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the number of lifts of ¢ is at most |Q : Q'|. As a corollary, we
prove that if ¢ € IBr(G) has an abelian vertex subgroup Q, then
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1. Introduction

Let G be a p-solvable group, and let ¢ € IBr(G). The celebrated Fong-Swan theorem asserts that
there exists x € Irr(G) such that the restriction x° of x to the p-regular elements of G is ¢. We say
that x is a lift of . We write L(¢) for the set of all lifts of ¢. In [1], the first author proposed that
IL(¢)| should be less than or equal to |Q /Q'| where Q is a vertex for ¢. This global/local connection,
if true, does not seem easy to prove. In [1], the first author proved that this conjecture was true for
groups of odd order using some heavy machinery. In this note, we prove it in another case: when the
vertex is normal in G. In view of the so called Green correspondence, this seems to be a natural key
step in the right direction.
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Theorem A. Let G be a p-solvable group and let ¢ € IBr(G). Suppose ¢ has a normal vertex Q. If either p is
odd or Q is abelian, then |L(p)| <|Q : Q’|.

As a consequence, we can prove Cossey’s conjecture whenever Q is abelian.
Corollary B. Let G be a p-solvable group and let ¢ € IBr(G). If the vertex Q for ¢ is abelian, then |L(¢)| < |Q |.
2. Proofs

Let G be a finite group. Recall that the defect zero characters of G are

dz(G) = {x €lrr(G) | x(1)p =1Glp}.

If ¢ = x elrr(G), then it is easy to prove that y has defect zero if and only if x has defect zero.
Given a normal subgroup of G, we can also consider the relative defect zero characters. If N < G
and 6 €Irr(N), then

rdz(G |0) = {x € Irr(G | 0) | (X(1)/9(1))p =|G:NJp}.

The following is Theorem (2.1) of [8], and gives a connection between defect zero characters and
relative defect zero characters when N is a p-group.

Theorem 2.1. If N is a normal p-subgroup of G and 6 € Irr(N) is G-invariant, then there exists a natural
bijection x — xo from dz(G/N) — rdz(G | 0). If 0 is linear, then x»(g) = x (g) for every p-regular g € G.

Proof. With the notation of [8], if 6 is linear, then d(g) =1 for every p-regular element g € G. Now
apply the formula in Theorem (2.1.a) of [8]. O

We also need to consider m-special characters where 7 is a set of primes. Let G be a w-separable
group. A character x € Irr(G) is m-special if x (1) is a w-number and for every subnormal group
M of G, the irreducible constituents of xy have determinants that have 7w -order. Many of the basic
results of mr-special characters can be found in Section 40 of [2] and Chapter VI of [6]. One result
that is proved is that if « is 7 -special and B is 7r’-special, then o8 is necessarily irreducible. We are
particularly interested in the case where 7 = {p}. We say that x is factored if y = o8 where « is
p’-special and B is p-special.

The following is Lemma 2.1 of [9], which shows that irreducibility does not occur when we restrict
a p-special character to the p-regular elements when p is odd. Note that GL(2, 3) has a 2-special char-
acter of degree 2 whose restriction to the 2-regular elements yields an irreducible 2-Brauer character.
Hence, this lemma is not true without the assumption that p is odd.

Lemma 2.2. Let p be an odd prime and let G be a p-solvable group. Let x € Irr(G) be p-special. If x (1) > 1,
then x° is not in IBr(G).

The next lemma is an easy observation.

Lemma 2.3. If x € Irr(G) and U C G, then the number of irreducible characters v € Irr(U) inducing x is less
than or equal to |G : U|.

Proof. Suppose that v; € Irr(U) are different characters inducing x. In particular, v;(1) = x(1)/|G : U].
Now, xy =v1+--- 4+ vs + A where A is either a character of U or the zero function, and
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x(1) =s(x (/G :UJ),
which proves the lemma. O

We will need to know that a character y € Irr(G) is induced from a character with certain proper-
ties.

Lemma 2.4. Let G be a p-solvable group. If x € Irr(G), then there exists a pair (W, y) so that W € G and
y e Irr(W) satisfies y ¢ = x, y is factored, and W contains 0, (G).

Proof. Consider a chief series extending from 0,(G) up to G. If the restriction of x is homogeneous
for every term of this series, then x will be factored (see Theorem 21.7 of [6]), and we take (W, y) =
(G, x). Thus, we may assume that yy is not homogeneous for some N in this series. Let 6 be an
irreducible constituent of yy. Take T to be the stabilizer of 6 in G. Let t € Irr(T | #) be the Clifford
correspondent for x (see Theorem 6.11 of [3]). We know T < G. Thus, by induction, there exists
(W,y) so that yT =1, y is factored and 0,(T) < W. It follows that y¢ = (y")¢ =% = ¥, and
0,(G) <0,(T) < W. This proves the result. O

For a p-solvable group, a (Green) vertex for ¢ € IBr(G) can be characterized as a p-subgroup Q
with the property that there is a subgroup U of G with a Brauer character of p’ degree of U that
induces ¢ and Q is a Sylow p-subgroup of U (see [5]).

Lemma 2.5. Suppose that G is p-solvable. Let N = 0, (G). Suppose that ¢ € IBr(G) has vertex N. Then there
exists a unique character x € Irr(G/N) that is a lift of ¢.

Proof. Since ¢ € IBr(G) has vertex N, we have ¢(1), =|G/N|,. We may consider ¢ € IBr(G/N), and
let x € Irr(G/N) be a lift of ¢. Then x has defect zero in G/N. If ¢ € Irr(G/N) is another lift of ¢,
then it follows that i has also defect zero in G/N. Since x and ¢ coincide on p-regular elements of
G/N and are zero on the p-singular elements of G/N, we have that x = v, as claimed. O

We now prove the following theorem which includes Theorem A.

Theorem 2.6. Suppose that G is p-solvable. Let N = O, (G). Assume that p is odd or that N is abelian. Suppose
that ¢ € IBr(G) has vertex N, and write x for the unique lift of ¢ in Irr(G/N). Let A be a complete set
of representatives of the G-action on Irr(N/N’). For 1 € A, let BB, be the set of the irreducible defect zero
characters of Ty /N inducing x, where T; is the stabilizer of ) in G, and let C; = {(v;,)¢ | v € By}. Then L(p) =
U,ea G is a disjoint union. In addition, |C).| = |B,.| for each i € A. In particular, |L(@)| =), 4 1Bl <
2 oaealGiTol=[N/N'.

Proof. If v € B, then v® = x by hypothesis. Then
(09 = (°)7 = () = () =x" = .

Hence, C;, is contained in L(¢). Also, since vy, lies over 1, it follows that (v,)¢ € Irr(G | A). In particular,
Cy) NCy is empty if A # t. (This is Clifford’s theorem, Theorem 6.11 of [3].)

Now, if v, i € By, and (v,)C = ()€, then v, = w;, by the Clifford correspondence. Hence, v = 1
by Theorem 2.1, and we conclude that |C, | = |By].

Let ¥ € L(¢). We need to show that ¢ € C, for some A € A. We have that ¢¥(1) = ¢(1) and
therefore (1), = |G/N|p. Now, let 6 € Irr(N) be under . We claim that 6 is linear. This is clear if
N is abelian. So let us assume that p is odd.

To prove the claim, find (W, y) for 4 as in Lemma 2.4. Write y, for the p-special factor of 1.
Since ((y)%)° = ¢° is irreducible, it follows that y° is irreducible. Therefore, (yp)° € IBr(W). Hence,
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yp is linear by Lemma 2.2. Since W contains N, the claim follows. In particular, we have now that
Y erdz(G | 9).

Therefore, we may assume that 6 € A. Let 1 € Irr(Ty | 6) be the Clifford correspondent of v over 6.
Then n € rdz(Ty | 6). By Theorem 2.1, we have that n = vy for some v € dz(Ty/N). Now

o=v"=(")" = ()" = ()" = (v9)".

We conclude that v is a lift of ¢ in G/N and therefore v® = x. Thus, v € By, and the first part
follows.
By Lemma 2.3, we have that |B,| < |G : T,|, and then

IL@)| <D IG: Tul = |N/N
reA

)

as desired. O

Proof of Corollary B. Let M = 0,/ (G), and let T € Irr(M) be such that the Clifford correspondent p of
@ over T has vertex Q. (Clifford’s theorem for Brauer characters is Theorem 8.9 of [7].) We may view
T as both a Brauer character and an ordinary character of M. Using Clifford’s theorem of ordinary
characters, we see that |L(¢)| = |L(®)|. Thus, we can assume that 7 is G-invariant.

By Theorem 5.2 of [4], there is a character triple (G*, M*, t*) which is isomorphic to (G, M, T)
and where M* is a central, p’-subgroup. Take H to be a Hall p-complement of G. Let x* correspond
to x and H* correspond to H, and note that H* is a Hall p-complement of G*. By the Fong-Swan
theorem, x° is not irreducible if and only if there exist characters «, 8 such that x° = «a® + B°. This
occurs if and only if xy = oy + By. Using the character triple isomorphism, this is equivalent to
XM e = (@)= + (B)y+ and to (x*)° = (@*)° + (B*)°. We conclude that x? is irreducible if and
only if (x*)? is irreducible. Suppose v is a lift of ¢, then we define ¢* = (¥*)°. Notice that x € Irr(G)
is a lift of ¢ if and only if xy = ¢n. It follows that x is a lift of ¢ if and only if x* is a lift of ¢*,
and so, |L(p)| = [L(¢*)|. Thus, we may assume that M is central in G.

Let N =0,(G). By Lemma 2.4, we know that N € Q. Using the Hall-Higman 1.2.3 Lemma, we
determine that Cg(N) € MN. Since Q is abelian, it follows that Q € C¢(N). As N is the unique Sylow
p-subgroup of NM, it follows that Q = N. Then we apply Theorem 2.6. O

We conclude by noting that Corollary B could be analogously proved if ¢ is an Isaacs’ m-partial
character of G whose vertex is abelian where G is a w-separable group and 7 is a set of primes.
Theorem A can be analogously proved for a 7r-partial character ¢ whose vertex is normal and either
2 e i or the vertex is also abelian.
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