated and has no non-trivial compact normal 
subgroups, one can always take H = N = nil(G) (the nilradical - see 2.8), then AutH(G), 
defined below, coincides with Aut(G). In the terminology of [3], H is a CN-group. If H
is connected and open in G and G/H is finitely generated, this coincides with the class 
of solvable groups G considered in [26] sec. 6 (contained in the class of S-groups defined 
in [26] sec. 10). More generally, if H is connected and G/H compactly generated, one 
gets the ε-category of [24]. The main results will be Proposition 2.15 and Corollary 2.16
on existence of the splitting (containing [26] (10.2)) and Proposition 2.22 on uniqueness 
up to conjugacy.

Aut(G) will denote the group of topological automorphisms of G (with its standard 
topology, [15] (26.3)). For x ∈ G, ιx(y) = xyx−1 denotes the corresponding inner auto-
morphism of G, ι : G → Aut(G) is a homomorphism, ιθ(x) = θ ◦ ιx ◦ θ−1 for θ ∈ Aut(G). 
As in [26] p. 2, we say that θ ∈ Aut(G) is unipotent, if there exists an integer n > 0
such that (ad θ)n is the identity on G, where (ad θ)(x) = θ(x) x−1 (if G is connected, 
this is equivalent to the statement that d θ − id is nilpotent on the Lie algebra of G – 
recall that G is solvable). H/H0 is finitely generated, nilpotent and torsion free, G/H

abelian. By well known results (compare [27] 9.3, 9.5) nilpotency of the group G/H0

is equivalent to unipotency of the automorphisms of H/H0 induced by ιx (x ∈ G). We 
put AutH(G) = {θ ∈ Aut(G) : H is θ-invariant} (θ|H will denote the restriction of the 
mapping) and (extending [26] p. 8)

Aut1(G) = {θ ∈ AutH(G) : θ induces the identity on G/H

and a unipotent automorphism of H/H0} .

Clearly, this depends on H, so we will sometimes write more precisely Aut1,H(G). Note 
that if H is not connected, Aut1(G) need not be a subgroup, but it is always AutH(G)-
invariant. The assumptions on G, H imply that ιx ∈ Aut1(G) for all x ∈ G. For θ ∈
Aut(G), we write Gθ = {x ∈ G : θ(x) = x}. If G is connected, we call θ ∈ Aut(G)
semisimple if the corresponding linear transformation dθ of the Lie algebra g of G is 
semisimple (i.e., it diagonalizes after suitable extension of the base field). Recall that 
any θ ∈ Aut(Rn) has a unique decomposition θ = θs ◦ θu = θu ◦ θs, where θs is semi-
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simple, θu unipotent (multiplicative Jordan decomposition – see [5] VII, Th. 1, p. 42). 
θs is a polynomial of θ, hence any θ-invariant subspace is also θs-invariant. If θ is an 
automorphism of a Lie algebra, the same is true for θs, θu (an easy consequence of [6]
VII, Prop. 12, p. 16). This carries over to automorphisms of connected, simply connected 
Lie groups.

If G, H are given as above, we can consider the Malcev completion HR of H and by 
1.2 and Proposition 1.4, we can consider G and HR as closed subgroups of a (uniquely 
determined) Lie group GR such that HR is normal in GR, G ∩ HR = H and GR =
HRG. Then GR/HR

∼= G/H, in particular, the pair GR, HR satisfies again our general 
requirements and GR/G (being homeomorphic to HR/H) is compact (more generally, GR

can be defined as above whenever H is a closed normal subgroup of a l.c. group G such 
that H is compactly generated, nilpotent and torsion free; but be aware that GR may 
have non-trivial compact normal subgroups, even if G does not, see also Corollary 3.5; 
furthermore, GR depends on H and it need not be connected). Any θ ∈ AutH(G) has 
a unique extension θR ∈ AutHR

(GR), θ ∈ Aut1,H(G) implies θR ∈ Aut1,HR
(GR). If θ is 

unipotent, the same is true for θR.

Lemma 2.2. For θ ∈ Aut1(G), the following statements are equivalent:

(i) θ| G0 is semisimple, G = G0 Gθ.
(ii) θ| H0 is semisimple, G = H0 Gθ.
(iii) θR|HR is semisimple, GR = H (GR)θR .

Proof. (i) ⇒ (ii): it will be enough to show that G0 ⊆ H0Gθ. The assumption 
θ ∈ Aut1(G) implies (ad θ)(G0) ⊆ H0, consequently dθ induces the identity on g/h
(where h denotes the Lie algebra of H). dθ being semisimple, it follows that g = gθ + h

(where gθ = {X ∈ g : dθ(X) = X}). Clearly, gθ is the Lie algebra of Gθ and it follows 
(as in [25] L. 3.18.4) that H0G0

θ is open in G.
(ii) ⇒ (iii): We have H = H0Hθ. It is easy to see that (Hθ)R ⊆ (HR)θR , thus 
HR = H0(HR)θR . Then GR = HRG implies GR = H0(GR)θR . In addition, we get a 
decomposition of the Lie algebra hR of HR into a sum (similar as above) and then 
semisimplicity of dθ| h (= dθR| h) implies semisimplicity of dθR.
(iii) ⇒ (i): We have ad θR(HR) ⊆ H0 and this implies that dθR induces the identity 
on hR/h. As in the first step, we get that HR = H0(HR)θR , hence H = H0Hθ and 
GR = H0(GR)θR . Since (GR)θR ∩ G = Gθ, this gives G = H0Gθ ⊆ G0Gθ. We get a 
surjective homomorphism from G0 ∩Gθ to G0/H0 and since G0 ∩Gθ is σ-compact, this 
is an open mapping ([15] Th. 5.29). Hence the mapping has to remain surjective on 
(G0 ∩ Gθ)0 = G0

θ and it follows that G0 = H0G0
θ. As in the second step, this gives a 

decomposition of g and semisimplicity of dθ. �
Definition 2.3. θ ∈ Aut(G) is called semisimple if it satisfies condition (i) of Lemma 2.2.
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Note that if H is any subgroup of G as in 2.1 such that θ ∈ Aut1,H(G) holds, then 
θ satisfies Lemma 2.2 (ii), (iii) as well. In particular (by (iii)), θR ∈ Aut(GR) is again 
semisimple. But the converse is not true in general (take e.g., G = Z, θ(n) = −n, then 
θR is semisimple but θ is not). If H is connected and open, G/H finitely generated (G, H
as in 2.1), θ ∈ Aut1(G), our Definition is equivalent to that of [26] sec. 6. If (for general 
G, H as in 2.1) θ′, θ′′ ∈ Aut1(G) are commuting semisimple automorphisms, it follows as 
in the proof of [26] (8.8) (see also Corollary 2.6 below with L = Gθ) that θ′ ◦ θ′′ is again 
semisimple and θ′ ◦ θ′′ ∈ Aut1(G).

Lemma 2.4. Assume that G, H are given as in 2.1, θ ∈ Aut1(G) and let ρ be the semisim-
ple part of θ|H0. Then there exists a unique semisimple automorphism θs ∈ Aut1(G)
which extends ρ and commutes with θ.
If H is connected, we have Gθs = {x ∈ G : θ(x) x−1 ∈ Hρ }. For general H, we have 
Gθs = {x ∈ G : (ad θ)n(x) = e for some n > 0} and θs = (θR)s| G. In particular 
Gθ ⊆ Gθs .

Proof. First, assume that H is connected. To prove uniqueness, it will be enough (by 
Lemma 2.2 (ii)) to verify the first formula for Gθs (then Gθ ⊆ Gθs follows as well in 
this case). If x ∈ Gθs , then (using θ ◦ θs = θs ◦ θ and θ ∈ Aut1(G)) we get θ(x)x−1 ∈
Gθs ∩H = Hρ. For the converse, take x ∈ G, then we have (Lemma 2.2 (ii)) x = yz with 
y ∈ H, z ∈ Gθs . If θ(x)x−1 ∈ Hρ, we can (since θ(x)x−1 = θ(y)θ(z)z−1y−1) apply [26]
(5.1) with w = y, v = θ(z)z−1 (note a misprint in [26]: it should read θ(w)vw−1 instead of 
ρ(w)vw−1) and conclude that y ∈ Hρ ⊆ Gθs . This gives x ∈ Gθs . Furthermore, concern-
ing the second formula for Gθs , [26] (5.1) shows that for w ∈ H, (ad θ)(w) ∈ Hρ implies 
w ∈ Hρ. Thus (by induction) (ad θ)n(x) = e for some n > 0 implies (ad θ)(x) ∈ Hρ, i.e., 
x ∈ Gθs . The other inclusion follows from the fact that θ|Hρ is unipotent.
Concerning existence of θs, this follows from [26] (8.1) if H is open (and still connected): 
he assumes that G/H is finitely generated, but (recall that G/H is abelian) any finite 
subset of G is contained in an open subgroup G1 of G such that G1/H is finitely gener-
ated; since uniqueness has already been proved, this allows to define the automorphism 
θs unambiguously on all of G; since H is open and θs-invariant, continuity holds auto-
matically. If H is not open, we can refine the topology to make it open (observe that on 
H the two topologies coincide). Then the argument above produces a unique extension θs
of ρ for the refined topology. To prove continuity of θs for the original topology, we may 
assume that G is σ-compact (since θ ∈ Aut1(G), any subgroup G1 containing H is au-
tomatically θ-invariant, the same for θs). The description of Gθs that was demonstrated 
above shows that Gθs is closed in the original topology. By Lemma 2.2 (ii) and [15] Th. 
5.29, G is topologically isomorphic to a quotient of the semidirect product H �Gθs . On 
H � Gθs , the mapping θ(y, z) = (ρ(y), z) is a group automorphism (since θs is known, 
to be a group automorphism) and θ is clearly continuous, hence the same is true for the 
induced mapping θs on the quotient group. This finishes the proof when H is connected. 
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If H is not connected, we consider the extension θR to GR (see 2.1). Put ρR = (θR|HR)s. 
Since H0 is θR-invariant, it is also ρR-invariant. Hence, by uniqueness of Jordan de-
composition, ρ = ρR|H0. Since θ ∈ Aut1(G), it induces a unipotent transformation on 
H/H0. Its extension to HR/H

0 coincides (by uniqueness) with the transformation in-
duced by θR|HR. Thus θR|HR induces a unipotent transformation on HR/H

0, hence 
ρR induces the identity on HR/H

0 which implies HR ⊆ H0 (HR)ρR
. Let θs be any ex-

tension of ρ as in the Lemma. From θs ∈ Aut1(G), it follows as above that (θs)R|HR

induces the identity on HR/H
0. As an easy consequence, θR ◦ (θs)−1

R is unipotent on 
HR, thus uniqueness of the Jordan decomposition implies (θs)R|HR = ρR. As observed 
after Definition 2.3, (θs)R ∈ Aut1,HR

(GR) is semisimple, hence uniqueness in the con-
nected case implies (θs)R = (θR)s, thus θs = (θR)s| G. This proves uniqueness in the 
general case. For existence, it suffices to show that G is (θR)s-invariant. But semisim-
plicity implies GR = HR (GR)(θR)s and we already know that HR = H0 (HR)ρR

, thus 
GR = H0 (GR)(θR)s which implies invariance of any subgroup containing H0 (and also 
that (θR)s| G ∈ Aut1(G)). Finally, since Gθs = G ∩ (GR)(θR)s and ad θ = (ad θR)| G, the 
formula for Gθ follows from the connected case. �
2.5. For θ ∈ Aut1(G), we write s(θ) = θs (defined by Lemma 2.4), θu = θ ◦ θ−1

s . It 
follows easily that θu ∈ Aut1(G) is unipotent, θ = θs ◦ θu = θu ◦ θs, and (by the 
corresponding result for operators on vector spaces and Lemma 2.4) this is the only such 
decomposition in Aut1(G) for which the factors commute with θ. Lemma 2.2 (i) implies 
that dθs is the semisimple part of dθ (on the Lie algebra g). Combined with the formula 
for Gθs , it follows that θs (and hence θu as well) does not depend on the choice of H, 
as long as there exists some H for which θ ∈ Aut1,H(G) (note that θ ∈ Aut1,H(G)
holds iff for G1 = G � Z with the action defined by θ, the pair G1, H satisfies the 
assumptions of 2.1; in particular, by 2.1, existence of such an H can be characterized 
by the conditions that the closed subgroup generated by [G, G] and (ad θ)(G) should 
be compactly generated, nilpotent and torsion free and θ should induce a unipotent 
transformation on G/G0; if G is compactly generated and has no non-trivial compact 
normal subgroup, one can always take H = N , as defined in Remark 2.8). By uniqueness, 
we have s(ψ ◦ θ ◦ ψ−1) = ψ ◦ s(θ) ◦ ψ−1 for ψ ∈ Aut(G), θ ∈ Aut1(G) (note that 
ψ ◦ θ ◦ψ−1 ∈ Aut1,ψ(H)(G)). In particular, if ψ ∈ Aut(G) commutes with θ, it commutes 
also with θs, θu (see also [26] (8.6)). For θ = ιx (x ∈ G) we just write s(x) (= s(ιx)). 
Note that in this case the inclusion Gθ ⊆ Gθs implies that σ = s(x) satisfies σ(x) = x. 
Furthermore, we put

S = {s(x) : x ∈ G} .

The example after Definition 2.3 shows (for G = Rn, L = Zn) that if θ is semisimple 
on G and L is a general θ-invariant subgroup, then θ|L need not be semisimple in the 

sense of Definition 2.3. Furthermore, if θ is given by the matrix 
(

0 0 1
1 0 1
0 1 −1

)
, then L = Z3

is not invariant under θs.
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Observe that if G, H are as in 2.1 and L is a closed subgroup of G such that L ∩H0

is connected, then L, L ∩H satisfy again the assumptions of 2.1 (using that (L ∩H)0 =
L ∩H0 and algebraically L/(L ∩H0) ∼= LH0/H0 ⊆ G/H0 holds; furthermore, since H is 
nilpotent, any closed subgroup of H is compactly generated - compare [17] Prop. 2). If 
θ ∈ Aut1(G), L is as above and θ-invariant, then θ|L ∈ Aut1(L).

Corollary 2.6. Assume that L is a closed subgroup of G such that L ∩H0 is connected, 
θ ∈ Aut1(G) and L is θ-invariant. Then L is θs-invariant and θs| L = (θ|L)s, θu| L =
(θ|L)u.
In particular, if θ is semisimple, then θ| L is semisimple.

Proof. Put θL = θ|L, HL = L ∩H. (θL)s is defined by Lemma 2.4 (see above) and we 
have L(θL)s = L ∩ Gθs . L0 is θ-invariant and it follows from the properties of Jordan 
decomposition (2.1) that L0 is θs-invariant and that (dθL)s is the restriction of (dθ)s =
dθs. Thus (θL)s = θs on L0 and Lemma 2.2 (i) (for θL) gives the result. �
Lemma 2.7. Assume that C is a subgroup of Aut(G), C1 is a normal subgroup of C such 
that C1 ⊆ Aut1(G), C1 is nilpotent and [C, C1] consists of unipotent transformations. 
Then s is a group homomorphism on C1, s(C1) is commutative and centralizes C.

Proof. We use the notation for commutators [σ, τ ] = στσ−1τ−1 as in [18] p. 129. We 
consider the ascending central series (e) = C(0) ⊆ · · · ⊆ C(k) = C1 for C1 (i.e., C(i+1)/C(i)

is the centre of C1/C(i)) and put C(k+1) = C. Take σ ∈ C1. By induction, we want to 
show that if τ ∈ C(i), then σs commutes with τ . This is trivial for i = 0, so we assume 
that the statement holds for i − 1 (where i ≥ 1). We have τ ′ = [σ−1, τ ] ∈ C(i−1) (for 
i = k+1 use that σ ∈ C1), hence τ ′ commutes with σs and by assumption, τ ′ is unipotent. 
Observe that τστ−1 = στ ′ = σsσuτ

′. Let h be the Lie algebra of H. By [26] (2.2), C1

induces a triangular group of transformations on h and then the same is true for the 
unipotent parts of these transformations and the group generated by them. It follows 
that the group generated by {ξu : ξ ∈ C1} contains just unipotent transformations on 
H0, in particular, σuτ

′ is unipotent on H0. Consequently, σs|H0 is the semisimple part 
of (τστ−1)|H0 and then uniqueness in Lemma 2.4 implies σs = s(τστ−1) = τσsτ

−1, 
providing the induction step.
In particular, σs commutes with C1, hence (see 2.5), for any τ ∈ C1, it commutes also 
with τs and τu. Thus στ = σsτsσuτu and (recall that by 2.3 σsτs is semisimple) as above, 
we get s(στ) = s(σ) s(τ). �
Remark 2.8. As in the previous proof (using the Lie algebra hR of HR instead of h), 
it follows from [26] (2.3) that the group N generated by {(ιx)u : x ∈ G} is nilpotent, 
contained in Aut1(G) and consists of unipotent transformations. In particular, N =
nil(G) = {x ∈ G : ιx unipotent} is a nilpotent characteristic subgroup of G containing 
H. It is the biggest nilpotent normal subgroup of G (in particular closed). We call it the 
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(non-connected) nilradical of G. If G is compactly generated, existence of N follows also 
from [17] Prop. 3, see also [26] (9.1).

Take x ∈ G and put σ = s(x). It is an easy consequence that for y ∈ G, s(y) = σ

holds iff y ∈ (N ∩Gσ) x.
If C ⊆ AutH(G), we put GC =

⋂
θ∈C Gθ. Note that GC ∩H0 is connected (since the 

fixed points correspond to a linear subspace of the Lie algebra h of H). Hence (see 2.5), 
GC , GC∩H satisfy the conditions of 2.1. We put LC = nil(GC). Then LC∩H0 = GC∩H0. 
It is easy to see that if 〈C〉 denotes the subgroup generated by C, then GC = G〈C〉.

Corollary 2.9. Let L be a nilpotent subgroup of G, σ ∈ Aut(G) such that L is σ-invariant 
and σ(x) x−1 ∈ N for all x ∈ L. Then σ commutes with s(L).

Observe that σ(x) x−1 ∈ N holds for every x, whenever σ induces the identity on G/N , 
in particular if σ ∈ Aut1(G).

Proof. Put C1 = {ιx : x ∈ L} and let C be the group generated by C1 and σ. Then C1 is 
nilpotent, contained in Aut1(G) and normal in C (since L is σ-invariant). [G, G] ⊆ H ⊆ N

and σ(x)x−1 ∈ N for x ∈ L imply that [C, C1] ⊆ {ιy : y ∈ N}, hence [C, C1] consists of 
unipotent transformations. Now Lemma 2.7 shows that C centralizes s(C1) = s(L). �
Lemma 2.10. Assume that C is a subgroup of Aut1(G) containing only semisimple trans-
formations. If C0 is a normal subgroup of C such that GC0 ∩ H0 = GC ∩ H0, then 
GC0 = GC.

Proof. Take θ ∈ C. Normality of C0 implies that GC0 is θ-invariant. By Corollary 2.6 and 
Lemma 2.2, θ| GC0 ∩H0 = id implies θ|GC0 = id. �
Corollary 2.11. Let C be a commuting subset of Aut1(G) consisting of semisimple trans-
formations. Then we have G = H0GC = NGC and there exists a finite subset C0 of C
such that GC0 = GC.

Proof. Choose a finite subset C0 of C so that dim(GC0∩H0) is minimal. Then Lemma 2.10
(applied to the groups generated by C0 and C) implies GC0 = GC . The equation G =
H0GC0 follows from Lemma 2.2 (ii) by induction on the cardinality of C0 (recall that 
Gθ, Gθ ∩ H also satisfy the assumptions of 2.1 and for θ ∈ C0, Gθ is C0-invariant and 
the restrictions are semisimple by Corollary 2.6) – compare [26] (8.8). �
Lemma 2.12. Let C be a subset of Aut(G) satisfying G = NGC. Then the following 
statements are equivalent:

(i) σ ∈ s(GC).
(ii) σ ∈ S and it commutes with C.
(iii) σ ∈ S and GC is σ-invariant.
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In particular, by Corollary 2.11, this applies to any commuting subset C of Aut1(G)
consisting of semisimple transformations.

Proof. (i) ⇒ (ii) follows from 2.5. (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): We put H = [G,G]−, then C ⊆ AutH(G), hence by Remark 2.8, GC , GC ∩
H satisfy the assumptions of 2.1. If GC is σ-invariant, then by Corollary 2.6, σ|GC
is semisimple and then by Lemma 2.2 (ii) GC = (GC ∩ H0)(GC ∩ Gσ). This implies 
G = N(GC ∩ Gσ). Take x ∈ G such that σ = s(x). Then x ∈ Gσ and x = zy with 
y ∈ GC ∩Gσ, z ∈ N . It follows that z ∈ N ∩Gσ, hence by Remark 2.8, s(x) = s(y). �
Lemma 2.13. Let C be a subset of Aut(G) satisfying G = NGC. Then the following 
statements are equivalent:

(i) σ ∈ s(LC).
(ii) σ ∈ S, σ(t) = t for all t ∈ GC.
(iii) σ ∈ S, it commutes with C and σ(t) = t for all t ∈ GC ∩H0.

Proof. Again we put H = [G,G]−.
(i) ⇒ (ii), (iii): By Lemma 2.12, σ commutes with C. Take x ∈ LC such that σ = s(x). 
Then ιx is unipotent on GC (see 2.8) and Corollary 2.6 (for L = GC) implies that σ = s(x)
is the identity on GC .
(iii) ⇒ (ii): If σ commutes with C, then GC is σ-invariant. By Corollary 2.6, σ|GC is 
semisimple and by Lemma 2.2 (ii) (with GC ∩H0 instead of H0), σ is the identity on GC .
(ii) ⇒ (i): GC is σ-invariant, hence by Lemma 2.12 σ ∈ s(GC). Take x ∈ GC such that 
σ = s(x). Then GC is ιx-invariant and by assumption, s(x) = σ is the identity on GC. 
Hence Corollary 2.6 implies that ιx is unipotent on GC, i.e., x ∈ LC . �
Lemma 2.14. (i) Let L be a nilpotent subgroup of G and put C = s(L). Then C is an 
abelian group contained in S and we have L ⊆ LC.
(ii) Let C be any subset of Aut(G) satisfying G = NGC and put C1 = s(LC). Then 
s(LC1) = C1.
If in addition C ⊆ S holds, then C ⊆ C1 (in particular, the elements of C commute and 
the generated subgroup is contained in S), GC = GC1 , LC = LC1 .
(iii) If C is a commuting subset of S then LC is a maximal nilpotent subgroup of G.

Thus the maximal nilpotent subgroups of G are all of the form LC , where C is an abelian 
group contained in S. In particular (for C = {id}), N = nil(G) is a maximal nilpotent 
subgroup of G (but this follows also directly from the definition in Remark 2.8).

Proof. (i): H0 being nilpotent and torsion free, we can identify (L ∩H0)R with a subgroup 
of H0 which is L-invariant. Thus L′ = (L ∩H0)RL is still nilpotent. By Lemma 2.7 (with 
C1 = {ιx : x ∈ L′}, C′ = C1 in place of C), s is a homomorphism on L′. Hence s(L′) = s(L)
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is always a group and (replacing L by L′) we see that it is no restriction to assume that 
L ∩H0 is connected. Furthermore (again by Lemma 2.7) C = s(L) is commutative.
If x ∈ L, then ιx is unipotent on L, hence by Corollary 2.6, σ = s(x) is the identity 
on L. This implies L ⊆ GC . σ ∈ C implies that σ is the identity on GC , hence by 
Lemma 2.13 (ii), σ ∈ s(LC). Take y ∈ LC such that σ = s(x) = s(y). By Remark 2.8, 
y x−1 ∈ N ∩GC ⊆ LC and it follows that x ∈ LC .
(ii): By Lemma 2.13 (ii), GC ⊆ GC1 . Put C2 = s(LC1). If σ ∈ C2, then by Lemma 2.13 (ii), 
σ is the identity on GC1 ⊇ GC . Thus σ ∈ s(LC) = C1, proving that C2 ⊆ C1. By (i) (with 
LC in place of L), we have LC ⊆ LC1 , hence C1 = s(LC) ⊆ s(LC1) = C2 which gives 
C2 = C1.
With the additional assumption C ⊆ S, Lemma 2.13 (ii) again implies that any σ ∈ C
belongs to s(LC) = C1, i.e., C ⊆ C1. In particular, by (i), C is contained in an abelian 
subgroup of S. C ⊆ C1 implies that GC1 ⊆ GC and by Lemma 2.13 (ii), GC ⊆ GC1 . Thus 
GC = GC1 and then LC = LC1 .
(iii): Assume that LC ⊆ L, where L is a nilpotent subgroup of G and put C′ = s(L). Then 
by (ii) (using C ⊆ S and Corollary 2.11), C ⊆ C1 = s(LC) ⊆ s(L) = C′. Consequently 
LC′ ⊆ GC′ ⊆ GC and by (i), LC ⊆ L ⊆ LC′ . Since LC is normal in GC (Remark 2.8), 
it follows that LC is L-invariant. Take x ∈ L, then (L being nilpotent) ιx is unipotent 
on LC . Recall that LC ∩H0 = GC ∩H0 and that ιx induces a unipotent transformation 
on G/H0. Combined, we see that ιx is unipotent on GC. Thus x ∈ LC . This proves that 
L = LC . �
Proposition 2.15. Let C0 be a commuting subset of S such that the dimension of GC0 ∩H0

is minimal (among all such subsets). Put L = GC0 , C = s(L). Then the following prop-
erties hold.
(i) L is a maximal nilpotent subgroup of G (in particular, L is closed), L ∩H0 is con-
nected, G = H0L, L = LC = LC0 = GC. The dimension of L ∩H0 is minimal among the 
maximal nilpotent subgroups of G.
(ii) C is a subgroup of Aut1(G) consisting of semisimple transformations. It is a maximal 
commuting subset of S, C0 ⊆ C.
(iii) β(xy) = s(y) (where x ∈ H0, y ∈ L) defines a continuous surjective group homo-
morphism β : G → C, kerβ = N, β(x) ι−1

x is unipotent for all x ∈ G.

Proof. (i): If C1 is any commuting set with C0 ⊆ C1 ⊆ S, then minimality of dim(GC0 ∩
H0) implies GC1∩H0 = GC0∩H0 (recall that GC1∩H0 is always connected). Take x ∈ GC0

and put σ = s(x). By Lemma 2.12, σ commutes with C0. Put C1 = C0 ∪ {σ}. Then σ
is the identity on GC1 ⊇ GC0 ∩ H0. GC0 being invariant under σ and ιx, Corollary 2.6
and Lemma 2.2 (ii) imply that σ is the identity on GC0 and then that ιx is unipotent on 
GC0 . Thus x ∈ LC0 . This proves that GC0 = LC0 . By Lemma 2.14 (iii), L is a maximal 
nilpotent subgroup of G, Corollary 2.11 shows that G = H0L. Lemma 2.14 (ii) implies 
that GC0 = GC , LC0 = LC . The minimality statement about dim(L ∩ H0) results also 
from Lemma 2.14.
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(ii): By Lemma 2.14 (i), C is an abelian group contained in S, C0 ⊆ C by Lemma 2.14 (ii). 
If C1 is as at the beginning, the reasoning as above gives LC1 = GC1 ⊆ GC0 = LC0 . Then 
maximality of LC1 (Lemma 2.14 (iii)) implies LC1 = LC0 , hence C1 ⊆ s(LC1) = s(LC0) =
C. This proves maximality of C.
(iii): By Lemma 2.7, s is a homomorphism on L and clearly s(y) is the identity for 
y ∈ L ∩H0 ⊆ N . Since H0 is normal in G and by (i), G = H0L, it follows easily that β
is well defined on G and a surjective group homomorphism.
If h denotes the Lie algebra of H, then by 2.5 and Lemma 2.4, d(s(y)|H) = (d(ιy|H))s. 
If y = exp(Y ) (where Y ∈ g), then by [25] (2.13.6) and Th. 2.13.2, d(ιy|H) = exp(adh Y )
(where adh denotes the adjoint representation of g on h). Furthermore, uniqueness of 
the Jordan decomposition implies 

(
exp(adh Y )

)
s

= exp
(
(adh Y )s

)
(recall that (adh Y )s

is also the semisimple part in the additive Jordan decomposition of the operator adh Y

on h. It follows (using also [13] Th. IX.1.2) that the mapping t �→ s
(
exp(tY )

)
| H0 (from 

R to Aut(H0)) is continuous, hence by [25] Th. 2.11.2, the mapping y �→ s(y)|H0 from 
G0 to Aut(H0) is continuous. Since by (i) L = LC , we know that s(y) is the identity on 
L for y ∈ L. As in the proof of Lemma 2.4, G is isomorphic to a quotient of a semidirect 
product H0 � L and it follows easily that y �→ s(y) from L0 to Aut(G) in continuous 
(hence the same is true on L) and then that β is continuous.
By definition (see also Remark 2.8) z = xy ∈ kerβ (where x ∈ H0, y ∈ L) iff y ∈ N and 
this is equivalent to z ∈ N . Again by Remark 2.8, β(x) ι−1

x is unipotent for all x ∈ G. �
Corollary 2.16. Let C, β be as in Proposition 2.15. Assume that C′ is a subgroup of 
AutH(G) with C ⊆ Z(C′). Put G′ = G � C′, N ′ = {(x, β(x−1)) : x ∈ G }.
Then N ′ is nilpotent, closed and normal in G′, G′ = N ′ C′, N ′ ∩ C′ = (e). Thus 
G′ = N ′�C′ holds algebraically and in fact topologically as well. If C′ consists of semisim-
ple transformations, then N ′ = nil(G′).

Proof. Take σ ∈ C′. Since it commutes with C, the group GC = LC is σ-invariant. By 
2.1 and 2.5, s(σ(x)) = σ ◦ s(x) ◦ σ−1, hence s(σ(x)) = s(x) for x ∈ L. This implies 
β ◦ σ = β and then a short computation shows that N ′ is a normal subgroup of G′

(evidently closed).
Commutativity of C implies [N ′, N ′] ⊆ kerβ = N . For x ∈ G, the restriction of ι(x,β(x−1))
to G equals ιx ◦ β(x−1) which is unipotent and belongs to Aut1(G) (in fact, even to the 
nilpotent group N of Remark 2.8). Hence N ′ is nilpotent by [27] (9.3). It follows easily 
from continuity of β that the isomorphism of G � C′ and N � C′ is a homeomorphism. 
Assume that N ′′ � N ′ is a nilpotent subgroup of G′. Then there exists σ ∈ N ′′ ∩C′ with 
σ �= id. Since N ⊆ N ′, σ should be unipotent on N . If σ is semisimple, this would imply 
σ|N = id and Lemma 2.2 (ii) would give σ = id. The remaining properties are clear. �
Remark 2.17. It is easy to see that [G′, N ′] ⊆ H (for C′ = C even [G′, G′] = [G, G] holds). 
If P ′ denotes the group of compact elements of N ′, then one gets P ′ = {(x, β(x−1)) : x ∈
P}, where P denotes the group of compact elements of LC. One has P ′ ⊆ Z(G′). P ′ is 
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non-trivial (hence N ′ is not torsion free) whenever G has non-trivial compact (necessarily 
abelian) subgroups (even when G has no non-trivial compact normal subgroups). If H is 
connected, one can show (similarly as in [26] (9.2)) that there exists a closed torsion free 
subgroup N ′′ of N ′ with N ′′ ⊇ H and N ′ = N ′′P ′. Then G′ = N ′′�(P ′×C′) (the group 
P ′ acts trivially on N ′′; but in general the complementary group N ′′ is not unique).
Take for example, G = C � T with T = R/Z, t ◦ z = e2πitz for t ∈ T , z ∈ C, C = C′ =
ι(T ) ∼= T . Then N = C, LC = T = P ∼= P ′, N ′ ∼= C × T .
If C′ ⊆ Aut1(G) is locally compact, abelian, C′ ⊇ C, then G′, H satisfy again the assump-
tions of 2.1 and any semisimple σ ∈ C′ defines a semisimple automorphism of G′.

Lemma 2.18. If σ ∈ Aut1(G) is semisimple, x ∈ G and σ(x) x−1 ∈ Z(G) holds, then 
x ∈ (Z(G) ∩ H0) Gσ. Under the additional assumption σ ∈ S, we get x ∈ Gσ, i.e., 
σ(x) = x.

Z(G) denotes the centre of G. Thus for σ ∈ S, x ∈ Gσ is equivalent to [ιx, σ] = id.

Proof. By Lemma 2.2 (ii), x = vy with v ∈ H0, y ∈ Gσ. Then σ(x)x−1 = σ(v)v−1 and 
the first statement follows from [26] (5.6) (with N1 = Z(G) ∩ H0). If σ ∈ S, then by 
Corollary 2.6, σ is the identity on Z(G), i.e., Z(G) ⊆ Gσ. �
Lemma 2.19. Assume that σ ∈ Aut(H0) is semisimple, θ ∈ Aut(H0), θ ◦ σ−1 unipotent, 
[θ, σ] ∈ ι(H0). Then H0 = (ad θ)2(H0) H0

σ.

Proof (compare [26] (5.2)). First we treat the special case w ∈ Z(H0). We have Z(H0) ∼=
Rn (written additively). θ| Z(H0) is given by a matrix A, σ| Z(H0) by a semisimple 
matrix A1, where A, A1 ∈ GL(Rn). Then H0

σ ∩ Z(H0) ∼= ker(A1 − I), ad θ (Z(H0)) ∼=
im(A −I). Since [θ, σ] is the identity on Z(H0), it follows that A, A1 commute, hence A1

is the semisimple part of A. In particular, Rn = im(A1 − I) ⊕ ker(A1 − I), im(A1 − I)
is A-invariant and A − I is invertible on im(A1 − I). Thus im(A1 − I) ⊆ im((A − I)2), 
proving w ∈ (ad θ)2(H0) H0

σ.
In the general case, we use induction on dimH0. The special case covers dimH0 = 1. 
For the induction step, we apply the hypothesis to H0/Z(H0). Thus, given w ∈ H0, 
there exist u0 ∈ (ad θ)2(H0), v0 ∈ H0 such that σ(v0)v−1

0 ∈ Z(H0) and w = u0v0z0 for 
some z0 ∈ Z(H0). By Lemma 2.18, v0 = z1v1 for some z1 ∈ Z(H0), v1 ∈ H0

σ. From the 
special case above, we get u2 ∈ (ad θ)2(Z(H0)), v2 ∈ H0

σ∩Z(H0) such that z1z0 = u2v2. 
Then u = u0u2, v = v1v2 will satisfy our requirements. �
Lemma 2.20. Let σ ∈ Aut1(G) be semisimple and x ∈ G such that σ ◦ ι−1

x is unipotent. 
Then there exists u ∈ [G, H0] such that uxu−1 ∈ Gσ.

Proof. By Lemma 2.2 (ii), G = H0Gσ. Write x = yz with y ∈ H0, z ∈ Gσ. Put θ = ιx. 
It follows that [σ, θ] = ισ(x)x−1 = ισ(y)y−1 ∈ ι(H0). By Lemma 2.19, there exist u ∈
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ad θ(H0) ⊆ [G, H0], v ∈ Gσ ∩ H0 = H0
σ such that y = ad θ(u) v = [u, x]−1v. Then 

uxu−1 = [u, x]x = vz ∈ Gσ. �
Lemma 2.21. For β, C as in Proposition 2.15, σ ∈ C, x ∈ G, the following statements 
are equivalent:

(i) s(x) = σ.
(ii) x ∈ Gσ, β(x) = σ.

Proof. By Proposition 2.15, σ = s(y) for some y ∈ L ⊆ Gσ. By Remark 2.8, s(x) = σ iff 
x ∈ (N ∩Gσ) y. Since by Proposition 2.15 (iii) kerβ = N , this proves our claim. �
For α ∈ Aut(G), u ∈ G, we write u αu−1 = ιu ◦ α ◦ ιu−1 .

Proposition 2.22. Let C be the subgroup of S constructed in Proposition 2.15. If C1 is 
any commuting subset of S, there exists u ∈ [G, H0] such that u C1u

−1 ⊆ C. Putting 
C2 = C ∩ C1, one can take u ∈ [GC2 , H

0 ∩GC2 ].
In particular, S =

⋃
{ u Cu−1 : u ∈ [G, H0] }.

Proof. First, we assume that C1 is finite. If C2 = C1, there is nothing to prove. So, 
take σ1 ∈ C1 \ C2 and x1 ∈ G with σ1 = s(x1) (which entails x1 ∈ Gσ1). Since σ1
commutes with C2, Gσ1 is invariant under C2 and the restrictions of the transformations 
are semisimple by Corollary 2.6. Hence by Corollary 2.11, Gσ1 = (H0∩Gσ1) (GC2 ∩Gσ1)
(if C2 = ∅, we put GC2 = G). By Remark 2.8, it follows that we may assume that 
x1 ∈ GC2 . Consider β as in Proposition 2.15 and put σ = β(x1). Then σ ∈ C, hence 
GC2 is σ-invariant. Applying Lemma 2.20 to GC2 and the restriction of σ (use also 
Proposition 2.15 (iii)), there exists u ∈ [GC2 , H

0 ∩ GC2 ] such that ux1u
−1 ∈ Gσ. Then 

u ∈ [G, H0] and by Lemma 2.21, uσ1u
−1 = s(ux1u

−1) = σ. Since u ∈ GC2 , we have 
uσ′u−1 = σ′ for σ′ ∈ C2. Thus uC1u

−1 ∩ C strictly contains C2 and, repeating this 
argument, we can reach our goal after finitely many steps.
In the general case, there exists by Corollary 2.11 a finite subset C′

1 of C1 such that 
GC′

1
= GC1 . By the special case treated above, we may assume that C′

1 ⊆ C. Then GC ⊆
GC1 . Take σ ∈ C1, then σ is the identity on GC1 , hence by Lemma 2.13, σ ∈ s(LC) = C
(Proposition 2.15 (i)). Thus C1 ⊆ C. �
Remarks 2.23.
(a) In Lemma 2.12, the implication (i) ⇒ (ii) holds for general subsets C of Aut(G) (same 
proof). Furthermore, by Corollary 2.9, the elements of s(GC) ∪ C always commute with 
those of s(LC).
(b) With some further arguments the following conditions give other characterizations 
of the elements σ ∈ s(LC) (C as in Lemma 2.13):

(iv) σ ∈ S, it commutes with s(LC) and σ(t) = t for all t ∈ GC ∩H0.

(v) σ ∈ S, σ(t) = t for all t ∈ LC .
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In particular, it follows that s(LC) is a maximal commuting subset (group) in the set 
{σ ∈ S : σ| GC ∩H0 = id }.
(c) In Lemma 2.13, the implications (i) ⇒ (ii), (i) ⇒ (iii) ⇒ (ii) hold for arbitrary 
subsets C of AutH(G) (same proof).
(d) s(GC) is not a group, unless GC = LC , i.e. GC is nilpotent (C any subset of AutH(G)). 
Indeed, assume that s(GC) is a group, take σ ∈ s(GC). If x ∈ GC , then by 2.5, ιx◦σ◦ιx−1 ∈
s(GC), hence ισ(x)x−1 = [ιx, σ] ∈ s(GC). Since σ(x)x−1 ∈ H0, ισ(x)x−1 is unipotent, 
hence it must be the identity. Consequently σ(x)x−1 ∈ Z(G) and by Lemma 2.18, we 
get σ(x) = x for all x ∈ GC . Then Lemma 2.13 (ii) implies σ ∈ s(LC), i.e., s(GC) = s(LC). 
Now take x ∈ GC , then by Remark 2.8, there exists y ∈ LC such that yx−1 ∈ N∩GC ⊆ LC , 
hence x ∈ LC .

As a special case, if C0 is a commuting subset of S and dim(GC0 ∩H0) is not minimal 
(compare Proposition 2.15), then GC0 �= LC0 , in particular: s(GC0) is not a group (if C is a 
maximal commuting set with C0 ⊆ C ⊆ S, then by Proposition 2.22, GC0 ∩H0 �= GC∩H0

and by Proposition 2.15, LC = GC ⊆ GC0 , but by Lemma 2.14 (iii), LC is not strictly 
contained in LC0).
(e) In Lemma 2.19, the assumption [θ, σ] ∈ ι(H0) can be replaced by assuming the 
existence of a normal series (e) = H0 � H1 · · · � Hk = H0, where Hi are closed, 
connected and invariant under θ, σ and [θ, σ] induces the identity on Hi/Hi−1 (i =
1, . . . , k). The same argument shows that H0 = (ad σ)(H0) H0

σ (for any semisimple 
automorphism σ of H0), compare [18] L. 5.4.
(f) For G = R × T , H = R × (0), σ(x, y) = (x, y + x), one has Gσ = Z × T , thus 
G = H0Gσ but σ /∈ AutH(G) and Gσ ∩ H0 is not connected (compare Remark 2.8). 
Alternatively, one could take H1 = (e). Then σ ∈ AutH1(G) but G �= H0

1Gσ.
(g) For L = LC with C as in Proposition 2.15 one can show that NG(L) = L, i.e. L is 
“self-normalizing”. If G is a connected solvable Lie group with Lie algebra g, then L
is connected. If l denotes the Lie algebra of L then l is a Cartan subalgebra of g and 
conversely. [7] 3.1 gives an explicit construction of the nil-shadow of G (based on [8]
Sec. 3). His mapping T coincides with β of our Proposition 2.15 and his multiplication 
∗ corresponds to the multiplication on N ′ arising in our Corollary 2.16.
(h) The Example before Corollary 2.6 shows that Jordan decomposition does not always 
work for automorphisms of Z3 and by duality one also gets counter-examples for T 3. 
This limits the possibility to weaken the assumptions of 2.1. If G is a l.c. group such 
that [G, G] and G/G0 are nilpotent, let K be the group of compact elements in [G,G]−

(in the compactly generated case, this is just the maximal compact normal subgroup). If 
K0 is central in G (or more generally, if ιx|K0 is unipotent for all x ∈ G) one can extend 
most of the results of this section (extending similarly the definition of Aut1(G)). This 
applies in particular when G is any connected (but not necessarily simply connected) 
solvable l.c. group (then, by Iwasawa’s theorem, every compact normal subgroup of G is 
contained in the centre, [14] Th. 9.82). We will not make use of this generalization, but 
see also Remark 3.7 and Section 4.
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Example 2.24. Assume that G0, H0 satisfy the assumptions of 2.1 and consider G =
G0 ×G0, H = H0 ×H0, σ(x, y) = (y, x). Then σ ∈ AutH(G), dσ is semisimple, but if 
G0 �= H0, then σ /∈ Aut1(G). We have Gσ = {(x, x) : x ∈ G0}, Lσ = {(x, x) : x ∈ N0}
(where N0 = nil(G0)). Hence if G0 �= H0, then G �= HGσ, i.e., Corollary 2.11 does not 
hold in this case. Lσ is not maximal nilpotent (since it is strictly contained in N0 ×N0), 
i.e., Lemma 2.14 (iii) does not hold. If C0 is a subset of Aut1(G0) as in Proposition 2.15
and for τ ∈ Aut(G0), τ̃(x, y) = (τ(x), y), C̃ = {σ} ∪{τ̃ : τ ∈ C0}, then LC̃ = {(x, x) : x ∈
LC0} and for C̃1 = s(LC̃), we get LC̃1

= {(x, y) : x, y ∈ LC0}, thus C̃1 is strictly contained 
in s(LC̃1

), i.e., Lemma 2.14 (ii) does not hold.

3. Proofs of Theorem 1 and 2

Proof of Theorem 1. Let R be the (non-connected) radical, N the nilradical of G ([17]
Prop. 3). By [17] Prop. 5, there exists a closed subgroup G1 of R with finite index and 
such that [G1, G1] ⊆ N ⊆ G1. Since R/R0 is a discrete, finitely generated group of 
polynomial growth, it has a nilpotent subgroup of finite index. Hence, we can assume in 
addition that G1/R

0 is nilpotent and (by easy arguments as in [17]) that G1 is normal in 
G. It follows that G1, N satisfy the assumptions of 2.1. Choose C as in Proposition 2.15
and put L1 = LC = (G1)C . Then by Proposition 2.15, L1 is nilpotent and G1 = N0L1. 
Let L be the normalizer of L1 in G. Proposition 2.22 implies G = [G1, N0] L ⊆ N0L.
We claim that L ∩ G1 = L1. Put L′ = L ∩ G1, L′′ = L ∩ N0. Then L′ = L1L

′′, L1
and L′′ are nilpotent normal subgroups of L, hence L′ is nilpotent ([20] L. 4.7). Since 
L1 is maximal (Proposition 2.15), we conclude that L1 = L′, proving our claim. L1
being nilpotent and normal in L, it follows that nil(L) ⊇ L1. Since LG1 = G, we have 
L/L1 = L/(L ∩G1) ∼= LG1/G1 = G/G1 and this is compact by ([17] Prop. 4), finishing 
our proof. �
Remark 3.1. The argument shows that in fact G = N0L. The same proof works if G
is a generalized FC-group without non-trivial compact normal subgroups under the 
additional assumption that G/G0 has polynomial growth (by the standard properties 
of [12], this assumption is equivalent to R/R0 having polynomial growth – recall that 
G0/R0 is compact). In particular, the additional assumption is satisfied, if N is connected 
(by [17] Prop. 5).

With some further efforts, it can be shown that Theorem 1 (with G = N0L) is valid 
for arbitrary compactly generated Lie groups G of polynomial growth (if P denotes 
the maximal compact normal subgroup of N and P 0 is central in G, things are easier, 
using the generalizations mentioned in Remark 2.23 (h)). However, it does not hold for 
arbitrary generalized FC-groups (see Example 3.2 below). If G is a generalized FC-group 
and a Lie group, one can show the existence of a closed subgroup L such that L/ nil(L)
is compact and NL is an open subgroup of finite index in G (in the discrete case, i.e., G
is a finite extension of a polycyclic group, this is [23] Cor. 2, p. 48, where nil(L) is called 
an almost-supplement for nil(G)).



18 V. Losert / Journal of Algebra 554 (2020) 1–40
Example 3.2. The conclusion of Theorem 1 does not hold in general for discrete torsion 
free polycyclic groups (in particular not for arbitrary generalized FC-groups). Take A =
Zn, let α, β be two commuting automorphisms of A such that im(α−id) +im(β−id) �= A

and choose v0 ∈ A not belonging to the left side. We consider G = (A �Z) �Z with the 
first action defined by α and for the second one, the “affine” action arising from β on A
and 1 ◦(0, 1) = (v0, 1). Altogether, G ∼= {(v, k, l) : v ∈ A, k, l ∈ Z } and the multiplication 

is (v, k, l) (v′, k′, l′) =
(
v+αk

(
βl(v′) +(βl−1+· · ·+id) ◦(αk′−1+· · ·+id) (v0)

)
, k+k′, l+l′

)
for l, k′ > 0. If for (k, l) �= (0, 0) αk ◦ βl − id is always injective, it is easy to see that 
N = A and any nilpotent subgroup B of G with B � A satisfies B ∩ A = (e). But the 
choice of v0 implies that G cannot be written as A � B for some subgroup B of G.
Explicitly, for n = 4, we have A ∼= Z2 ⊗ Z2 and α, β can be found as follows: α =
α0 ⊗ id, β = id⊗α0, where α0 − id is not surjective and the eigenvalues of α0 are not 
roots of unity, e.g., take α0 given by the matrix 

( 3 1
2 1

)
. Here im(α0 − id) has index 2 in Z

and it turns out that {(v, k, l) : (k, l) ∈ 4Z ×Z } splits, i.e., the conclusion of Theorem 1
holds for this subgroup.

We add here a further structural property, partially extending [17] Prop. 6.

Proposition 3.3. Let G be a generalized FC-group without non-trivial compact normal 
subgroups. Then the nilradical N is a maximal nilpotent subgroup of G.
Thus, if x ∈ G and the induced automorphism of N is unipotent, then x ∈ N . In 
particular, the centralizer CG(N) equals the centre Z(N).

Proof. We start with the statement on the centralizer Z1 = CG(N). Clearly, Z1 ∩N =
Z(N) and Z1 is normal in G. Let R be the (non-connected) radical of G. Then it follows 
easily from maximality of N that Z1 ∩ R ⊆ N (otherwise, consider the last non-trivial 
term of the derived series of the solvable group (Z1∩R)N/N). Let R1 be the radical of Z1. 
It is a characteristic subgroup, hence maximality of R implies R1 ⊆ R and it follows that 
R1 = Z(N). Then by [17] Prop. 4 (applied to the generalized FC-group Z1), Z1/Z(N)
is compact. Thus Z1 is a Z-group in the sense of [10], in particular an FC−-group and 
it is compactly generated by [17] Prop. 2. Then by [10] Th. 3.20, [Z1, Z1]− is compact. 
Since G has no non-trivial compact normal subgroups, it follows that Z1 is abelian, 
consequently Z1 = R1 = Z(N).
For the general case, assume that M is a nilpotent subgroup of G containing N . We may 
assume M to be closed. Then by [17] Prop. 6, M/N is compact. We use the ascending 
central series (e) = N0 ⊆ · · · ⊆ Nk = N , recall that Ni/Ni−1 is torsion free. For x ∈ M , 
we consider the automorphism ϕi(x) ∈ Aut(Ni/Ni−1) induced by ιx (i = 1, . . . , k). ϕi

is a continuous homomorphism and N ⊆ kerϕi, hence imϕi is compact. Since ιx is 
unipotent on N , it follows that all ϕi are trivial, thus [M, Ni] ⊆ Ni−1 for all i. Let H
be the set of those continuous automorphisms of N that induce the identity on Ni/Ni−1
for i = 1, . . . , k. Then it is easy to see that H is a nilpotent normal subgroup of Aut(N). 
For x ∈ G, let ϕ(x) ∈ Aut(N) be the restriction of ιx. Then H = {x ∈ G : ϕ(x) ∈ H} is 
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a normal subgroup of G with M ⊆ H. By the first part of the proof, kerϕ = CG(N) =
Z(N) and by the definition of H (take i = 1) N1 = Z(N) ⊆ Z(H). It follows that H is 
nilpotent and then maximality gives H = N , hence M ⊆ N . �
Remark 3.4. This need not be true when there are non-trivial compact normal subgroups. 
Take e.g. a direct product of a compact semisimple group and a nilpotent group.

Corollary 3.5. If G is as in Proposition 3.3, then GR has no non-trivial compact normal 
subgroup. NR is the nilradical of GR.

Proof. We have GR = NRG (see 2.1, taking H = N). Assume that P is a compact 
normal subgroup of GR. Since NR is normal in GR and torsion free, it follows that 
[P, NR] = (e). Take x ∈ P , then x = uv with u ∈ NR, v ∈ G. Since ιv coincides with 
ιu−1 on NR, we get that ιv is unipotent on NR, hence also on N . Thus v ∈ N , resulting 
in P ⊆ P ∩N = (e).
It is easy to see that GR is again a generalized FC-group. If N1 denotes its nilradical, 
then N1 ⊇ NR and (by maximality) N1 ∩G = N , giving N1 = NR. �
Proof of Theorem 2.

(a) Assume that the nilradical N is connected and that G/N is compact. Then G
is an almost connected Lie-group. Let K be a maximal compact subgroup. By [13] Th. 
XV.3.7, we have G = NK. Since N is torsion free, N ∩K is trivial, thus G ∼= N � K. 
Furthermore, K ∩CG(N) is easily seen to be normal in G, hence it must also be trivial, 
proving faithfulness of the action of K. So we may take G̃ = G in this case (in fact, 
this argument just needs that N is some connected nilpotent normal subgroup for which 
G/N is compact, but then it is not hard to see that necessarily N = nil(G) holds).

(b) For the general case, it will be enough (using (a)) to show the existence of a Lie 
group G̃ without non-trivial compact normal subgroups, having G as a closed subgroup 
such that G̃/G is compact, Ñ = nil(G̃) is connected and G̃/Ñ is compact. We take up 
the notations from the Proof of Theorem 1 above. Put K1 = C. Then K1 is a compact 
abelian subgroup of Aut(G1) (recall that G1 = N0L1 and each σ ∈ C is the identity on 
L1, thus it suffices to consider the restrictions to N0; let n be the Lie algebra of N0, then 
Aut(N0) ∼= Aut(n) – using [25] Th. 2.7.5 and [13] Th. IX.1.2; by [16] Th. 1, for x ∈ G1, 
the eigenvalues of dιx have modulus 1, hence the same is true for the eigenvalues of (dιx)s
and this equals dιs(x) by 2.5). Put G2 = G1 � K1 and N2 = nil(G2). By Corollary 2.16, 
we have G2 ∼= N2 � K1 and G2/G1 (∼= K1) is compact.
For x ∈ L, we define ϕ(x) (y, σ) = (xyx−1, ιx,1◦σ◦ι−1

x,1), where ιx,1 denotes the restriction 
of ιx to G1 (compare [3] p. 243). Recall that L1 �L and C = s(L1), thus ιx,1 ◦C ◦ ι−1

x,1 = C. 
Easy computations show that ϕ(x) ∈ Aut(G2) and that ϕ is a homomorphism on L. For 
x ∈ G1 ∩ L (= L1), we get ϕ(x) = ιx,2, the corresponding inner automorphism of G2. 
Then for u ∈ G1, x ∈ L, we extend the definition by ϕ(ux) = ιu,2 ◦ϕ(x). Again one can 
check that ϕ : G (= G1L) → Aut(G2) is well defined and a continuous homomorphism. 
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For z ∈ G, the restriction of ϕ(z) to G1 is ιz,1 and for z ∈ G1, we have ϕ(z) = ιz,2. This 
allows to apply Proposition 1.4, there exists a locally compact group G3 (in fact a Lie 
group) having G2, G as closed subgroups with G2 normal, G2 ∩ G = G1, G2 G = G3
(consequently, G3 = GK1). Since G/G1 is compact, it follows that G3/G2 is compact 
and then that G3/N2 and G3/G are compact. In particular, by [12] Th. I.4, G3 has 
polynomial growth. Put N3 = nil(G3). Then G2 � G3 implies N2 ⊆ N3. Let P3 be 
the maximal compact normal subgroup of G3 ([17] Prop. 1) and put G4 = G3/P3. 
Then G ∩ P3 is trivial and we get an embedding of G into G4. For N4 = nil(G4), 
we have N4 ⊇ N3P3/P3. Since N4 is torsion free, we can finish the construction by 
putting Ñ = (N4)R, G̃ = (G4)R = (N4)RG4 (see 2.1, with H = N4) which has the 
required properties (it has no non-trivial compact normal subgroups by Corollary 3.5; 
alternatively we could factor once more by the maximal compact normal subgroup; see 
also the comment to Corollary 4.9 for further explanations). �
Corollary 3.6. Let G be a compactly generated group of polynomial growth without non-
trivial compact normal subgroups. Then G has a faithful finite dimensional represen-
tation, i.e., for appropriate n > 0 there exists an injective continuous homomorphism 
π : G → GL(Rn) such that π(G) is closed and π(N) (where N = nil(G)) consists of 
upper triangular unipotent matrices.
Moreover, there exists such a faithful representation π having the additional property that 
the eigenvalues of π(x) are of modulus 1 for all x ∈ G.

In [1] a (real or complex) linear group is called distal, if every eigenvalue of its elements 
has absolute value 1.

Proof (compare [26] Th. 3). By Theorem 2, we can assume that G = Ñ � K, where K
is compact, Ñ is connected nilpotent torsion free and the action of K on Ñ is faithful. 
Thus K can be considered as a closed subgroup of Aut(Ñ). Now we use the Birkhoff 
embedding theorem ([26] p. 16, [3] p. 239). It gives a faithful representation π of Ñ by 
upper triangular unipotent matrices together with a representation of Aut(Ñ) (where 
π(σ) is semisimple for σ semisimple), combining to a representation of Ñ � Aut(Ñ). 
Note that in particular π(K) acts faithfully on π(Ñ). By compactness, the (complex) 
eigenvalues of π(x) have modulus 1 for x ∈ K. Fixing x ∈ K, π(〈x〉Ñ) is trigonalizable 
(over C) by [26] (2.2). Hence the eigenvalues of π(xy) have modulus 1 for y ∈ Ñ . �
Remark 3.7. By some additional arguments, one can also prove an analogue of Theorem 2
for a generalized FC-group G without non-trivial compact normal subgroups. One gets 
an embedding into some group G̃ = Ñ � S such that Ñ is connected, simply connected, 
nilpotent and S is an almost connected SIN -group (i.e., by [10] Th. 2.9, S ∼= V � K, 
where V ∼= Rn, K is compact and K0 acts trivially on V ) such that the action of S on Ñ
is semisimple. G becomes a closed subgroup, but one can no longer expect that G̃/G is 
compact. As in Corollary 3.6, one gets again faithful finite dimensional representations.
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In [28] Th. 3 (for discrete groups) an intermediate type of embeddings is studied. 
By splitting only the compact part K, a generalized FC-group G without non-trivial 
compact normal subgroups can be embedded as a closed, co-compact subgroup into a 
semidirect product S̃ � K where S̃ is a connected, simply connected and super-solvable 
Lie group (i.e., S̃ has a faithful representation by real triangular matrices), K compact, 
acting faithfully on S̃. [28] Cor. 4 gives for G discrete a uniqueness result, similar to our 
Theorem 3, for this type of embedding. This should extend to general G.

Such embeddings are related to the semisimple splittings of [3] (see also [23] Ch. 7; by 
considering closures in the automorphism group, we arrive at somewhat bigger groups 
in the non-discrete case). To point out the differences, note that in Theorem 2 we get 
Ñ = nil(G̃) to be connected which entails that GK can be a proper subset of G̃ (not 
even a subgroup in general) and G need not be normal in G̃. Since we want K to be 
compact, GÑ will in general be only a dense subgroup of G̃. On the other hand, we do 
not require that G/N is torsion free. See also Remarks 4.11 for further discussion.

In [24] rather general splitting results are stated. But the handling of the definitions 
is not always consistent and the presentation is rather intransparent. Therefore, we have 
decided to rely on the earlier version of Wang [26] as a basis of our exposition. We have 
tried to avoid too much use of results from algebraic groups (this might also give some 
shorter arguments in Section 4).

With almost the same proof Theorem 2 extends to the case where only N (instead 
of G) has no non-trivial compact normal subgroup. But if C, the maximal compact 
subgroup of G, is non-trivial, then for any embedding as in Theorem 2 (with Ñ simply 
connected), C (that embeds into K, see also Proposition 4.8 (c)) will act trivially on Ñ . 
Thus the action of K on Ñ will no longer to be faithful. If G is a compactly generated l.c. 
group of polynomial growth satisfying the assumptions of 2.1, one can (after first passing 
to GR = HRG) use the modification sketched in Remark 2.17 to get an embedding (as a 
closed subgroup) into a group Ñ�K where Ñ is simply connected, nilpotent, K compact 
abelian. This contains some further examples there C is non-trivial.

More generally, using the generalizations mentioned in Remark 2.23 (h)), one can 
extend a large part of the proof of Theorem 2 (up to G3) to the case where G is a 
compactly generated l.c. group of polynomial growth with maximal compact subgroup 
C and there exists a closed normal subgroup H such that G/H is compact and ιx|C is 
unipotent for all x ∈ H. But there are examples of (non torsion free) compactly generated 
nilpotent Lie groups that cannot be embedded into a connected nilpotent group. Hence 
the last step of the argument will fail in general and this produces only a certain analogue 
of the groups Gan described in Proposition 3.8.

If G is any compactly generated Lie group of polynomial growth, the following prop-
erties can be shown to be equivalent:

(a) G has a faithful (continuous) finite dimensional representation.
(b) G has a closed normal subgroup H such that G/H is compact and H has no non-

trivial compact normal subgroup.
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(c) G has a closed normal subgroup H such that G/H is compact and [G0H,H]− 0 is 
torsion free.

(d) R (the non-connected radical of G) has a subgroup R1 of finite index such that 
[R1, R1]− is nilpotent and torsion free.

Then the group R1 in (d) can be chosen to be G-invariant and the group H in (b) 
can be found so that [R1, R1] ⊆ H ⊆ R. There exists a faithful finite dimensional 
representation π such that π(G) is closed and distal. There is also an embedding of G as 
a closed subgroup of some G̃ ∼= Ñ � K such that K is compact, Ñ connected nilpotent 
torsion free, G̃/G compact. But the action of K on Ñ need not be faithful and N need 
not be contained in Ñ (recall that in case π(N) consists of unipotent transformations, 
N must be torsion free).

A classical case where this is satisfied are finitely generated (discrete) groups of poly-
nomial growth (and more generally, extensions of polycyclic groups by finite groups, not 
necessarily torsion free). Here one can even get a faithful representation by integer-valued 
matrices ([23] Th. 5, p. 92).

For a compactly generated Lie nilpotent group G one gets that G has a faithful 
(continuous) finite dimensional representation iff [G,G]− 0 (the identity component of 
the topological commutator group) is torsion free (this extends the characterization of 
[13] Th. XVIII.3.2 in the connected case; for connected G it follows that [G, G] must 
already be closed, but this need not be true in the non-connected case).

The construction used in the proof of Theorem 2 gives also a smaller almost nilpotent 
extension.

Proposition 3.8. Let G be a compactly generated group of polynomial growth without 
non-trivial compact normal subgroups.
(i) There exists a Lie group Gan containing G as a closed subgroup such that 
Gan/G, Gan/Nan are compact (where Nan = nil(Gan)) and Gan = NanG.
Furthermore, Gan has no non-trivial compact normal subgroup, G ∩ Nan = N, [Nan,

Nan] ⊆ N (in particular, N is normal in Gan) and there exists a compact connected 
abelian subgroup K1 of Gan such that Gan = GK1 and K1 ∩ CGan

(G) = {e}. The group 
NanK1 ∩ G is Gan-invariant and contained, with finite index, in R (radical of G).
(ii) If G is almost connected, then Nan = Ñ is connected and Gan = G̃ coincides with 
the group of Theorem 2.

Proof. We take Gan = G4, as constructed in the proof of Theorem 2. Then (i) follows 
(replacing G1 by some subgroup of finite index, one can always achieve that K1 is 
connected, see also Corollary 4.9 and the comment there).
If G is almost connected (since it is a Lie group, this means that G/G0 is finite), we can 
take G1 = R0. Then Corollary 2.16 shows that N2 is connected. N2 being co-compact 
in G3, the same is true for its image N2P3/P3 in G4. Since N2P3/P3 is connected and 
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N4 torsion free, it follows (e.g. [20] Rem. 2.6) that N4 equals N2P3/P3. Hence G̃ = G4
(alternatively, one could use Corollary 4.9; then Proposition 4.4 (a) implies that Ñ∩G0K1
is a co-compact connected subgroup of Ñ , hence Ñ ⊆ G0K1). �
4. Subgroups of semidirect products

As a preparation for the proof of Theorem 3, we start with two technical lemmas and 
then we collect some properties of subgroups of the semidirect products that arise in 
Theorem 2 (in particular, consequences of the assumption “G̃/G compact”). This allows 
to give an explicit description of the decomposition of Theorem 1 (Corollary 4.9) and to 
identify (Proposition 4.8) various constituents that came up in [17].

To make the induction arguments easier, we consider now also nilpotent Lie groups N
that are not torsion free. Analogously to Definition 2.3, σ ∈ Aut(N) is called semisimple, 
if the corresponding transformation dσ of the Lie algebra n of N is semisimple and 
N = N0Nσ. If N ′ is a closed normal σ-invariant subgroup of N , it is easy to see that 
the induced automorphism on N/N ′ is again semisimple.

Lemma 4.1. Let N be a nilpotent Lie group, K a connected subgroup of Aut(N) consisting 
of semisimple transformations and let N1 be a closed connected K-invariant subgroup of 
N . Then for σ ∈ K, we have (adσ)(N) ∩N1 = (adσ)(N1).

Proof. Semisimplicity implies (adσ)(N) = (adσ)(N0), thus we may assume N con-
nected. Let Ñ be the universal covering group of N , π : Ñ → N the canonical 
projection, Γ = kerπ, Ñ1 = π−1(N1)0. Denote by K̃ the group of lifted automor-
phisms σ̃. Consider x ∈ N with σ(x) x−1 ∈ N1 and take x̃ ∈ Ñ with π(x̃) = x. Then 
σ̃(x̃)−1x̃−1 ∈ π−1(N1) = ΓÑ1. Let P̃ be the analytic subgroup of Ñ generated by Γ (we 
have Γ ⊆ Z(Ñ); if this is written additively, P̃ is just the vector subspace generated 
by Γ). Then M = P̃ Ñ1 is an analytic subgroup of Ñ , σ̃(x̃) ̃x−1 ∈ M . By [26] (5.6), we 
have x̃ = ỹ z with ỹ ∈ M , z ∈ Ñσ̃. Since K̃ (∼= K) is connected, it has to be trivial 
on Γ, hence also on P̃ , thus we can assume that ỹ ∈ Ñ1. Put y = π(ỹ), then y ∈ N1, 
σ(y) y−1 = σ(x) x−1. �
Corollary 4.2. Let N , K be as above.
(a) If σ ∈ K and N1 is any closed K-invariant subgroup, then σ|N1 is again semisimple.
(b) If K is commutative, then N = N0NK.
(c) If K is commutative and N ′ is any closed normal K-invariant subgroup, then 
NKN

′/N ′ = (N/N ′)K.

Proof. (a): If x ∈ N1, then σ(x) x−1 ∈ N0
1 (K is connected), hence by Lemma 4.1, x = y z

with y ∈ N0
1 , z ∈ Nσ.

(b), (c): As in the proof of Corollary 2.11, there is a finite subset K0 of K such that 
NK = NK0 . Then an easy induction argument (see also [26] (8.8)) proves our claim. �
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Lemma 4.3. Let G be a triangular group of automorphisms of N = Rn and assume that 
G is nilpotent and that the closure K of s(G) (the semisimple parts) is connected. Then 
any closed G-invariant subgroup H of N is K-invariant.

Proof. By Lemma 2.7, K is commutative and centralizes G. If N denotes the set of 
unipotent transformations in GK, then N is a subgroup. For σ ∈ G, s(σ) is a polynomial 
in σ, hence the result follows immediately when H is connected. Thus (passing to N/H0), 
we may assume that H is discrete and that it generates N as a real vector space.
First, we claim that NK ∩H is non-trivial. For σ ∈ G, we consider its restriction to the 
Q-vector space HQ (= QH). It has a Jordan decomposition (for the base field Q, [5] VII, 
Th. 1, p. 42) and by uniqueness, the real extensions of the components have to coincide 
with σs, σu. Thus HQ is s(G)-invariant and N -invariant. N is still triangular and it 
follows easily that NN ∩HQ is non-trivial, hence NN ∩H is non-trivial. Since NN ∩H is 
G-invariant and N acts trivially on this group, it is also K-invariant. K being connected, 
NN ∩H discrete, it follows that K acts trivially on NN ∩H, i.e., NN ∩H ⊆ NK.
As observed in the proof of Corollary 4.2, there is a finite subset K0 of K such that 
NK0 = NK. For σ ∈ K, the projection to Nσ obtained from the primary decomposition 
is a rational polynomial in σ ([25] Th. 3.1.1). Combined, this gives a projection p to 
NK which is a rational polynomial in elements of K. Put M = (id−p)(N), defining a 
complementary subspace for NK, invariant under G and K. Since HQ is p-invariant, it 
follows that (id−p)(HQ) ⊆ HQ, hence H1 = (id−p)(HQ) ∩ H generates M as a real 
vector space. Thus, if M would be non-trivial, the same would be true for H1 and the 
argument above would imply that NK ∩H1 is non-trivial which is impossible. It follows 
that NK = N , finishing the proof. �
Proposition 4.4. Let Ñ be a compactly generated nilpotent Lie group, K an abelian con-
nected locally compact group with a continuous semisimple action on Ñ . Let G be a 
subgroup of G̃ = Ñ � K such that N = G ∩ Ñ is closed in Ñ , G̃/G is compact and 
ÑG dense in G̃. Then the following properties hold.
(a) Put M̃ = {x ∈ Ñ : k ◦ x = x for all k ∈ K}, L̃ = M̃ ×K, L = G ∩ L̃.
Then G and N are K-invariant, G = N0L, G̃ = N0L̃, Ñ = N0M̃ and Ñ/(Ñ ∩GK) (∼=
M̃/(M̃ ∩GK) ) is compact.
(b) If Z(Ñ) GK is dense in G̃, then [G̃, G̃] ⊆ N (in particular, G is normal in G̃, 
M̃/(M̃ ∩N) is abelian).
(c) If H is a connected, closed G-invariant subgroup of Ñ and Ñ is torsion free, then 
H is normal in G̃.
(d) If H is any closed G-invariant subgroup of Ñ , then H is K-invariant (in particular, 
if Z(Ñ) GK is dense in G̃, then H is normal in G̃).

By a semisimple action on Ñ (denoted by ◦), we mean that each transformation shall 
be semisimple (see also Lemma 4.7). We do not require G to be closed. By [15] (5.24 b), 
compactness of G̃/G is equivalent to compactness of the Hausdorff space G̃/G.
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Proof. (α) First, we assume that Ñ is abelian and that G ∩ Ñ and M̃ are trivial. We 
claim that this implies Ñ to be trivial. Connectedness of K easily implies (use the dual 
action) that any continuous action on a compact abelian group is trivial. Hence Ñ must 
be torsion free and, replacing Ñ by ÑR, we can assume that Ñ is connected, i.e., Ñ ∼= Rn, 
written additively. Let K ′ = ÑG ∩K be the projection of G to K (∼= G̃/Ñ). Triviality 
of G ∩ Ñ gives a mapping c : K ′ → Ñ such that G = { c(x) x : x ∈ K ′} and c is a crossed 
homomorphism, i.e., c(xy) = c(x) +x ◦c(y) for x, y ∈ K ′. Then commutativity of K leads 
to x ◦ c(y) − c(y) = y ◦ c(x) − c(x). Triviality of M̃ implies that for each v ∈ Ñ \{0} there 
exists x ∈ K such that x ◦ v �= v. Assume that Ñ is non-trivial, i.e., n > 0. Considering 
the root space decomposition for the extended action of K on Cn, it is easy to see (using 
that K is connected) that there exists x0 ∈ K for which all roots are different from 1, 
i.e., α(v) = x0 ◦ v− v is an isomorphism on Ñ (compare [6] p. 28). By assumption, K ′ is 
a dense subgroup of K, hence we can assume that x0 ∈ K ′. Putting v0 = −α−1(c(x0)

)
, 

it follows that c(x) = v0 − x ◦ v0 for all x ∈ K ′. This would imply that G = v0K
′(−v0)

is conjugate to K ′, contradicting compactness of G̃/G.
(β) Now we assume just that Ñ ∩ G is trivial and claim that M̃ = Ñ and that GK

is abelian. Observe that if N ′ is a closed G̃-invariant subgroup of Ñ , we can consider 
G̃1 = (Ñ/N ′) � K and then the image G1 of G in this quotient satisfies again the 
assumptions of the Proposition (recall that Ñ ∩ G is trivial). First, if Ñ is abelian, 
we take N ′ = M̃ . Then by Corollary 4.2 (c), (Ñ/N ′)K is trivial, hence (α) implies 
M̃ = Ñ . In the general case, we consider N ′ = [Ñ , Ñ ]

−
. Then the abelian case (and 

again Corollary 4.2 (c)) gives Ñ = [Ñ , Ñ ]
−
M̃ . But it is well known (using induction on 

the nilpotency-class) that this implies M̃ = Ñ . Clearly [G̃, G̃] ⊆ Ñ , hence triviality of 
Ñ ∩ G implies that G is abelian, thus GK is abelian (in fact, a little further argument 
shows that [Ñ , Ñ ]

−
must be compact in this case).

In steps (γ), (δ) the Proposition will be proved by induction on the nilpotency-class n

of Ñ . The result is trivial when Ñ is trivial, hence we assume now that (a) holds for 
G1, G̃1, Ñ1, when Ñ1 has nilpotency-class smaller than n.

(γ) We will now prove (c) and (d). Consider N ′ = Z(Ñ), Ñ1 = Ñ/N ′ and G1 the 
closure of the image of G in G̃1 = Ñ1�K. The action of G̃ on Ñ by inner automorphisms 
induces an action of G̃1 on Ñ and on ñ (the Lie algebra of Ñ). The inductive assumption 
gives a decomposition G1 = N0

1L1 with L1 ⊆ M̃1 ×K. For x = y z ∈ L1 with y ∈ M̃1 (⊆
Ñ/N ′), z ∈ K, the corresponding operators on ñ implement (by uniqueness) the Jordan 
decomposition for the operators from L1 (see also Corollary 4.5).
Assume that H is connected with Lie algebra h. Then h is L1-invariant, hence it is 
also invariant under the semisimple parts. Thus h is K ′-invariant, where K ′ denotes the 
projection of L1 to K. Since K ′ contains the projection of G to K, it follows that h is 
K-invariant. This proves (d) when H is connected.
For (c) observe that by (a) (for G̃1), G1 is K-invariant, hence 

(
Z(Ñ) GK

)− is a subgroup 

of G̃, h is invariant under this subgroup and Ñ ∩
(
Z(Ñ) GK

)− must be co-compact in Ñ
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(since G̃/G is compact). Then h is Ñ -invariant by [20] Th. 2.3, Cor. 2 (after extending 
the action of Ñ on ñ to ÑR, using [20] Th. 2.11). This proves (c).
For the general case of (d) we first assume that Ñ is torsion free. Then by (c), H0 is 
normal. Replacing Ñ by Ñ/H0, we can assume that H is discrete. In addition (replacing 
Ñ by ÑR), we may assume that Ñ is connected. Let D be the additive subgroup of ñ
generated by logH. By [20] Th. 2.12 (see the detailed version on p. 34), D is discrete 
and clearly G-invariant. Considering Ñ1 = Ñ/Z(Ñ) as above, it follows from Lemma 4.3
(and the inductive assumption) that D is K-invariant. K connected implies that K acts 
trivially on D, hence it is trivial on H.
If Ñ is not torsion free, let P be the maximal compact normal subgroup. Then (passing 
to Ñ/P ), it follows that PH is K-invariant. By Corollary 4.2 (a), K acts semisimply on 
PH and P . Since P 0 is abelian, K acts trivially on P 0. PH is isomorphic to a quotient 
of P � H, hence (PH)0 = P 0H0 = H0P 0. For x ∈ H we have by Corollary 4.2 (b), 
x = y x0 with y ∈ H0, k ◦ x0 = x0 for all k ∈ K. Then we get (k ◦ x)x−1 = (k ◦ y)y−1, 
hence k ◦ x ∈ H.

(δ) Next, we prove (a) and (b). First, we assume that Z(Ñ) GK is dense in G̃. By (d), 
N is normal in G̃. Thus, taking N ′ = N , G̃1 = Ñ/N ′ � K, it follows from (β) and 
Corollary 4.2 (c) that Ñ = NM̃ and that (G1 denoting the image of G in G̃1) G1K is 
abelian. This implies that G̃1 is abelian, thus [G̃, G̃] ⊆ N , proving (b). Furthermore, by 
(a) and (b) of Corollary 4.2, N = N0(M̃ ∩N), thus Ñ = N0M̃ .
In the general case, it follows from the induction hypothesis (see (γ)) that G̃2 =(
Z(Ñ)GK

)−
is a K-invariant subgroup of G̃, containing G. Put Ñ2 = G̃2 ∩ Ñ , then 

G̃2 = Ñ2 � K and from the special case above, we get that G and N are K-invariant 
and that Ñ2 ⊆ N0M̃ . Now, if Ñ is torsion free, we can (passing to ÑR) assume that it 
is connected as well. By (c), N0 is normal in Ñ , hence N0M̃ is a connected subgroup 
of Ñ . Ñ2 is clearly co-compact in Ñ , hence by [25] Th. 3.18.2, N0M̃ = Ñ . If Ñ is not 
torsion free, let P be its maximal compact normal subgroup. Then the previous argu-
ment, applied to Ñ/P (and combined with Corollary 4.2 (c)), gives Ñ = (PN)0M̃ . As 
noted in (γ), (PN)0 = N0P 0 and P ⊆ M̃ , leading again to Ñ = N0M̃ . The remaining 
properties follow easily. �

Corollary 4.5. Let G, G̃ be as in Proposition 4.4 and assume that G is closed in G̃, N =
G ∩ Ñ torsion free, K a Lie group. Then G, N (= H) satisfy the assumptions of 2.1. 
L is nilpotent, ιG(GK) ⊆ Aut1(G). For x = y z ∈ L with y ∈ M̃, z ∈ K, we have 
ιG(y) = ιG(x)u, ιG(z) = ιG(x)s.
Put K ′ = K ∩ ÑG. Then C0 = C = ιG(K ′) satisfy the properties of Proposition 2.15. 
One gets L = GC = LC, C = s(L) and C = ιG(K).

Taking G = G̃, similar statements hold for G̃ when Ñ is torsion free. As before, ιG(x)
denotes the restriction of the inner automorphism ι ˜(x) to G.
G
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Proof. L < M̃ × K is clearly nilpotent, [G, G] ⊆ N and G/N0 ∼= L/(L ∩ N0) (by 
Proposition 4.4 (a)). The remaining properties are easy. L = LC = GC follows from 
density of K ′ in K. Maximality of C in s(G) follows from Remark 2.23 (d). �
Corollary 4.6. Let G, G̃ be as in Proposition 4.4 and assume that Ñ is torsion free. Then 
[Ñ , Ñ ] ∩ [G, G] (⊆ [Ñ , Ñ ] ∩ N) is a co-compact subgroup (not necessarily closed) of 
[Ñ , Ñ ].

Proof. Proposition 4.4 (b) gives [GK, GK] ⊆ N . If N0 is central in G, it follows similarly 
as in the proof of Proposition 4.4 (c) that N0 is central in G̃. In the general case (using 
that [G, N0] is normal in G̃ by Proposition 4.4 (c)), this implies that [G̃, N0] = [G, N0]
holds. Thus we can factor by [Ñ, N0]. Then N0 is central in Ñ . By Proposition 4.4 (a), 
we get that [Ñ , Ñ ] = [M̃, M̃ ] and that M̃ ∩GK = M̃ ∩ LK is co-compact in M̃ . Since 
L ⊆ M̃ ×K, it follows that [L, L] = [LK, LK] = [M̃ ∩ LK, M̃ ∩ LK] is co-compact in 
[M̃, M̃ ], giving the desired conclusion. �
Lemma 4.7. Let Ñ be a compactly generated torsion free nilpotent Lie group, K a con-
nected compact Lie group with a continuous action on Ñ , put G̃ = Ñ � K. Then the 
following holds.
(i) The action of K is semisimple (as defined after Proposition 4.4).
(ii) If G is a closed subgroup of G̃ such that ÑG is dense in G̃, then [K, K] ⊆ ÑG0.

Proof. (i): Connectedness of K implies that the action on Ñ/Ñ0 is trivial. For x ∈ K, 
the restricted transformation on Ñ0 is semisimple (by compactness). Then as in the step 
(iii) ⇒ (i) of the proof of Lemma 2.2, semisimplicity on Ñ follows easily.
(ii): This is related to a theorem of Auslander, Wang and Zassenhaus (compare the 
proof of [21] Th. 4.3). G̃ has polynomial growth, hence the same is true for G and G/G0

([12] Th. I.3, I.4). Thus by Gromov’s theorem (passing to a nilpotent subgroup of finite 
index), we can assume that G/G0 is nilpotent. Put K ′ = (ÑG) ∩K, K ′′ = (ÑG0) ∩K. 
We have K = [K, K] Z(K)0 and Z1 = [K, K] ∩ Z(K)0 is finite ([14] Cor. 6.16). Let 
ϕ : K → K/Z(K) ∼= [K, K]/Z1 be the quotient mapping. G0 maps continuously onto 
K ′′, hence ϕ(K ′′) is an analytic subgroup of the semisimple group [K, K]/Z1 and K ′-
invariant. Since K ′ is dense in K, it follows (considering the Lie algebra) that ϕ(K ′′) is 
normal and that it is closed ([25] Th. 4.11.6). K ′/K ′′ is isomorphic to a quotient of G/G0, 
hence it is nilpotent. [K, K] being semisimple, it follows that ϕ(K ′′) has finite index in 
ϕ(K ′), hence ϕ(K ′) is closed as well and dense, giving ϕ(K ′) = ϕ(K ′′) = [K, K]/Z1, 
thus [K, K] ⊆ K ′′Z1. K ′′ being an analytic subgroup of K, we arrive (considering the 
Lie algebra) at [K, K] ⊆ K ′′. �
Proposition 4.8. Let Ñ be a compactly generated torsion free nilpotent Lie group, K
a compact Lie group with a continuous action on Ñ . Let G be a closed subgroup of 
G̃ = Ñ � K such that ÑG is dense in G̃ and G̃/G compact. Put N = G ∩ Ñ . Then the 
following properties hold.
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(a) If RK denotes the (non-connected) radical of K, then R = G ∩ (Ñ � RK) is the 
radical of G.
(b) For K1 = Z(K0)0, the groups G̃1 = Ñ � K1, G1 = G ∩ G̃1 satisfy the assumptions 
of Proposition 4.4. Every connected semisimple subgroup of G̃ is contained in G (in 
particular, [K0, K0] is a Levi subgroup of G0). N0 is a normal subgroup of G̃ and if Ñ is 
connected, then NR is normal as well.
(c) Assume that the action of K is faithful. Then G has no non-trivial compact normal 
subgroups and N is the nilradical of G. If x ∈ G̃ normalizes N and acts unipotently 
on N , then x ∈ Ñ . We have CG̃(G) = Z(G̃) ⊆ Z(Ñ).
(d) Assume that K is connected. Then K ∩ G is a maximal compact subgroup of G. 
If C is any compact subgroup of G̃, there exists n ∈ N0 such that n Cn−1 ⊆ K, G is 
C-invariant, [G0C, Ñ ] ⊆ N0.
(e) Assume that K is abelian. Then [G, G] (⊆ N) is co-compact in [G̃, G̃]−. Thus if Ñ is 
connected, [Ñ , Ñ ] ⊆ [G̃, G̃] = ([G,G]−)R ⊆ NR.

Proof. (a) is easy.
To prove (b), we first consider G̃2 = Ñ � K0, G2 = G ∩ G̃2. The subgroup K0 has 
finite index in K, hence G̃/G̃2, G/G2 are finite and it follows easily that G2, G̃2 satisfy 
again the assumptions of the Proposition. By Lemma 4.7 (ii) (and since G0

2 = G0), 
[K0, K0] ⊆ ÑG0 ⊆ G̃2. It follows (since K0 = [K0, K0]K1, [14] Cor. 6.16) that 
G̃1 G2 = G̃2 and that ÑG1 is dense in G̃1. Then G2/G1 ∼= G̃2/G̃1 is compact which 
implies that G̃/G1 and also G̃1/G1 are compact. This gives the assumptions of Propo-
sition 4.4. Putting M̃ = {x ∈ Ñ : k ◦ x = x for all k ∈ K1}, it follows from Propo-
sition 4.4 (a) that Ñ = N0M̃ . Clearly [G2, G1] ⊆ N , thus [G0, G1] ⊆ N0. If H is 
a connected, closed G-invariant subgroup of Ñ then by Proposition 4.4 (c), H is nor-
mal in G̃1, thus it is G̃1G-invariant, hence H is normal in G̃. This applies to N0 and 
NR (which is G-invariant by [20] Th. 2.11). By connectedness, the action of K1 on 
Ñ/N0 ∼= M̃/(N0 ∩ M̃) is trivial. Thus [G̃2, K1] ⊆ N0 and then [G0, G1K1] ⊆ N0. By 
Proposition 4.4 (a), M̃ ∩ G1K1 is a co-compact subgroup of M̃ . Applying [20] Th. 2.11 
to the image of this subgroup in M̃/(N0 ∩ M̃), it follows that the induced action of G0

on M̃/(N0 ∩ M̃) is trivial, thus [G0, Ñ ] ⊆ N0 (⊆ G0).
Let ϕ : G̃2 → K0 (∼= G̃2/Ñ) be the quotient mapping and let C be a Levi subgroup of G0. 
We have shown that ϕ(G0) ⊇ [K0, K0]. Considering the Lie algebras of G0 and K0, it fol-
lows that ϕ maps the connected radical of G0 to Z(K0)0, consequently ϕ(C) = [K0, K0]. 
Clearly, [K0, K0] is a Levi subgroup of G̃0

2. By [25] Th. 3.18.13, there exists x ∈ Ñ0 such 
that ιx(C) ⊆ [K0, K0]. We have shown above that G0 is Ñ -invariant, hence ιx(C) ⊆ G0

and we may assume that C ⊆ [K0, K0]. Then C = ϕ(C) = [K0, K0] ⊆ G0 and again 
by [25] Th. 3.18.13, any Levi subgroup of G̃0

2 is contained in N0[K0, K0] ⊆ G0. Note 
further that [K0, K0] ⊆ G0 implies 

[
[K0, K0], Ñ

]
⊆ N0, hence [K0, Ñ ] ⊆ N0.

For (e), we can assume that Ñ is connected and then factor by ([G,G]−)R (⊆ Ñ , being 
normal in G̃ as above). Then G is abelian. By Corollary 4.6, Ñ is abelian. Easy calcu-
lations (using that K is abelian) show that G ∩ M̃ �K acts trivially on G1K1, hence 
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(recall that M̃ ∩ G1K1 is co-compact in M̃) by [20] Th. 2.11 it acts trivially on M̃ and 
it follows that G̃ is abelian.
Next, we come to (d). Here we assume K0 = K, thus G̃2 = G̃. We can (replacing Ñ by 
ÑR) also assume that Ñ is connected and then G̃ is connected as well. We have shown 
above that [G0K, Ñ ] ⊆ N0. If C is a compact subgroup of G, it follows from [13] Th. 
XV.3.1 (clearly K is a maximal compact subgroup of G̃) that there exists x ∈ Ñ such 
that xCx−1 ⊆ K. Then [K, Ñ ] ⊆ N0 implies C ⊆ N0K. Repeating the argument with 
N0 �K instead of G̃, it follows that we can assume that x ∈ N0. Then xCx−1 ⊆ K ∩G. 
If (as above) ϕ denotes the projection to K, we have ϕ(C) = ϕ(xCx−1) and maxi-
mality of K ∩ G follows. C ⊆ N0K gives [G0C, Ñ ] ⊆ N0. G1 is K1-invariant by (b) 
and Proposition 4.4 (a). Furthermore, since K is connected, K = [K, K] K1, hence (b) 
implies G = G1[K, K] and it follows that G is K-invariant and also invariant under 
xKx−1 for any x ∈ G.
Finally, we prove (c). Again, we can assume that Ñ is connected. Then by (b), NR is 
normal in G̃. Assume that x ∈ G̃ normalizes N, x = y z with y ∈ Ñ , z ∈ K. If x
acts unipotently on N , then the same is true on NR (considering the commutator series 
of NR and using [20] Th. 2.3, Cor. 1, this can be reduced to the abelian case which is 
easy). From [26] (2.2), (2.3) (applied to the automorphisms of NR defined by the ele-
ments of 〈x〉Ñ), we conclude that ιz is both semisimple and unipotent on NR and it 
follows that z centralizes NR. CG̃(NR) is normal in G̃. By (b) and Proposition 4.4 (a), 
K1 = Z(K0)0 is faithful on N , thus K1 ∩ CG̃(NR) is trivial and we get (K1 is normal 
in K) that z ∈ CK(K1). By (e), we have [G̃1, G̃1] ⊆ NR. Put G̃3 = Ñ � CK(K1). Then 
[G̃3 ∩ G, G1] ⊆ N . By assumption, ÑG is dense in G̃ and since ÑCK(K1) (⊇ ÑK0) is 
open, it follows that G̃3 = G̃1(G̃3 ∩ G). This gives [G̃3, G1] ⊆ NR. Then z ∈ CK(K1)
implies [z, G1K1] ⊆ NR. Now Proposition 4.4 (a) and [20] Th. 2.11 give [z, Ñ ] ⊆ NR. 
Since ιz is semisimple on Ñ , it follows that z centralizes Ñ , thus (by faithfulness) z = e. 
This proves that x ∈ Ñ .
It follows that CG̃(G) ⊆ CG̃(N) ⊆ Ñ . Take x ∈ CG̃(G) ∩ N0. Applying Corollary 2.6
to the automorphisms defined by G1 (and using Corollary 4.5), it follows that x com-
mutes with K1 ∩ (G1Ñ) which is dense in K1. We get that x commutes with K1. By 
Proposition 4.4 (d), CG̃(G) is K1-invariant, [Ñ , K1] ⊆ N0 by Proposition 4.4 (a). Then 
semisimplicity (using Lemma 4.7 and Corollary 4.2 (a)) implies that CG̃(G) commutes 
with K1. By Proposition 4.4 (a), Ñ/(Ñ ∩ G1K1) is compact, hence by [20] Th. 2.11, 
CG̃(G) ⊆ Z(Ñ). Since GÑ is dense in G̃, we arrive at CG̃(G) ⊆ Z(G̃).
Next, assume that C is a compact normal subgroup of G. Clearly C ∩ Ñ must be trivial, 
thus C centralizes N . It follows that C ⊆ Ñ , hence C is trivial.
Let N1 be the nilradical of G. Clearly N1 ⊇ N . Take x ∈ N1. Then x normalizes N and 
acts unipotently, hence x ∈ Ñ . Thus x ∈ Ñ ∩G = N , proving that N1 = N . �
Proof of Theorem 3.

(α) In (α) −(γ), we assume that j′(G)Ñ ′ is dense in G̃′. This is no restriction (reducing 
K ′) when proving existence of Φ (that the same is true concerning uniqueness will be 
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seen in (δ)). Furthermore, we assume in the steps (α) − (γ) that K, K ′ are connected 
abelian and K acts faithfully on Ñ . Then by Proposition 4.4 (a), j(G) is K-invariant. 
Since j induces a topological isomorphism between G and j(G), we get a continuous 
homomorphism α : K → Aut(G) satisfying j

(
α(k)(x)

)
= k j(x) k−1 for all k ∈ K, x ∈

G. By Proposition 4.4 (a), the action of K on j(G) is faithful (since it is faithful on 
Ñ ; alternatively one can use Proposition 4.8 (c)), hence α is injective. Similarly, we get 
α′ : K ′ → Aut(G). We claim that there exists n ∈ N0 such that α′(K ′) = n α(K) n−1 (as 
explained before Proposition 2.22, this notation is shorthand for ιn ◦ α(K) ◦ ι−1

n ). The 
claim will be proved in (β) below. Then, replacing j′ by j′′ = j′ ◦ ι−1

n (which replaces 
α′(k) by α′′(k) = ιn ◦ α′(k) ◦ ι−1

n for k ∈ K ′), it will be enough to show existence of Φ
under the additional assumption α(K) = α′(K ′). This will be done in (γ). In (δ) we will 
prove uniqueness of Φ for general K, K ′ connected and K acting faithfully, then in (ε)
uniqueness for general K, K ′ will be shown. Finally, existence for general K, K ′ will be 
treated in (ϕ) and also the question of surjectivity and injectivity.

(β) We assume that K, K ′ are connected and abelian, K acts faithfully on Ñ . Put 
C0 = α(K ∩ Ñj(G)), C = α(K), C′

0 = α′(K ′∩ Ñ ′j′(G)), C′ = α′(K ′). Then Corollary 4.5
takes us to the setting of Section 2 (j transfers C to ιj(G)(K), similarly for C0 and for j′). 
By Proposition 2.22 (note that Proposition 4.8 (c) implies j−1(Ñ) = j′ −1(Ñ ′) = nil(G), 
i.e., both instances of Corollary 4.5 refer to the same subgroup H = N of G), there exists 
n ∈ N0 such that C′

0 = n C0 n
−1. By assumption, K ∩ Ñj(G) (resp. K ′ ∩ Ñ ′j′(G)) is 

dense in K (resp. K ′), it follows that α(K) = n α′(K ′) n−1 (actually, C coincides with 
the closure of C0).

(γ) Now we prove existence of the extension Φ under the assumption that K, K ′

are connected abelian and α(K) = α′(K ′). First, we want to show that this implies 
j−1(K) ⊆ j′−1(K ′) and that j′ ◦ j−1(k) = α′−1 ◦ α(k) holds for k ∈ K ∩ j(G).
Take x ∈ j−1(K). Then ιx = α(j(x)) ∈ α′(K ′). Put k′ = α′−1(ιx), then k′−1

j′(x) cen-
tralizes j′(G′), hence by Proposition 4.8 (c), k′−1

j′(x) ∈ Z(G̃′). Thus j′(x) ∈ Z(G̃′)K ′. 
Since j−1(K) is compact and Z(G̃′) ⊆ Ñ ′ is torsion free, it follows that j′(x) ∈ K ′, 
proving j−1(K) ⊆ j′−1(K ′). Since α′(j′(x)) = ιx, the second formula follows easily.
For k ∈ K, x ∈ G, we define Φ

(
j(x) k

)
= j′(x) α′−1 ◦α(k). Then it follows from the 

properties above that Φ : j(G)K → j′(G)K ′ is well defined and (see the definition 
of α, α′) that it is a homomorphism. Furthermore, Φ(K) ⊆ K ′. Closedness of j(G)
implies that j(G)K is isomorphic to a quotient of G � K ([15] Th. 5.21) and conti-
nuity of Φ follows. (j(G)K) ∩ Ñ is a nilpotent normal subgroup of j(G)K. Applying 
Proposition 4.8 (c) to Φ(j(G)K) (see also (δ) below), it follows that Φ(j(G)K ∩ Ñ) ⊆
nil(Φ(j(G)K)) = Φ(j(G)K) ∩ Ñ ′. By Proposition 4.4 (a), (j(G)K) ∩ Ñ is a co-compact 
subgroup of Ñ . By [20] Th. 2.11, Φ|

(
j(G)K ∩ Ñ

)
has a unique extension to a con-

tinuous homomorphism Ñ → Ñ ′ (again denoted by Φ). Uniqueness of the extension 
implies Φ(knk−1) = Φ(k)Φ(n)Φ(k−1) for k ∈ K, n ∈ Ñ and then Φ extends further to 
a homomorphism G̃ → G̃′.

(δ) We claim that Φ(Ñ) ⊆ Ñ ′ holds for any Φ, G̃, G̃′ as in Theorem 3. We have 
Φ(j(G)) = j′(G). Since j(G) is co-compact in G̃ and j′(G) is closed, it follows that 
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Φ(G̃) is closed in G̃′. Thus (reducing K ′ temporarily) it also satisfies the assumptions 
of Proposition 4.8 and Proposition 4.8 (c) gives nil

(
Φ(G̃)

)
= Φ(G̃) ∩ Ñ ′. Since (again by 

Proposition 4.8 (c)) Ñ ′ = nil(G̃′), we conclude that Φ(Ñ) ⊆ nil
(
Φ(G̃)

)
⊆ Ñ ′, proving our 

claim. It follows that Φ(G̃) is contained in the closure of Ñ ′j′(G). Thus we can always 
assume that Ñ ′j′(G) is dense in G̃′ when proving uniqueness.
Next, we prove uniqueness of the extension for K connected, j′(G)Ñ ′ dense in G̃′ and 
K acting faithfully on Ñ . Assume that Φ1, Φ2 : Ñ �K → Ñ ′ �K ′ are continuous group 
homomorphisms satisfying Φi ◦ j = j′ for i = 1, 2. If x ∈ G̃ normalizes j(G), then ιΦ1(x)
coincides with ιΦ2(x) on j′(G). Put Ψ(x) = Φ2(x)−1Φ1(x). Then Ψ(x) commutes with 
j′(G), hence Proposition 4.8 (c) implies, Ψ(x) ∈ Z(G̃′) ⊆ Ñ ′. By Proposition 4.8 (d), j(G)
is K-invariant. It follows that Ψ : j(G)K → Z(G̃′) is a continuous group homomorphism 
and by assumption, j(G) ⊆ ker Ψ. Since Ñ ′ is torsion free, we get that Ψ must be trivial, 
hence Φ1, Φ2 coincide on K.
By Proposition 4.4 (a), j(G)K contains a co-compact subgroup of Ñ , thus by [20] Th. 
2.11 (recall that Φi(Ñ) ⊆ Ñ ′) Φ1, Φ2 coincide on Ñ , proving that Φ1 = Φ2.

(ε) Now, we prove uniqueness of the extension for general K, K ′. Consider Φ1, Φ2 as in 
(δ). Let K

Ñ
be the kernel of the action of K on Ñ . This is a compact normal subgroup of 

G̃, hence Φi(KÑ
) is a compact normal subgroup of Φi(G̃′). By faithfulness of the action 

on Ñ ′, it follows from Proposition 4.8 (c) (applied to G = Φi(G̃′)) that Φi(KÑ
) must be 

trivial, hence K
Ñ

⊆ ker Φi holds for i = 1, 2.
Passing to K/K

Ñ
(and composing j with the quotient mapping), we can now assume 

that K acts faithfully on Ñ . Put G2 = j−1(Ñ�K0) ∩j′−1(Ñ�K ′ 0). Then G2 is a closed 
subgroup of G with finite index. It follows that Ñj(G2) is dense in Ñ �K0 (a connected 
group has no proper closed subgroups of finite index) and similarly for j′(G2). Thus, 
we can apply (δ) and conclude that Φ1, Φ2 coincide on Ñ � K0. Density of Ñj(G) in G̃
implies that G̃ = (Ñ � K0) j(G), consequently Φ1 = Φ2.

(ϕ) We show existence of the extension for general K, K ′. Consider K
Ñ

as in (ε). 
Similarly we get j′(j−1(K

Ñ
) ∩G) = {e}, hence K

Ñ
∩ j(G) = {e}. Thus we can pass to 

K/K
Ñ

and assume that K acts faithfully on Ñ . Put K1 = Z(K0)0, K ′
1 = Z(K ′0)0, G1 =

j−1(Ñ � K1), G′
1 = j′−1(Ñ � K ′

1), G2 = G1 ∩G′
1. Then G1, G′

1 are closed normal sub-
groups of G. We have R0

K = K1 ([25] Th. 4.11.7), hence by Proposition 4.8 (a), G1 has 
finite index in the radical R of G and the same is true for G′

1. It follows that G1/G2 is 
finite and from Proposition 4.8 (b), we get (similarly as in (ε)) that 

(
Ñj(G2)

)
∩ K1

is dense in K1, analogously for 
(
Ñ ′j′(G2)

)
∩K ′

1. Thus we can apply the connected 
abelian case ((α)-(γ)) to G2 with K, K ′ replaced by K1, K ′

1. This gives a homomorphism 
Φ : Ñ �K1 → Ñ ′ �K ′

1 satisfying Φ ◦j = j′ on G2. Uniqueness of the extension (shown in 
(ε)) implies that Φ

(
j(x) y j(x)−1) = j′(x) Φ(y) j′(x)−1 for all x ∈ G, y ∈ Ñ � K1. Now 

take x ∈ G1, then j(x) ∈ Ñ �K1 and it follows that z = Φ
(
j(x)

)−1
j′(x) commutes with 

Φ(Ñ �K1) ⊇ j′(G2). Hence by Proposition 4.8 (c), z ∈ Ñ ′. This implies j′(x) ∈ Ñ �K ′
1, 

hence x ∈ G′
1. This shows that G2 = G1 ⊆ G′

1.
It follows from density of Ñj(G) in G̃ and Proposition 4.8 (b) that G̃ = (Ñ � K1) j(G). 
On j(G) we put Φ = j′ ◦ j−1. Then, by the properties above, the two definitions of Φ
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agree on j(G) ∩(Ñ �K1) and they can be combined to give a continuous homomorphism 
G̃1 → G̃′

1.
By construction, we always have K

Ñ
⊆ ker Φ (see also (ε)) and by (δ), Φ(G̃) ⊆(

Ñ ′j′(G)
)−

. If K acts faithfully and Ñ ′j′(G) is dense in G̃′, we can interchange the 
rôles of G̃ and G̃′ and in the usual manner, it follows from uniqueness of the extension 

that Φ is an isomorphism. For the general case, this implies Φ(G̃) =
(
Ñ ′j′(G)

)−
and 

ker Φ = K
Ñ

. �
Corollary 4.9. Let G, G̃, G1, K1 be as in Proposition 4.8 (b) and define M̃ = { x ∈ Ñ :
k◦x = x for all k ∈ K1}, L = G ∩(M̃ �K), L1 = G1∩L. Then the following properties 
hold:
G1 is normal in G, G/G1 is compact, [G1, G1] ⊆ N ⊆ G1, G = N0L, G1 = N0L1, L/L1
is compact, L1 is nilpotent.

Thus L satisfies the properties of Theorem 1. We will exemplify the constructions in 
step (b) of the proof of Theorem 2 for this choice of G1. By Corollary 4.5, C = ιG1(K1), 
thus G2 = G1 � K1 ⊆ (Ñ � K1) � K1. Since K1 is abelian, we can interchange the 
K1-components and use the representation G2 = { (x, σ1, σ2) : (x, σ2) ∈ G1, σ1 ∈
K1} ⊆ Ñ � (K1 × K1) ⊆ Ñ � (K1 � K), where the action of K1 � K on Ñ is given 
by (σ1, σ2) ◦ x = (σ1 σ2) ◦ x. Then N2 = { (x, σ−1, σ) : (x, σ) ∈ G1 }. Embedding G to 
{ (x, e, σ) : (x, σ) ∈ G} this produces the action of G on G2 defined in the proof of 
Theorem 2 and one can take G3 = { (x, σ1, σ2) : (x, σ2) ∈ G, σ1 ∈ K1}. It is not hard 
to see that P3 = { (e, σ, σ−1) : σ ∈ K1} (the kernel of the action of K1� K). It follows 
that G4 can be identified with the subgroup G K1 of Ñ � K, and then N4 corresponds 
to GK1 ∩ Ñ .

Proof. G1, G̃1 satisfy the assumptions of Proposition 4.4 (see also the proof of Proposi-
tion 4.8 (b)). By Proposition 4.4 (a), Ñ = N0M̃ which implies G = N0L, G1 = N0L1. 
In particular, G1L = G is closed, giving L/L1 ∼= G/G1 ([15] Th. 5.33). L1 ⊆ M̃ ×K1 is 
nilpotent. The remaining properties are clear. �
Next, we describe some special cases of Theorem 2.

Corollary 4.10. Let G, G̃ be as in Theorem 2, with ÑG dense in G̃.

(a) The following properties are equivalent
(i) K is abelian (ii) [G, G] ⊆ N (iii) the action of G on (nR)C is trigonalizable.

(b) The following properties are equivalent
(i) G, N satisfy the assumptions of 2.1.
(ii) K is abelian and acts trivially on N/N0.
(iii) G acts unipotently on N/N0 and the action of G on nC is trigonalizable.
(iv) K is abelian and G/G0 is nilpotent.
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(v) K is abelian and for M̃ defined as in Corollary 4.9 one has M̃ = { x ∈ Ñ :
k ◦ x = x for all k ∈ K}.

(c) G/N is compact if and only if Ñ/N is compact (equivalently: Ñ = NR).
(d) Ñ is abelian if and only if N is an FC−

G -group and there exists an abelian subgroup 
H of G such that NH is closed and G/(NH) is compact.

As before, n denotes the Lie algebra of N , nR that of the Malcev completion NR and 
nC, (nR)C denote the complexifications of n, nR. The proof will show that in (d) one can 
take H = L1 (the group of Corollary 4.9). Furthermore, the proof of (d) shows that 
N is an FC−

G -group iff it is central in Ñ and this is equivalent to N0 being central 
in Ñ .

Proof. (a) (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): The action of N on nR is clearly unipotent, thus the same is true on (nR)C
and (iii) follows from [26] (2.2).
(iii) ⇒ (ii): If x ∈ [G, G], it follows from (iii) that the automorphism of NR induced by 
ιx is unipotent, hence the same is true on N . By Proposition 3.3, this implies x ∈ N

(alternatively, one could use (c) of Proposition 4.8).
(ii) ⇒ (i): If (ii) holds, then the image of G in G̃/Ñ (∼= K) is abelian and by assumption, 
it is dense.
(b) (i) ⇒ (iii) follows from nilpotency of G/N0 and using again [26] (2.2).
(iii) ⇒ (ii): The action of [G, G] on N is unipotent, hence again by Proposition 3.3, 
[G, G] ⊆ N and from (a) it follows that K is abelian. N0 is normal by Proposition 4.4 (c) 
combined with Proposition 4.8 (b). By (a), the action of G on (nR)C is trigonalizable, 
hence also that on (nR/n)C. G acts unipotently on nR/n, hence by [26] (2.3), K acts 
trivially on nR/n and the same is true on N/N0 ⊆ NR/N

0.
(ii) ⇒ (i): By (a), we have [G, G] ⊆ N , thus G/N is abelian. Since the action on N/N0

is unipotent, it follows ([27] 9.3) that G/N0 is nilpotent (if K is connected one can also 
apply Corollary 4.5).
(iv), (v) are shown similarly.
(c) This follows immediately from compactness of G̃/G and G̃/Ñ .
(d) If Ñ is abelian, then obviously N is an FC−

G -group. The subgroup L1 (⊆ M̃ ×K1) 
of Corollary 4.9 is abelian as well and it satisfies G1 = NL1 and G/G1 is compact.
For the converse, we can (passing to a subgroup of finite index) assume that K is con-
nected. N is K1-invariant by Proposition 4.4 (d). If N is an FC−

G -group, then N must 
be abelian (there are no non-trivial unipotent inner automorphisms) and L1K1 ∩ Ñ acts 
trivially on N by Corollary 4.5. Thus G1K1∩Ñ commutes with N . Since Ñ is torsion free 
and nilpotent, the centralizer of N is a connected subgroup of Ñ (see also Remark 2.8). 
By Proposition 4.4 (a), G1K1 ∩ Ñ is co-compact in Ñ , hence ([20] Th. 2.1(4)), N is 
central in Ñ . Put N ′ = [K, N ] = [K, N0], M̃ ′ = {x ∈ Ñ : k ◦ x = x for all k ∈ K}, 
L̃′ = M̃ ′×K. Then N ′ is a closed normal subgroup of G̃, N ′∩M̃ ′ is trivial and Ñ = N ′M̃ ′

by [18] L. 5.4 and Proposition 4.8 (d) (in particular N ′ = [K, Ñ ]). Thus G̃ = N ′ � L̃′. 
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Let H ′ = N ′H ∩ L̃′ be the projection of H to L̃′. Then H ′ is an abelian subgroup of G
and (M̃ ′ ∩N)H ′ is co-compact in L̃′ and abelian (observe that M̃ ′ ∩N is central in G̃). 
Consequently, H ′′ =

(
(M̃ ′ ∩ N)H ′K

)
∩ M̃ ′ (i.e., the projection of (M̃ ′ ∩ N)H ′ to M̃ ′) 

is a co-compact abelian subgroup of M̃ ′. As above, it follows that M̃ ′ must be abelian 
and this implies that Ñ is abelian. �

Remarks 4.11. (a) We want to relate our results to the notions of [20]. Let G be a 
compactly generated group of polynomial growth without non-trivial compact normal 
subgroups and let π be a continuous faithful representation of G on Rn. Denote by G̃
the Zariski-closure of π(G) in GL(n, R). Let Ñ be the unipotent radical of G̃. Then we 
have a “Levi decomposition” (in the sense of algebraic groups) G̃ = Ñ � K, where K is 
a maximal reductive subgroup of G̃ (see [20] p. 11, [1] p. 296). Then (putting as before 
N = nil(G)) one can show that the following properties are equivalent:

(i) π(N) consists of unipotent matrices, π(G) is closed (for the Euclidean topology of 
GL(n, R)) and distal.

(ii) π(N) consists of unipotent matrices, π(G) is closed (Euclidean topology) and K is 
compact.

If this holds, it follows that G̃/π(G) is compact. Furthermore, if the action of K on Ñ
is faithful (i.e., CG̃(Ñ) ⊆ Ñ), then (i) and (ii) are equivalent to

(iii) G̃ is an algebraic hull of G (as defined in [20] Def. 4.39).

(Be aware that in [3] p. 228 the term algebraic hull is used in a much wider sense.)

Thus, in the case of a faithful action, G̃ coincides with the groups considered in 
Theorem 2 and 3. To be precise: [20] considers complex algebraic groups (i.e., the Zariski 
closure in GL(n, C)), thus our G̃ is the “real algebraic hull”, i.e., the set of real points of 
the algebraic hull in the sense of [20]. In particular, it follows from Theorem 3 that all 
algebraic hulls (in the sense of [20]) are isomorphic (this has also been shown in [20] L. 
4.41). Since we are dealing with groups of polynomial growth, one can show (similarly as 
in the proof of [20] L. 4.36, using a corresponding definition of the “rank” for generalized 
FC-groups) that the condition “π(G) is closed” of (i), (ii) is equivalent to “π is full” in 
the sense of [20] Def. 4.37, i.e., dim(Ñ) = rk(G).

The representation (coming from the Birkhoff embedding theorem) that was used in 
the proof of Corollary 3.6 has the properties leading to (iii). But in general, there are 
also faithful finite dimensional representations of G which satisfy (i) and (ii), but K does 
not act faithfully on Ñ (see Examples 4.12 (d)). Let K

Ñ
be the kernel of the action of 

K on Ñ . Then K
Ñ

is normal in G̃ and by Theorem 3, G̃/K
Ñ

is isomorphic (as a locally 
compact group) to the algebraic hull of G.
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In the case of discrete generalized FC-groups (i.e., finite extensions of polycyclic 
groups) another construction of the algebraic hull (using Hopf algebras and working on 
arbitrary fields of characteristic zero) has been described in [9] (see L. 4.1.2, Prop. 4.2.2, 
4.3.2). A more explicit version in terms of a “basis” of the group has been given in [22].

(b) In general, there are further almost nilpotent groups lying between G and G̃. The 
group Gan of Proposition 3.8 is a co-compact extension of G that is almost nilpotent 
and has no non-trivial compact normal subgroup. For K1 one can take that of Propo-
sition 4.8 (b) and for a given hull G̃, the group GK1 does not depend on the choice of 
K. But in general, G need not be K1-invariant (in particular, G need not be normal 
in Gan) and Gan need not split into a semidirect product of a nilpotent group and a 
compact group. Gan need not be a minimal almost nilpotent extension of G (see Exam-
ples 4.12 (a), (f)).

When G is connected, simply connected and solvable, G̃ = Gan coincides with the 
semisimple splitting of [3] p. 237, Ñ is called the nil-shadow of G (in the notation of 
[3]: G̃ = RS , Ñ = MR, K1 = TR, where R = G). Hence in the general case of our 
Theorem 2, we call Ñ the connected nil-shadow of G. As mentioned in Remark 2.23 (g) 
this coincides with the notions of [3] and [7] for connected, simply connected, solvable 
Lie groups.

In [2] Th. 3.6, an arbitrary connected Lie group G of polynomial growth is embedded 
(as a closed normal subgroup) into a connected Lie group H such that H/G is compact 
and H has a co-compact normal subgroup M0 that is connected and nilpotent. But in 
general M0 need not be simply connected, even when G has no non-trivial compact 
normal subgroups (for G solvable with [G, G]− torsion free, H coincides with the group 
G′ of Corollary 2.16, M0 = N ′, see also Remark 2.17). Thus, this does not always coincide 
with our algebraic hull.

In the non-connected case, one can consider splittings where the nilpotent factor is not 
necessarily connected. This is related to the “discrete semisimple splitting” mentioned 
in [3] p. 253, see also [23] p. 141. Let NK be the closed K-invariant subgroup of Ñ
generated by GK ∩ Ñ . Then G ⊆ NK � K (and NK is minimal to get such a splitting 
for given K). But in general, NK depends on the choice of K. One can show that it is 
always possible to choose K so that NK �K is a finite extension of Gan. But in general 
there is no uniqueness result corresponding to Theorem 3 (see Examples 4.12 (c); this 
aspect is somehow concealed in the formulation of [3] p. 254; compare also [23] Th. 3, p. 
147).

In [19] Sec. 2, another construction of the nil-shadow based on representative functions 
(and working for an arbitrary generalized FC-group G without non-trivial compact 
normal subgroups) is given. If π is any continuous finite dimensional representation of 
G and Ñπ denotes the unipotent radical of the real Zariski closure of π(G), then Ñπ is a 
quotient of the nil-shadow Ñ , but the reductive part can become arbitrarily large (unless 
G/ nil(G) is finite), compare the Examples 4.12 (d).
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(c) [28] Ex. 2.3 shows that Proposition 4.8 (c) need not hold when Ñ is replaced by a 
general connected, simply connected and solvable group.

(d) In [7] Th. 1.2, it is shown that if G is a compactly generated l.c. group of polynomial 
growth having no non-trivial compact normal subgroup, then there exists a co-compact 
closed subgroup H that can be embedded (as a closed subgroup) into a connected, 
simply connected, solvable Lie group S. The proof (given in [7] 7.1) reduces it in several 
steps to a corresponding embedding theorem ([26] Th. 3) for S-groups. He calls S a 
“Lie shadow” of G. It is necessarily of polynomial growth, but in general not unique 
(see [7] p. 671). It follows from our Theorem 3 that the algebraic hull of S contains the 
algebraic hull of H which is contained in the algebraic hull of G. In particular, the nil-
shadow of S must coincide with the connected nil-shadow of G (fixing also the dimension 
of S).

Examples 4.12.
(a) We start with the examples given in [17] 1.4.3. For G = C � Z with the action 
n ◦ z = αnz, where |α| = 1 and α is not a root of unity, we get G̃ = (C × R) � K

with K = {β ∈ C : |β| = 1} (= K1), β ◦ (z, t) = (βz, t) and the embedding 
(z, n) �→ (z, n, αn), Ñ = C ×R, M̃ = R, L = Z, Gan = (C × Z) � K.
For G = C2 �R with t ◦ (z1, z2) = (eitβ1z1, eitβ2z2), we get G̃ = (C2 ×R) �K (= Gan), 
where K (= K1) denotes the closure of {(eitβ1 , eitβ2) : t ∈ R}, (γ1, γ2) ◦ (z1, z2, t) =
(γ1z1, γ2z2, t) and (writing z = (z1, z2)) the embedding (z, t) �→ (z, t, (eitβ1 , eitβ2)), Ñ =
C2 ×R.
Similarly, for G = Rn � Z with the action n ◦ v = Anv, where A ∈ GL(n, R) and all 
eigenvalues of A have modulus 1. We consider the multiplicative Jordan decomposition 
A = AsAu. We get G̃ = (Rn � R) � K, where K denotes the closure of {An

s : n ∈ Z}
and the actions are t ◦ v = etBv with B = logAu, C ◦ (v, t) = (Cv, t) for C ∈ K. 
The embedding is given by (v, n) �→ (v, n, An

s ), Ñ = Rn � R. If no root of unity is an 
eigenvalue of A, then M̃ = R, L = Z. Otherwise, M̃ includes the eigenspaces of As for 
the roots of unity and if one of these eigenvalues is different from 1, the action of K on 
M̃ is non-trivial. If K0 (= K1) is non-trivial (i.e., A has at least one eigenvalue that is 
not a root of unity), then N = Rn, Gan ⊆ (Rn � Z) � K, but if K0 �= K (e.g., A has 
also an eigenvalue that is a root of unity different from 1), the inclusion is proper and 
Gan does not split.
Similarly, for G = Rn � R. For example, in the case G = C � R with t ◦ z = eitz, one 
has G̃ = (C × R) � K (= Gan) with K = {β ∈ C : |β| = 1}, β ◦ (z, t) = (βz, t) and the 
embedding (z, t) �→ (z, t, eit), Ñ = C × R, M̃ = R, L = R, N = C × 2πZ. Thus G is 
almost nilpotent, but Gan �= G, i.e., Gan is not minimal.
(b) An example where the action of K on Ñ is not faithful (notation of Theorem 3): 
take G = R, G̃ = R ×K with K = R/Z, j(t) = (t, t +Z). Here G̃/j(G) is compact, but 
G̃ is not isomorphic to the algebraic hull of G (which coincides with G).
An example where j(G) is not closed: take G = Z2, G̃ = R, j(n, m) = nα + mβ where 
α, β ∈ R are Q-linearly independent. Then j(G) is dense in R, but not closed, and the 



V. Losert / Journal of Algebra 554 (2020) 1–40 37
algebraic hull of G is GR = R2.
These examples can also be used to show that in Remark 4.11 (a) the assumptions 
π(N) ⊆ Ñ and π(G) closed cannot be dropped.
(c) For G almost nilpotent, one has Ñ = NR by Corollary 4.10 (c), and conversely. 
To get examples for the discrete case (where G is a finite extension of a nilpotent 
group), put Ñ = R2, α1(x1, x2) = (−x1, x2), α2(x1, x2) = (x1 − x2), K (∼= Z2

2) the 
subgroup of GL(2, R) generated by α1, α2, G̃ = Ñ � K, N = Z2 and G shall be 
the subgroup of G̃ generated by N and ((0, 0), α1), ((1

2 , 0), α2). Ñ/N being compact, 
it follows that Ñ ∼= NR, N = G ∩ Ñ and G̃ is the algebraic hull of G. Since K is 
discrete, we have Gan = G. Here, N and G are K-invariant, NK = 1

2Z × Z. For 
μ = (0, 1) ∈ N, Kμ = μKμ−1, one gets NKμ = {(x, y) ∈ (1

2Z)2 : x + y ∈ Z } and 
it is easy to see (NKμ does not split into cyclic Kμ-invariant subgroups) that NKμ

�Kμ

is not isomorphic to NK � K. Thus there are non-isomorphic discrete splittings. G has 
index 2 in both extensions.
Observe (using [13] Th. XV.3.1) that for every compact subgroup C of G̃ there exists 
μ ∈ Ñ such that μ−1Cμ ⊆ K, in particular, Kμ (μ ∈ Ñ) gives all maximal compact 
subgroups of G̃.
For further examples, consider Ñ = H × R, where H denotes the three-dimensional 
real Heisenberg group. Explicitly, Ñ = R4 topologically, with the multiplication 
(x1, x2, t1, t2) (x′

1, x
′
2, t

′
1, t

′
2) = (x1 + x′

1, x2 + x′
2, t1 + t′1 − x2x

′
1, t2 + t′2). Let N be 

the (discrete) subgroup generated by (1, 0, 0, 0), (0, 1, 0, 14), (0, 0, 12 , 
1
2 ). Writing v =

(x1, x2, t1, t2), we get N = { v : x1, x2, 2t1, 4t2 ∈ Z, 4t2 − 4t1 − x2 ≡ 0 (mod 4)}. Con-
sider α ∈ Aut(Ñ) defined by α(v) = (x1, −x2, −t1, t2), K = 〈α〉, G̃ = Ñ � K. Finally, 
let G be the subgroup of G̃ generated by N and ((1

2 , 0, 0, 0), α). Since α(0, 1, 0, 14) /∈ N , 
we get that N and G are not α-invariant. Hence they are not K-invariant and the same 
can be shown if K is replaced by a conjugate group μKμ−1 (μ ∈ Ñ). In a similar way, 
one can construct examples where N is K-invariant but G is not K-invariant.
When K is abelian (see Corollary 4.10 (a)), one can show similar statements as in [23]
Th. 1, p. 143. Put M̃ ′ = {x ∈ Ñ : k ◦ x = x for all k ∈ K}, M ′ = NK ∩ M̃ ′. Proposi-
tion 4.8 (e) implies Ñ = NRM̃

′. One can choose K such that N and G are K-invariant 
and NK = NM ′ if and only if there exists a nilpotent subgroup L′ of G such that 
G = NL′ and N is s(L′)-invariant (where as in 2.5, s(x) ∈ Aut(NR) denotes the semisim-
ple part of the automorphism ιx of NR). However, even under these stronger assumptions 
there is no uniqueness in general. Similarly as above, one can construct non-isomorphic 
splittings NK � K of this type.
As mentioned before, [23] and [3] assumed that G/N is torsion free. But it is easy to 
modify the examples above to meet this requirement. For example, the first one came 
from an action of Z2

2 on R2 (in fact on Q2). This gives rise to a faithful action of Z2 on 
R2 × Z4 when combining with a faithful action of Z2 on Z4 by semisimple matrices (of 
course, this leads outside the scope of groups of polynomial growth).
(d) On faithful representations. In (b), we mentioned examples concerning the conditions 
in (i), (ii) of Remark 4.11 (a). Now we consider the first example of (a), G = C � Z. A 



38 V. Losert / Journal of Algebra 554 (2020) 1–40
natural choice of a faithful representation would be π(z, n) =
(
αn z
0 1

)
∈ GL(2, C) (⊆

GL(4, R) ). But π(G) is not closed, the (real) Zariski closure gives 
{(

β z
0 1

)
: β, z ∈

C, |β| = 1
}

∼= C � K with K = {β ∈ C : |β| = 1
}

. Write α = α2
1, take r ∈ R with 

|r| �= 0, 1 and put πr(z, n) =
(

(rα1)n z
0 (r/α1)n

)
∈ GL(2, C) (⊆ GL(4, R) ). Now πr(G)

is closed but not distal, the (real) Zariski closure gives 
{(

β z
0 γ

)
: β, γ, z ∈ C, β γ ∈

R∗
}
∼= C � K ×R∗ (with R∗ = R \ {0} non-compact).

Put πalg(z, n) =

⎛⎜⎝αn z 0 0
0 1 0 0
0 0 1 n
0 0 0 1

⎞⎟⎠ ∈ GL(4,C) (⊆ GL(8,R) ) .

πalg(G) satisfies all the properties (i)-(iii) of Remark 4.11 (a). The (real) Zariski closure 
(which gives the algebraic hull, isomorphic to the version in (a)) is

{ ⎛⎜⎝β z 0 0
0 1 0 0
0 0 1 t
0 0 0 1

⎞⎟⎠ : β, z ∈ C, |β| = 1, t ∈ R

}
.

To get an example of a faithful representation of G satisfying (i), (ii), but not (iii), 

of Remark 4.11 (a), take (with α1 as above) π′(z, n) =

⎛⎜⎝αn
1 z 0 0
0 α−n

1 0 0
0 0 1 n
0 0 0 1

⎞⎟⎠, giving 

{⎛⎜⎝β z 0 0
0 β−1 0 0
0 0 1 t
0 0 0 1

⎞⎟⎠ : β, z ∈ C, |β| = 1, t ∈ R

}
as (real) Zariski closure. Then the 

corresponding action of K ∼= {β ∈ C : |β| = 1} on Ñ ∼= C × R is β ◦ (z, t) = (β2z, t). 
Thus K does not act faithfully.
The last example excludes a possible converse in Proposition 4.8 (c): when G has no 
non-trivial compact normal subgroups, K need not act faithfully on Ñ .
(e) In Corollary 4.10 (d), the condition of the existence of an abelian almost–supplemen-
tary group H cannot be dropped (i.e., for Ñ to be abelian, it is not enough that N
is an FC−

G -group). Let α, β ∈ R be Q-linearly independent. Consider (HZ denotes the 
discrete Heisenberg group) the group G = HZ � C given by Z3 × C topologically, with 
multiplication (k, l, m, z) (k′, l′, m′, z′) = (k+k′, l+l′, m +m′+l k′, ei(k

′α+l′β)z+z′). Then 
N = {(0, 0, m, z) : m ∈ Z, z ∈ C} is an FC−-group (observe that the action of HZ on C is 
semisimple). But (similarly as in (a)) Ñ = (HZ)R×C (= H ×C), K ∼= {γ ∈ C : |γ| = 1}, 
M̃ = (HZ)R, thus Ñ is not abelian. In the notation of Corollary 4.9, one has L = HZ.
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(f) In the notation of Proposition 4.8 (b), G need not be K1-invariant (but, as mentioned 
earlier, Gan = G K1 is always a group). Let G = C � Z be the first example of (a) and 
define σ ∈ Aut(G̃ × G̃) by σ(x, y) = (y, x). Let W (∼= Z2) be the subgroup generated 
by σ and put G̃′ = (G̃ × G̃) � W . Let j : G → G̃ denote the embedding and consider 
the subgroup G′ ( ∼= (G × G) � W ) of G̃ generated by j(G) × j(G) and σ. Then K ′ =
(K × K) � W gives a compact component for G̃′, (K ′)0 = K × K and taking x ∈ K

such that x2 /∈ {αn : n ∈ Z}, G′ is not invariant under the inner automorphism of G̃′

defined by (x, x) ∈ K ′. Similarly for subgroups conjugate to K ′.
Taking μ ∈ M̃ × M̃ such that σ(μ) μ−1 /∈ Z2, one gets μK ′μ−1 ∩G′ = K ×K. It follows 
that μK ′μ−1 ∩ G′ is not a maximal compact subgroup of G′, hence the corresponding 
statement of Proposition 4.8 (d) does not extend to the non-connected case.
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