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The Sylow-2-subgroups of a periodic group with minimal condition on centraliz-
ers are locally finite and conjugate. The same holds for the Sylow-p-subgroups for
any prime p, provided the subgroups generated by any two p-elements of the
group are finite. In the non-periodic context, the bounded left Engel elements of a
group with minimal condition on centralizers form the Fitting subgroup. Q 1999
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INTRODUCTION

Nilpotency properties in groups with the chain condition on centralizers
Ž .M have been studied by a number of people, generalizing correspond-c

w xing results for linear groups. R. Bryant 2 proved that a locally nilpotent
periodic M -group is nilpotent-by-finite and that the Sylow p-subgroups inc

w xa locally finite M -group are conjugate. Bryant and Hartley 3 alsoc
showed that a periodic locally soluble M -group is nilpotent-by-abelian-c
by-finite. We shall extend Bryant’s first result by replacing local nilpotency

Ž .by binary nilpotency Remark 2.1 and his second result by replacing local
Ž . Ž .finiteness by periodicity for p s 2 or binary finiteness for arbitrary p

Ž .Theorem 3.1 . We also answer positively a question of John Wilson about
Ž . Žlocal finiteness of M -2-groups Corollary 2.4 . Recall that a group isc

binary P, where P is a property of groups, if every 2-generated subgroup is
.contained in a group satisfying P.
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Non-periodic groups were first dealt with in an intermediate case, the
class of substable groups, which lies in between the linear and the M -c
groups. Local nilpotency properties of substable groups are well under-

Žw x w x.stood 6, 7, 8, 4 , see also 9 :

Ž .1 Uniformly locally nilpotent substable groups are nilpotent.
Ž .2 Locally nilpotent substable groups are hypercentral.
Ž .3 The bounded left Engel elements of a substable group form the

Fitting subgroup.
Ž .4 The unbounded left Engel elements of a substable group form

the Hirsch-Plotkin radical.

The question was asked to what extent substability can be replaced by M c
in the above results. Derakhshan could show that the Fitting subgroup of

Ž .any M -group is nilpotent; this quickly led to a generalization of 1 to thec
w x w xM case 4 . Recently, Bludov in a short, elegant paper 1 dealt with thec

Ž .M -analogue of 2 ; he also found an independent proof of Derakhshan’sc
Ž .result. In this paper we shall generalize 3 .

1. NOTATION AND PRELIMINARIES

w xOur commutators are left-normed, defined inductively via g, h s
y1 y1 w x ww x xg h gh and g , g , . . . , g s g , g , . . . , g , g ; repeated com-0 1 nq1 0 1 n nq1

w x w x ww x xmutators are given by g, h s g and g, h s g, h , h . The descend-0 nq1 n
Ž . Ž . w Ž .xing central series is defined by g G s G and g G s G, g G ; the1 nq1 n

Ž . � 4 Ž . �ascending central series is given by Z G s 1 and Z G s g g G:0 nq1
w x Ž .4g, G F Z G ; this can be continued into the transfinite by takingn

Ž . Ž .unions at the limit stages. We also write Z G for Z G . The derï ed series1
Ž0. Žnq1. w Žn. Žn.xof G is given by G s G and G s G , G . The series of iterated

0 Ž . � 4centralizers of some subset X of G is defined inductively via C X s 1G
nq1Ž . � Ž i Ž .. w x n Ž .4and C X s g g F N C X : g, X : C X .G iF n G G G

If G acts on an abelian group A, we can define analogously for any
0Ž . � 4subset X of G the iterated centralizers of X in A via C X s 1 andA

nq1Ž . � g nŽ . 4C X s a g A: a g aC X for all g g X . These are obviouslyA A
subgroups of A.

w xWe shall need the following facts, which can be found in 9 :

w x Ž Ž .. Ž Ž ..Fact 1.1 2 . Suppose K F H F G, and C g K s C g H when-G i G i
j Ž . j Ž .ever 0 - i F j. Then C K s C H .G G

Ž .Fact 1.2 T. Yen . A locally nilpotent M -group is soluble.c
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Ž .DEFINITION 1.1. A group G is hypercentral if G s Z G for somea

ordinal a . It satisfies the normalizer condition if no proper subgroup of G
is self-normalizing.

FACT 1.3. A nilpotent-by-finite and locally nilpotent group is hyper-
central and hence satisfies the normalizer condition.

Proof. If G is finite, it is nilpotent and we are done. Otherwise, let N
be a normal nilpotent subgroup of G of finite index, g , . . . , g a system of0 n

Ž . ² g irepresentatives of GrN, and x g Z N a non-trivial element. Then x :
: Ž .i F n is a normal subgroup of G contained in Z N , and must contain a

² :non-trivial central element z of the nilpotent group x, g : i F n . Buti
Ž . Ž .then z g Z G and Z G is non-trivial. Since the assumptions of the fact

are preserved under quotients, G is hypercentral. But now, if H is a
Ž .proper subgroup of G and a is minimal such that Z G g H, thena

Ž . Ž . Ž .Z G F N H , whence N H ) H.a G G

w xFact 1.4 2 . Let G be a locally nilpotent periodic M -group. Then G isc
Ž .nilpotent-by-finite; if GrZ G has finite exponent for some i - v, then Gi

is nilpotent. The maximal normal nilpotent subgroup of G is the central-
izer of the d!-th powers of the elements of G, for all d sufficiently large; it
also is the maximal nilpotent subgroup of finite index. Furthermore, G is
hypercentral, and in particular satisfies the normalizer condition.

LEMMA 1.5. Let G be a group, X a G-in¨ariant subset, and H a sub-
group of G satisfying the normalizer condition. Suppose K is a subgroup of

² :G such that H l X ­ K, and put I s K l H l X . Then there is h g
Ž .N I y I.H l X

Proof. If the whole of H l X normalizes I, we are done since I F K.
Ž . Ž Ž .. Ž .Otherwise N I is a proper subgroup of H, so N N I ) N I andH H H H

Ž .there is g g H which normalizes N I , but not I. Since X is G-invariant,H
Ž . ² :g must normalize N I . On the other hand, I s I l X , so gH l X

Ž . Ž .cannot normalize I l X. Therefore N I > I l X ; as I l H l XH l X
s I l X, the assertion follows.

DEFINITION 1.2. Let G be a group. Two elements x and y in G satisfy
w xthe nth Engel identity if x, y s 1.n

w xAn element g g G is right Engel if g, x s 1 for all x in G, where nn
may depend on x. If n can be chosen independently of x, then g is called
right n-Engel, or bounded right Engel.

w xAn element g g G is left Engel if x, g s 1 for all x in G, wheren
again n may depend on x. If n can be chosen independently of x, then g
is called left n-Engel, or bounded left Engel.

An element is Engel if it is left or right Engel. It is bounded Engel if it
is bounded left or bounded right Engel.
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Remark 1.1. Note that if gy1 is right n-Engel and x is in G, then
w x w yx x w yx x g w y1 xy1 x x gx, g s g g, g s g , g s g , g s 1, and so g is leftnq1 n n n
Ž .n q 1 -Engel.

For a subset X of G we say that any two elements in X satisfy some
w xEngel identity if for any x, y g X there is n - v such that x, y s 1 orn

w xy, x s 1.n

w xFact 1.6 1.6 5, 4 . The bounded left Engel elements in a soluble
M -group form the Fitting subgroup. The Fitting subgroup of an M -groupc c
is nilpotent.

LEMMA 1.7. Let G be a soluble group, p a prime, and X a G-in¨ariant
subset of G of p-elements such that any two elements of X satisfy some Engel
identity. Then X generates a locally finite p-group.

Proof. Consider a counter-example G of minimal derived length, and
² :x , . . . , x g X such that F s x , . . . , x is not a finite p-group. Let A1 n 1 n

be the last non-trivial subgroup in the derived series of F. By minimality of
the derived length, FrA must be a finite p-group. But F is finitely
generated, and so is any subgroup of finite index, in particular A. On the
other hand, A is abelian and there is a finite k such that ArAk is not a

Ž k .p-group where A denotes the subgroup of kth powers of elements in A .
Hence FrAk is not a p-group, and we may assume that G is finite.

Since X does not generate a p-group, there are two distinct subgroups S
and T of G which are maximal subject to being p-subgroups generated by
elements in X. Choose S and T such that S l T l X is of maximal

² :cardinality, and let I s S l T l X . By Lemma 1.5 there are x g
Ž . Ž .N I y I and y g N I y I; by assumption there is some n suchS l X T l X

w x w x w xthat x, y s 1 or y, x s 1, and by symmetry we may assume x, y s 1.n n n
w x w xChoose m - n maximal such that x, y f T ; putting u s x, y , notem m

Ž . w x u uthat u g N I . Then u, y g T , whence y g T. Hence T l T containsG
I and y u; as y u g X y I, maximality of S l T l X implies T s T u. But
either u s x g X, or yuy1 is a conjugate of y and hence in X. Since
² : ² y1:T , u s T , yu , in either case this group is an extension of T by a
p-element in X normalizing T , and thus a p-group generated by elements
in X. As u f T , this contradicts maximality of T.

LEMMA 1.8. Let G be a group and S a nilpotent subgroup of class c. If
Ž i Ž ..H F F N C S and N is the group generated by all H-conjugates of S,iF c G G

i Ž . i Ž .then N is nilpotent of class c, and C N s C S for all i F c.G G

Ž .Proof. Let I s x , x , . . . be a sequence of elements in the union of0 1
w xthe H-conjugates of S, and put y s x and y s y , x for all i G 0.0 0 iq1 i iq1

i Ž h. i Ž .h i Ž .Note that C S s C S s C S for all i F c and all h g H. SinceG G G
c Ž . c Ž . cy iŽ .S F C S , it follows that y g C S . Furthermore, if y g C S andG 0 G i G

h cyiŽ h.x g S for some h g H, then y g C S and hence y giq1 i G iq1
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cy iy1Ž h. cy iy1Ž .C S s C S , for any i F c y 1. Therefore y s 1. Now everyG G c
commutator of length c q 1 in N is a product of commutators of the
above form of length at least c q 1. Thus N is nilpotent of class c.

For the second assertion, we use induction on i. For i s 0 the assertion
j Ž . j Ž .is trivial, so suppose inductively that C N s C S for all j - i. Then byG G

Ž j Ž .. Ž j Ž h..inductive hypothesis F N C N s F N C S for all h g H,j- i G G j- i G G
Ž j Ž .. w x iy1Ž .and for any g g F N C N we have g, N F C N if and onlyj- i G G G

w h x iy1Ž .if g, S F C N for all h g H, since N is generated by the H-con-G
iy1Ž .jugates of S and normalizes C N . But this holds if and only ifG

w h x iy1Ž h. i Ž h.g, S F C S for all h g H, which is equivalent to g g C S forG G
i Ž h. i Ž .all h g H. Since C S s C S for all h g H, this proves the assertion.G G

w xFact 1.9 4 . Let G be an abelian group acting on an abelian group A.
Suppose that there are finitely many elements g , . . . , g in G such that0 k

Ž . Ž .C G s C g , . . . , g . Let a be an element in A, and suppose that forA A 0 k
Ž .m iall i s 0, . . . , k there is some non-zero m - v with g y 1 a s 0. Theni i

mŽ . k Ž .a g C G , with m s 1 q Ý m y 1 .A is0 i

2. BINARY NILPOTENCY CONDITIONS

THEOREM 2.1. Let G be an M -group and X a G-in¨ariant subset of Gc
such that

1. e¨ery soluble subgroup S of G generated by elements in X is locally
nilpotent and nilpotent-by-finite, and

Ž .2. a any two elements in X satisfy some Engel identity, or
Ž .b X is closed under taking powers, and any two elements in X

generate a 2-group.

Then X generates a locally nilpotent subgroup of G.

Proof. Suppose the assertion is false, and that the group G with the
G-invariant subset X is a counter-example. Fix a locally nilpotent sub-
group S of G which is maximal subject to being generated by elements in
X. By Fact 1.2 and the first assumption, S is nilpotent-by-finite and is a
maximal soluble subgroup of G subject to being generated by elements in

Ž .X. In particular N S s S l X.X
² :Since X is not locally nilpotent, there is another locally nilpotent

subgroup T of G which is maximal subject to being generated by elements
of X. Note that if every pair of elements of X generates a 2-group, then
local nilpotency implies that both S and T are 2-groups. Let II be the set

² :of all subgroups I of S of the form I s S l T l X , where T ranges
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through all locally nilpotent subgroups of G distinct from S which are
maximal subject to being generated by elements in X. We have just seen
that II is non-empty. Note that any I in II is generated by I l X.

Ž .Claim. Let I : i - a be an ascending sequence of groups in II, andi
put I s D I . Then there is J in II with I F J.i- a i

Proof of Claim. I is a subgroup of S and thus nilpotent-by-finite. Let
K be a nilpotent subgroup of minimal finite index in I, say of nilpotency
class c. Now I satisfies the normalizer condition by Fact 1.3. So if K is

Ž .not normal in I, then there is g g I normalizing N K but not K.I
Hence KK g is a nilpotent group with K - KK g F I, contradicting the

< <minimality of the index I : K . It follows that K is normal in I and unique.
Put K s K l I for all i - a , so K is nilpotent of class at most c.i i i

Suppose the set of i - a such that there is a nilpotent subgroup KU ofi
class at most 2c q 1, with K - KU F I , is cofinal in a . As K has finitei i i
index in I, there are only finitely many possibilities for KKU ; replacing thei

Ž . Usequence i: i - a by a cofinal subsequence, we may assume that KK isi
constant for all i - a . But then for i F j - a we have

KU F KKU l I s K l I KU s K KU s KU .Ž . Ž .i j j j j j j j

Let K* s D KU. Then K* is nilpotent of class at most 2c q 1 andi- a i
K - KU , contradicting the maximality of K. Hence there is i - a such0
that for all i G i no proper extension of K in I can be nilpotent of class0 i i
at most 2c q 1. But if H is an automorphic conjugate of K in I , theni i
both K and H are normal nilpotent of class at most c in I , so NK isi i i
nilpotent of class at most 2c q 1. It follows that K is characteristic in Ii i
for all i G i .0

Since K F K and I F I for i F j - a , after possibly increasing i wei j i j 0
Ž Ž ..may assume that first C g K is minimal possible for j s 1, 2, . . . , cG j i0

Ž Ž Ž .. Ž Ž .. .and hence C g K s C g K for all i G i , and second I s KIG j i C j i 0 i0 0
Ž .so I s KI for all i G i . Let T be a locally nilpotent subgroup of Gi 0
which is distinct from S and maximal subject to being generated by

² : Ž .elements in X, with I s S l T l X which exists, since I g II . Byi i0 0
Ž .Lemma 1.5 there is some y g N I y I , in particular y f S. PutT l X i i0 0

² :F s I , y ; then both I and its characteristic subgroup K are normal-i i i0 0 0j Ž .ized by F, and so is C K for all j F c. ButG i0

C g K s C g K s C g KŽ . Ž .Ž . D DG j G j i G j iž / ž /ž /
i-a i-a

s C g K s C g KŽ . Ž .Ž . Ž .F G j i G j i0
i-a
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j Ž . j Ž .for j s 1, 2, . . . , c, whence C K s C K for all j F c by Fact 1.1.G G i0
Ž j Ž ..Hence F F F N C K . By Lemma 1.8 the group N generated byjF c G G

Ž .all F-conjugates of K is nilpotent of class c and obviously contains K .
Now F F T , so F is soluble; since F normalizes N, it follows that NF is

² :soluble. Note that NF contains KI and y, so I, y is soluble. Further-i0
² :more I is generated by I l X, and y g X ; by assumption I, y is locally

nilpotent, and hence contained in a locally nilpotent group T which is1
maximal subject to being generated by elements in X. Now I F S l T ,1

² :and y g T y S implies S / T . Therefore J s S l T l X is the re-1 1 1
quired group in II containing I.

Claim. Let I g II. Then there is J ) I with J g II.

Proof of Claim. Let T be a locally nilpotent subgroup of G distinct
from S and maximal subject to being generated by elements in X, such

² : Ž .that I s S l T l X . By Lemma 1.5 there is some y g N I y I; inT l X
Ž . 2Case 2. b we may choose y with y g I. Similarly, there is some x g

Ž . Ž Ž . 2 .N I y I which in Case 2. b we choose such that x g I .S l X
Ž . ² : ² :In Case 2. b the group x, y IrI is dihedral, so x, y, I is soluble and

generated by elements in X, whence locally nilpotent by assumption. Let
T be a locally nilpotent group containing x, y, and I, maximal subject to1

² :being generated by elements in X, and put J [ S l T l X . Then1
y g T , so T / S and J g II; since x g J y I we have I - J as required.1 1

Ž . ² y : yIn Case 2. a consider I [ S l S l X . If S s S, we could extend0
² :S to S, y , contradicting the maximality of S. Hence I g II; since y0

normalizes I, we have I G I. If I ) I we are done, so assume I s I. By0 0 0
Ž .yLemma 1.5 there is some z g N I y I; by assumption there is someS l X

w x w xn such that z, x s 1 or x, z s 1. In the second case we may replacen n
S y by S yy1

, x by z yy1
, and z by x yy1

, thus reducing to the first case.
w x w xChoose m - n maximal such that z, x f S and put u s z, x ; notem m

w x u uthat u normalizes I. Then u, x g S, whence x g S l X. Hence S l S
u u ² :contains I and x . If S s S , then S, u is a soluble group properly

containing S. But either u s z g X, or xuy1 is a conjugate of x and hence
² :in X ; in either case S, u is generated by elements in X, contradicting

u ² u :maximality of S. Hence S / S, and we may take J s S l S l X .
uThen J g II and J G I; since x g J y I, we are done.

This shows that II is non-empty and chains in II have upper bounds in
II, but II does not have a maximal element, contradicting Zorn’s Lemma.

Note that under the assumptions of the Theorem, since a locally
nilpotent M -group is soluble by Fact 1.2, the group generated by X isc
also nilpotent-by-finite.
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COROLLARY 2.2. Let G be an M -group and X a G-in¨ariant subset ofc
p-elements in G, for some prime p. If e¨ery pair of elements of X satisfies

Ž .some Engel identity or generates a 2-group for p s 2 , then X generates a
locally nilpotent p-group.

Proof. If every pair of elements of X generates a 2-group, we can close
X under taking powers. Since a soluble 2-generated 2-group is finite and
thus nilpotent, in particular it satisfies some Engel identity. By Lemma 1.7
a soluble subgroup of G generated by a subset of X is locally nilpotent. By
Fact 1.4 it also is nilpotent-by-finite. We may now apply Theorem 2.1 to
see that X generates a locally nilpotent group, which must be a p-group
by local nilpotency.

COROLLARY 2.3. Let G be an M -group and X a G-in¨ariant subset ofc
p-elements in G, for some prime p. If e¨ery pair of elements of X generates a
finite p-group, then X generates a locally finite p-group.

Proof. This is obvious, as any two elements in a nilpotent group satisfy
some Engel identity.

COROLLARY 2.4. An M -2-group is locally finite. A periodic M -group Gc c
is locally nilpotent if and only if e¨ery pair of elements generates a nilpotent
subgroup.

Proof. The first assertion follows immediately from Corollary 2.2. For
the second assertion, suppose every pair of elements generates a nilpotent
subgroup. For each prime p let X be the set of all p-elements of G.p
Since a nilpotent group generated by two p-elements must be a finite
p-group, X is a normal locally finite p-group by Corollary 2.3; this holdsp

Žfor all primes p. But any two elements of coprime order must commute as
.they generate a nilpotent subgroup , so G is the direct product of all the

X and locally nilpotent. The converse is trivial.p

Remark 2.1. In particular, a periodic binary nilpotent group is nilpo-
tent-by-finite by Fact 1.4.

Remark 2.2. Let X be a G-invariant periodic subset of an M -groupc
Ž .G which generates a locally nilpotent subgroup. For s - v put X s s

� s 4x g X : x s 1 . Suppose q is a power of some prime p such that the
exponent, or the nilpotency class, of every group generated by two ele-

Ž . nments in X q is bounded, say by p for some n - v. Note that if a group
H is nilpotent of class c and generated by elements in X , it is easy to seeq

Ž . Ž .that g H rg H has a set of generators of order dividing q for alli iq1
i G 1, so the exponent of H is bounded by qc. Hence the case of bounded
nilpotency class reduces to the case of bounded exponent.
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Ž . ² Ž .:Let N be the maximal normal nilpotent subgroup of X q of finite
y1 y w x Ž .index, as given by Fact 1.4. Then x x s x, y g N for every x g X q

and y g N, and this is an element of order at most pn. Let N be the0
subgroup of N generated by all elements of order at most pn. Then N is0

² Ž .: Ž . Ž .normal in X q , and g N rg N has a generating set of elementsi 0 iq1 0
of order at most pn for all i G 1; it follows that N has finite exponent.0

² :Put N s N , x ; clearly N has finite exponent and must be nilpotent byx 0 x
Fact 1.4. As it is normalized by N, the group NN is nilpotent and equalsx

Ž .N by maximality of N. Thus x g N, and X q generates a normal
nilpotent subgroup. In particular, if this happens for all prime powers q,
then X generates a subgroup of the Fitting subgroup of G, which is
nilpotent by Fact 1.6.

We shall now consider non-periodic groups.

COROLLARY 2.5. Let G be an M -group. Then the bounded left Engelc
elements form the Fitting subgroup of G.

Proof. If we denote the set of bounded left Engel elements by E, then
E is G-invariant, and any two elements of E satisfy some Engel condition.
By Fact 1.6 a soluble subgroup generated by a subset of E is nilpotent;
Theorem 2.1 implies that E generates a locally nilpotent group. But now E
generates a soluble subgroup by Fact 1.2, which must nilpotent by Fact 1.6
again. It follows that every bounded left Engel element is in the Fitting
subgroup.

Conversely, since the Fitting subgroup is nilpotent by Fact 1.6, say of
Ž .class c, every element in the Fitting subgroup is left c q 1 -Engel.

As a particular case, we obtain:

COROLLARY 2.6. An M -group generated by bounded left Engel elementsc
is nilpotent.

3. CONJUGACY OF THE SYLOW SUBGROUPS

THEOREM 3.1. Let G be an M -group, and p a prime. If G is periodicc
and p s 2, or if e¨ery pair of p-elements of G generates a finite subgroup, then
the Sylow-p-groups of G are conjugate.

Proof. Note first that under the assumptions of the theorem, the
Ž .maximal p-subgroups of G i.e., the Sylow-p-subgroups are locally finite

by Corollary 2.4. Assume for a contradiction that G is a counter-example
to the assertion.
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Claim. We may assume that G is countable.

Ž .Proof of Claim. Consider the structure G, 1, ? , SS , TT , where SS and TT

are unary predicates for two non-conjugate Sylow-p-subgroups S and T ,
respectively. By the downward Lowenheim-Skolem Theorem, G has a¨
countable elementary substructure H. Now SS H is a subgroup of SS G,
which is equal to S, and hence a p-group. Furthermore every g g G
normalizing SS G and with g p g SS G lies in SS G itself, since S is a
Sylow-p-subgroup. But this is a first-order property and hence also true in
H. By Fact 1.3 any p-Sylow subgroup of H containing SS H satisfies the
normalizer condition, so SS H, and similarly TT H, are Sylow-p-subgroups of
H. Now non-conjugacy of SS and TT is a first-order statement which is true
in G, so it must also be true in H. Hence H is a countable M -group withc

H Htwo non-conjugate Sylow-p-subgroups SS and TT .

By the chain condition on centralizers, we may assume that the Sylow-
p-subgroups of every proper centralizer in G are conjugate.

Claim. There exist finite p-subgroups A and B of G such that no0 0
Ž .G-conjugate of B generates together with A a necessarily finite0 0

p-group.

w xProof of Claim. This is similar to the proof of Theorem B in 2 , but
we have to be a bit more careful. Let S and T be two non-conjugate
Sylow-p-subgroups of G. By countability, S and T are the union of

Ž . Ž .ascending chains S : i - v and T : i - v of finite subgroups. Supposei i
any two finite p-subgroups of G have conjugates which generate a p-group.

Ž .Then there is an ascending chain U : i - v of finite p-groups, such thati
for every i there is g g G and h g G with S g i F U and T hi F U : starti i i i i i

² h0:with g s 1 and h g G such that S , T is a finite p-group U ; if U0 0 0 0 0 iy1
² g i:has been found, the assumption first yields g g G such that U , S isi iy1 i

² hi:a finite p-group, say F , and then h g G such that F , T is a finite0 i 0 i
p-group, which we choose for U . Extend D U to a maximal p-group U.i i- v i
Then either S and U or U and T are not conjugate. By symmetry we may
assume that S and U are not conjugate.

Ž d .By Fact 1.4, for some d - v the centralizer C u : u g U is theU
unique maximal nilpotent subgroup N of finite index in U, say of index
< <U : N s n. Now every S has only finitely many normal subgroups of indexi

at most n, and S l N gy1
j is such a subgroup for all j G i. So there is somei

g gj jnormal subgroup S of index at most n in S such that S s S l N for0 0 0 0
infinitely many j - v. Then for every i - v there is some j - v with

g g gj j jj G i and S s S l N; as S F U, we may replace g by g . Repeating0 0 i i j
Ž .this process but replacing only g for j G i at the ith stage , we mayj

Ž .assume that there is a sequence S : i - v such that S is a normali i
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g gj jsubgroup of S of index at most n and S s S l N for all i, j withi i i
i F j - v. Thus, S s S l S for all i, j with i F j - v, the sequencei i j
Ž .S : i - v is ascending, and D S is a normal subgroup S of S ofi i- v i
index at most n.

Ž d . ŽDefine C s C u : u g U , and consider C and its conjugates whichG
.are again centralizers . If C s G, then U is nilpotent and the proof of

w xLemma 3.3 of 2 applies, which yields that U and S are conjugate,
contradicting our assumptions. Hence N F C - G. By the chain condition

Ž gy1
j .on centralizers the ascending sequence F C : i - v has a maximaljG iy1g jelement C, say C s F C . SincejG s

y1 y1g gj jC G C G N G SF F i
jGi jGi

y1g sfor all i - v, we see that C G C G S; replacing U by a conjugate, we
Ž .may assume C G S. Extend U l C which is N and S to Sylow-p-sub-

˜ ˜groups U and S of C; since C - G, our assumptions imply that there is
˜g ˜g g C with S s U.

We shall show inductively that if X and Y are two Sylow-p-subgroups
< <of G with Y : X l Y s k - v, then X and Y are conjugate in G with

< < < <X : X l Y s Y : X l Y . This is clear for k s 1. By Fact 1.4, for k ) 1
Ž . Ž .there are x g N X l Y y Y and y g N X l Y y X of order p mod-X Y

ulo X l Y. By assumption they generate a finite group modulo X l Y, so
Ž . hthere is some h g N X l Y such that x , y and X l Y are contained inG

< <a Sylow-p-subgroup Z of G. But Y : Z l Y - k, so Z and Y are conju-
< < < <gate by inductive hypothesis, with Z : Z l Y s Y : Z l Y . This implies

< < < < < h <that Z : X l Y s Y : X l Y s k, whence Z : Z l X - k. Again by
h < h h <inductive hypothesis, Z and X are conjugate with X : X l Z s

< h < < h < < < <Z : X l Z . Therefore X : X l Y s Z : X l Y , and finally X : X l
< < h < < < < <Y s X : X l Y s Z : X l Y s Y : X l Y . This finishes the induc-

tion.
ˆ ˜ ˜Now let S be a Sylow-p-subgroup of G extending S. Since S G S, the

ˆ ˆlast paragraph applied to X s S and Y s S implies that S and S are
ˆg ˜g ˜ < <conjugate. Since S G S s U G N and U : N is finite, the last paragraph

ˆg ˆapplies again with X s S and Y s U. This proves conjugacy of U and S,
whence of U and S, a contradiction. The claim is shown.

Ž .Let II be the set of all triples A, B, C , where A and B are finite
² g:p-subgroups of G such that A, B is not a p-group for any g g G, and

Ž .C s A l B. Then A , B , A l B g II, so II is non-empty.0 0 0 0

Ž . Ž .Claim. If A, B, C g II, then there is some A*, B*, C* g II such
² : Ž . pthat C F C* F B, B* s C*, b F B for some b g N C* with b g C*,B

² h :and A , B* is not a p-group for any h g G.
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² g :Proof of Claim. B is nilpotent and A , B is not a p-group for any
g g G. Therefore there is some maximal i such that for some g g G the

² g Ž . : Ž .group A , Z B C is a p-group, and a maximal C* with Z B C F C*i i
Ž . ² g 9 :- Z B C, such that for some g 9 g G the group A , C* is a p-groupiq1

Ž . p ² :A*. Take b g Z B y C* with b g C*, and put B* s b, C* . Sinceiq1
Ž . Ž . ² h : ² g 9h :Z B F C* F B we get b g N C* . Now A* , B* G A , B* fori B

² h :any h g G; since A , B* is not a p-group for any h g G by maximality
² h :of C*, neither is A* , B* . Furthermore, C* F A* l B* - B*; as

< < Ž .B* : C* s p we get C* s A* l B*, and A*, B*, C* g II.

Ž .Claim. There is a sequence A , B , C : i - v : II such thati i i

1. C F C for all i - v,i iq1

Ž . p2. for all odd i - v there is a g N C with a g C and A si G i i i i
² :C , a , andi i

Ž . p3. for all even i ) 0 there is b g N C with b g C and B si G i i i i
² : ² g :C , b , and A , B is not a p-group for any g g G.i i iy1 i

Ž . Ž .Proof of Claim. Start with any A , B , C g II. If A , B , C has been0 0 0 i i i
Ž .found for odd i, the above claim yields A , B , C g II; the eveniq1 iq1 iq1

case is symmetric.

Ž dLet C s D C . By Fact 1.4 there is some d - v such that C g :i- v i C
. Ž .g g C is the maximal necessarily normal nilpotent subgroup of finite

Ž . � dindex in C, say of class c. For any subgroup H of G, put D H s g :
4 Ž . Ž Ž .. Ž .g g H , and E H s C D H . In particular, E C has finite index in CH

and is nilpotent of class c.

Claim. There is a p-group N containing C and i - v, such that0 1
Ž . Ž .A F N N for all odd i G i , and B F N N for all even i G i .i G 0 1 i G 0 1

Proof of Claim. By the chain condition on centralizers, there is some
Ž Ž .. Ž .i - v such that C D C is minimal possible. Note that then E C s0 G i i0

Ž . Ž . Ž . Ž .E C l C F E C whenever i F i F j, whence E C s D E C .j i j 0 iG i i0
Ž Ž Ž ...Furthermore, there is some i ) i such that first C g E C is mini-1 0 G j i1

Ž Ž Ž Ž ... Ž Ž Ž ...mal possible for j s 1, 2, . . . , c and hence C g E C s C g E CG j i G j i1
. Ž . Žfor all j s 1, 2, . . . , c and i G i , and second C s E C C whence C s1 i1

Ž . . Ž Ž .. Ž Ž ..E C C for all i G i . As g E C s D g E C , this implies thati 1 j iG i j i1
Ž Ž Ž ... Ž Ž Ž ...C g E C s C g E C for j s 1, 2, . . . , c and all i G i , whenceG j G j i 1

j Ž Ž .. j Ž Ž ..C E C s C E C for all i G i and all j F c by Fact 1.1.G G i 1
Ž j Ž Ž ...Put F s F N C E C . For every odd i G i we have A F F,jF c G G 1 i

Ž .since A normalizes C and therefore E C ; similarly B F F for all eveni i i i
i G i .1

Ž .By Lemma 1.8 the group N generated by all F-conjugates of E C is
Ž .nilpotent of class c. Since E C is a p-group, so is N; clearly N is
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normalized by F. Furthermore, C F A l B F F, so C normalizes N fori i i i
all i G i . Put N s NC; this is a p-group since C is a p-group normalizing1 0

Ž .N. Now C s E C C implies N s NC for all i G i . As A normalizes Ci 0 i 1 i i
Ž .and N for odd i G i , it normalizes N ; similarly B normalizes C and1 0 i i
N, and hence N , for all even i G i .0 1

² :Consider some odd i G i . Then A s C , a , and a normalizes N ;1 i i i i 0
² :on the other hand, B s C , b and b normalizes N . Byiq1 iq1 iq1 iq1 0

Ž .assumption, a N and b N generate a finite subgroup of N N rNi 0 iq1 0 G 0 0
Ž .for p s 2 this is a dihedral group ; by Sylow’s Theorem there is g g

Ž . ² g : gN N such that a , b is a p-group P normalizing N . Therefore AG 0 i iq1 0 i
and B generate a p-group contained in N P, contradicting the defini-iq1 0
tion of B .iq1
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