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1. Introduction

Let k be a noetherian integral domain and suppose A is a cellular k-algebra [7]. Then 
Geetha and Goodman [6] showed that the wreath product algebra

A �Sd = A⊗d
� kSd

is cellular, provided that all of the cell ideals of A are cyclic. On the other hand, the 
generalized Schur algebras SA(n, d) were defined by Evseev and Kleshchev [4,5] in order 
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to prove the Turner double conjecture. These algebras are related to wreath product 
algebras by a generalized Schur-Weyl duality established in [4].

In this paper, we describe a cellular structure for the generalized Schur algebra 
SA(n, d) for an arbitrary cellular algebra A and for all integers n, d ≥ 0. This extends 
some results of Kleshchev and Muth [11–13]. It follows, for example, from results of [13]
that the algebra SA(n, d) is cellular for certain algebras A which are both cellular and 
quasi-hereditary. We note that for such algebras, the cell ideals are automatically cyclic. 
The method used in this paper, however, does not require any additional assumptions 
on the cellular algebra.

Our approach is motivated by that of [15], where Krause used the Cauchy decompo-
sition of divided powers [1,10] to describe the highest weight structure of categories of 
strict polynomial functors. As Krause mentions, this description leads to an alternate 
proof of the fact that classical Schur algebras Sk(n, d) are quasi-hereditary, which follows 
by a Morita equivalence. As we will see, this approach can similarly be used to describe 
cellular structure.

We begin by describing a generalized Cauchy filtration for the divided powers ΓdJ of 
a given k-module, J , which we assume is equipped with a filtration

0 = J1 ⊂ · · · ⊂ Jr = J

such that Jj/Jj−1 ∼= Uj⊗kVj , for some free k-modules Uj , Vj of finite rank. Our first main 
result is a generalized Cauchy decomposition formula (Theorem 5.14), which provides a 
filtration of ΓdJ such that the associated graded object is a direct sum of modules of the 
form

⊕
λ∈Λ

Uλ ⊗k Vλ,

where Uλ, Vλ are generalized Weyl modules defined in Section 5.6 and Λ denotes a set 
of r-multipartitions.

The generalized Schur algebra SA(n, d) may be identified as the d-th divided power 
ΓdMn(A), where Mn(A) is the algebra of size n matrices over A. We are thus able to 
use the above decomposition, together with König and Xi’s characterization of cellular 
algebras in [14], to prove our second main result (Theorem 6.5) which shows that gener-
alized Schur algebras are cellular. In Example 6.6, we describe a corresponding cellular 
basis explicitly for a particular case, SZ(1, 2), where Z is a zig-zag algebra (considered 
as an ordinary algebra rather than a superalgebra, as in [13]).

As a consequence of generalized Schur-Weyl duality, Corollary 6.8 shows that the 
wreath product algebras A � Sd are cellular for an arbitrary cellular algebra A. This 
provides an alternate proof of the main result in [6], for the case where A is cyclic cellular, 
and a more recent result of Green [9], for the general case where A is an arbitrary cellular 
algebra.
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We note that the algebras considered here are unrelated to the generalized Schur 
algebras introduced by Donkin in [3].

2. Preliminaries

Assume throughout that k is a commutative ring, unless mentioned otherwise. The 
notation � is used for the cardinality of a set.

2.1. Weights, partitions, and sequences

Write N and N0 to denote the sets of positive and nonnegative integers, respectively, 
with the usual total order. More generally, suppose that B is a countable totally ordered 
set which is bounded below. Any elements a, b ∈ B determine an interval

[a, b] := {c ∈ B | a ≤ c ≤ b}

which is empty unless a ≤ b.
A weight (on B) is a sequence of nonnegative integers μ = (μb)b∈B such that μb = 0

for almost all b. Let Λ(B) denote the set of all weights on B. A partition (on B) is a 
weight λ ∈ Λ(B) such that

b < c implies λb ≥ λc,
∀b, c ∈ B.

The subset of partitions is denoted Λ+(B) ⊂ Λ(B). The size of a weight μ is the integer 
|μ| :=

∑
b μb. Let Λd(B) denote the set of all weights of size d and write

Λ+
d (B) := Λ+(B) ∩ Λd(B)

for each d ∈ N0.

Remark 2.1. In this notation and elsewhere, we will use the convention of replacing an 
argument of the form [1, n] by “n” for any n ∈ N0, so that for example Λ(n) denotes the 
set Λ([1, n]) of weights of the form μ = (μ1, . . . , μn).

We also identify each set Λ(n) as a subset of Λ(N) in the obvious way and write

l(μ) := min{n ∈ N0 | μ ∈ Λ(n)}

to denote the length of a weight μ ∈ Λ(N). For example, the length l(λ) of a partition 
λ = (λ1, λ2, . . . ) in Λ+(N) equals the number of positive parts, λi ∈ N.

Definition 2.2. Let d ∈ N0. Recall that the lexicographic ordering on Λd(N) is the total 
order defined by setting λ ≤ μ if λj ≤ μj whenever λi = μi for all i < j. We use the 
notation 
 to denote the restriction of ≤ to the subset Λ+

d (N) of partitions of size d.
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Now fix d ∈ N, and write seqd(B) to denote the set of all functions

b : [1, d] → B.

We identify seqd(B) with Bd by setting b = (b1, . . . , bd), with bi = b(i) for all i ∈ [1, d]. 
The symmetric group Sd of permutations of [1, d] acts on seqd(B) from the right via 
composition. We write b ∼ c if there exists σ ∈ Sd with c = bσ.

The weight of a sequence b ∈ seqd(B) is the element of Λd(B) defined by

μ(b) := (μc)c∈B, where μc = �{i | bi = c} ∀c ∈ B.

We note the following elementary result.

Lemma 2.3. The map μ : seqd(B) → Λd(B), sending b �→ μ(b), induces a bijection: 
seqd(B)/Sd 
 Λd(B).

Proof. We may assume that B is nonempty. Since B is bounded below, it is possible to 
write the elements explicitly in the form

B = {bB1 < bB2 < . . . }. (2.1)

To show that the map b �→ μ(b) is surjective, note that a right inverse is given by

Λd(B) → seqd(B) : μ �→ bμ := (bB1 , . . . , bB1 , bB2 , . . . , bB2 , . . . )

where bB1 occurs with multiplicity μbB1
, etc. Finally, it is easy to see that b ∼ c if and 

only if μ(b) = μ(c), which completes the proof. �
Suppose more generally that B1, . . . , Br is a collection of bounded below, totally 

ordered sets. We again consider the product B = B1 × · · · × Br as a bounded below, 
totally ordered set via the lexicographic ordering.

The symmetric group Sd acts diagonally on the following product

seqd(B1, . . . ,Br) := seqd(B1) × · · · × seqd(Br).

Notice that the bijection

θ : seqd(B1, . . . ,Br) 
 seqd(B)

defined by

θ(b(1), . . . , b(r)) : i �→ (b(1)i , . . . , b
(r)
i ), ∀i ∈ [1, d],
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is Sd-equivariant. It thus follows as an immediate consequence of Lemma 2.3 that there 
is a bijection

seqd(B1, . . . ,Br)/Sd 
 Λd(B), (2.2)

where seqd(B1, . . . , Br)/Sd denotes the set of diagonal Sd-orbits.

2.2. Multipartitions

Suppose d ∈ N0 and let B1, . . . , Br be as above. Then we use the following notation 
for the product

Λ+(B1, . . . ,Br) := Λ+(B1) × · · · × Λ+(Br),

whose elements are called r-multipartitions and denoted λ = (λ(1), . . . , λ(r)). The weight
of an r-multipartition λ is the element of Λ(r) defined by

|λ| := (|λ(1)|, . . . , |λ(r)|).

We call ||λ|| :=
∑

|λ(j)| the total weight (or size) of λ.
Given μ ∈ Λ(r) and d ∈ N0, we write

Λ+
μ (B1, . . . ,Br) := Λ+

μ1
(B1) × · · · × Λ+

μr
(Br)

and

Λ+
d (B1, . . . ,Br) := �

ν∈Λd(r)
Λ+
ν (B1, . . . ,Br)

to denote the subset of r-multipartitions of weight μ, resp. total weight d.
In the special case where Bj = N for j ∈ [1, r], note that

Λ+(N, . . . ,N) = Λ+(N)r.

We then use the following notation

Λ+
d (N)r := Λ+

d (N, . . . ,N), Λ+
μ (N)r := Λ+

μ (N, . . . ,N)

for d ∈ N0 and μ ∈ Λr(d), respectively.
The next definition describes a total order on the set of r-multipartitions of a fixed 

total weight.

Definition 2.4. Suppose d, r ∈ N. Then Λ+
d (N)r has a total order 
 defined as follows. 

For r-multipartitions μ, λ ∈ Λ+
ν (N) of weight ν ∈ Λd(r), we set λ 
 μ if
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λ(j) 
 μ(j), whenever λ(i) = μ(i) for all i < j.

We then extend 
 to all of Λ+
d (N)r by setting λ ≺ μ whenever |λ| < |μ| in the lexico-

graphic ordering on Λd(r).

Suppose n1, . . . , nr ∈ N0 and d ∈ N. Recalling the notation from Remark 2.1, we 
identify the set of r-multipartitions

Λ+(n1, . . . , nr) := Λ+([1, n1], . . . , [1, nr])

as a subset of Λ+(N)r and view 
 as a total order on Λ+
d (n1, . . . , nr) by restriction.

2.3. Finitely generated projective modules

Let Mk denote the category of all k-modules and k-linear maps. The full subcategory 
of finitely generated projective k-modules is denoted Pk.

Given M, N ∈ Mk, we write M⊗N = M⊗kN and Hom(M, N) = Homk(M, N). Also 
write End(M) to denote the k-algebra Hom(M, M). If M ∈ Pk, we let M∨ = Hom(M, k)
denote the k-linear dual. For any M, M ′, N, N ′ ∈ Pk, there is an isomorphism

Hom(M ⊗N,M ′ ⊗N ′) ∼= Hom(M,M ′) ⊗ Hom(N,N ′) (2.3)

which is natural with respect to composition.

2.4. Divided and symmetric powers

Let d ∈ N. Given M ∈ Pk, there is a right action of the symmetric group Sd on the 
tensor power M⊗d given by permuting tensor factors. We define the d-th divided power
of M to be the invariant submodule

ΓdM := (M⊗d)Sd .

Similarly, the coinvariant module is denoted

SymdM := (M⊗d)Sd

and called the d-th symmetric power of M . It follows by definition that

Γd(M)∨ ∼= Symd(M∨). (2.4)

We also set Γ0M = Sym0M = k.
Note that the isomorphism (2.4) is usually taken as the definition of ΓdM (cf. [1]), 

while we have used the equivalent definition from [15] in terms of symmetric tensors.



428 J.D. Axtell / Journal of Algebra 572 (2021) 422–460
2.5. The divided powers algebra

The category Mk (resp. Pk) is a symmetric monoidal category with symmetry isomor-
phism

tw : M ⊗N
∼−→ N ⊗M (2.5)

defined by x ⊗ y �→ y ⊗ x, for all x ∈ M, y ∈ N .
Suppose M ∈ Pk. Then

Γ(M) :=
⊕
d∈N0

ΓdM

is an (N0-graded) commutative algebra called the divided powers algebra, with multipli-
cation defined on homogeneous components via the shuffle product: for x ∈ ΓdM and 
y ∈ ΓeM , define

x ∗ y :=
∑

σ∈S
d,e
d+e

(x⊗ y)σ

where Sd,e
d+e is the quotient group Sd+e/Sd × Se. For example, we have x⊗d ∗ x⊗e =(

d+e
d

)
x⊗(d+e) for any x ∈ M .

There is also a comultiplication, Δ : Γ(M) → Γ(M) ⊗ Γ(M), which is the N0-
homogenous map whose graded components

Δ : ΓdM → Γd−cM ⊗ ΓcM

are defined as the inclusions

(M⊗d)Sd ↪→ (M⊗d)Sd−c×Sc

induced by the embeddings Sd−c ×Sc ↪→ Sd, for c ∈ [0, d]. These maps, together with 
the unit, k = Γ0M ↪→ Γ(M), and the counit, Γ(M) � Γ0M (projection onto degree 0), 
make Γ(M) into a bialgebra.

2.6. Decompositions

The symmetric algebra S(M) is defined as the free commutative k-algebra generated 
by M and has a decomposition

S(M) =
⊕

SymdM.

d∈N0
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It follows that S(−) defines a functor from Pk to the category of all commutative k-
algebras, which preserves coproducts. Hence S(M) ⊗ S(N) ∼= S(M ⊕ N), and by the 
duality (2.4) there is an isomorphism

Γ(M) ⊗ Γ(N) 
 Γ(M ⊕N). (2.6)

The isomorphism (2.6) is given explicitly by restricting the multiplication map x ⊗ y �→
x ∗ y, where Γ(M), Γ(N) are considered as subalgebras of Γ(M ⊕N). It follows that for 
each d ∈ N0 there is a decomposition

Γd(M ⊕N) =
⊕

0≤c≤d

Γc(M) ∗ Γd−c(N) (2.7)

where Γc(M) ∗ Γd−c(N) denotes the image of Γc(M) ⊗ Γd−c(N) under (2.6).
Note that Γd

k ∼= k for all d ∈ N0. Thus, given a free k-module V of finite rank, it 
follows by induction from (2.7) that the divided power ΓdV is again a free k-module of 
finite rank. For example, suppose V has a finite ordered k-basis {xb}b∈B. Then ΓdV has 
the following k-basis

{
xμ :=

∏
b∈B

x⊗μb

b | μ ∈ Λd(B)
}

(2.8)

where the product denotes multiplication in Γ(V ).
The basis (2.8) can also be parameterized by elements of seqd(B). First notice that 

the tensor power V ⊗d has the following basis

{x⊗b := xb1 ⊗ . . .⊗ xbd

∣∣∣ b ∈ seqd(B)}.

Given b ∈ seqd(B), we then define xb :=
∑

b∼c x⊗c. Notice that xb = xμ(b). It then 
follows from Lemma 2.3 that the set

{xb | b ∈ seqd(B)/Sd} (2.9)

is also a basis of ΓdV , indexed by any complete set of orbit representatives.

2.7. Polynomial functors

We recall the definitions of some well known polynomial endofunctors on the category 
Pk along with their associated natural transformations.

Let d ∈ N0. Then recall the functor ⊗d : Pk → Pk sending M �→ M⊗d, whose action 
on morphisms is defined by
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⊗d
M,N (ϕ) := ϕ⊗ · · · ⊗ ϕ : M⊗d → N⊗d

for any ϕ ∈ Hom(M, N).
It follows easily from (2.7) that the divided power ΓdM of a finitely-generated, pro-

jective k-module M ∈ Pk is again finitely-generated and projective. This yields a functor 
Γd : Pk → Pk which is a subfunctor of ⊗d. In particular, the action of Γd on morphisms 
is defined by restriction

Γd
M,N (ϕ) := (ϕ⊗d)|ΓdM : ΓdM → ΓdN

for any ϕ ∈ Hom(M, N).
Now let S, T : Pk → Pk be an arbitrary pair of functors. Then the tensor product 

− ⊗− induces the following bifunctors

S � T, T (−⊗−) : Pk × Pk → Pk

which are respectively defined by

S � T := (−⊗−) ◦ (S × T ), T (−⊗−) := T ◦ (−⊗−).

We also have the “object-wise” tensor product S ⊗ T : Pk → Pk defined by

S ⊗ T := (S � T ) ◦ δ (2.10)

where δ : Pk → Pk × Pk denotes the diagonal embedding: M �→ (M, M).
Now suppose M, N ∈ Pk. As in [15], define ψd = ψd(M, N) to be the unique map 

which makes the following square commute:

ΓdM ⊗ ΓdN Γd(M ⊗N)

M⊗d ⊗N⊗d (M ⊗N)⊗d

ψd

∼

(2.11)

The following lemma is easy to check.

Lemma 2.5.

(1) The maps ψd(M, N) form a natural transformation of bifunctors

ψd : Γd � Γd → Γd(−⊗−).
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(2) If M, N ∈ Pk, then the following diagram commutes

ΓdM ⊗ ΓdN Γd(M ⊗N)

ΓdN ⊗ ΓdM Γd(N ⊗M)

ψd(M,N)

tw Γd(tw)

ψd(N,M)

where tw permutes tensor factors as in (2.5).

3. Generalized Schur algebras

After recalling the definition of generalized Schur algebras [4] associated to a k-algebra 
A, we introduce corresponding standard homomorphisms between certain modules of 
divided powers.

3.1. Associative k-algebras

Suppose that R, S are associative algebras in the category Mk. Recall that the tensor 
product R⊗ S is the algebra in Mk with multiplication mR⊗S defined by

R⊗ S ⊗R⊗ S
1⊗tw⊗1−−−−−→ R⊗R⊗ S ⊗ S

mR⊗mS−−−−−−→ R⊗ S.

Given d ∈ N, the tensor power R⊗d is an associative algebra in Mk in a similar way. If 
R is unital, then R⊗d has unit 1⊗d

R .
In the remainder, the term k-algebra will always refer to a unital, associative algebra 

in the category Pk. Let A ∈ Pk be a k-algebra. Then A-mod (resp. mod-A) denotes 
the subcategory of Pk consisting of all left (right) A-modules, M ∈ Pk, and A-module 
homomorphisms. Write HomA(M, N) ∈ Pk to denote the set of all A-homomorphisms 
from M to N for M, N ∈ A-mod (resp. mod-A). We also write ρM : A ⊗ M → A

(resp. ρM : M⊗A → A) to denote the induced linear map corresponding to a left (right) 
A-module.

If M ∈ A-mod (resp. mod-A) and N ∈ B-mod (resp. mod-B), the tensor product 
M ⊗N is a left (resp. right) A ⊗B-module, with corresponding module map: ρM⊗N =
(ρM ⊗ ρN ) ◦ (1 ⊗ τ ⊗ 1).

3.2. The algebra ΓdA

Suppose A is a k-algebra. Then ΓdA is a k-algebra with multiplication mΓdA defined 
via the composition

ΓdA⊗ ΓdA
ψd

−−→ Γd(A⊗A) Γd(mA)−−−−−→ ΓdA,
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where the second map denotes the functorial action of Γd on mA. It follows that ΓdA is 
a unital subalgebra of A⊗d.

Example 3.1 (The Schur algebra). Suppose n ∈ N, and let Mn(k) denote the algebra of all 
n × n-matrices in k. Then ΓdMn(k) is isomorphic to the classical Schur algebra, S(n, d), 
defined by Green [8, Theorem 2.6c]. We view this isomorphism as an identification.

We now have two distinct multiplications on the direct sum Γ(A) =
⊕

d∈N ΓdA. In 
order to distinguish them, we sometimes refer to the shuffle product

∇ : ΓdA⊗ ΓeA → Γd+eA : x⊗ y �→ x ∗ y

as outer multiplication in Γ(A), while inner multiplication refers to the map defined as 
multiplication in ΓdA on diagonal components

mΓdA : ΓdA⊗ ΓdA → ΓdA : x⊗ y �→ xy

and then extended by zero to other components.

3.3. Generalized Schur algebras

Given a k-algebra A, write Mn(A) for the algebra of n ×n-matrices in A. We identify 
Mn(A) with Mn(k) ⊗A via

Mn(A) ∼−→ Mn(k) ⊗A : (aij) �→
∑
i,j

Eij ⊗ aij ,

where Eij are elementary matrices in Mn(k). Next, suppose V is any left (resp. right) 
Mn(k)-module, and let M ∈ A-mod (mod-A). Then write V (M) := V ⊗ M to denote 
the corresponding Mn(A)-module.

Definition 3.2. Suppose A is an algebra, and let n ∈ N, d ∈ N0. Then the generalized 
Schur algebra SA(n, d) is the algebra ΓdMn(A).

Using the notation of [4], notice that Mn is spanned by the elements ξai,j := Eij ⊗ a, 
for all a ∈ A and i, j ∈ [1, n]. Now suppose that A is free as a k-module with finite 
ordered basis {xb}b∈B. Then Mn(A) has a corresponding basis

{ξi,j,b := ξxb
i,j | i, j ∈ [1, n], b ∈ B}.

We view Mn(k) as a subalgebra of Mn(A) by identifying Eij = ξ1
i,j . Notice that the 

classical Schur algebra S(n, d) is thus a (unital) subalgebra of SA(n, d).
For each triple (i, j, b) ∈ seqd(n, n, B), there is a corresponding element of SA(n, d)

denoted by
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ξi,j,b :=
∑

(i,j,b)∼(r,s,c)

ξr1,s1,c1 ⊗ · · · ⊗ ξrd,sd,cd ,

where the sum is over all triples (r, s, c) in the same diagonal Sd-orbit as (i, j, b). It 
thus follows from (2.2), (2.8) and (2.9) that the set

{ξi,j,b | (i, j, b) ∈ seqd(n, n,B)/Sd}

forms a basis of SA(n, d). In a similar way, the subalgebra S(n, d) has a basis given by

{ξi,j :=
∑

(i,j)∼(r,s)

ξ1
r1,s1 ⊗ · · · ⊗ ξ1

rd,sd
| (i, j) ∈ seqd(n, n)/Sd}.

For each weight μ ∈ Λd(n), we write

ξμ := ξiμ,iμ

to denote the corresponding idempotent in S(n, d) ⊂ SA(n, d).

3.4. Standard homomorphisms

Let us fix an algebra A throughout the remainder of the section. Given M ∈ A-mod, 
it follows from (2.11) that ΓdM is a left ΓdA-module with module map ρΓdM determined 
by the composition

ΓdA⊗ ΓdM
ψd

−−→ Γd(A⊗M) Γd(ρM )−−−−−→ Γd(M),

where the second map denotes the functorial action of Γd on ρM .

Lemma 3.3. Suppose M, N ∈ A-mod, and let ϕ : M → N be an A-module homomor-
phism. Then the functorial map

Γd(ϕ) : ΓdM → ΓdN

is a homomorphism of ΓdA-modules. Moreover, if ϕ is injective (resp. surjective) then 
so is Γd(ϕ).

Proof. The map ϕ⊗d : M⊗d → N⊗d is a homomorphism of A⊗d-modules, and if ϕ is 
injective (resp. surjective) then so is ϕ⊗d. The statements for Γd(ϕ) follow by restric-
tion. �

Suppose d, e ∈ N0 and M, N ∈ A-mod. Notice that the homogeneous component of 
comultiplication
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Δ : Γd+eA → ΓdA⊗ ΓeA (3.1)

is an injective (unital) map of k-algebras. It follows that ΓdM⊗ΓeN has a corresponding 
ΓdA-module structure, defined by restriction along (3.1). In the particular case M = N , 
we note that each of the following maps is a ΓdA-module homomorphism:

Δ : Γd+eM → ΓdM ⊗ ΓeM, ∇ : ΓdM ⊗ ΓeM → Γd+eM,

tw : ΓdM ⊗ ΓeM
∼−→ ΓeM ⊗ ΓdM, (3.2)

where ∇ (resp. Δ) are components of (co)multiplication in the bialgebra Γ(M). Setting 
A = k then gives the following.

Lemma 3.4. Let d, e ∈ N. Then there are natural transformations

Δ : Γd+e → Γd ⊗ Γe, ∇ : Γd ⊗ Γe → Γd+e

of functors Pk → Pk induced by setting Δ(M) (resp. ∇(M)) equal to (co)multiplication 
in Γ(M), for each M ∈ Pk.

Now suppose r ∈ N and μ ∈ Λ(r). Given M, N1, . . . , Nr ∈ Pk, we write

Γ(μ)(N1, . . . , Nr) := Γμ1N1 ⊗ · · · ⊗ ΓμrNr

and set

ΓμM := Γ(μ)(M, . . . ,M).

If M1, . . . , Mr ∈ A-mod, then we consider Γ(μ)(M1, . . . , Mr) as a left ΓdA-module by 
restriction along the corresponding inclusion, Δ : ΓdA → ΓμA, of k-algebras.

Suppose that γ = (γij) ∈ Λd(N × N) is a (semi-infinite) matrix whose entries sum 
to d. Then let λ, μ ∈ Λd(N) be weights such that λi =

∑
j γij and μj =

∑
i γij for all 

i, j ∈ N. Slightly abusing notation, for a given N ∈ Pk, we also write γ = γ(N) to denote 
the corresponding standard homomorphism:

γ : ΓμN → ΓλN

defined by the composition
⊗
j

ΓμjN
Δ⊗...⊗Δ−−−−−−→

⊗
i

⊗
j

ΓγijN
∼−→

⊗
j

⊗
i

ΓγijN
∇⊗...⊗∇−−−−−−→

⊗
i

ΓλiN,

where each ∇ (resp. Δ) denotes an appropriate component of (co)multiplication in the 
bialgebra Γ(N), and where the second map rearranges the tensor factors.
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If M ∈ A-mod, then it follows from (3.2) that γ(M) : ΓμM → ΓλM is a homomor-
phism of ΓdA-modules. In the same way, we obtain homomorphisms of SA(n, d)-modules 
corresponding to any given M ∈ Mn(A)-mod.

3.5. Quotient modules

Suppose M ∈ Pk. Then we write 〈L〉 ⊂ M⊗d to denote the Sd-submodule generated 
by a subset L ⊂ M⊗d. For example if L1, . . . , Ld ⊂ M are k-submodules and L =
L1 ⊗ · · · ⊗ Ld, then

〈L〉 =
∑
σ∈Sd

L1σ ⊗ · · · ⊗ Ldσ,

where iσ := σ−1(i) denotes the right action of σ on i ∈ [1, d].
Now suppose M = N⊕N ′ for some k-submodules N, N ′ ⊂ N . Then notice that there 

is a corresponding decomposition

M⊗d = (N ′)⊗d ⊕ 〈N ⊗M⊗d−1〉,

which is a direct sum of Sd-submodules. Taking Sd-invariants on both sides results in 
the decomposition

ΓdM = Γd(N ′) ⊕ 〈N ⊗M⊗d−1〉Sd (3.3)

into k-submodules. The decomposition (3.3) then makes it possible to describe the kernel 
of the quotient map

Γd(π) : ΓdM � Γd(M/N)

induced by projection π : M � M/N . More generally, we note the following.

Lemma 3.5. Let A be a k-algebra. Suppose N ⊂ M is an inclusion of A-modules such 
that M = N ⊕N ′ for some k-submodule N ′ ⊂ M . Then there is an exact sequence

0 → 〈N ⊗M⊗d−1〉Sd −→ ΓdM
Γd(π)−−−−→ Γd(M/N) → 0

of ΓdA-module homomorphisms.

Proof. It follows from (3.3) that the required exact sequence of ΓdA-modules is obtained 
by restriction from the exact sequence

0 → 〈N ⊗M⊗d−1〉 −→ M⊗d π⊗d

−−→ (M/N)⊗d → 0

of A⊗d-module homomorphisms. �
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We introduce some additional notation. Suppose N1, . . . , Nr ⊂ M is a finite collection 
of k-submodules of some M ∈ Pk, and let μ ∈ Λr(d). Then we write

N⊗μ := N⊗μ1
1 ⊗ . . .⊗N⊗μr

r

to denote the corresponding k-submodule of M⊗d and use the notation

Nμ := 〈N⊗μ〉Sd ⊂ ΓdM (3.4)

for the k-submodule of Sd-invariants.

4. Wreath products and generalized Schur-Weyl duality

Let us briefly recall the generalized Schur-Weyl duality [4] which establishes a rela-
tionship between a wreath product algebra A �Sd and a corresponding A-Schur algebra 
via their respective actions on a common tensor space.

4.1. Wreath products

Fix a k-algebra A. The wreath product algebra A � Sd is the k-module A⊗d ⊗ kSd, 
with multiplication defined by

(x⊗ ρ) · (y ⊗ σ) := x(yρ−1) ⊗ ρσ (4.1)

for all x, y ∈ A⊗d and ρ, σ ∈ Sd. If G is a finite group, then note for example that (kG) �Sd

is isomorphic to the group algebra of the classical wreath product, G �Sd := Gd
�Sd.

Assume for the rest of the section that A is free as a k-module. We then identify the 
tensor power A⊗d and group algebra kSd as subalgebras of A �Sd by setting

A⊗d = A⊗d ⊗ 1Sd
, kSd = 1A⊗d ⊗ kSd

respectively.

4.2. Generalized Schur-Weyl duality

Suppose n, d ∈ N. Write Vn := k
n to denote the standard left Mn(k)-module, with 

basis elements

vi := (0, . . . , 1, . . . , 0)

for i ∈ [1, n], considered as column vectors. Then for simplicity, let us write

V := Vn(A) = k
n ⊗A
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to denote the corresponding left Mn(A)-module.
We may identify V and An as right A-modules, and it follows that the tensor space, 

V⊗d, is naturally a right A⊗d-module. A right action of A �Sd on V⊗d is then defined 
by setting

w(x · σ) := (wx)σ, for w ∈ V⊗d, x ∈ A⊗d, and σ ∈ Sd. (4.2)

More explicitly, suppose w = w1 ⊗ · · · ⊗wd and x = x1 ⊗ · · · ⊗ xd, for some wi ∈ V and 
xi ∈ A. Then notice that

(wx)σ = (w1σx1σ) ⊗ · · · ⊗ (wdσxdσ) = (wσ)(xσ)

for any σ ∈ Sd. Hence, by (4.1) we have

w(σ · x) = w((xσ−1) · σ) = (w(xσ−1))σ = (wσ)x.

It follows that (4.2) is well-defined.

Lemma 4.1 ([4, Lemma 5.7]). The embedding SA(n, d) ↪→ Mn(A)⊗d ∼= EndA⊗d(V⊗d)
defines an algebra isomorphism

SA(n, d) ∼= EndA
Sd
(V⊗d)

for all n, d ∈ N.

Given n ≥ d, let ω ∈ Λd(n) denote the weight ω = (1d) = (1, . . . , 1, 0, . . . , 0). Then 
considering V again as a left Mn(A)-module, notice that V⊗d is equal to the left SA(n, d)-
module ΓωV.

For each weight μ ∈ Λd(n), define a corresponding element

v⊗μ := v⊗μ1
1 ⊗ . . .⊗ v⊗μn

n

in the tensor space V⊗d.
The next result summarizes (5.15) and (5.17) of [4].

Proposition 4.2 ([4]). Assume that n ≥ d.

(i) There is a unique (SA(n, d), A � Sd)-bimodule isomorphism SA(n, d)ξω
∼−→ V⊗d

which maps ξω �→ v⊗ω.
(ii) There is an algebra isomorphism, A �Sd

∼−→ ξωS
A(n, d)ξω, given by:

(x1 ⊗ . . .⊗ xd) ⊗ σ �→ ξx1
1,1σ ∗ · · · ∗ ξxd

d,dσ.

(iii) EndSA(n,d)(V⊗d) ∼= A �Sd.
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5. Cauchy decompositions

The Cauchy decomposition for symmetric algebras via Schur modules [1] is an ana-
logue of Cauchy’s formula for symmetric functions [2,16]. A corresponding decomposition 
for divided powers [10,15] is defined in terms of Weyl (or co-Schur) modules. In this sec-
tion, we describe a generalized Cauchy decomposition (Theorem 5.14) for divided powers 
of an (A, B)-bimodule with respect to a given filtration on the bimodule.

5.1. Weyl modules

Weyl modules are defined in [1, Definition II.1.4] as the image of a single map from a 
tensor product of divided powers of a module into a tensor product of exterior powers. 
We use an equivalent definition from the proof of [1, Theorem II.3.16], which involves 
quotients of divided powers.

Throughout the section, we fix some d ∈ N. Suppose λ ∈ Λd(N), and let M ∈ Pk. For 
each pair (i, t) with 1 ≤ i < l(λ) and 1 ≤ t ≤ λi+1, let us write

λ(i, t) = (λ1, . . . , λi−1, λi + t, λi+1 − t, λi+1, . . . , λm) ∈ Λd(N). (5.1)

Then write γλ(i,t) : Γλ(i,t)M → ΓλM to denote the standard homomorphism correspond-
ing to the matrix

γλ(i,t) := diag(λ1, λ2, . . . ) + tEi+1,i − tEi+1,i.

Similarly, let γtr
λ(i,t) : ΓλM → Γλ(i,t)M denote the map corresponding to the transpose 

of the above matrix.

Definition 5.1 ([1]). Suppose M ∈ Pk and λ ∈ Λ+
d (N). Let �λ(M) denote the k-

submodule of ΓλM defined by

�λ(M) :=
∑
i≥1

λt+1∑
t=1

Im(γλ(i,t)) ⊂ ΓλM.

The Weyl module, Wλ(M), is defined as the quotient k-module

Wλ(M) := ΓλM
/
�λ(M).

Let A be a k-algebra and suppose now that M ∈ A-mod. Then �λ(M) is a ΓdA-
submodule of ΓλM , since the standard homomorphisms are ΓdA-module maps. It follows 
that Wλ(M) is a ΓdA-module. In particular, Wλ(kn) is an S(n, d)-module.
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5.2. The standard basis

Consider a fixed partition λ = (λ1, λ2, . . . ) ∈ Λ+
d (N). The Young diagram of λ is the 

following subset of N ×N:

[λ] := {(i, j) | 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}.

Suppose B is a finite totally ordered set. Let Tabλ(B) denote the set of all functions 
T : [λ] → B, called tableaux (of shape λ).

A tableau T will be identified with the diagram obtained by placing each value Ti,j :=
T(i, j) in the (i, j)-th entry of [λ]. For example if T ∈ Tab(3,2)(B), then we write

T =
T1,1 T1,2 T1,3

T2,1 T2,2

We say that a tableau T is row (column) standard if each row (column) is a nondecreasing 
(increasing) function of i (resp. j), and T is standard if it is both row and column standard.

Let Stλ(B) ⊂ Tabλ(B) denote the subset of all standard tableaux. This subset is 
nonempty if and only if l(λ) ≤ �B. In particular, suppose l(λ) ≤ �B and assume the 
elements of B are listed as in (2.1). Then we write Tλ = Tλ(B) to denote the standard 
tableau in Stλ(B) with entries Tλ

i,j := bBi for all (i, j) ∈ [λ]. For example, if d = 7, 
λ = (4, 2, 1) and B = [1, 3], then

Tλ =
1 1 1 1
2 2
3

(5.2)

Fix a free k-module V with finite ordered basis {xb}b∈B. If T ∈ Tabλ(B), then for 
q = l(λ) and i ∈ [1, q] we write

Ti := T(i,−) ∈ seqλi(B)

to denote the i-th row of T, and we set

xT := xT1 ⊗ · · · ⊗ xTq ∈ ΓλV.

Notice that the set of xT parameterized by all row standard T ∈ Tabλ(B) forms a basis 
of ΓλV .

The following result describes a basis for Weyl modules.

Proposition 5.2 ([1], Theorem III.3.16). Let λ ∈ Λ+(N) and suppose V is a free k-module 
with a finite ordered basis {xb}b∈B. Then the Weyl module Wλ(V ) is also a free k-module, 
with basis given by the set of images
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{x̄T := π(xT) | T ∈ Stλ(B)}

under the canonical projection π : ΓλV � ΓλV
/
�λ(V ).

This result shows for example that the Weyl module Wλ(V ) is nonzero if and only 
if l(λ) ≤ �B. Another consequence of the proposition is that Wλ(M) is a projective 
k-module for any M ∈ Pk (cf. [15, p. 1013]).

5.3. The Cauchy decomposition

Suppose M, N ∈ Pk. The maps ψd appearing in (2.11) can be generalized as follows. 
If λ ∈ Λ+

d (N), let

ψλ(M,N) : ΓλM ⊗ ΓλN → Γd(M ⊗N)

denote the map defined via the composition

ΓλM ⊗ ΓλN
∼−→ (Γλ1M ⊗ Γλ1N) ⊗ . . .⊗ (ΓλmM ⊗ ΓλmN)

ψ⊗...⊗ψ−−−−−−→ Γλ1(M ⊗N) ⊗ . . .⊗ Γλm(M ⊗N) ∇−→ Γd(M ⊗N),

where the first map permutes tensor factors and the last map is multiplication in the 
bialgebra Γ(M ⊗N).

Let us write Γλ : Pk → Pk to denote the tensor product of functors

Γλ := Γλ1 ⊗ · · · ⊗ Γλm

defined in the same way as (2.10). Then it follows from Lemma 2.5 that the maps 
ψλ(M, N) induce a natural transformation

ψλ : Γλ � Γλ → Γλ(−⊗−) (5.3)

of bifunctors Pk × Pk → Pk.
The following lemma is a special case of [10, Proposition III.2.6] which describes the 

relationship between ψ-maps and standard homomorphisms.

Lemma 5.3 ([10]). Suppose λ ∈ Λ+
d (N), and set q = l(λ). Given a pair U, V of free 

k-modules of finite rank, the following diagram is commutative

Γλ(i,t)U ⊗ ΓλV Γλ(i,t)U ⊗ Γλ(i,t)V ΓλU ⊗ Γλ(i,t)V

ΓλU ⊗ ΓλV Γd(U ⊗ V ) ΓλU ⊗ ΓλV

id⊗γtr
λ(i,t)

γλ(i,t)⊗id ψλ(i,t)

γtr
λ(i,t)⊗id

id⊗γλ(i,t)

ψλ ψλ
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for any i ∈ [1, q − 1] and t ∈ [1, λi+1].

Recalling the total order 
 on Λ+
d (N) from Definition 2.2, write λ+ to denote the 

immediate successor of a partition λ and set (d)+ := ∞. The Cauchy filtration is then 
defined as the chain

0 = F∞ ⊂ F(d) ⊂ · · · ⊂ F(1,...,1) = Γd(M ⊗N)

where Fλ :=
∑

μ
λ Im(ψλ).
The following result describes the factors of this filtration.

Theorem 5.4 ([10, Theorem III.2.7]). Let U, V be free k-modules of finite rank. Then for 
each λ ∈ Λ+

d (N), the map ψλ induces an isomorphism

ψ̄λ : Wλ(U) ⊗Wλ(V ) ∼−→ Fλ/Fλ+

which makes the following diagram commutative:

ΓλU ⊗ ΓλV Fλ

Wλ(U) ⊗Wλ(V ) Fλ/Fλ+

ψλ

ψ̄λ

Hence, the associated graded module of the Cauchy filtration is
⊕

λ∈Λ+
d (N)

Wλ(U) ⊗Wλ(V ).

Proof. We recall the proof from [10]. It follows by definition that Wλ(U) ⊗ Wλ(V ) is 
the quotient of ΓλU ⊗ ΓλV by the submodule �λ(U) ⊗ ΓλV + ΓλU ⊗�λ(V ). Hence, by 
Lemma 5.3 we have

�λ(U) ⊗ ΓλV + ΓλU ⊗ �λ(V ) ⊂ Im(ψλ(i,t)) ⊂ Fλ+ ,

since λ(i, t) > λ. This proves the existence of the induced map ψ̄λ satisfying the given 
commutative square. It is clear that ψ̄λ is surjective. Comparing the ranks of Γd(U ⊗V )
and 

⊕
λ∈Λ+

d (N) Wλ(U) ⊗Wλ(V ) shows that ψ̄λ must be an isomorphism for each λ. �
Given free k-modules U, V ∈ Pk with finite ordered bases {xb}b∈B and {yc}c∈C, re-

spectively, let F ′
λ ⊂ Γd(U ⊗ V ) denote the k-submodule generated by

{ψλ(xS ⊗ yT ) | S ∈ Stλ(B), T ∈ Stλ(C)}

where F ′
λ is nonzero only if l(λ) ≤ min(�B, �C).
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Corollary 5.5. For each λ ∈ Λ+
d (N), the k-submodule F ′

λ ⊂ Γd(U ⊗ V ) is free, and there 
is a corresponding decomposition:

Γd(U ⊗ V ) =
⊕
λ

F ′
λ, such that Fλ =

⊕
μ≥λ

F ′
μ for all λ ∈ Λ+

d (N).

Proof. Suppose λ ∈ Λ+
d (N), and set T = Stλ(B) × Stλ(C). By Proposition 5.2, {x̄S ⊗

ȳT | (S, T ) ∈ T} forms a basis of Wλ(U) ⊗Wλ(V ). So

{ψ̄λ(xS ⊗ yT ) | (S, T ) ∈ T}

gives a basis for Fλ/Fλ+ by Theorem 5.4. This shows that the subset

{ψλ(xS ⊗ yT ) | (S, T ) ∈ T} ⊂ Γd(U ⊗ V )

is linearly independent. Thus F ′
λ is a free k-submodule. It is also clear that Fλ = Fλ+⊕F ′

λ, 
and the required decompositions follow by induction. �
5.4. Bimodule filtrations

In the remainder of this section, we fix a set {J ′
1, . . . , J

′
r} of nonzero free k-submodules, 

J ′
i ⊂ J , such that setting

Jj :=
⊕

1≤i≤j

J ′
i for j ∈ [1, r] (5.4)

yields a chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jr = J

of (A, B)-bimodules.
Recalling the notation (3.4), we then have for each μ ∈ Λd(r) the following k-

submodules of ΓdJ :

J ′
μ = 〈J ′

⊗μ〉Sd , Jμ = 〈J⊗μ〉Sd .

Note first that Jμ is a Γd(A ⊗B)-submodule of ΓdJ , and hence a (ΓdA, ΓdB)-bimodule. It 
is also not difficult to check that there is a decomposition of J⊗d into free k-submodules

J⊗d =
⊕

μ∈Λd(r)

〈J ′
⊗μ〉.

By taking Sd-invariants on both sides, we thus obtain the following decomposition
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ΓdJ =
⊕

μ∈Λd(r)

〈J ′
⊗μ〉 ∩ ΓdJ =

⊕
μ∈Λd(r)

J ′
μ. (5.5)

Next recall that the dominance order on Λd(r) is the partial order defined by setting 
μ � ν if

∑
i≤j

μi ≤
∑
i≤j

νi for j ∈ [1, r].

Notice that Jμ ⊂ Jν if and only if μ � ν. We further have Jν = J ′
ν ⊕

∑
μ
ν Jμ, and it 

follows by induction that

Jν =
⊕
μ�ν

J ′
μ (5.6)

for all ν ∈ Λd(r), which generalizes the decomposition (5.5) of ΓdJ .
Consider the map ∇ : ΓμJ → ΓdJ given by r-fold (outer) multiplication in Γ(J), for 

some μ ∈ Λd(r). Note that the restriction

∇μ : Γ(μ)(J1, . . . , Jr) → ΓdJ
(
resp. ′∇μ : Γ(μ)(J ′

1, . . . , J
′
r) → ΓdJ

)

is a (ΓdA, ΓdB)-bimodule (resp. k-module) homomorphism.

Lemma 5.6. Suppose ν ∈ Λd(r). Then

(1) J ′
ν = Im ′∇ν ,

(2) ′∇ν : Γ(ν)(J ′
1, . . . , J

′
r) 

∼−→ J ′
ν is an isomorphism of k-modules,

(3) Jν =
∑

μ�ν Im∇μ, summing over μ ∈ Λd(r).

Proof. For each μ ∈ Λd(r), write Mμ, M ′
μ to denote the images of Γ(μ)(J1, . . . , Jr) and 

Γ(μ)(J ′
1, . . . , J

′
r), respectively, under the map ∇μ : ΓμJ → ΓdJ . It is then clear from the 

definitions that M ′
μ ⊂ J ′

μ and similarly Mμ = Im∇μ ⊂ Jμ, for all μ.
It follows inductively from the isomorphism (2.7) that there is a decomposition

ΓdJ = Γd(J ′
1 ⊕ · · · ⊕ J ′

r) =
⊕

μ∈Λd(r)

M ′
μ ⊂

⊕
μ∈Λd(r)

J ′
μ

It thus follows from (5.5) that J ′
μ = M ′

μ
∼= Γ(μ)(J ′

1, . . . , J
′
r) which shows (1) and (2). 

Since Jμ ⊂ Jν whenever μ � ν, it follows from (5.6) that

Jν =
⊕
μ�ν

M ′
μ ⊂

∑
μ�ν

Mμ ⊂
∑
μ�ν

Jμ ⊂ Jν

showing (3). �
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Recall the lexicographic ordering ≤ on Λd(r) from Definition 2.2, and notice that 
there is a chain of (ΓdA, ΓdB)-sub-bimodules

0 ⊂ Γd(J1) = J≥(d,0,...,0) ⊂ · · · ⊂ J≥ν ⊂ · · · ⊂ J≥(0,...,0,d) = ΓdJ

where J≥ν :=
∑

μ≥ν Jμ for each ν ∈ Λd(r). Since the lexicographic ordering refines the 
dominance order, it follows from (5.6) that

J≥ν = J>ν ⊕ J ′
ν (5.7)

for all ν. Thus

J≥ν =
∑
μ≥ν

Im(∇μ)

by the preceding lemma. This allows us to describe the quotients J≥ν/J>ν as follows.

Proposition 5.7. Let ν ∈ Λd(r). Then ∇ν induces an isomorphism

∇̄ν : Γ(ν)(J1/J0, . . . , Jr/Jr−1) ∼= J≥ν/J>ν

which yields a commutative square of (ΓdA, ΓdB)-bimodule homomorphisms

Γ(ν)(J1, . . . , Jr) J≥ν

Γ(ν)(J1/J0, . . . , Jr/Jr–1) J≥(ν)/J>(ν)

∇ν

πν
π

∇̄ν

where πν denotes the tensor product of functorial maps Γνj (πj) associated to the projec-
tions, πj : Jj → Jj/Jj−1, for j = 1, . . . , r, and where π is also projection.

Proof. We first verify that kerπν ⊂ J>ν in order to show the existence of the map ∇̄ν

satisfying the above diagram. If 1 ≤ j ≤ r, consider the (ΓdA, ΓdB)-sub-bimodule

Kj := Γ(ν1)(J1, . . . , Jr) ⊗ ker Γνj (πj) ⊗ Γ(ν2)(J1, . . . , Jr)

where ν1 = (ν1, . . . , νj−1, 0, . . . , 0) and ν2 = (0, . . . , 0, νj+1, . . . , νr). Then kerπν =∑r
j=1 Kj , and we must show that Kj ⊂ J>ν for all j.
Now Kj = 0, if either j = 1 or νj = 0. If Kj �= 0 and 1 ≤ t ≤ νj , let ν(j, t) ∈ Λd(r) be 

defined as in (5.1). Since ν(j, 1) > ν, it suffices to show that ∇ν(Kj) ⊂ Im∇ν(j,1) for all 
such j. The fact that ν and ν(j, 1) are equal except for entries in the j-th and (j − 1)-st 
positions allows us to simplify to the case r = 2.
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So we may assume ν = (ν1, ν2). Then for j = 2, we have ν(2, 1) = (ν1 + 1, ν2 − 1). In 
this case K2 = ker(πν), and it follows by Lemma 3.5 that

K2 = Γν1J1 ⊗ J(1,ν2−1) ⊂ Γ(ν)(J1, J2).

Notice by Lemma 5.6 that J(1,ν2−1) is equal to the image of the map

∇(1,ν2−1) : J1 ⊗ Γν2−1(J2) → Γν2(J2).

By associativity of multiplication in Γ(J), we also have a commutative diagram

Γ((ν1,1,ν2–1))(J1, J1, J2)

Γ(ν)(J1, J2) Γ(ν(2,1))(J1, J2)

J≥ν

id⊗∇(1,ν2−1) ∇⊗id

∇ν
∇ν(2,1)

It follows that ∇ν(K2) ⊂ Im∇ν(2,1), which shows the existence of ∇̄ν . To complete the 
proof, note that the restriction πν |Γ(ν)(J ′

1,...,J
′
r) is a k-module isomorphism. The map 

(π ◦ ∇ν)|Γ(ν)(J ′
1,...,J

′
r) is also a k-module isomorphism by Lemma 5.6. It follows that ∇̄ν

is an isomorphism by commutativity. �
5.5. Multitableaux

Suppose {Bj}j∈[1,r] is a collection of finite totally ordered sets, and let λ ∈ Λ+
d (N)r

be an r-multipartition. Elements of the set

Tabλ(B1, . . . ,Br) := Tabλ(1)(B1) × · · · × Tabλ(r)(Br)

are called multitableaux of shape λ (or λ-multitableaux).
We say that a λ-multitableau, T = (T(1), . . . , T(r)), is standard if each component T(j)

is a standard λ(j)-tableau. The subset of standard λ-multitableaux is denoted

Stλ(B∗) = Stλ(B1, . . . ,Br).

If (n1, . . . , nr) ∈ Nr is the sequence of integers with nj := �Bj for all j, then it 
follows from (5.2) that Stλ(B∗) is non-empty if and only if λ belongs to the subset 
Λ+
d (n1, . . . , nr) ⊂ Λ+

d (N)r. In this case, we write Tλ = Tλ(B∗) to denote the standard 
λ-multitableau

Tλ := (Tλ
(1)
, . . . , Tλ

(r)
). (5.8)
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Suppose ν = (ν1, . . . , νr) ∈ Λd(r). There is a corresponding r-multipartition (ν) :=
((ν1), (ν2), . . . , (νr)) ∈ Λ+

d (N)r. For any m ∈ N, let us write (1m) := (1, . . . , 1) ∈ Λ+
m(N), 

and set (10) = 0. Then we also have an element

(ν)′ := ((1ν1), (1ν2), . . . , (1νr)) ∈ Λ+
ν (N).

Recalling the total order 
 from Definition 2.4, notice that (ν)′ 
 λ 
 (ν) for all 
λ ∈ Λ+

ν (N). We also write λ+ to denote the immediate successor of any λ ∈ Λ+
d (N)r

and set ((d))+ = ∞.

5.6. Generalized Weyl modules

Given λ ∈ Λ+
d (N)r and projective modules Mj ∈ Pk for j ∈ [1, r], we will use the 

notation

Γλ(M∗) :=
⊗
j

Γλ(j)
Mj , Wλ(M∗) :=

⊗
j

Wλ(j)Mj

in what follows. The outer tensor product − � − , defined in Section 2.7, yields corre-
sponding functors Γλ, Wλ : P×r

k
→ Pk defined by

Γλ := Γλ(1) � · · · � Γλ(r)
and Wλ := Wλ(1) � · · · � Wλ(r) .

Since Weyl modules are quotients of divided powers, it follows that there is a natural 
projection π : Γλ � Wλ.

Suppose V1, . . . , Vr ∈ Pk are free k-modules, and suppose {x(j)
b }b∈Bj

is a finite ordered 
basis of Vj for each j ∈ [1, r]. Given a multitableau T ∈ Tabλ(B1, . . . , Br), there is a 
corresponding element

xT :=
⊗
j

x
(j)
T(j) ∈ Γλ(V∗)

whose image in Wλ(V∗) is denoted x̄T := π(xT). The next result follows easily from 
Proposition 5.2.

Lemma 5.8. Let λ ∈ Λ+
d (N)r be an r-multipartition, and let V1, . . . , Vr be free k-modules 

with bases as above. The set of images {x̄T | T ∈ Stλ(B1, . . . , Br)} forms a basis of the 
free k-module Wλ(V∗) parametrized by standard λ-multitableaux. In particular, we have 
Wλ(V∗) = 0 unless λ ∈ Λ+

d (�B1, . . . , �Br).

Suppose ν ∈ Λd(r) and fix some projective modules Mj, Nj ∈ Pk for j ∈ [1, r]. Using 
notation similar to the above, we write

Γ(ν)(M∗ ⊗N∗) :=
⊗

Γνj (Mj ⊗Nj).

j
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Given λ ∈ Λ+
ν (N), we then define a map

ψλ : Γλ(M∗) ⊗ Γλ(N∗) → Γ(ν)(M∗ ⊗N∗)

via the composition
{⊗

j

Γλ(j)
Mj

}
⊗

{⊗
j

Γλ(j)
Nj

}
(5.9)

∼=
⊗
j

{
Γλ(j)

(Mj) ⊗ Γλ(j)
(Nj)

} ψ⊗...⊗ψ−−−−−−→
⊗
j

Γνj (Mj ⊗Nj).

Note that if Mj ∈ A-mod and Nj ∈ B-mod for all j, then ψλ is a homomorphism of 
(ΓdA, ΓdB)-bimodules by Lemma 2.5.1.

5.7. Generalized Cauchy filtrations of bimodules

Fix a chain (Jj)j∈[0,r] of (A, B)-bimodules. For each j ∈ [1, r], suppose there exists an 
isomorphism

αj : Jj/Jj−1
∼−→ Uj ⊗ Vj (5.10)

of (A, B)-bimodules for some Uj ∈ A-mod and Vj ∈ B-mod. Assume for all j that 
Uj and Vj are free as k-modules, with finite ordered bases {x(j)

b }b∈Bj
and {y(j)

c }c∈Cj
, 

respectively. Assume further that {J ′
j}j∈[r] is any collection of free k-submodules of Jr

such that (5.4) holds.
We first define a filtration of Γ(ν)(U∗ ⊗ V∗) for some fixed weight ν ∈ Λd(r). For each 

r-multipartition λ ∈ Λ+
ν (N)r, let us write

Fλ,(ν) :=
∑

λ≤μ≤(ν)

Fμ(1)(U1, V1) ⊗ · · · ⊗ Fμ(r)(Ur, Vr)

which is a sum of sub-bimodules of Γ(ν)(U∗ ⊗ V∗). It follows that there is a chain of 
sub-bimodules:

0 =: F(ν)+,(ν) ⊂ F(ν),(ν) ⊂ · · · ⊂ F(ν)′,(ν) = Γ(ν)(U∗ ⊗ V∗). (5.11)

Recalling (5.9), notice that for each λ ∈ Λ+
ν (N)r we have

Fλ,(ν) =
∑

λ�μ�(ν)

Im(ψμ).

Note also that Fλ,(ν) contains the k-submodule

F′
λ :=

⊗
F′

(j)(Uj , Vj).
λ
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It then follows by Corollary 5.5 that F′
λ is a free k-submodule, with the set

{ψλ(xS ⊗ yT) | S ∈ Stλ(B1, . . . ,Br), T ∈ Stλ(C1, . . . ,Cr)} (5.12)

as a basis.

Proposition 5.9. Suppose ν ∈ Λd(r). Then for each λ ∈ Λ+
ν (N), the map

ψλ : Γλ(U∗) ⊗ Γλ(V∗) → Fλ,(ν)

induces an isomorphism

ψ̄λ : Fλ,(ν)/Fλ+,(ν)
∼−→ Wλ(U∗) ⊗Wλ(V∗)

of bimodules. We also have decompositions

Γ(ν)(U∗ ⊗ V∗) =
⊕

λ∈Λ+
ν (N)

F′
λ, Fλ,(ν) =

⊕
λ�μ�(ν)

F′
μ (5.13)

into free k-submodules.

We now wish to lift the filtrations (5.11), for varying ν, to a single filtration of ΓdJ , 
with J = Jr as above. First note that there is an isomorphism

φν : J≥ν/J>ν
∼−→ Γ(ν)(U∗ ⊗ V∗)

satisfying the following commutative triangle of (ΓdA, ΓdB)-bimodule isomorphisms:

⊗
Γνj (Jj/Jj−1)

⊗
Γνj

(
Uj ⊗ Vj

)

J≥ν/J>ν

Γ(ν)(α∗)

∇̄ν φν

(5.14)

where Γ(ν)(α∗) =
⊗

Γνj (αj) is a tensor product of isomorphisms induced by the maps 
(5.10) and ∇̄ν is defined in Proposition 5.7. We then have a surjective map

φ̂ν : J≥ν � Γ(ν)(U∗ ⊗ V∗)

obtained by composing φν with the projection π : J≥ν � J≥ν/J>ν .

Definition 5.10. Suppose λ ∈ Λ+
d (N)r and set ν = |λ|. Then define Jλ to be the 

sub-bimodule of J≥ν , corresponding to the inverse image of Fλ,(ν) under the map φν

considered above. The generalized Cauchy filtration of ΓdJ is then defined as the chain
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0 = J∞ ⊂ J((d)) ⊂ · · · ⊂ Jλ+ ⊂ Jλ ⊂ · · · ⊂ J((1d)) = ΓdJ (5.15)

of (ΓdA, ΓdB)-bimodules parametrized by multipartitions λ ∈ Λ+
d (N)r.

We next define a decomposition of ΓdJ via certain k-submodules, J′λ ⊂ Jλ. Recall 
from (5.4) that Jj = J ′

j ⊕ Jj−1, for all j. For each j ∈ [1, r], let

α′
j : J ′

j
∼−→ Uj ⊗ Vj

denote the isomorphism defined via the composition

J ′
j Jj Jj/Jj−1 Uj ⊗ Vj .

αj

Similar to (5.14), there is a resulting k-module isomorphism

φ′
ν : J ′

ν
∼−→ Γ(ν)(U∗ ⊗ V∗)

satisfying the following commutative triangle of isomorphisms:

Γ(ν)(J ′
∗) Γ(ν)(U∗ ⊗ V∗)

J ′
ν

Γ(ν)(α′
∗)

′∇ν
φ′
ν

(5.16)

where

Γ(ν)(α′
∗) :=

⊗
Γνj (α′

j)

and where ′∇ν is restriction of r-fold multiplication as in Lemma 5.6.(i). We write

J′λ := (φ′
ν)−1(F′

λ)

to denote the inverse image of F′
λ under φ′

ν .

Lemma 5.11. There exist decompositions into free k-submodules

ΓdJ =
⊕

λ∈Λ+
d (N)r

J′λ, and Jλ =
⊕

λ�μ≺∞
J′μ for each λ.

Proof. It follows by definition from (5.14) and (5.16) that φ′
ν can be obtained from φ̂ by 

restriction. In particular, we have a commutative diagram:
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J ′
ν Γ(ν)(U∗ ⊗ V∗)

J≥ν Γ(ν)(U∗ ⊗ V∗)

φ′
ν

φ̂ν

(5.17)

Since J≥ν = J>ν ⊕ J ′
ν by (5.7), we further have a decomposition

φ̂−1
ν (N) = J>ν ⊕ (φ′

ν)−1(N) (5.18)

for any k-submodule N ⊂ Γ(ν)(U∗ ⊗ V∗). If we set N = Fλ,(ν) in the above, then it 
follows from (5.13) that

Jλ = J>ν ⊕
⊕

λ�μ�(ν)

J′λ

for each λ ∈ Λν(N). The decomposition of Jλ now follows by induction since J>ν = J(ν+), 
where ν+ denotes an immediate successor of ν in the lexicographic order on Λd(r). The 
decomposition for ΓdJ = J(1d) follows as a special case. �

Now suppose λ ∈ Λ+
d (N)r. To each element of the basis (5.12), we associate a corre-

sponding element in J′λ, defined by

zS,T :=
(′∇ν ◦ Γ(ν)(α′

∗)−1 ◦ ψλ
)
(xS ⊗ yT). (5.19)

Since the map appearing in (5.19) is a composition of isomorphisms, it follows that the 
set

{zS,T | S ∈ Stλ(B∗), T ∈ Stλ(C∗)}

forms a basis of J′λ.
Let (m1, . . . , mr) ∈ Nr be the sequence defined by

mj := min(�Bj , �Cj)

for all j, and set

Λ := Λ+
r (m1, . . . ,mr).

Remark 5.12. Suppose λ ∈ Λ+(N)r. If λ belongs to Λ ⊂ Λ+(N)r, then St(B∗) and 
St(C∗) are both non-empty since they contain the elements Tλ = Tλ(B∗) and Tλ =
Tλ(C∗) defined in (5.8), respectively. We thus have J′λ �= 0 if and only if λ ∈ Λ.

Let λ ∈ Λ. Since Jλ = J′λ ⊕ Jλ+ by Lemma 5.11, it follows that Jλ/Jλ+ is a free 
k-module with basis
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{z̄S,T | S ∈ Stλ(B∗), T ∈ Stλ(C∗)}

where x̄ := x + Jλ+ denotes the image of x ∈ Jλ in the quotient.

Definition 5.13. Given λ ∈ Λ, define a pair of k-submodules

Uλ, Vλ ⊂ Jλ/Jλ+

generated by the subsets

{
z̄S,Tλ | S ∈ Stλ(B∗)

}
and

{
z̄Tλ,T | T ∈ Stλ(C∗)

}
,

respectively. It is then clear that Uλ is a ΓdA-submodule of the (ΓdA, ΓdB)-bimodule 
Jλ/Jλ+ , and Vλ is a ΓdB-submodule.

The following analogue of Theorem 5.4 is the main result in this section.

Theorem 5.14 (Generalized Cauchy decomposition). Suppose λ ∈ Λ. Then the map of 
k-modules defined by

αλ : Jλ/Jλ+ → Uλ ⊗ Vλ : z̄S,T �→ z̄S,Tλ ⊗ z̄Tλ,T,

for all (S, T) ∈ Stλ(B∗) × Stλ(C∗), is an isomorphism of (ΓdA, ΓdB)-bimodules. The 
associated graded module of the generalized Cauchy filtration is thus given by

⊕
λ∈Λ

Uλ ⊗ Vλ.

Proof. Write φλ : Jλ → Fλ,(ν) to denote the map obtained from φ̂ν by restriction. There 
is an induced bimodule isomorphism

φ̄λ : Jλ/Jλ+
∼−→ Fλ,(ν)/Fλ+,(ν)

which follows from the definitions by using the decompositions Jλ = J′λ ⊕ Jλ+ and 
Fλ,(ν) = F′

λ ⊕ Fλ+,(ν).
Hence by Proposition 5.9, there is an isomorphism ϕλ making the upper right triangle 

commute in the following diagram

Jλ/Jλ+ Fλ,(ν)/Fλ+,(ν)

Uλ ⊗ Vλ Wλ(U∗) ⊗Wλ(V∗).

αλ

φ̄λ

ψ̄λ
ϕλ

ϕ′ ⊗ϕ′′

(5.20)
λ λ
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In the bottom arrow, the map ϕ′
λ (resp. ϕ′′

λ) denotes the homomorphism obtained by 
composing ϕλ with the embedding

Wλ(U∗)
∼−→ Wλ(U∗) ⊗ ȳTλ (resp. Wλ(V∗)

∼−→ x̄Tλ ⊗Wλ(V∗)).

In order to complete the proof, it suffices to show that the lower triangle in (5.20) is 
a commutative triangle of isomorphisms. For this, we compute:

ϕλ(x̄S ⊗ ȳT) = (φ̄−1
λ ◦ ψ̄λ)(x̄S ⊗ ȳT)

= φ̄−1
λ (ψλ(xS ⊗ yT) ) by Proposition 5.9

= (φ′
λ)−1 ◦ ψλ(xS ⊗ yT) by (5.17) and (5.18)

= z̄S,T.

It follows that ϕ′
λ ⊗ ϕ′′

λ is an isomorphism since

ϕ′
λ ⊗ ϕ′′

λ (x̄S ⊗ ȳT) = z̄S,Tλ ⊗ z̄Tλ,T

for all (S, T) ∈ Stλ(B∗) × Stλ(C∗). Since it is now clear that the lower triangle is 
commutative, the proof is complete. �

It follows from the proof of the theorem that Uλ and Vλ are each isomorphic to a 
respective (generalized) Weyl module. In the case B = Aop, we call Uλ (resp. Vλ) a left 
(resp. right) Weyl submodule of the ΓdA-bimodule Jλ/Jλ+ .

6. Cellular algebras

Assume throughout this section that k is a noetherian integral domain. We first recall 
the definition of cellular algebras from [7], along with the reformulation given in [14]. 
We then use the generalized Cauchy decomposition to describe a cellular structure on 
generalized Schur algebras SA(n, d).

6.1. Definition of cellular algebras

Definition 6.1 (Graham-Lehrer). An associative k–algebra A is called a cellular algebra
with cell datum (I, M, C, τ) if the following conditions are satisfied:

(C1) (I, �) is a finite partially ordered set. Associated to each λ ∈ I is a finite set 
M(λ). The algebra A has a k-basis Cλ

S,T , where (S, T ) runs through all elements 
of M(λ) ×M(λ) for all λ ∈ I.

(C2) The map τ is an anti-involution of A such that τ(Cλ
S,T ) = Cλ

T,S .
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(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A, the product aCλ
S,T can be written 

as (
∑

U∈M(λ) ra(U, S)Cλ
U,T ) + r′, where r′ is a linear combination of basis elements 

with upper index μ strictly larger than λ, and where the coefficients ra(U, S) ∈ k

do not depend on T .

Let A be a cellular algebra with cell datum (I, M, C, τ). Given λ ∈ I, it is clear that 
the set J(λ) spanned by the Cμ

S,T with μ � λ is a τ–invariant two sided ideal of A (see 
[7]). Let J(�λ) denote the sum of ideals J(μ) with μ � λ.

For λ ∈ I, the standard module Δ(λ) is defined as follows: as a k-module, Δ(λ) is 
free with basis indexed by M(λ), say {Cλ

S | S ∈ M(λ)}; for each a ∈ A, the action of a
on Δ(λ) is defined by aCλ

S =
∑

U ra(U, S)Cλ
U where the elements ra(U, S) ∈ k are the 

coefficients in (C3). Any left A-module isomorphic to Δ(λ) for some λ will also be called 
a standard module. Note that for any T ∈ M(λ), the assignment Cλ

S �→ Cλ
S,T + J(�λ)

defines an injective A–module homomorphism from Δ(λ) to J(λ)/J(�λ).

6.2. Basis-free definition of cellular algebras

In [14], König and Xi provide an equivalent definition of cellular algebras which does 
not require specifying a particular basis. This definition can be formulated as follows.

Definition 6.2 (König-Xi). Suppose A is a k-algebra with an anti-involution τ . Then a 
two-sided ideal J in A is called a cell ideal if, and only if, J = τ(J) and there exists a 
left ideal Δ ⊂ J such that Δ is finitely generated and free over k and such that there 
is an isomorphism of A-bimodules α : J ∼−→ Δ ⊗ τ(Δ) making the following diagram 
commutative:

J Δ ⊗ τ(Δ)

J Δ ⊗ τ(Δ)

α

τ x⊗y �→ τ(y)⊗τ(x)

α

We say that a decomposition A = J ′
1 ⊕ · · · ⊕ J ′

r (for some r) into k-submodules with 
τ(J ′

j) = J ′
j for each j = 1, . . . , r is a cellular decomposition of A if setting Jj :=

⊕
1≤i≤j J

′
i

gives a chain of (τ -invariant) two-sided ideals

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jr = A

such that the quotient Jj/Jj−1 is a cell ideal (with respect to the anti-involution induced 
by τ on the quotient) of A/Jj−1.

The above chain of ideals in A is called a cell chain. For each ideal Jj in a cell chain, 
we write
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Δj ⊂ Jj/Jj−1, αj : Jj/Jj−1
∼−→ Δj ⊗ τ(Δj) (6.1)

to denote the corresponding left ideal and A-bimodule isomorphism. Since Jj = J ′
j ⊕

Jj−1 for all j, we have a k-module isomorphism α′
j : J ′

j
∼= Δj ⊗ τ(Δj) defined as the 

composition

α′
j : J ′

j Jj Jj/Jj−1 Δj ⊗ τ(Δj).
αj

It then follows by definition that we have a commutative diagram

J ′
j Δj ⊗k τ(Δj)

J ′
j Δj ⊗k τ(Δj)

α′
j

τ x⊗y �→ τ(y)⊗τ(x)
α′

j

(6.2)

of k-module isomorphisms.

Lemma 6.3 (König-Xi, [14]). Let A be an associative k-algebra with an anti-involution 
τ . Then A is a cellular algebra in the sense of [7] if and only if A has a cellular decom-
position.

Proof. We summarize the proof from [14]. Let A be a cellular algebra with cell datum 
(I, M, C, τ). First, suppose λ ∈ I is maximal. Then J = J(λ) is a two-sided ideal by 
(C3) and J = τ(J) by (C2). Fix any element Tλ ∈ M(λ). Define Δ as the k–span of 
Cλ

S,Tλ
where S varies. Defining α by sending Cλ

S,Tλ
⊗ τ(Cλ

T,Tλ
) to Cλ

S,T gives the required 
isomorphism. Thus J(λ) is a cell ideal.

Next, choose any enumeration λ1, . . . , λr of the elements of I such that i < j whenever 
λj � λi. Set J ′

j ⊂ A (for each j) equal to the k–span of all Cλj

S,T (for varying S, T ). We 
have τ(J ′

j) = J ′
j by (C2). Since J(λj) = J ′

j

⊕
J(�λj) for all j, it follows that A =

⊕
j J

′
j

is a cellular decomposition.
For the converse, consider the index set I = {1, . . . , r} with the reversed ordering 

1 � · · · � r. Choose a k-basis {x(j)
b }b∈Bj

of Δj , for each j ∈ I. Setting Cj
b,c ∈ J ′

j to be the 

inverse image of x(j)
b ⊗ τ(x(j)

c ) (for b, c ∈ Bj) under α′
j (for j ∈ I) gives a k-basis for A of 

the form (C1). Since Δj is a left A-module, (C3) is satisfied. Finally, (C2) follows from 
the required commutative diagram and the τ -invariance of J ′

j. It follows that {Cj
b,c} is a 

cellular basis. �
From now on, we say that an algebra A with anti-involution τ is cellular if either of 

the equivalent statements in Lemma 6.3 is satisfied. The proof of the lemma shows that 
each ideal Δj (for j = 1, . . . , r) for a cellular algebra A is a standard module.
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6.3. Matrix algebras

Consider the matrix ring, Mn(k), with matrix transpose, tr, as anti-involution. Let us 
write, c : Vn ⊗Vtr

n
∼−→ Mn(k), to denote the isomorphism mapping vi ⊗ vtr

j �→ Eij for all 
i, j ∈ [1, n].

Now suppose A is an algebra with anti-involution τ , and let J be a cell ideal with 
defining isomorphism α : J ∼−→ Δ ⊗ τ(Δ). Then

Mn(J) := Mn(k) ⊗ J

is a cell ideal of the matrix ring Mn(A) with respect to the anti-involution tr ⊗ τ . The 
corresponding isomorphism is the map

c−1(α) : Mn(J) ∼−→ Vn(Δ) ⊗ Vtr
n (τ(Δ))

defined by the composition

Mn(k) ⊗ J
c−1⊗α−−−−−−→

(
Vn ⊗ Vtr

n

)
⊗ (Δ ⊗ τ(Δ)) ∼−−→ Vn ⊗ Δ ⊗ Vtr

n ⊗ τ(Δ).

More generally, we have the following.

Lemma 6.4. Suppose A is a cellular algebra with anti-involution τ and cell chain 
(Jj)j∈[1,r]. Then the matrix ring Mn(A) is cellular with anti-involution tr ⊗ τ and cell 
chain (Mn(Jj))j∈[1,r], where Mn(Jj) := Mn(k) ⊗ Jj for all j.

Proof. It follows from the preceding paragraph that the ideals, Mn(Jj), form a cell chain, 
since Mn(Jj)/Mn(Jj−1) 
 Mn(k) ⊗ (Jj/Jj−1) as Mn(A)-bimodules. It is also clear that 
Mn(A) has a cellular decomposition

Mn(A) =
⊕

Mn(J ′
j)

where A =
⊕

J ′
j denotes a corresponding cellular decomposition of A. �

6.4. Cellularity of generalized Schur algebras

We now describe a cellular structure for generalized Schur algebras SA(n, d). In this 
case, the generalized Cauchy filtration forms a cell chain, with the Weyl submodules 
from Theorem 5.14 as standard modules.

Theorem 6.5. Suppose A is a cellular algebra with anti-involution τ . Then the generalized 
Schur algebra SA(n, d) is a cellular algebra, with respect to the anti-involution τ :=
(tr ⊗ τ)⊗d, for all n, d ∈ N.
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Proof. If A is cellular then so is Mn(A), by Lemma 6.4. Since SA(n, d) = ΓdMn(A), it 
suffices to show that ΓdA is cellular, with respect to the anti-involution τ = τ⊗d.

Suppose that A = J ′
1 ⊕ · · · ⊕ J ′

r is a cellular decomposition of A, with corresponding 
cell chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jr = A.

For each j ∈ [1, r], suppose {x(j)
b }b∈Bj

and {y(j)
b }b∈Bj

are k-bases of Δj and τ(Δj), 
respectively, such that y(j)

b := τ(x(j)
b ) for all j, and let Δj and αj be as in (6.1).

Considering Λ = Λ+(�B1, . . . , �Br) as a totally ordered subset of Λ+
d (N)r by restrict-

ing the order 
 in Definition 2.4, it follows from Lemma 5.11 and Remark 5.12 that we 
have decompositions

ΓdJ =
⊕
λ∈Λ

J′λ, and Jλ =
⊕
μ
λ

J′μ for each λ ∈ Λ, (6.3)

since J′λ = 0 if λ /∈ Λ.
Notice that τ = τ⊗d coincides with the map Γd(τ) : ΓdA → ΓdA induced by the 

functor Γd. To complete the proof, we need to show that the left-hand side of (6.3) gives 
a cellular decomposition of ΓdA with respect to this anti-involution.

Let Δλ be the left Weyl submodule Uλ ⊂ Jλ/Jλ+ of Theorem 5.14. Then it remains 
to check the following hold for each λ ∈ Λ:

(i) τ (J′λ) = J′λ,

(ii) τ (Δλ) = Vλ,

(iii) Jλ/Jλ+ is a cell ideal.

Assuming (i) and (ii) hold for each λ, (iii) will follow from the commutativity of the 
diagram

Jλ/Jλ+ Δλ ⊗ τ(Δλ)

Jλ/Jλ+ Δλ ⊗ τ(Δλ)

αλ

τ x⊗y �→ τ(y)⊗τ(x)

αλ

where αλ is the ΓdA-bimodule isomorphism from Theorem 5.14.
Now fix λ ∈ Λ, and set ν = |λ|. Then J′λ, Δλ, and Jλ/Jλ+ have k-bases given by the 

sets

{zS,T | S,T ∈ St(B∗)} , {z̄S,Tλ
| S ∈ St(B∗)} , {z̄S,T | S,T ∈ St(B∗)}

respectively, where zS,T ∈ J′λ is defined in (5.19). It follows that each of the conditions 
(i)-(iii) will be satisfied provided that τ(zS,T) = zT,S for all S, T ∈ St(B∗).
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We claim that the following diagram is commutative:

Γλ(Δ∗) ⊗ Γλ(τ(Δ∗)) Γ(ν)(Δ∗⊗τ(Δ∗)) Γ(ν)(J ′
∗) J ′

ν

Γλ(Δ∗) ⊗ Γλ(τ(Δ∗)) Γ(ν)(Δ∗⊗τ(Δ∗)) Γ(ν)(J ′
∗) J ′

ν ,

ψλ

tw◦
(
Γλ(τ)⊗Γλ(τ)

)
Γ(ν)(tw◦(τ ⊗ τ))

Γ(ν)(α′
∗) ∇ν

Γ(ν)(τ) τ

ψλ Γ(ν)(α′
∗) ∇ν

with the left (middle) vertical map(s) induced by the action of Γλ (resp. Γ(ν)) considered 
as a functor P×r

k
→ Pk. The commutativity of the left-hand square can be checked using 

the definition of ψλ together with Lemma 2.5. The commutativity of the middle square 
follows from the functoriality of Γ(ν) and diagram (6.2). Finally, the commutativity 
of the right-hand square follows by Lemma 3.4. We thus have τ(zS,T) = zT,S for all 
S, T ∈ St(B∗), and the proof is complete. �

Let us write Λop to denote the set Λ with opposite total ordering. Then it follows 
from the above proofs of Lemma 6.3 and Theorem 6.5 that the set

{
zS,T | λ ∈ Λop, S,T ∈ Stλ(B1, . . . ,Br)

}

is a cellular basis for ΓdA. A corresponding cellular basis for SA(n, d) can be obtained 
in a similar way, by replacing A by Mn(A).

In the next example, we describe an explicit cellular basis for a special case of a gen-
eralized Schur algebra of the form SZ(n, d), where Z is a zig-zag algebra. We essentially 
follow the definition in [13], using slightly different notation. Note also that we only 
consider Z as an ordinary non-graded algebra, rather than a Z/2-graded superalgebra 
as in [13].

Example 6.6 (Zig-zag algebra). We consider the zig-zag algebra associated to the quiver 
below.

Q : • • •0 1 2

a10 a21

a01 a12

Recall from [13, Section 7.9] that the extended zig-zag algebra, Z̃, is defined in this case 
as the quotient of the path algebra kQ modulo the following relations:

(1) All paths of length three or greater are zero.
(2) All paths of length two that are not cycles are zero.
(3) All length-two cycles based at the same vertex are equivalent.
(4) a21a12 = 0.
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The length zero paths are denoted e0, e1, e2 and correspond to standard idempotents, 
with eiaijej = aij for all admissible i, j. Let e := e0 + e1 ∈ Z̃. Then the corresponding 
zig-zag algebra is Z := eZ̃e ⊂ Z̃. Then Z is a cellular algebra, with anti-involution 
defined by τ(ei) = ei and τ(aij) = aji for all i, j.

Let us describe a corresponding cellular decomposition. First let

x1 := a12, x2 := e1, x3 := a01, x4 := e0,

and set yi := τ(xi), for i ∈ [1, 4]. Then we have corresponding sets

X(1) := {x1}, X(2) := {x2, x3}, X(3) := {x4},

and

Y (1) := {y1}, Y (2) := {y2, y3}, Y (3) := {y4},

parametrized by the totally ordered sets B1 := {1}, B2 := {2 < 3}, and B3 := {4}, 
respectively. We may then define a cellular decomposition

Z = J ′
1 ⊕ J ′

2 ⊕ J ′
3,

where J ′
j := span{xy | x ∈ X(j), y ∈ Y (j)}, for j ∈ [1, 3].

Now let Λop denote the set Λ = Λ+
3 (1, 2, 1) with the opposite total ordering. Then one 

may then check using formula (5.19) and the proof of Lemma 6.3 that SZ(1, 2) = Γ2Z has 
the cellular basis described in the table below, where λ runs through all multipartitions 
in the set Λop, and where S, T denote standard multitableaux of shape λ, respectively.

λ S T zS,T

(ø, ø, (2)) (ø, ø, 4 4 ) (ø, ø, 4 4 ) (e0)⊗2

(ø, (1), (1)) (ø, 2 , 4 ) (ø, 2 , 4 ) e0 ∗ e1
′′ (ø, 3 , 4 ) e0 ∗ a10

(ø, 3 , 4 ) (ø, 2 , 4 ) e0 ∗ a01
′′ (ø, 3 , 4 ) e0 ∗ (a01a10)

(ø, (1, 1), ø) (ø, 2
3 , ø) (ø, 2

3 , ø) e1 ∗ (a01a10)

(ø, (2), ø) (ø, 2 2 , ø) (ø, 2 2 , ø) e⊗2
1

′′ (ø, 2 3 , ø) e1 ∗ a10
′′ (ø, 3 3 , ø) a⊗2

10
(ø, 2 3 , ø) (ø, 2 2 , ø) e1 ∗ a01
′′ (ø, 2 3 , ø) e1 ∗ (a01a10) + a10 ∗ a01
′′ (ø, 3 3 , ø) a ∗ a a
10 01 10
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(ø, 3 3 , ø) (ø, 2 2 , ø) (a01)⊗2

′′ (ø, 2 3 , ø) a01 ∗ (a01a10)
′′ (ø, 3 3 , ø) (a01a10)⊗2

((1), ø, (1)) ( 1 , ø, 4 ) ( 1 , ø, 4 ) (a12a21) ∗ e0

((1), (1), ø) ( 1 , 2 , ø) ( 1 , 2 , ø) e1 ∗ (a12a21)
′′ ( 1 , 3 , ø) a10 ∗ (a12a21)
( 1 , 3 , ø) ( 1 , 2 , ø) a01 ∗ (a12a21)
′′ ( 1 , 3 , ø) (a01a10) ∗ (a12a21)

((2), ø, ø) ( 1 1 , ø, ø) ( 1 1 , ø, ø) (a12a21)⊗2

The symbol, ø, is used above to denote an empty partition or tableau, respectively, and 
the symbol ′′ denotes a repeated entry from the item above.

6.5. Cellularity of wreath products A �Sd

Let us first recall a result of [14] concerning idempotents fixed by an anti-involution.

Lemma 6.7 ([14]). Let A be a cellular algebra with anti-involution τ . If e ∈ A is an 
idempotent fixed by τ , then the algebra eAe is cellular with respect to the restriction of τ .

We then have the following consequence of Theorem 6.5, which is obtained via gen-
eralized Schur-Weyl duality.

Corollary 6.8. Suppose d ∈ N. If A is a cellular algebra, then A �Sd is also cellular.

Proof. Fix some n ≥ d. Write SA = SA(n, d), and let e ∈ SA denote the idempotent 
e := ξω. It then follows by Proposition 4.2.(ii) that there is an algebra isomorphism 
A �Sd

∼= e SAe. Since

τ (e) = (E1,1)tr ∗ · · · ∗ (Ed,d)tr = e,

the cellularity of A �Sd follows from Theorem 6.5 and Lemma 6.7. �
Since the above result holds for an arbitrary cellular algebra A, we thus obtain an 

alternate proof of the main results of [6] and [9] mentioned in the introduction.
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