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1. Introduction

Symplectic alternating algebras have arisen in the study of 2-Engel groups (see [1,2]) but seem
also to be of interest in their own right, with many beautiful properties. Some general theory was
developed in [3].

Definition. Let F be a field. A symplectic alternating algebra over F is a triple L = (V , ( , ), ·) where V
is a symplectic vector space over F with respect to a non-degenerate alternating form ( , ) and · is a
bilinear and alternating binary operation on V such that

(u · v, w) = (v · w, u)

for all u, v, w ∈ V .
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Notice that (u · x, v) = (x · v, u) = −(v · x, u) = (u, v · x). The multiplication by x from the right is
therefore a self-adjoint linear operation with respect to the alternating form. We know that the di-
mension of a symplectic alternating algebra must be even and we will refer to a basis x1, y1, . . . , xr, yr

with the property that (xi, x j) = (yi, y j) = 0 and (xi, y j) = δi j as a standard basis. We will also
adopt the left-normed convention for multiple products. Thus x1x2 · · · xn stands for (· · · (x1x2) · · ·)xn .
If x1, x2, . . . , x2r is a basis for the symplectic vector space, then the alternating product is determined
from the values of all triples (xi x j, xk) = (x j xk, xi) = (xkxi, x j) for 1 � i < j < k � 2r.

Given a standard basis x1, y1, . . . , xr, yr for a symplectic alternating algebra L, we can describe L,
as follows. Consider the two isotropic subspaces F x1 + · · · + F xr and F y1 + · · · + F yr . It suffices
then to write only down the products of xi x j, yi y j , 1 � i < j � r. The reason for this is that having
determined these products we have determined (uv, w) for all triples u, v, w of basis vectors, since
two of those are either some xi, x j or some yi, y j in which case the triple is determined from xi x j or
yi y j . The only restraints on the products xi x j and yi y j come from (xi x j, xk) = (x j xk, xi) = (xkxi, x j)

and (yi y j, yk) = (y j yk, yi) = (yk yi, y j).
It is clear that the only symplectic alternating algebra of dimension 2 is the abelian one. Fur-

thermore, it is easily seen that up to isomorphism there are two symplectic alternating algebras of
dimension 4: one is abelian whereas the other one has the following multiplication table (see [3])

L:

x1x2 = 0,

y1 y2 = −y1,

x1 y1 = x2,

x1 y2 = −x1,

x2 y1 = 0,

x2 y2 = 0.

Of course, the presentation is determined by x1x2 = 0 and y1 y2 = −y1 as the other products are
consequences of these two. The symplectic alternating algebras of dimension 6 have been classified
in [3], when the field has three elements: there are 31 such algebras of which 15 are simple.

As we said before, some general theory was developed in [3]. In particular it was shown that a
symplectic alternating algebra is either semisimple or has an abelian ideal. In this paper we con-
tinue developing a structure theory for symplectic alternating algebras and we are motivated by the
following question that was posed in [3]:

Question. What can one say about the structure of symplectic alternating nil-algebras? In particular,
does a symplectic alternating nil-algebra have to be nilpotent?

If k is a positive integer, we say that a symplectic alternating algebra L is nil-k if xyk = 0 for all
x, y ∈ L. More generally, a symplectic alternating nil-algebra is a symplectic alternating nil-k algebra for
some positive integer k. Also, we define a ∈ L to be a right nil-k element if axk = 0 for all x ∈ L and to
be a right nil-element if it is right nil-k for some k. Similarly, a ∈ L is a left nil-k element when xak = 0
for all x ∈ L and a left nil-element if it is left nil-k for some k.

Furthermore, we say that a symplectic alternating algebra is nilpotent if x1x2 · · · xn = 0 for all
x1, x2, . . . , xn ∈ L and for some integer n � 1. As usual, the nilpotency class of L is the smallest c � 0
such that x1x2 · · · xc+1 = 0 for all x1, x2, . . . , xc+1 ∈ L.

In the following, we first discuss connections between nilpotency and solubility of a symplectic
alternating algebra. We will see in particular that every symplectic alternating algebra that is abelian-
by-nilpotent is nilpotent. We then move to nil-k elements and to symplectic alternating nil-k algebras.
We get a positive answer to the question above for k = 2 and, when the dimension is � 8, also for
k = 3. We finish with the classification of all nil-algebras of dimension up to 8.
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2. Nilpotency and solubility

For subspaces U , V of a symplectic alternating algebra L, we define U V in the usual way as the
subspace consisting of all linear spans of elements of the form uv where u ∈ U and v ∈ V . We define
the lower central series (Li)i�1 inductively by L1 = L and Li+1 = Li · L. Clearly

L1 � L2 � · · ·

which implies in particular that every Li is an ideal. We can also define the upper central series
(Z i(L))i�0 naturally by Z 0(L) = {0}, Z 1(L) = Z(L) = {a ∈ L: ax = 0 for all x ∈ L} and Z i+1(L) = {a ∈ L:
ax ∈ Z i(L) for all x ∈ L}. In [3, Lemma 2.2], the author proves that the lower and the upper central
series are related as follows:

Z i(L) = (
Li+1)⊥

.

It follows that Z i(L) is an ideal since, in a symplectic alternating algebra, I⊥ is an ideal whenever I is
an ideal (see [3, Lemma 2.1]); but this also follows directly from Z i+1(L) · L � Z i(L). Notice also that
the dim(Z i(L)) + dim(Li+1) = dim(L). We then have that L is nilpotent of class c � 0 if and only if c
is the smallest integer such that Z c(L) = L or, equivalently, Lc+1 = {0}. One more way to characterize
the nilpotency in terms of the lower central series is given by the following result.

Proposition 2.1. Let L be a symplectic alternating algebra. Then L is nilpotent if and only if there exists i � 1
such that Li is isotropic.

Proof. Let L be nilpotent and denote by c its nilpotency class. Then L = Z c(L) = (Lc+1)⊥ and hence
Lc+1 is isotropic. Conversely, let Li be isotropic for some i � 1. Then

(u1 · · · ui, v1 · · · vi) = 0

whenever u1, . . . , ui, v1, . . . , vi belong to L. It follows

(u1, v1 · · · viui · · · u2) = 0

and thus L is nilpotent of class at most 2i − 2 since the symplectic form is non-degenerate. �
As usual, the derived series (L(i))i�0 is defined inductively by L(0) = L, L(1) = L · L = L2 and L(i+1) =

L(i) · L(i) . Then

L(0) � L(1) � · · ·

and we say that a symplectic alternating algebra L is soluble if there exists an integer n � 0 such that
L(n) = {0}. The smallest n enjoying this property is then referred to as the derived length of L. Thus
L has derived length 0 if and only if it has order one. Also, the symplectic alternating algebras with
derived length at most 1 are just the abelian ones. A symplectic alternating algebra which is soluble
of derived length at most 2 is said to be metabelian.

Lemma 2.2. If L is a symplectic alternating algebra then L(i) ⊆ Li+1 . In particular, if L is nilpotent of class i
then L is soluble of derived length at most i.

Proof. We argue by induction on i. The claim is obviously true when i = 0 being L(0) = L = L1.
Assuming i > 0 and L(i) ⊆ Li+1, we get L(i+1) = L(i) · L(i) ⊆ Li+1 · L = Li+2, as required. �
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Next result is rather odd and shows that all metabelian symplectic alternating algebras are nilpo-
tent. It also shows that the inclusion in last lemma is not optimal.

Proposition 2.3. Let L be a symplectic alternating algebra. Then L is metabelian if and only if it is nilpotent of
class at most 3.

Proof. We have that L is metabelian if and only if xy(zw) = 0 for all x, y, z, w ∈ L, that is
(xy(zw), t) = 0 for all t ∈ L. This means 0 = (xy, zwt) = (x, zwty) and L is nilpotent of class at
most 3. �

Not all soluble symplectic alternating algebras are however nilpotent as the following example
shows.

Example 2.4. Consider

L: x1x2 = 0,

y1 y2 = −y1,

the only nonabelian symplectic alternating algebra of dimension 4 over a field F . We have

Z(L) = F x2 and L2 = Z(L)⊥ = F x1 + F x2 + F y1.

Here L(3) = L(2) · L(2) = F x2 · F x2 = {0} and L is soluble of derived length 3 but it is not nilpotent. In
fact y1 yn

2 = (−1)n y1 for any integer n � 1.

However, we have the following strong generalization of Proposition 2.3.

Proposition 2.5. Let L be a symplectic alternating algebra. If L is abelian-by-(nilpotent of class � c) then it is
nilpotent of class at most 2c + 1.

Proof. Let I be an abelian ideal of L such that L/I is nilpotent of class at most c. Then Lc+1 ⊆ I and

(
x1 · · · xc+1 · (y1 · · · yc+1), z

) = 0

for all x1, . . . , xc+1, y1, . . . , yc+1, z ∈ L. Thus

(x1, y1 · · · yc+1zxc+1 · · · x2) = 0

and L is nilpotent of class at most 2c + 1. �
This result fails if we assume that our algebra is nilpotent-by-abelian. The example above still

provides a counterexample, for L2 is nilpotent and L/L2 is abelian.

3. Nil-elements

Let L be a symplectic alternating algebra and x be a left nil-element of L. We say that an element
a ∈ L has nil-x degree m if m is the smallest positive integer such that axm = 0. Pick a ∈ L of maximal
nil-x degree k and let

V (a) = 〈
a,ax,ax2, . . . ,axk−1〉.
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We know that this is an isotropic subspace in L (see [3, Lemma 2.10]). Then there exists b ∈ L such
that

(a,b) = (ax,b) = · · · = (
axk−2,b

) = 0 and
(
axk−1,b

) = 1.

Since (a,bxk−1) = (axk−1,b) = 1, we have that the nil-x degree of b is k. Notice also that

(
axr,bxs) = (

axr+s,b
)

which is 1 if r + s = k − 1 but 0 otherwise. So that the subspace

V (a) + V (b) = V (a) ⊕ V (b) = 〈
a,bxk−1〉 ⊕ 〈

ax,bxk−2〉 ⊕ · · · ⊕ 〈
axk−1,b

〉
is a perpendicular direct sum of hyperbolic subspaces.

Let W = W (a,b) = V (a)+ V (b). The multiplication by x from the right gives us a linear map on L.
Then W is invariant under the right multiplication by x and the same is then true for the orthogonal
complement W ⊥: in fact, for all y ∈ W ⊥ and z ∈ W we have (yx, z) = −(y, zx) = 0 as zx ∈ W . Now,
we can take c ∈ W ⊥ of maximal nil-x degree, say m. Then, as before, we get d ∈ L of nil-x degree m
and W (c,d) = V (c) + V (d) is a perpendicular direct sum. Thus we inductively see that L splits up
into a perpendicular direct sum

L = W (a1,b1) ⊕ · · · ⊕ W (an,bn). (1)

We will refer to such a decomposition as a primary decomposition of L with respect to multiplication
by x from the right. We will also use the notation

⎛
⎜⎜⎝

a bxk−1

ax bxk−2
...

...

axk−1 b

⎞
⎟⎟⎠

for the subspace W (a,b).

Proposition 3.1. Let L be a symplectic alternating algebra. If x ∈ L is a left nil-element, then CL(x) is even
dimensional.

Proof. Consider a decomposition as above with respect to right multiplication by x. We have seen
that the cyclic subspaces come in pairs, say that

L = V (a1) ⊕ V (b1) ⊕ · · · ⊕ V (an) ⊕ V (bn).

The kernel of each of these is one-dimensional, hence CL(x) has dimension 2n. �
For the remainder of this section we focus on right nil-2 elements. In general, a left nil-2 element

needs not to be a right nil-2 element. In Example 2.4, y1 is a left nil-2 element that is not a right
nil-element. However, the converse is always true.

Lemma 3.2. Let L be a symplectic alternating algebra. If a is a right nil-2 element of L, then:

(i) ayz = −azy for all y, z ∈ L;
(ii) a is left nil-2;
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(iii) CL(a) is an ideal;
(iv) La and Fa + La are abelian ideals and the latter is the smallest ideal containing a.

Proof. (i) We have

0 = a(y + z)(y + z) = (ay + az)(y + z) = ayz + azy

and ayz = −azy.
(ii) For all x ∈ L, we have 0 = −a(a + x)2 = xa(a + x) = xa2.
(iii) Let x, y ∈ L and b ∈ CL(a). Then 0 = a(x + b)2 = ax(x + b) = axb which implies 0 = (axb, y) =

(a(by), x). Thus a(by) = 0 and by ∈ CL(a).
(iv) That La is an ideal follows immediately from uax = −uxa and of course it follows then that

Fa + La is an ideal, the smallest ideal containing a. As a is left nil-2 and since ax(ya) = −a(ya)x = 0,
it is clear that both the ideals are abelian. �
Theorem 3.3. Let X be a set of right nil-2 elements in a symplectic alternating algebra L and denote by I(X)

the smallest ideal of L containing X. Then

I(X) =
∑
a∈X

Fa + La.

Furthermore, if |X | = c then I(X) is nilpotent of class at most c.

Proof. Let a ∈ X . By Lemma 3.2(iv) we know that I(a) = Fa + La is the smallest ideal containing a
and that I(a) is abelian. It follows that I(X) = ∑

a∈X I(a). Since each of these ideals is abelian it is
clear that I(X)c+1 = {0}, here c = |X |. �

It follows in particular that the ideal generated by all the right nil-2 elements is always a nilpotent
ideal.

4. Nil-2 algebras

The results concerning right nil-2 elements lead to the following characterization of symplectic
alternating nil-2 algebras.

Theorem 4.1. Let L be a symplectic alternating algebra. Then the following are equivalent:

(i) L is nil-2;
(ii) CL(x) is an ideal for any x ∈ L;

(iii) I(x) is abelian for any x ∈ L;
(iv) the identity xyz = −xzy holds in L;
(v) the identity x(yz) = xzy holds in L.

Proof. First we show that (i) ⇔ (ii) ⇔ (iii). From Lemma 3.2, we know that (i) implies (ii) and (iii).
To see that (iii) implies (i), take any a, x ∈ L. As I(x) is abelian and ax, x ∈ I(x), it follows that ax2 = 0.
Finally to show that (ii) implies (i), notice that x ∈ CL(x) and as CL(x) is an ideal we also have ax ∈
CL(x). The latter gives ax2 = 0.

We finish the proof by showing that (i) ⇒ (iv) ⇒ (v) ⇒ (i). The fact that (i) implies (iv) follows
from Lemma 3.2. If (iv) holds, then x(yz) = −yzx = yxz = −xyz = xzy that gives us (v). Finally (i)
follows from (v) by taking y = z. �

It follows from Theorem 3.3 that all symplectic alternating nil-2 algebras are nilpotent. We next
analyze this in more details.
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Theorem 4.2. Let L be a symplectic alternating algebra over a field F of characteristic 	= 2. If L is nil-2, then L
is nilpotent of class at most 3.

Proof. Let x, y, z, t ∈ L. By Theorem 4.1, xy(tz) = xyzt and xy(tz) = −x(tz)y = −xzty = xzyt = −xyzt .
It follows that 2xyzt = 0 and, since char F 	= 2, we conclude that xyzt = 0. �

Moreover, the bound provided is optimal as there exists a nil-2 algebra which is nilpotent of
class 3.

Example 4.3. Let F be any field and L be the linear span of

x1 = a, y1 = tcb,

x2 = b, y2 = tac,

x3 = c, y3 = tba,

x4 = ab, y4 = tc,

x5 = ca, y5 = tb,

x6 = bc, y6 = ta,

x7 = abc, y7 = t.

As a symplectic vector space let L = (F x1 + F y1)⊕· · ·⊕ (F x7 + F y7) be a perpendicular direct sum of
hyperbolic subspaces (where (xi, yi) = 1 for i = 1, . . . ,7). We turn this into a symplectic alternating
nil-2 algebra by adding an alternating product satisfying condition (iv) of Theorem 4.1. As the identity
(iv) is multilinear it suffices that xyz = −xzy whenever x, y, z are generators. The condition implies
that the only nontrivial triples (uv, w) = (v w, u) = (wu, v) are

(x1x2, y4) = 1,

(x3x1, y5) = 1,

(x2x3, y6) = 1,

(x4x3, y7) = 1,

(x5x2, y7) = 1,

(x6x1, y7) = 1.

Conversely one can easily check that this alternating product turns L into a symplectic alternating
nil-2 algebra that is nilpotent of class 3.

Theorem 4.4. Let F be a field of characteristic 2 and let L be a symplectic alternating algebra of dimension
n = 2m. If L is nil-2, then L is nilpotent of class at most 
log2(m + 1)�.

Proof. Let {x1, . . . , xn} be a basis of L. If char F = 2, then L is commutative and, by Theorem 4.1, it is
also associative. It follows that

u1 · · · un = 0 for all u1, . . . , un ∈ L if and only if x1 · · · xn = 0.

But (x1 · · · xn, xi) = 0 for any i ∈ {1, . . . ,n}. Hence x1 · · · xn = 0 and L is nilpotent of class at most
n − 1. So, if we denote by c the nilpotency class of L, then c < n. Since the class is c there is a
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non-zero product xi1 · · · xic and without loss of generality we can suppose that x1 · · · xc 	= 0. Now,
let

xI = xi1 · · · xir

for any I = {i1, . . . , ir} ⊆ {1, . . . , c} and let

X = {
xI : Ø ⊂ I ⊆ {1, . . . , c}}.

We prove that X is a linearly independent subset of L. Assume

α1xI1 + · · · + αmxIm = 0

where m � 2c − 1 and |I1| � · · · � |Im|. Let α j be the least non-zero coefficient and J = {1, . . . , c}\I j .
Then, multiplying by

∏
k∈ J xk , we get

α jx1 · · · xc = 0

and thus x1 · · · xc = 0 which is a contradiction. Thus X is linearly independent and |X | = 2c −1. Hence
2c − 1 � 2m and 2c < 2m + 2. Then c < log2(2(m + 1)) = 1 + log2(m + 1) and so c � log2(m + 1), as
we claimed. �

Indeed, the bound we have just got is the best possible, as shown in the following construction:

Example 4.5. Let F be the field with 2 elements and let r > 3. There exists a symplectic alternating
nil-2 algebra L over F of dimension 2(2r−1 − 1) which is nilpotent of class r − 1. In fact, define L to
be the linear span of all monomials in x1, . . . , xr with no repeated entries and of weight less than r.
Then L has dimension 2r − 2 over F . Let

(xi1 . . . xin , x j1 . . . x jm ) = 0

except if n + m = r and {i1, . . . , in, j1, . . . , jm} = {1, . . . , r}, and 1 otherwise. This gives a symplectic
vector space. Let

xi1 . . . xin · x j1 . . . x jm = xi1 . . . xin x j1 . . . x jm

if i1, . . . , in, j1, . . . , jm are distinct and {i1, . . . , in, j1, . . . , jm} ⊂ {1, . . . , r}, and 0 otherwise. Then L is a
symplectic alternating algebra that is nilpotent of class r − 1. Since L is commutative and associative,
it is also nil-2.

5. Nil-3 algebras

In this section we describe some general properties of a symplectic alternating nil-3 algebra L.

Lemma 5.1. For any x, yi, z ∈ L the following identities hold:

(i)
∑

σ∈S3
xyσ(1) yσ(2) yσ(3) = 0;

(ii)
∑

σ∈S2
xyσ(1) yσ(2)z + xyσ(1)(zyσ(2)) + x(zyσ(1) yσ(2)) = 0.
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Proof. The proof of (i) is straightforward. To see why (ii) holds notice that, for any u ∈ L, from (i) we
have

0 =
( ∑

σ∈S2

xyσ (1) yσ (2)u + xyσ (1)uyσ (2) + xuyσ (1) yσ (2), z

)

=
∑
σ∈S2

(xyσ (1) yσ (2), zu) + (xyσ (1), zyσ (2)u) + (x, zyσ (2) yσ (1)u)

= −
( ∑

σ∈S2

xyσ (1) yσ (2)z + xyσ (1)(zyσ (2)) + x(zyσ (2) yσ (1)), u

)
. �

In the following we will use the notation

x{y1, y2, y3}
for the first sum in Lemma 5.1 and similarly

x{y1, y2} = xy1 y2 + xy2 y1.

Lemma 5.2. For any x, y, z ∈ L the following hold:

(i) yx2 y = −yxyx ∈ Lx;
(ii) if zx2 y = 0 then yx2z ∈ Lx;

(iii) yx2(zx2) ∈ Lx ∩ CL(x);
(iv) if yx2(zx2) = 0 then yx2(zx) ∈ Lx ∩ CL(x).

Proof. (i) First we have

0 = y(x + y)3 = yx(x + y)2 = (
yx2 + yxy

)
(x + y) = yx2 y + yxyx.

(ii) Assume zx2 y = 0. Then we get

0 = x{x, y, z}
= xy{x, z} + xz{x, y}
= xyxz + xyzx + xzyx

that gives yx2z ∈ Lx.
(iii) We see that

0 = −x
{

x, yx, zx2} = yx2{x, zx2} = yx2(zx2)x.

Then also

0 = x
{

x, y, zx2}
= xy

{
x, zx2}

= xyx
(
zx2) + xy

(
zx2)x

that implies yx2(zx2) ∈ Lx ∩ CL(x).
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(iv) Let yx2(zx2) = 0. Since

0 = x
{

x, yx2, z
} = xz

(
yx2)x,

it follows

yx2(zx)x = 0.

Notice also

0 = x{x, y, zx}
= xy{x, zx} + x(zx){x, y}
= xyx(zx) + xy(zx)x + x(zx)yx.

Thus yx2(zx) ∈ Lx ∩ CL(x). �
6. Classification of nil-algebras of dimension ��� 8

Before embarking on the classification of the symplectic alternating nil-algebras of dimension � 8,
we prove the following result.

Proposition 6.1. If L is a symplectic alternating nil-k algebra, then dim(L) � 2(k + 1).

Proof. Suppose by contradiction dim(L) = 2k and take x ∈ L which is not left nil-(k − 1). By (1), there
is only one possible primary decomposition for the multiplication by x from the right. This is

⎛
⎜⎜⎝

a bxk−1

ax bxk−2
...

...

axk−1 b

⎞
⎟⎟⎠ .

It is easy to see that x = cxk−1 for some c ∈ L. Then 0 = x(−cxk−2)k = x, which is impossible. �
As a consequence, all the nonabelian nil-algebras of dimension � 8 are the nil-2 algebras of di-

mension either 6 or 8 and the nil-3 of dimension 8.

6.1. Nil-2 algebras of dimension 6

Let L be a symplectic alternating nil-2 algebra of dimension 6 over a field F . Assume that L is not
abelian and let x ∈ L \ Z(L). Because of (1), we have that the only primary decomposition of L with
respect to multiplication by x from the right is

(
a bx
ax b

)
⊕ ( c d )

where cx = dx = 0.
By Theorem 4.1, axc = −xac = xca = 0 and similarly ax commutes with d,a,ax,bx. As CL(ax) is

even dimensional, it follows that ax commutes also with b and thus ax ∈ Z(L). Similarly bx ∈ Z(L)

and Lx ⊆ Z(L). Of course this is also true if x ∈ Z(L). We have thus shown that Ly ⊆ Z(L) for all y ∈ L
and thus L is nilpotent of class 2.
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Now we have

x = αax + βbx + u

for some α,β ∈ F and u ∈ F c + Fd. As x /∈ Lx we must have that u is nontrivial. Also au = ax and
bu = bx. We can thus, without loss of generality, replace x by u and suppose that x is orthogonal
to a,ax,b,bx. Next we turn to ab. Notice that ab is orthogonal to a,b,ax,bx and (x,ab) = (−bx,a) =
(a,bx) = 1. Hence we have the primary decomposition

(
a bx
ax b

)
⊕ ( x ab )

with respect to multiplication by x from the right. The structure is now completely determined. So
there is just one nonabelian nil-2 algebra of dimension 6.

6.2. Nil-2 algebras of dimension 8

Let L be a symplectic alternating nil-2 algebra of dimension 8 over a field F . Assume that L is not
abelian and let x ∈ L \ Z(L). We cannot have x ∈ Lx as this would imply that x = xz for some z ∈ L
and then x = xz2 = 0. By (1), this implies that there is only one possible primary decomposition of L
with respect to multiplication by x from the right. This is

(
a bx
ax b

)
⊕ ( c d ) ⊕ ( e f )

where cx = dx = ex = f x = 0.
By Theorem 4.1, axc = −xac = xca = 0 and similarly we see that ax commutes with d, e, f ,bx as

well as, of course, with a and ax. Since CL(ax) is even dimensional, it follows that ax commutes also
with b and ax ∈ Z(L). The same argument shows that bx ∈ Z(L). So Lx ⊆ Z(L) and obviously this is
also true if x ∈ Z(L). We have thus shown that Ly ⊆ Z(L) for all y ∈ L and L is nilpotent of class 2.
Now we have that

x = αax + βbx + u

for some α,β ∈ F and for u ∈ F c + Fd + F e + F f . As x cannot be in Lx we must have that u is
nontrivial. Now au = ax and bu = bx so we can, without loss of generality, replace x by u and so
we can suppose that x is orthogonal to a,b,ax,bx. Next consider the element ab. We have that ab
is orthogonal to a,b and as ab ∈ Z(L), we also have that ab is orthogonal to ax and bx. Furthermore
(x,ab) = (−bx,a) = (a,bx) = 1. So we have a primary decomposition

(
a bx
ax b

)
⊕ ( x ab ) ⊕ ( c d ) (2)

with cx = dx = 0. But now Fa + Fax + F bx + F b + F x + Fab is invariant under multiplication by a
and b. It follows that its orthogonal complement, F c + Fd, is also invariant under multiplication by a
and b. The only possibility then is that ca = da = cb = db = 0. Notice, finally, that cd is orthogonal to
a,ax,b,bx, x,ab as well as to c,d and thus cd = 0. The structure of L is thus determined. All triples
(uv, w) involving ax,bx,ab, c,d are trivial and (ax,b) = (xb,a) = (ba, x) = 1. So there is only one
nonabelian nil-2 algebra of dimension 8.
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6.3. Nil-3 algebras of dimension 8

Let L be a symplectic alternating nil-3 algebra of dimension 8 over a field F . Suppose that x ∈ L
is not left nil-2. By (1), there is only one possible primary decomposition for the multiplication by x
from the right. This is

L =
( a bx2

ax bx
ax2 b

)
⊕ ( u t )

where ux = tx = 0.

Lemma 6.2. The following properties hold:

(i) Lx2 is abelian;
(ii) Lx2(Lx) ⊆ Lx2;

(iii) ax2(ax) = −ax2ax and bx2(bx) = −bx2bx;
(iv) if bx2(ax) = 0 then ax2(ax) = rbx2 for some r ∈ F ;
(v) if ax2(bx) = 0 then bx2(bx) = sax2 for some s ∈ F .

Proof. (i) As Lx ∩ CL(x) = Lx2, it follows from Lemma 5.2(iii) that ax2(bx2) ∈ Lx2 = Fax2 ⊕ F bx2. Sup-
pose

ax2(bx2) = αax2 + βbx2

for some α,β ∈ F . Then

0 = ax2(bx2)3 = α3ax2 + α2βbx2

implies α = 0 and

0 = bx2(ax2)3 = −β3bx2

gives β = 0. Thus ax2(bx2) = 0 and Lx2 is abelian.
(ii) This follows by (i) and Lemma 5.2(iv), since Lx ∩ CL(x) = Lx2.
(iii) We have

0 = −x{a, x,ax} = ax{x,ax} + ax2{a, x} = ax2(ax) + ax2ax

and similarly 0 = bx2(bx) + bx2bx.
(iv) By (ii), we know that

ax2(ax) = sax2 + rbx2

for some r, s ∈ F . Then

0 = −x(ax)3 = ax2(ax)2 = s2ax2 + srbx2

implies s = 0 and hence ax2(ax) = rbx2.
We get (v) in the same manner. �
Notice that the following result holds with the roles of a and b interchanged.
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Lemma 6.3. If ax2(ax) = rbx2 for some r ∈ F , then ax2(bx) = 0. Furthermore, ax2 ∈ Z(L) when r = 0.

Proof. By (i) of Lemma 5.2, ax2a ∈ Lx. As (ax2a,a) = 0 and(
ax2a,ax

) = −(
ax2(ax),a

) = r,

we have

ax2a = αax + βax2 − rbx

for some α,β ∈ F . Then

ax2ax = αax2 − rbx2.

But ax2ax = −ax2(ax) = −rbx2 by Lemma 6.2(iii), thus αax2 = 0. It follows that α = 0 and

ax2a = βax2 − rbx,

so that ax2a is orthogonal to bx and thus ax2(bx) is orthogonal to a. However, ax2(bx) ∈ Lx2 by (ii) of
Lemma 6.2, hence

ax2(bx) = γ ax2

for some γ ∈ F . Moreover 0 = ax2(bx)3 = γ 3ax2, hence γ = 0 and ax2(bx) = 0.
Now assume r = 0. Then

ax2a = βax2

and we have

0 = ax2a3 = β3ax2

which gives β = 0 and

ax2a = 0.

We now turn to ax2u and ax2t . They both lie in Lx by (ii) of Lemma 5.2 and are orthogonal to a,ax,bx.
If β = (ax2u,b) and γ = (ax2t,b), we have

ax2u = βax2 and ax2t = γ ax2.

Then, as before, we get β = γ = 0. We have thus seen that ax2 commutes with a,ax,ax2,bx,bx2, u, t
and, as the dimension of CL(ax2) is even, it follows that ax2b = 0 and ax2 ∈ Z(L). �
Corollary 6.4. Let y, z ∈ L. If yz2(yz) = 0 then yz2 ∈ Z(L).

Proof. If yz2 = 0, this is obvious. Otherwise this follows from Lemma 6.3 with y in the role of a and
z in the role of x. �
Remark 6.5. In particular if yz2(yz) = 0 for all y, z ∈ L, then Lz2 ⊆ Z(L).

Furthermore, we have:
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Lemma 6.6. Z(L) ∩ Lx2 	= {0}.

Proof. If ax2(ax) = 0, then ax2 ∈ Z(L) by the previous lemma. So we may assume ax2(ax) 	= 0. By
Lemma 6.2(ii), the multiplication by ax from the right gives us a linear operator on Lx2 that is a
nil-operator and so with a nontrivial kernel. This means that we have

(b + αa)x2(ax) = 0

for some α ∈ F . Without loss of generality we can replace b by b + αa and thus assume that

bx2(ax) = 0.

By Lemma 6.2(iv) we have ax2(ax) = rbx2 for some r ∈ F \ {0} and hence ax2(bx) = 0 by Lemma 6.3.
Then (v) of Lemma 6.2 gives that there exists s ∈ F such that bx2(bx) = sax2. This implies

0 = bx2(ax + bx)3 = rs2ax2

and we get s = 0. It follows bx2(bx) = 0 and bx2 ∈ Z(L) again applying Lemma 6.3. �
We now turn to the structure of L. This is determined by the value of all triples (vz, w) =

(zw, v) = (w v, z) where v, z, w are pairwise distinct basis vectors. As any such triple has either two
vectors from {a,ax,ax2,b,bx,bx2} or two vectors from {u, t}, we only need to determine ut and the
products of any two elements from {a,ax,ax2,b,bx,bx2}.

According with Lemma 6.6, we will assume

bx2 ∈ Z(L). (3)

Then we also have

ax2(ax) = rbx2 and ax2(bx) = 0 (4)

by Lemma 6.2(iv) and Lemma 6.3, respectively.

Step 1. We can assume that ax2b = 0 and ax2a = −rbx.

Proof. By Lemma 5.2, (ii) and (i), ax2b and ax2a are in Lx. Also ax2b is orthogonal to ax,b,bx and

ax2b = αbx2

for α = −(ax2b,a). If r = 0, then Lemma 6.3 implies ax2 ∈ Z(L) and so ax2b = 0. Let r 	= 0, then
ax2(b − α

r ax) = 0. Replacing b by b − α
r ax, we can assume that ax2b = 0. One can check that (3) and

(4) still hold.
Next, we have that ax2a is orthogonal to a,b,bx and(

ax2a,ax
) = −(

ax2(ax),a
) = −r

(
bx2,a

) = r.

Thus ax2a = −rbx. �
Suppose now that x = y + z with y ∈ 〈a,ax,ax2,b,bx,bx2〉 and z ∈ 〈u, t〉. Then 0 = yx and thus

y ∈ Lx2. Notice that z 	= 0 since otherwise x = y = cx2 for some c ∈ L and 0 = x(−cx)3 = x. Without
loss of generality, we can suppose that z = u. Hence

x = u + αax2 + βbx2

for some α,β ∈ F .
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Let us calculate the effect of multiplying with

u = x − αax2 − βbx2.

Firstly, we have

ut = xt − αax2t.

However, ax2t ∈ Lx by Lemma 5.2(ii) and is orthogonal to a,ax,b,bx. Thus ax2t = 0 and

ut = xt.

Recall that bx2 ∈ Z(L) and that ax2b = ax2(bx) = 0, whereas ax2a = −rbx and ax2(ax) = rbx2. Using
this, we see that

au = ax + αax2a = ax − αrbx

and

au2 = (ax − αrbx)
(
x − αax2 − βbx2)

= ax2 + αax2(ax) − αrbx2

= ax2 + αrbx2 − αrbx2

= ax2.

One also sees that bu = bx and bu2 = bx2. Replacing x by u and a,ax,ax2, b,bx,bx2 by a,au,au2,b,bu,

bu2, we still have a decomposition into hyperbolic subspaces. One can now check that (3), (4) and
Step 1 are still valid with x replaced by u. So without loss of generality we can assume that u = x.
We thus have a primary decomposition

L =
( a bx2

ax bx
ax2 b

)
⊕ ( x t )

where

xt = 0. (5)

Step 2. ax(bx) = 0.

Proof. From ax2b = 0, we get

0 = −x{a,b, x} = ax{b, x} + bx{a, x} = axbx + bxax. (6)

Since the values

(axb,b), (axb,ax),
(
axb,ax2), (axb,bx2)

and

(bxa,a), (bxa,bx),
(
bxa,ax2), (bxa,bx2)
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are all trivial, we have

axb = αax + y, y ∈ F bx2 + F x + Ft (7)

and

bxa = βbx + z, z ∈ Fax2 + F x + Ft, (8)

respectively. By (6), (7) and (8), it follows that

αax2 = axbx = −bxax = −βbx2

which implies α = β = 0. Hence (axb,bx) = (bxa,ax) = 0 and thus

(
ax(bx),a

) = (
ax(bx),b

) = 0.

Clearly, ax(bx) is also orthogonal to ax,bx,ax2,bx2, x and thus

ax(bx) = αx

for some α ∈ F . But we have

0 = −x{a,ax,bx}
= ax{ax,bx} + ax2{a,bx} + bx2{a,ax}
= ax(bx)(ax) + ax2a(bx)

= ax(bx)(ax) − r(bx)2

= ax(bx)(ax).

Then

0 = ax(bx)(ax) = αx(ax) = −αax2

and α = 0. �
Step 3. We can assume that bxb = 0 and axa = rb.

Proof. Let us first consider bxb. It is orthogonal to ax,ax2,b,bx,bx2, x. We then have

bxb = αbx2 + βx

where α = −(bxb,a) and β = (bxb, t). Since

0 = xb3 = −βxb,

we get β = 0. It follows that

0 = bx(b − αx).
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Replacing b by b − αx and t by t − αax2 respectively, (3), (4), (5) and the previous steps still hold.
Thus we can assume bxb = 0.

We turn to axa. It is clear that axa is orthogonal to a,ax,bx,bx2, x and that

(
axa,ax2) = (

ax2,a(ax)
) = (

ax2(ax),a
) = r

(
bx2,a

) = −r.

Suppose (axa,b) = α and (axa, t) = β . Then

axa = αax2 + rb + βx. (9)

We next show that axa(bx) ∈ Lx and in order to do this we prove that a(bx)x = 0. That this is sufficient
follows from

0 = a{a, x,bx} = ax{a,bx} + a(bx){a, x} = axa(bx) + a(bx)ax + a(bx)xa.

As ax(bx) = 0, by (8) we know that a(bx) ∈ Fax2 + F x + Ft . But

(
a(bx),b

) = 0 and
(
a(bx), x

) = −1,

and thus

a(bx) = γ x + t and a(bx)x = 0. (10)

Let axa(bx) = α1ax + α2ax2 + β1bx + β2bx2. Since

(
axa(bx),a

) = (
axa(bx),b

) = (
axa(bx),ax

) = (
axa(bx),bx

) = 0,

axa(bx) is trivial and, by (9), we get

0 = axa(bx) = −βbx2.

Thus β = 0 and ax(a − αx) = rb. If we replace a by a − αx and t by t + αbx2, then (3), (4), (5) and all
the previous steps hold. So we can assume that axa = rb. �
Step 4. axb = t and bxa = −t.

Proof. We first consider axt which is clearly orthogonal to x and t . As the product of ax with
a,ax,ax2,bx,bx2 is orthogonal to t , axt is also orthogonal to a,ax,ax2,bx,bx2. Hence, for some α ∈ F ,

axt = αax2 and ax(t − αx) = 0.

Replacing t by t − αx we can assume that

axt = 0.

It follows that (axb, t) = 0, thus axb is orthogonal to t . As the products of ax with a,ax,bx,ax2,bx2

are orthogonal to b, we have that axb is orthogonal to t,a,ax,bx,ax2,bx2,b. Also (axb, x) = −1 and
so

axb = t.
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We now turn to bxa. By (10), we know that

bxa = −t − γ x.

Since

0 = −x(a + b)3

= (ax + bx)(a + b)2

= (axa + axb + bxa)(a + b)

= (rb + t − t − γ x)(a + b)

= −rab + γ ax + γ bx,

we get

0 = (−rab + γ ax + γ bx,bx) = γ .

Thus bxa = −t . �
Step 5. We can assume that ab = 0.

Proof. Clearly, ab is orthogonal to a,b and, since ax2,bx,bx2 commute with b, we have that ab is also
orthogonal to ax2,bx,bx2. As bx is orthogonal to a we also have ab orthogonal to x. Then

(ab,ax) = −(b,axa) = −(b, rb) = 0

and the only generator left is t . Hence

ab = αx

for some α ∈ F .
We consider two cases. Suppose first that yz2(yz) = 0 for all y, z ∈ L. Then r = 0 and by Re-

mark 6.5

αxb = ab2 ∈ Z(L)

which is absurd except if α = 0. Hence ab = 0 in this case.
If the identity yz2(yz) = 0 does not hold for all y, z ∈ L, without loss of generality we can assume

ax2(ax) = rbx2 with r 	= 0. Thus

0 = ba3 = αaxa = αrb

implies α = 0 and hence ab = 0 also in this case. �
As candidates for our examples we thus have a one parameter family of symplectic alternating

algebras

L(r) =
( a bx2

ax bx
2

)
⊕ ( x t ) .
ax b
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Notice that t ∈ Z(L(r)) since vt is orthogonal to x, t and (vt, w) = −(v w, t) = 0 for all v, w ∈
{a,ax,ax2,b,bx,bx2}: the only nontrivial products not involving x are

axa = rb,

ax2a = −rbx,

ax2(ax) = rbx2,

axb = t,

bxa = −t.

It remains to check that L(r) is nil-3.

Proposition 6.7. L(r) is a nil-3 algebra for all r ∈ F .

Proof. Let z = α1a + α2ax + α3ax2 + β1b + β2bx + γ x. It suffices to show that yz3 = 0 for the basis
elements a,ax,ax2,b,bx, x. Using the description of L(r), we have bxz2 = (−α1t + γ bx2)z = 0 and
then:

az3 = (−α2rb + α3rbx + β2t + γ ax)z2

= (−α2rb + γ ax)z2

= (
α2

2rt − α2γ rbx + γ α1rb − γ α3rbx2 + γ β1t + γ 2ax2)z

= (−α2γ rbx + γ α1rb + γ 2ax2)z

= α2γ α1rt − α2γ
2rbx2 − γ α1α2rt

+ γ 2α1rbx − γ 2α1rbx + γ 2α2rbx2

= 0;
axz3 = (

α1rb − α3rbx2 + β1t + γ ax2)z2

= (
α1rb + γ ax2)z2

= (−α1α2rt + α1γ rbx − γ α1rbx + γ α2rbx2)z

= 0;
ax2z3 = (−α1rbx + α2rbx2)z2 = 0;

bz3 = (−α2t + γ bx)z2 = 0;
bxz3 = (−α1t + γ bx2)z2 = 0;

xz3 = (−α1ax − α2ax2 − β1bx − β2bx2)z2

= (−α1ax − α2ax2)z2

= (−α2
1rb + α1α3rbx2 − α1β1t

− α1γ ax2 + α2α1rbx − α2
2rbx2)z

= (−α2
1rb − α1γ ax2 + α2α1rbx

)
z
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= α2
1α2rt − α2

1γ rbx + α2
1γ rbx

− α1γ α2rbx2 − α2α
2
1rt + α2α1γ rbx2

= 0. �
We finally prove the nilpotency of L(r).

Theorem 6.8. L(r) is nilpotent of class 3 if r = 0 and of class 5 if r 	= 0.

Proof. Let r = 0. Then Z(L) = Fax2 + F bx2 + Ft by Lemma 6.3. Moreover

L2 = Lx + Ft and L3 = Lx2 + Ft = Z(L),

so that L(0) is nilpotent of class 3.
Assume r 	= 0. Then

L2 = 〈
b,ax,bx,ax2,bx2, t

〉
, L3 = 〈

b,bx,ax2,bx2, t
〉

L4 = 〈
bx,bx2, t

〉
, L5 = 〈

bx2, t
〉
, L6 = {0}.

This proves that L(r) is nilpotent of class 5. �
The parameter r ∈ F is not unique. Recall that r = (a,ax2(ax)). Now Z3(L) = (L4)⊥ = 〈b,bx,ax2,

bx2, t〉. Let

ā = α1a + β1ax + γ x + u and x̄ = α2a + β2ax + δx + v

with u, v ∈ Z3(L). Tedious but direct calculations show that(
ā, āx̄2(āx̄)

) = (α1δ − α2γ )3r.

This implies that for r, s 	= 0 we have that L(r) ∼= L(s) if and only if r and s are in the same coset of the
abelian group F ∗/(F ∗)3 (where F ∗ = F \ {0}). Adding L(0), we see that there are up to isomorphism
exactly |F ∗/(F ∗)3| + 1 symplectic alternating algebras of dimension 8 that are nil-3 but not nil-2. If
F is algebraically closed then this number is 2. As (R∗)3 = R, this is also true when the underlying
field is the field of real numbers. On the other hand, Q∗/(Q∗)3 is infinite so over the rational field
we have an infinite number of examples. If F is finite then F ∗ is cyclic and thus |F ∗/(F ∗)3| is 1 or 3
depending on whether 3 divides |F | − 1 or not.
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