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1. Introduction

Symplectic alternating algebras have arisen in the study of 2-Engel groups (see [1,2]) but seem
also to be of interest in their own right, with many beautiful properties. Some general theory was
developed in [3].

Definition. Let F be a field. A symplectic alternating algebra over F is a triple L = (V, (,),-) where V
is a symplectic vector space over F with respect to a non-degenerate alternating form (,) and - is a
bilinear and alternating binary operation on V such that

u-v,w)=(v-w,u)

forall u,v,weV.
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Notice that (u-x,v)=(x-v,u)=—(v-x,u) = (u, v -x). The multiplication by x from the right is
therefore a self-adjoint linear operation with respect to the alternating form. We know that the di-
mension of a symplectic alternating algebra must be even and we will refer to a basis x1, y1, ..., Xr, ¥r
with the property that (x;,x;) = (yi,y;) =0 and (x;, y;) = 8;; as a standard basis. We will also
adopt the left-normed convention for multiple products. Thus x1x;---x, stands for (---(x1x2) - -)Xp.
If x1,x2, ..., Xy is a basis for the symplectic vector space, then the alternating product is determined
from the values of all triples (xiXj, X¢) = (XjXk, X;) = (XX, Xj) for 1 <i < j<k<2r.

Given a standard basis x1, ¥1,...,Xr, ¥r for a symplectic alternating algebra L, we can describe L,
as follows. Consider the two isotropic subspaces Fxi + --- + Fx, and Fyj + --- + Fy.. It suffices
then to write only down the products of x;xj, y;yj, 1 <i < j <r. The reason for this is that having
determined these products we have determined (uv, w) for all triples u, v, w of basis vectors, since
two of those are either some x;, x; or some y;, y; in which case the triple is determined from x;x; or
yiyj. The only restraints on the products x;x; and y;y; come from (x;xj, X) = (XX, Xi) = (XkXi, Xj)
and (¥iyj, Yk) = (VjYk» ¥i) = (YxYi» ¥j)-

It is clear that the only symplectic alternating algebra of dimension 2 is the abelian one. Fur-
thermore, it is easily seen that up to isomorphism there are two symplectic alternating algebras of
dimension 4: one is abelian whereas the other one has the following multiplication table (see [3])

X1X2 =0,
yiy2=—-JY1,
X =Xy,

L 11 2
X1Y2 = —X1,
X2y1=0,
X2Y2 = 0.

Of course, the presentation is determined by x1x =0 and y;y, = —y1 as the other products are

consequences of these two. The symplectic alternating algebras of dimension 6 have been classified
in [3], when the field has three elements: there are 31 such algebras of which 15 are simple.

As we said before, some general theory was developed in [3]. In particular it was shown that a
symplectic alternating algebra is either semisimple or has an abelian ideal. In this paper we con-
tinue developing a structure theory for symplectic alternating algebras and we are motivated by the
following question that was posed in [3]:

Question. What can one say about the structure of symplectic alternating nil-algebras? In particular,
does a symplectic alternating nil-algebra have to be nilpotent?

If k is a positive integer, we say that a symplectic alternating algebra L is nil-k if xyX =0 for all
X, y € L. More generally, a symplectic alternating nil-algebra is a symplectic alternating nil-k algebra for
some positive integer k. Also, we define a € L to be a right nil-k element if ax =0 for all x € L and to
be a right nil-element if it is right nil-k for some k. Similarly, a € L is a left nil-k element when xa* = 0
for all x € L and a left nil-element if it is left nil-k for some k.

Furthermore, we say that a symplectic alternating algebra is nilpotent if x1xy---x;, = 0 for all
X1,X2,...,Xp € L and for some integer n > 1. As usual, the nilpotency class of L is the smallest ¢ >0
such that x1x; ---xc+1 =0 for all x1,%2,...,Xc4+1 € L.

In the following, we first discuss connections between nilpotency and solubility of a symplectic
alternating algebra. We will see in particular that every symplectic alternating algebra that is abelian-
by-nilpotent is nilpotent. We then move to nil-k elements and to symplectic alternating nil-k algebras.
We get a positive answer to the question above for k =2 and, when the dimension is < 8, also for
k = 3. We finish with the classification of all nil-algebras of dimension up to 8.
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2. Nilpotency and solubility

For subspaces U, V of a symplectic alternating algebra L, we define UV in the usual way as the
subspace consisting of all linear spans of elements of the form uv where u € U and v € V. We define
the lower central series (L');»1 inductively by L' =L and L'*! =L'- L. Clearly

T>12>...

which implies in particular that every L' is an ideal. We can also define the upper central series
(Z'(L))i>o naturally by z%(L) = {0}, Z'(L)=Z(L) ={aeL: ax=0 forall xe L} and Z*1(L)={a e L:
ax € Zi(L) for all x € L}. In [3, Lemma 2.2], the author proves that the lower and the upper central
series are related as follows:

It follows that Zi(L) is an ideal since, in a symplectic alternating algebra, I+ is an ideal whenever [ is
an ideal (see [3, Lemma 2.1]); but this also follows directly from ZF1(L) - L < Z'(L). Notice also that
the dim(Zi(L)) + dim(L'*!) = dim(L). We then have that L is nilpotent of class ¢ > 0 if and only if ¢

is the smallest integer such that Z°(L) = L or, equivalently, L°t! = {0}. One more way to characterize
the nilpotency in terms of the lower central series is given by the following result.

Proposition 2.1. Let L be a symplectic alternating algebra. Then L is nilpotent if and only if there exists i > 1
such that L' is isotropic.

Proof. Let L be nilpotent and denote by c its nilpotency class. Then L = Z°(L) = (L°T1L and hence
L°*1 is isotropic. Conversely, let Li be isotropic for some i > 1. Then

(ur---uj, vy---vi) =0
whenever uq, ..., u;, vi,..., v; belong to L. It follows
(U1, vy villi---up) =0
and thus L is nilpotent of class at most 2i — 2 since the symplectic form is non-degenerate. O

As usual, the derived series (L®);>¢ is defined inductively by L©® =L, L) =L .L =12 and LD =
LD . LD Then

L(O) 21,(1) >

and we say that a symplectic alternating algebra L is soluble if there exists an integer n > 0 such that
L™ = {0}. The smallest n enjoying this property is then referred to as the derived length of L. Thus
L has derived length 0 if and only if it has order one. Also, the symplectic alternating algebras with
derived length at most 1 are just the abelian ones. A symplectic alternating algebra which is soluble
of derived length at most 2 is said to be metabelian.

Lemma 2.2. If L is a symplectic alternating algebra then LY C Li*+1, In particular, if L is nilpotent of class i
then L is soluble of derived length at most i.

Proof. We argue by induction on i. The claim is obviously true when i =0 being L@ =L =L
Assuming i > 0 and LY € L1 we get LO+D =[O . [ c [I+1. [ = [+2 35 required. O
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Next result is rather odd and shows that all metabelian symplectic alternating algebras are nilpo-
tent. It also shows that the inclusion in last lemma is not optimal.

Proposition 2.3. Let L be a symplectic alternating algebra. Then L is metabelian if and only if it is nilpotent of
class at most 3.

Proof. We have that L is metabelian if and only if xy(zw) =0 for all x,y,z,w € L, that is
(xy(zw),t) =0 for all t € L. This means 0 = (xy, zwt) = (x,zwty) and L is nilpotent of class at
most 3. O

Not all soluble symplectic alternating algebras are however nilpotent as the following example
shows.

Example 2.4. Consider

x1X2 =0,
Yiy2=-y1,

the only nonabelian symplectic alternating algebra of dimension 4 over a field F. We have
Z(L)=Fxy and L?>=Z(L)* =Fx; + Fxy+ Fy.

Here L® =1® .[® = Fx, - Fx, = {0} and L is soluble of derived length 3 but it is not nilpotent. In
fact y1y5 = (—=1)"y for any integer n > 1.

However, we have the following strong generalization of Proposition 2.3.

Proposition 2.5. Let L be a symplectic alternating algebra. If L is abelian-by-(nilpotent of class < c) then it is
nilpotent of class at most 2¢ + 1.

Proof. Let | be an abelian ideal of L such that L/I is nilpotent of class at most c. Then L°t! C | and
(X1 Xcq1- (V1 Ye41),2) =0

for all x1,...,Xc+1, Y15+, Yct+1, 2 € L. Thus
(X1, Y1+ Ye+1ZXc41 - X2) =0

and L is nilpotent of class at most 2c+1. O

This result fails if we assume that our algebra is nilpotent-by-abelian. The example above still
provides a counterexample, for L? is nilpotent and L/L? is abelian.

3. Nil-elements
Let L be a symplectic alternating algebra and x be a left nil-element of L. We say that an element

a € L has nil-x degree m if m is the smallest positive integer such that ax™ = 0. Pick a € L of maximal
nil-x degree k and let

V(a) =(a, ax, ax®, ..., axk’l>.
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We know that this is an isotropic subspace in L (see [3, Lemma 2.10]). Then there exists b € L such
that

@b)=(axb)=---=(@*2b)=0 and (ax*',b)=1.
Since (a, bx*~1) = (ax*~1, b) = 1, we have that the nil-x degree of b is k. Notice also that
(ax", bx*) = (ax"**,b)
which is 1 if r +s=k — 1 but 0 otherwise. So that the subspace
V(@@ + V() =V ®Vb) =(abx )@ ax,bx* )@ - @ (ax*~1,b)
is a perpendicular direct sum of hyperbolic subspaces.

Let W = W (a, b) = V (a) + V (b). The multiplication by x from the right gives us a linear map on L.
Then W is invariant under the right multiplication by x and the same is then true for the orthogonal
complement W: in fact, for all y e W' and ze W we have (yx,z) = —(y,zx) =0 as zx € W. Now,
we can take c € W+ of maximal nil-x degree, say m. Then, as before, we get d € L of nil-x degree m
and W(c,d) =V (c) + V(d) is a perpendicular direct sum. Thus we inductively see that L splits up
into a perpendicular direct sum

L=W(a1,b1) ®--- & W(an, bn). (1)

We will refer to such a decomposition as a primary decomposition of L with respect to multiplication
by x from the right. We will also use the notation

a bxkf]
ax  bxk2
axk=1  p

for the subspace W (a, b).

Proposition 3.1. Let L be a symplectic alternating algebra. If x € L is a left nil-element, then Cy(x) is even
dimensional.

Proof. Consider a decomposition as above with respect to right multiplication by x. We have seen
that the cyclic subspaces come in pairs, say that

L=V@@a)dVbh)d---® Vi) & V().
The kernel of each of these is one-dimensional, hence C;(x) has dimension 2n. O

For the remainder of this section we focus on right nil-2 elements. In general, a left nil-2 element
needs not to be a right nil-2 element. In Example 2.4, y; is a left nil-2 element that is not a right
nil-element. However, the converse is always true.

Lemma 3.2. Let L be a symplectic alternating algebra. If a is a right nil-2 element of L, then:

(i) ayz= —azy forall y,ze L;
(ii) ais left nil-2;
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(iii) Cr(a) is anideal,
(iv) La and Fa + La are abelian ideals and the latter is the smallest ideal containing a.

Proof. (i) We have
O0=a(y +2)(y +2) =(ay +az)(y +2) =ayz +azy

and ayz = —azy.

(ii) For all x € L, we have 0 = —a(a + x)> = xa(a + x) = xa?.

(iii) Let x, y € L and b € C;(a). Then 0 = a(x + b)? = ax(x + b) = axb which implies 0 = (axb, y) =
(a(by), x). Thus a(by) =0 and by € C;(a).

(iv) That La is an ideal follows immediately from uax = —uxa and of course it follows then that
Fa + La is an ideal, the smallest ideal containing a. As a is left nil-2 and since ax(ya) = —a(ya)x =0,
it is clear that both the ideals are abelian. O

Theorem 3.3. Let X be a set of right nil-2 elements in a symplectic alternating algebra L and denote by 1(X)
the smallest ideal of L containing X. Then

I(X)=Y_Fa+la.

aeX

Furthermore, if | X| = c then I(X) is nilpotent of class at most c.

Proof. Let a € X. By Lemma 3.2(iv) we know that I(a) = Fa + La is the smallest ideal containing a
and that I(a) is abelian. It follows that I(X) =) ,.x I(a). Since each of these ideals is abelian it is
clear that I(X)“t1 = {0}, here c = |X|. O

It follows in particular that the ideal generated by all the right nil-2 elements is always a nilpotent
ideal.

4. Nil-2 algebras

The results concerning right nil-2 elements lead to the following characterization of symplectic
alternating nil-2 algebras.

Theorem 4.1. Let L be a symplectic alternating algebra. Then the following are equivalent:

(i) Lisnil-2;
(ii) Cr(x) is anideal forany x € L;
(iii) I(x) is abelian for any x € L,
(iv) the identity xyz = —xzy holds in L;
(v) theidentity x(yz) = xzy holds in L.
Proof. First we show that (i) < (ii) < (iii). From Lemma 3.2, we know that (i) implies (ii) and (iii).
To see that (iii) implies (i), take any a, x € L. As I(x) is abelian and ax, x € I(x), it follows that ax* =0.
Finally to show that (ii) implies (i), notice that x € C;(x) and as C;(x) is an ideal we also have ax
C1(x). The latter gives ax® = 0.

We finish the proof by showing that (i) = (iv) = (v) = (i). The fact that (i) implies (iv) follows
from Lemma 3.2. If (iv) holds, then x(yz) = —yzx = yxz = —xyz = xzy that gives us (v). Finally (i)
follows from (v) by taking y=2z. O

It follows from Theorem 3.3 that all symplectic alternating nil-2 algebras are nilpotent. We next
analyze this in more details.
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Theorem 4.2. Let L be a symplectic alternating algebra over a field F of characteristic # 2. If L is nil-2, then L
is nilpotent of class at most 3.

Proof. Let x, y,z,t € L. By Theorem 4.1, xy(tz) = xyzt and xy(tz) = —x(tz)y = —xzty = xzyt = —xyzt.
It follows that 2xyzt =0 and, since char F # 2, we conclude that xyzt =0. O

Moreover, the bound provided is optimal as there exists a nil-2 algebra which is nilpotent of
class 3.

Example 4.3. Let F be any field and L be the linear span of

X1 =a, y1 =tcbh,
X2 =D, y2 =tac,
X3 =¢, V3= tba,
X4 =ab, ya=tc,
X5 =ca, y5 =tb,
Xxg = bc, y6 =ta,
x7 =abc, y7 =t.

As a symplectic vector space let L = (Fx; + Fy1) ®---@® (Fx7 + Fy7) be a perpendicular direct sum of
hyperbolic subspaces (where (x;, y;j) =1 for i =1,...,7). We turn this into a symplectic alternating
nil-2 algebra by adding an alternating product satisfying condition (iv) of Theorem 4.1. As the identity
(iv) is multilinear it suffices that xyz = —xzy whenever x, y, z are generators. The condition implies
that the only nontrivial triples (uv, w) = (vw, u) = (wu, v) are

(X1X2,y4) =1,
(x3%1,y5) =1,
(%2x3, ¥6) =1,
(Xax3,y7) =1,
(Xsx2,y7) =1,
(x6x1,y7) =1

Conversely one can easily check that this alternating product turns L into a symplectic alternating
nil-2 algebra that is nilpotent of class 3.

Theorem 4.4. Let F be a field of characteristic 2 and let L be a symplectic alternating algebra of dimension
n=2m. If L is nil-2, then L is nilpotent of class at most |log, (m + 1)].

Proof. Let {x1,...,xy} be a basis of L. If char F =2, then L is commutative and, by Theorem 4.1, it is
also associative. It follows that

uy---up,=0 foralluy,...,u,el ifandonlyif x;---x,=0.

But (x1---X;,%) =0 for any i € {1,...,n}. Hence x;---X;, =0 and L is nilpotent of class at most
n — 1. So, if we denote by c the nilpotency class of L, then ¢ < n. Since the class is ¢ there is a
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non-zero product x;, ---x;. and without loss of generality we can suppose that xj---xc # 0. Now,

let

c

X[ =Xjy - X,

for any I ={iy,...,i;} €{1,...,c} and let
X={x:0@cIc{1,....c}.

We prove that X is a linearly independent subset of L. Assume

o1Xy + -+ apxy, =0

where m <2 —1 and [I1| < - < |I;m]. Let aj be the least non-zero coefficient and J ={1,...,c}\I;.
Then, multiplying by [ | Xk, We get

ajx---x=0
and thus x; - - - xc = 0 which is a contradiction. Thus X is linearly independent and | X| = 2¢ — 1. Hence

2¢—1<2m and 2¢ < 2m+ 2. Then ¢ < logy,(2(m + 1)) =1 4 logy(m + 1) and so ¢ < log,(m + 1), as
we claimed. O

Indeed, the bound we have just got is the best possible, as shown in the following construction:

Example 4.5. Let F be the field with 2 elements and let r > 3. There exists a symplectic alternating
nil-2 algebra L over F of dimension 2(2"~! — 1) which is nilpotent of class r — 1. In fact, define L to
be the linear span of all monomials in x1, ..., X, with no repeated entries and of weight less than r.
Then L has dimension 2" — 2 over F. Let

Xiq - o Xy, Xjp ... X)) =0

except if n+m=r and {iy,...,in, j1,..., jm} ={1,...,7r}, and 1 otherwise. This gives a symplectic
vector space. Let

Xip oo Xip - Xjp oo Xj = Xig o Xip XL X

m

ifiy,...,in, j1,..., jm are distinct and {i1, ..., in, j1,..., jm} C{1,...,1}, and O otherwise. Then L is a
symplectic alternating algebra that is nilpotent of class r — 1. Since L is commutative and associative,
it is also nil-2.

5. Nil-3 algebras

In this section we describe some general properties of a symplectic alternating nil-3 algebra L.

Lemma 5.1. For any x, y;, z € L the following identities hold:

(i) Yoes; o Yo@ Vo) =0;
(i) Ypes, XVo)Yo@Z +XYo (1) 2V @) +X(2Vo ) Yo 2)) = 0.
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Proof. The proof of (i) is straightforward. To see why (ii) holds notice that, for any u € L, from (i) we
have

0= ( Z XYo)Yo@U +XYo)UYo@2) T XUYo 1) Vo (2)s Z)

o€eSy

= Z XYoo Yo ), 2W) + XYo (1), ZVe )W) + (X, ZY5 2) Yo (1) U)

oeSy

= —< Z XYo(1)Yo@Z+XVo(1)(2Ve2) +X(2Yo @) Yo 1)) u). O

oesy
In the following we will use the notation
x{y1,y2,y3}
for the first sum in Lemma 5.1 and similarly
X{y1. y2} =xy1y2 +xy2y1.
Lemma 5.2. For any x, y, z € L the following hold:

i) yx’y = —yxyx e Lx;
(i) if zx2y = 0 then yx®z € Lx;
(iii) yx?(zx?) € Lx N CL(x);
(iv) if yx2(zx?) = 0 then yx2(zx) € Lx N CL.(x).
Proof. (i) First we have

0=yx+y)’ =yxx+y)* = (yX + yxy) (x+ y) = yx°y + yxyx.
(i) Assume zx?>y = 0. Then we get
0=x{x,y,2}
=xy{x, z} + xz{x, y}

= XYXZ + XyZX + XZYX

that gives yx?z € Lx.
(iii) We see that

0=—x{x, yx, zx*} = yx*{x, 2x*} = yx*(zx*)x.
Then also
0=x{x, y,zx*}
=xy{x, zxz}
= xyx(zx%) + xy (2x%)x

that implies yx2(zx%) € Lx N CL(x).
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(iv) Let yx?(zx%) = 0. Since
0 =x{x, yx2, z} = xz(yxz)x,
it follows
2 —
yx“(zx)x = 0.
Notice also
0=x{x,y, zx}

= Xxy{x, zx} + x(zx){x, y}
= Xyx(zx) + xy(zx)x + x(zX) yX.

Thus yx2(zx) € LxN Cr(x). O
6. Classification of nil-algebras of dimension < 8

Before embarking on the classification of the symplectic alternating nil-algebras of dimension < 8,
we prove the following result.

Proposition 6.1. If L is a symplectic alternating nil-k algebra, then dim(L) > 2(k + 1).

Proof. Suppose by contradiction dim(L) = 2k and take x € L which is not left nil-(k — 1). By (1), there
is only one possible primary decomposition for the multiplication by x from the right. This is

a bxkfl
ax  bxk2
axk—l b

It is easy to see that x = cx*~! for some c € L. Then 0 = x(—cx*~2)X = x, which is impossible. O

As a consequence, all the nonabelian nil-algebras of dimension < 8 are the nil-2 algebras of di-
mension either 6 or 8 and the nil-3 of dimension 8.

6.1. Nil-2 algebras of dimension 6

Let L be a symplectic alternating nil-2 algebra of dimension 6 over a field F. Assume that L is not
abelian and let x € L \ Z(L). Because of (1), we have that the only primary decomposition of L with
respect to multiplication by x from the right is

a bx
<ax b)@(c d)
where cx =dx =0.

By Theorem 4.1, axc = —xac = xca = 0 and similarly ax commutes with d, a, ax, bx. As Cp(ax) is
even dimensional, it follows that ax commutes also with b and thus ax € Z(L). Similarly bx € Z(L)
and Lx C Z(L). Of course this is also true if x € Z(L). We have thus shown that Ly € Z(L) for all y € L
and thus L is nilpotent of class 2.
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Now we have
x=aax+ Bbx+u

for some o, € F and u € Fc + Fd. As x ¢ Lx we must have that u is nontrivial. Also au = ax and
bu = bx. We can thus, without loss of generality, replace x by u and suppose that x is orthogonal
to a,ax, b, bx. Next we turn to ab. Notice that ab is orthogonal to a, b, ax, bx and (x, ab) = (—bx,a) =
(a, bx) = 1. Hence we have the primary decomposition

(a bx)ea(x ab)

ax b

with respect to multiplication by x from the right. The structure is now completely determined. So
there is just one nonabelian nil-2 algebra of dimension 6.

6.2. Nil-2 algebras of dimension 8

Let L be a symplectic alternating nil-2 algebra of dimension 8 over a field F. Assume that L is not
abelian and let x € L \ Z(L). We cannot have x € Lx as this would imply that x = xz for some z € L
and then x = xz2 = 0. By (1), this implies that there is only one possible primary decomposition of L
with respect to multiplication by x from the right. This is

ax b

(" b")@(c D@ (e f)

where cx=dx=ex= fx=0.

By Theorem 4.1, axc = —xac = xca = 0 and similarly we see that ax commutes with d, e, f,bx as
well as, of course, with a and ax. Since Cj(ax) is even dimensional, it follows that ax commutes also
with b and ax € Z(L). The same argument shows that bx € Z(L). So Lx C Z(L) and obviously this is
also true if x € Z(L). We have thus shown that Ly C Z(L) for all y € L and L is nilpotent of class 2.
Now we have that

Xx=aax+ Bbx+u

for some o, € F and for u € Fc + Fd 4+ Fe + Ff. As x cannot be in Lx we must have that u is
nontrivial. Now au = ax and bu = bx so we can, without loss of generality, replace x by u and so
we can suppose that x is orthogonal to a, b, ax, bx. Next consider the element ab. We have that ab
is orthogonal to a,b and as ab € Z(L), we also have that ab is orthogonal to ax and bx. Furthermore
(x,ab) = (—bx,a) = (a, bx) = 1. So we have a primary decomposition

ax b

(" b")ea(x )@ (c d) @)

with ¢x =dx = 0. But now Fa + Fax 4+ Fbx 4+ Fb + Fx + Fab is invariant under multiplication by a
and b. It follows that its orthogonal complement, Fc + Fd, is also invariant under multiplication by a
and b. The only possibility then is that ca =da = cb = db = 0. Notice, finally, that cd is orthogonal to
a,ax, b, bx, x,ab as well as to c,d and thus cd = 0. The structure of L is thus determined. All triples
(uv, w) involving ax, bx,ab,c,d are trivial and (ax,b) = (xb,a) = (ba,x) = 1. So there is only one
nonabelian nil-2 algebra of dimension 8.
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6.3. Nil-3 algebras of dimension 8

Let L be a symplectic alternating nil-3 algebra of dimension 8 over a field F. Suppose that x € L
is not left nil-2. By (1), there is only one possible primary decomposition for the multiplication by x

from the right. This is
a bx?
L=(ax bx)@(u t)

ax*> b
where ux =tx=0.
Lemma 6.2. The following properties hold:
(i) Lx2 is abelian;
(ii) Lx*(Lx) C Lx?;
(iii) ax?(ax) = —ax%ax and bx?(bx) = —bx?bx;
(iv) if bx*(ax) = 0 then ax?(ax) = rbx® for somer € F;

(v) if ax?(bx) = O then bx?(bx) = sax? for some s € F.

Proof. (i) As Lx N Cy(x) = Lx%, it follows from Lemma 5.2(iii) that ax(bx%) € Lx* = Fax* & Fbx2. Sup-
pose

ax? (bx*) = aax® + pbx>
for some «, 8 € F. Then
0=ax? (bxz)3 = oax® + o’ Bbx?
implies « =0 and
0=bx? (ax2)3 = —p3bx?
gives 8 = 0. Thus ax?(bx%) =0 and Lx? is abelian.
(ii) This follows by (i) and Lemma 5.2(iv), since Lx N Cp(x) = Lx?.
(iii) We have
0 = —x{a, x, ax} = ax{x, ax} + ax*{a, x} = ax* (ax) + ax*ax

and similarly 0 = bx2(bx) + bx2bx.
(iv) By (ii), we know that

ax? (ax) = sax? + rbx?
for some r,s € F. Then
0= —x(ax)3 =ax? (ax)2 = s?ax® + srbx?

implies s =0 and hence ax?(ax) = rbx?.
We get (v) in the same manner. 0O

Notice that the following result holds with the roles of a and b interchanged.
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Lemma 6.3. If ax?(ax) = rbx? for some r € F, then ax?(bx) = 0. Furthermore, ax®> € Z(L) whenr = 0.
Proof. By (i) of Lemma 5.2, ax?a € Lx. As (ax2a,a) =0 and
(ax*a, ax) = —(ax*(ax),a) =T,
we have
ax’a = aax + Bax® — rbx
for some «, B € F. Then
ax’ax = aax® — rbx®.
But ax2ax = —ax?(ax) = —rbx? by Lemma 6.2(iii), thus cax? = 0. It follows that & =0 and

ax*a = ﬂax2 —rbx,

so that ax2a is orthogonal to bx and thus ax?(bx) is orthogonal to a. However, ax2(bx) € Lx% by (ii) of
Lemma 6.2, hence

ax? (bx) = yax?

for some y € F. Moreover 0 = ax?(bx)3 = y3ax?, hence y =0 and ax?(bx) =0.
Now assume r = 0. Then

ax’a = ﬁax2
and we have
0=ax’a® = ,83ax2
which gives g =0 and
ax’a =0.

We now turn to ax*u and ax?t. They both lie in Lx by (ii) of Lemma 5.2 and are orthogonal to a, ax, bx.
If B = (ax?u, b) and y = (ax’t, b), we have
ax’u = pax’* and ax’t = yax’.

Then, as before, we get 8 =y = 0. We have thus seen that ax? commutes with a, ax, ax?, bx, bx2, u, t
and, as the dimension of Cj(ax?) is even, it follows that ax?b =0 and ax? € Z(L). O

Corollary 6.4. Let y, z € L. If yz*(yz) = 0 then yz* € Z(L).

Proof. If yz%> =0, this is obvious. Otherwise this follows from Lemma 6.3 with y in the role of a and
z in the role of x. O

Remark 6.5. In particular if yz2(yz) =0 for all y,z € L, then Lz% C Z(L).

Furthermore, we have:
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Lemma 6.6. Z(L) N Lx? = {0}.

Proof. If ax?(ax) = 0, then ax* € Z(L) by the previous lemma. So we may assume ax?(ax) # 0. By
Lemma 6.2(ii), the multiplication by ax from the right gives us a linear operator on Lx? that is a
nil-operator and so with a nontrivial kernel. This means that we have

(b+ aa)x*(ax) =0
for some o € F. Without loss of generality we can replace b by b + aa and thus assume that
bx? (ax) =0.

By Lemma 6.2(iv) we have ax®(ax) = rbx? for some r € F \ {0} and hence ax?(bx) =0 by Lemma 6.3.
Then (v) of Lemma 6.2 gives that there exists s € F such that bx?(bx) = sax?. This implies

0 = bx?*(ax + bx)® = rs’ax?
and we get s = 0. It follows bx?(bx) =0 and bx? € Z(L) again applying Lemma 6.3. O

We now turn to the structure of L. This is determined by the value of all triples (vz, w) =
(zw, v) = (wv, z) where v, z, w are pairwise distinct basis vectors. As any such triple has either two
vectors from {a, ax, ax?, b, bx, bx2} or two vectors from {u, t}, we only need to determine ut and the
products of any two elements from {a, ax, ax?, b, bx, bxz}.

According with Lemma 6.6, we will assume

bx* € Z(L). 3)
Then we also have
ax*(ax) =rbx* and ax*(bx)=0 (4)
by Lemma 6.2(iv) and Lemma 6.3, respectively.

Step 1. We can assume that ax*b = 0 and ax®a = —rbx.

Proof. By Lemma 5.2, (ii) and (i), ax®b and ax?a are in Lx. Also axb is orthogonal to ax, b, bx and
ax’b = abx?

for « = —(ax®b,a). If r =0, then Lemma 6.3 implies ax? € Z(L) and so ax?bh = 0. Let r # 0, then
ax*(b — %ax) = 0. Replacing b by b — %ax, we can assume that ax’b = 0. One can check that (3) and
(4) still hold.

Next, we have that ax2a is orthogonal to a, b, bx and

(axza, ax) = —(axz(ax), a)= —r(bxz, a)=r.
Thus ax?a = —rbx. O
Suppose now that x = y + z with y € (a, ax, ax, b, bx, bx?) and z € (u, t). Then 0 = yx and thus

y € Lx?. Notice that z # 0 since otherwise x = y = cx? for some c € L and 0 = x(—cx)? = x. Without
loss of generality, we can suppose that z=u. Hence

x=u + aax? + pbx?

for some o, S € F.



A. Tortora et al. / Journal of Algebra 357 (2012) 183-202 197

Let us calculate the effect of multiplying with
u=x—aax’— ﬂbxz.
Firstly, we have
ut = xt — aax’t.
However, ax?t € Lx by Lemma 5.2(ii) and is orthogonal to a, ax, b, bx. Thus ax*t =0 and
ut =xt.

Recall that bx? € Z(L) and that ax?b = ax?(bx) = 0, whereas ax2a = —rbx and ax?(ax) = rbx?. Using
this, we see that

2

au = ax + owax“a = ax — arbx

and

au? = (ax — arbx)(x — aax® — pbx?)
= ax’ + aax? (ax) — arbx?
= ax? + arbx? — arbx?

= axz.

One also sees that bu = bx and bu? = bx?. Replacing x by u and a, ax, ax?, b, bx, bx?> by a, au, au?, b, bu,
bu?, we still have a decomposition into hyperbolic subspaces. One can now check that (3), (4) and
Step 1 are still valid with x replaced by u. So without loss of generality we can assume that u = x.
We thus have a primary decomposition

a bx?
L:(ax bx)ea(x t)

ax> b
where
xt =0. (5)
Step 2. ax(bx) = 0.
Proof. From ax*b =0, we get
0= —x{a, b, x} = ax{b, x} + bx{a, x} = axbx + bxax. (6)

Since the values
(axb, b), (axb, ax), (axb, axz), (axb, bxz)
and

(bxa, a), (bxa, bx), (bxa, axz), (bxa, bxz)
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are all trivial, we have
axb =aax+y, y e Fbx*>+ Fx+ Ft
and
bxa=pBbx+2z, ze Fax? + Fx + Ft,
respectively. By (6), (7) and (8), it follows that
aax? = axbx = —bxax = —Bbx?
which implies &« = 8 = 0. Hence (axb, bx) = (bxa, ax) = 0 and thus
(ax(bx), a) = (ax(bx), b) = 0.
Clearly, ax(bx) is also orthogonal to ax, bx, ax?, bx%, x and thus
ax(bx) = ax
for some o € F. But we have
0= —x{a, ax, bx}
= ax{ax, bx} + ax*{a, bx} + bx*{a, ax}
= ax(bx)(ax) + ax*a(bx)

= ax(bx)(ax) — r(bx)*
=ax(bx)(ax).
Then
0 = ax(bx)(ax) = ax(ax) = —aax?
anda=0. O
Step 3. We can assume that bxb = 0 and axa = rb.
Proof. Let us first consider bxb. It is orthogonal to ax, ax2, b, bx, bx2, x. We then have
bxb = abx? + Bx
where o = —(bxb, a) and B = (bxb, t). Since
0=xb>=— Bxb,
we get 8 =0. It follows that

0 =bx(b — ax).

(7)
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Replacing b by b — ax and t by t — aax® respectively, (3), (4), (5) and the previous steps still hold.
Thus we can assume bxb = 0.
We turn to axa. It is clear that axa is orthogonal to a, ax, bx, bx2, x and that

(axa, ax?) = (ax?, a(ax)) = (ax*(ax), a) = r(bx*,a) = —.
Suppose (axa,b) =« and (axa,t) = B. Then
axa = aax® + rb + Bx. (9)

We next show that axa(bx) € Lx and in order to do this we prove that a(bx)x = 0. That this is sufficient
follows from

0 =a{a, x, bx} = ax{a, bx} + a(bx){a, x} = axa(bx) + a(bx)ax + a(bx)xa.
As ax(bx) = 0, by (8) we know that a(bx) € Fax®> + Fx + Ft. But
(a(bx),b) =0 and (a(bx),x)=—1,
and thus
a(bx) =yx+t and a(bx)x=0. (10)
Let axa(bx) = a1ax + apax® + B1bx + Bobx2. Since
(axa(bx), a) = (axa(bx), b) = (axa(bx), ax) = (axa(bx), bx) =0,
axa(bx) is trivial and, by (9), we get
0 = axa(bx) = —Bbx>.

Thus B =0 and ax(a — ax) = rb. If we replace a by a — ax and t by t + abx?, then (3), (4), (5) and all
the previous steps hold. So we can assume that axa=rb. O

Step 4. axb =t and bxa = —t.

Proof. We first consider axt which is clearly orthogonal to x and t. As the product of ax with
a, ax, ax®, bx, bx? is orthogonal to t, axt is also orthogonal to a, ax, ax?, bx, bx%. Hence, for some « € F,

axt = ocaxz

and ax(t —ax) =0.
Replacing t by t — ax we can assume that

axt = 0.

It follows that (axb,t) =0, thus axb is orthogonal to t. As the products of ax with a, ax, bx, ax%, bx?
are orthogonal to b, we have that axb is orthogonal to t, a, ax, bx, ax?, bx%, b. Also (axb,x) = —1 and
S0

axb =t.
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We now turn to bxa. By (10), we know that
bxa=—t — yx.
Since
0=—x(a+b)’
= (ax + bx)(a + b)?
= (axa + axb + bxa)(a + b)

=@b+t—t—yx)(a+b)
= —rab + yax + ybx,

we get

0= (—rab+ yax+ ybx,bx) =y.
Thus bxa=—t. O
Step 5. We can assume that ab = 0.

Proof. Clearly, ab is orthogonal to a, b and, since ax?, bx, bx*> commute with b, we have that ab is also
orthogonal to ax?, bx, bx%. As bx is orthogonal to a we also have ab orthogonal to x. Then

(ab,ax) = —(b,axa) = —(b,rb) =0
and the only generator left is t. Hence
ab = ax

for some « € F.

We consider two cases. Suppose first that yz?(yz) =0 for all y,ze L. Then r =0 and by Re-
mark 6.5

axb=ab? e Z(L)

which is absurd except if &« = 0. Hence ab =0 in this case.

If the identity yz%(yz) =0 does not hold for all y, z € L, without loss of generality we can assume
ax?(ax) = rbx? with r # 0. Thus

0 = ba® = waxa = arb

implies @ =0 and hence ab =0 also in this case. O

As candidates for our examples we thus have a one parameter family of symplectic alternating

algebras
a bx?
L(r)=(ax bx)ea(x t).

ax? b



A. Tortora et al. / Journal of Algebra 357 (2012) 183-202 201

Notice that t € Z(L(r)) since vt is orthogonal to x,t and (vt,w) = —(vw,t) =0 for all v,w €
{a,ax, ax?, b, bx, bx?}: the only nontrivial products not involving x are

axa =rb,
ax’a = —rbx,
ax? (ax) = rbx?,
axb =t,

bxa = —t.
It remains to check that L(r) is nil-3.
Proposition 6.7. L(r) is a nil-3 algebra for allr € F.

Proof. Let z = a1a + apax + azax? + B1b + Pabx + yx. It suffices to show that yz3 =0 for the basis
elements a, ax, ax?, b, bx, x. Using the description of L(r), we have bxz? = (—a;t + ybx?)z =0 and
then:
az> = (—aarb + a3rbx + Bot + yax)z?
= (—aarb + yax)z?
= (a%rt — aayrbx + yonrb — yasrbx® + y Bt + yzaxz)z
= (—oyrbx + yorb + y2ax?)z
=ooyyart — ozzyzrbx2 — yajoort
+ y2aqrbx — y2airbx + y2aprbx?
=0;
axz® = (aarb — asrbx® + Bit + yax2)22
= (a1rb + yax?) 2

= (—onoart + a1y rbx — yorbx + )/ozzrbxz)z
O.

)

ax’z® = (—orbx + aarbx?)z? = 0;

bz® = (—ast + ybx)z* =0;
bxz® = (—ot+ )/bxz)z2 =0;

x2> = (—a1ax — a2ax? — B1bx — abx?) 2
= (—oax — aax®)z?
= (—ozlzrb + aqo3rbx® — aq Bit
— a1y ax® + apa1rhx — a3rbx?)z

= (—alzrb —aryax® + ara17bx)z
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=adayrt —adyrbx +alyrbx
— a1y aarbx* — a2t + az0 y rbx?
=0. a
We finally prove the nilpotency of L(r).
Theorem 6.8. L(r) is nilpotent of class 3 if r = 0 and of class 5 if r # 0.
Proof. Let r = 0. Then Z(L) = Fax? + Fbx? + Ft by Lemma 6.3. Moreover
>=Lx+Ft and L[*=Lx*+ Ft=Z(L),
so that L(0) is nilpotent of class 3.
Assume r # 0. Then
2= (b, ax, bx, ax®, bx?, t), 3= (b, bx, ax®, bx?, t)
L*=(bx,bx,t), L°=(bx*t), L°={0}.

This proves that L(r) is nilpotent of class 5. O

The parameter r € F is not unique. Recall that r = (a, ax?(ax)). Now Z3(L) = (L*)* = (b, bx, ax?,
bx2,t). Let

a=o1a+ giax+yx+u and X=owaxa+ Brax+d8x+v
with u, v € Z3(L). Tedious but direct calculations show that
(@,ax*@x)) = (18 — aay)’r.

This implies that for r, s £ 0 we have that L(r) = L(s) if and only if r and s are in the same coset of the
abelian group F*/(F*)3 (where F* = F \ {0}). Adding L(0), we see that there are up to isomorphism
exactly |F*/(F*)3| + 1 symplectic alternating algebras of dimension 8 that are nil-3 but not nil-2. If
F is algebraically closed then this number is 2. As (R*)3 =R, this is also true when the underlying
field is the field of real numbers. On the other hand, Q*/(Q*)3 is infinite so over the rational field
we have an infinite number of examples. If F is finite then F* is cyclic and thus |F*/(F*)3| is 1 or 3
depending on whether 3 divides |F| — 1 or not.
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