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Let K be a field of order p and let G be a cyclic group of or-
der pk (k � 2). We explicitly decompose the symmetric powers of
the indecomposable KG-module of dimension p + 1 into indecom-
posable KG-modules. Using this result, for every odd prime p, we
give a negative answer to the conjecture posed by Kouwenhoven
[F.M. Kouwenhoven, The λ-structure of the Green rings of cyclic
p-groups, Proc. Sympos. Pure Math. 47 (1987) 451–466].
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1. Introduction

Let K be a field with positive characteristic p and let G be a finite group with order divisible
by p. The Green ring RSK (G) of G over K is a ring formed from isomorphism classes of the finite-
dimensional KG-modules, with addition and multiplication coming from direct sums and their tensor
products, respectively. If K is algebraically closed and the Sylow p-subgroups of G are cyclic, then
the ring structure of RSK (G) is theoretically approachable [6]. Even in cases of finite cyclic p-groups,
however, the λ-structure of RSK (G) induced from exterior powers is far from being approachable.
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Most obstructions to studies of the λ-structure of RSK (G) are caused by the fact that RSK (G) is not
a λ-ring. Hence it would be quite natural to search for the smallest λ-ideal I such that the quotient
ring RSK (G)/I is a λ-ring. In 1987, Kouwenhoven settled this problem for the case in which G is
a cyclic group of order p for each prime p [9]. Furthermore, he proposed a challenging conjecture
for the case in which G is a cyclic group of order pk (k � 2). Throughout this paper, the Green ring
is simply denoted by RS(pk) if K is a field of order p and G is a cyclic group of order pk . It is
well known that RS(pk) is a free Z-module with basis {Vn: 1 � n � pk}, where Vn := K [X]/(X − 1)n .
Against this background, Kouwenhoven’s conjecture is stated as follows.

Conjecture. (See [9].) For every prime p, let q = pk for k � 2 and let Iq be the ideal generated by V pi −
V pi−1 − V 1 for 1 � i � k. Then Iq is closed for the exterior powers and RS(q)/Iq is equipped with the λ-ring
structure for the induced exterior powers.

It was recently shown that the above conjecture is true when p = 2, but false when p = 3 [10].
We show here that it is false for every odd prime p. In brief, our strategy is to compute
ψ

p
S (V p+1) (mod Iq) in two different ways. The first is to express ψ

p
S (V p+1) as a linear combina-

tion of indecomposable modules using Newton’s formula (for a precise description, see Theorem 4.3).
It should be noted that this method is applicable since the explicit decomposition of Sn(V p+1) can
be obtained by virtue of the elegant theorem of Shank and Wehlau [11, Theorem 1.3]. The sec-
ond way is to compute ψ

p
S (V p+1) from ψ

p
Λ(V p2−(p+1)) modulo ZV p2 using the result reported by

Bryant and Johnson [5, Theorem 6.2]. Under the validity of the conjecture, ψ
p
Λ(V p2−(p+1)) is equal

to ψ
p
Λ(V p2) − ψ

p
Λ(V p+1) (mod I p2). Since ψ

p
Λ(V p2 ) = pV p and ψ

p
Λ(V p+1) is computable by virtue of

another result presented by Bryant and Johnson [4, Theorem 4.7], the value of ψ
p
S (V p+1) (mod I p2 )

is also computable (Lemma 4.1). Finally, by comparing the results thus obtained, we derive a contra-
diction.

The remainder of the paper is organized as follows. Section 2 recollects the notations and theorems
required to develop our arguments. Section 3 describes the explicit decomposition of Sn(V p+1) into
a direct sum of indecomposable modules for each positive integer n. The final section shows that
Kouwenhoven’s conjecture does not always hold.

2. Preliminaries

This paper is a sequel to a previous study [10]. To avoid confusion and ambiguity, we adopt all the
previous definitions and notation without change. We also introduce further notation and theorems
required to develop our argument.

Let K be a field, G a finite group, and RSK (G) the Green ring of G over K . In the case in which
K is a field of order p and G is a cyclic group of order pk for a positive integer k, we denote RSK (G)

by RS(pk) throughout the paper. For any KG-module V , let V denote the corresponding element of
RSK (G). It is well known that RS(pk) is a free Z-module that has a Z-basis consisting of pk inde-
composable modules V 1, V 2, . . . , V pk satisfying dim Vn = n for each 1 � n � pk . Conventionally, V 0 is

defined by the zero element in RS(pk).
The most significant pre-λ-ring structures of RSK (G) come from the exterior powers Λn and the

symmetric powers Sn (n = 0,1,2 . . .), respectively. For each positive integer n and for all x ∈ RSK (G),
we define ψn

Λ(x) and ψn
S (x) as follows.

∞∑
n=0

(−1)nψn+1
Λ (x)tn := d

dt
log Λt(x),

∞∑
n=0

ψn+1
S (x)tn := d

dt
log St(x),
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where

Λt(x) = 1 + Λ1(x)t + Λ2(x)t2 + · · · ,
St(x) = 1 + S1(x)t + S2(x)t2 + · · · .

We can easily show that ψn
Λ(x),ψn

S (x) ∈ RSK (G) and

ψn
Λ(x + y) = ψn

Λ(x) + ψn
Λ(y), ψn

S (x + y) = ψn
S (x) + ψn

S (y)

for all positive integers n and all x, y ∈ RSK (G). Hence, we have the Z-linear functions

ψn
Λ,ψn

S : RSK (G) → RSK (G),

which are called the nth Adams operations on RSK (G). From the definition of Adams operations, we
can derive Newton’s formula for ψn

Λ and ψn
S (n � 1):

n−1∑
i=0

(−1)i+1ψn−i
Λ Λi = (−1)nnΛn and

n−1∑
i=0

ψn−i
S Si = nSn, ∀n � 1. (2.1)

These formulae imply that each ψn
Λ and ψn

S can be expressed as a polynomial in Λi and Si (1 � i � n),
respectively, with integer coefficients. As a consequence, if I is invariant under Λn (Sn) for all n � 1,
then it is also invariant under ψn

Λ (ψn
S ) for all n � 1. In studies of the λ-structure of RSK (G), Adams

operations are useful because they contain much information about λ-operations and are easier to
deal with than λ-operations because of their additivity. In particular, Bryant showed that ψn

Λ and ψn
S

behave well provided n is not divisible by the characteristic of K [3].

Theorem 2.1. (See [3].) For every positive integer n that is not divisible by the characteristic of a field K , we
have ψn

Λ = ψn
S and each of these maps is a ring endomorphism of RSK (G). Furthermore, under the composition

of maps we have

ψn
Λ ◦ ψm

Λ = ψnm
Λ , ψn

S ◦ ψm
S = ψnm

S

for all positive integers m.

For a KG-module V , let PV denote the projective cover of V . It is uniquely determined up to
isomorphism and the value of the Heller operation Ω at V is defined as the kernel of the map
PV → V so that the short sequence

0 → Ω(V ) → PV → V → 0

is exact [2]. Then we can have a Z-linear function on RSK (G) by extending Ω by linearity. We define
Ω0 as the identity map and Ωn the map obtained by composing Ω n times for each positive inte-
ger n. In the case in which K = Fp and G is a cyclic group of order pk , V pk is the only projective

indecomposable KG-module and V pk−r is the Heller translate of Vr in RS(pk).
For any positive integer n not divisible by p, let γ (n) denote the unique integer satisfying the con-

ditions 1 � γ (n) � p − 1 and n ≡ γ (n) (or, −γ (n)) (mod 2p) and set γ (0) to 0. For m ∈ {0, . . . ,k − 1}
and i ∈ {1, . . . , p − 1}, we define a Z-linear map θipm : RS(pm) → RS(pm+1) so that

θipm (Vr) = V ipm+r − V ipm−r
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for r = 1, . . . , pm . In particular, θ0 is defined as the identity map on RS(pm). The following propositions
are useful for computation of the value of Adams operations.

Proposition 2.2. (See [4,5].) Let k be a positive integer. Then we have the following.

(a) Let m ∈ {0, . . . ,k −1} and let n be a positive integer not divisible by p. Let s be a positive integer satisfying
pm < s � pm+1 and write s = s0 pm + s1 , where 1 � s0 � p − 1 and 1 � s1 � pm. Then

ψn
Λ(V s) =

∑
i∈{0,...,s0}

i≡s0 (mod 2)

θγ (in)pm
(
ψn

Λ(V s1)
) +

∑
i∈{0,...,s0}

i 	≡s0 (mod 2)

θγ (in)pm
(
ψn

Λ(V pm−s1)
)
.

(b) Let q = pk. Then for each positive integer n, the nth Adams operations ψn
Λ and ψn

S on RS(q) satisfy the
relation

ψn
S (V s) ≡ (−1)n−1Ωn(ψn

Λ(Vq−s)
) + (n,q)Vn/(n,q) (mod ZVq),

where q/p � s � q.

Proposition 2.3. (See [4,5].) Let k be a positive integer. Then we have the following.

(a) For 0 � i � k − 1, χiψ
p
Λ(χi) = 2ψ

p−1
Λ (χi) holds, where χi denotes the ith generator of RS(pk), i.e.,

V pi+1 − V pi−1 .
(b) Let q be a power of an odd prime. Then for each positive integer n, ψn

Λ(Vq) = (n,q)Vq/(n,q) holds.
(c) For all positive integers n not divisible by p and 1 � m � k,

ψn
Λ

(
V pm−1

) =
{

V pm−1 if n is odd,

V pm − V 1 if n is even.

The following proposition presents the rules necessary for multiplication of RS(q) through decom-
position of the tensor product of two indecomposable modules.

Proposition 2.4. (See [8,9].) Suppose that p is prime and q = pk, where k is a positive integer.

(a) For 0 � n � q, we have

V 2 Vn =
{

Vn−1 + Vn+1 if p � n,

2Vn if p | n.

(b) Let m and n be positive integers such that m � n � pq. We write n = n0q + n1 and m = m0q + m1 with
0 � m1,n1 � q − 1. Suppose Vn1 Vm1 = ∑

s as V s. If m + n � pq, then

Vn Vm =
m0∑
i=1

q−1∑
s=1

as(V (n0+m0+2−2i)q+s + V (n0+m0+2−2i)q−s)

+
q−1∑
s=1

as V (n0−m0)q+s + |n1 + m1 − q|
m0∑
i=1

V (n0+m0+1−2i)q

+ |m1 − n1|
m0∑
i=1

V (n0+m0+2−2i)q + max(0,m1 + n1 − q)V (n0+m0+1)q

+ max(0,m1 − n1)V (n0−m0)q.
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If m + n > pq, then

Vn Vm = V pq−n V pq−m + (n + m − pq)V pq.

It has been shown that there exists a ring isomorphism, say ϕ : RS(p)⊗k → RS(q), defined by [1,7]

1 ⊗ · · · ⊗ 1 ⊗
ith︷︸︸︷
V 2 ⊗1 ⊗ · · · ⊗ 1 �→ V 2pi−1 − V 2pi−1−1 + V 1 (1 � i � k).

Contrary to the simplicity of the ring structure, the λ-structure of RS(q) is extremely complicated.
Indeed RS(pk) (k � 1) is not a λ-ring for the λ-operations coming from the exterior powers. We define
I p as the ideal of RS(p) generated by V p − V p−1 − V 1. In 1987, Kouwenhoven showed that RS(p)/I p

is the largest Z-torsion free quotient of RS(p) that is a λ-ring for the induced exterior powers [9]. He
also showed that ϕ induces a ring isomorphism

ϕ̄ : (RS(p)/I p
)⊗k → RS(q)/Iq, x1 ⊗ x2 ⊗ · · · ⊗ xk �→ ϕ(x1 ⊗ x2 ⊗ · · · ⊗ xk),

where Iq is the ideal generated by V pi − V pi−1 − V 1 for all i with 1 � i � k. Here, bar notation is used
to denote a coset. However, if there is no danger of confusion, this will be omitted for simplicity.
Motivated by this observation, he proposed the following conjecture on the λ-structure of RS(q)/Iq

when k � 2.

Conjecture 2.5. (See [9].) For every prime p, let q = pk with k � 2 and let Iq be the ideal generated by
V pi − V pi−1 − V 1 for 1 � i � k. The exterior powers induce operations on RS(q)/Iq and the induced ring iso-

morphism ϕ̄ : (RS(p)/I p)⊗k ∼=−→ RS(q)/Iq commutes with the λ-operations. In particular, RS(q)/Iq is a λ-ring.

We recently presented a partial result for Conjecture 2.5 [10]: we showed that it is true when
p = 2, but false when p = 3. The main goal of the present paper is to show that I pk is not closed for
the exterior powers if p is an odd prime and k � 2.

We finish this section by providing a Z-basis of RS(q)/Iq , which plays a key role in the final step
in disproving Conjecture 2.5.

Let

A :=
{
(a1, . . . ,ak−1): 0 � ai � p − 1

2
for all 1 � i � k − 1

}
.

For any (k − 1)-tuple (a1, . . . ,ak−1) ∈A, we define sum(a1, . . . ,ak−1) as

∑
1�m�k−1

am pm.

Proposition 2.6. (See [10].) Let k be a positive integer and let q = pk. Then the set

{
V sum(a1,...,ak−1)+ j: (a1, . . . ,ak−1) ∈ A, j = 1,3, . . . , p

}
is a Z-basis of RS(q)/Iq .
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3. Symmetric powers of V p+1

In this section, we decompose Sn(V p+1) into a direct sum of indecomposable modules for each
positive integer n. It should be noted that Shank and Wehlau have already succeeded in decompos-
ing Sn(V p+1) into a direct sum of indecomposable modules (Theorem 3.4) [11]. Their decomposition,
however, is up to induced modules. Here we calculate the multiplicity of each induced module ap-
pearing in the decomposition of Sn(V p+1) precisely.

We first provide two results on the decomposition of symmetric powers.

Proposition 3.1. (See [1].)

(a) Sr(V 2) ∼= Vr+1 for 0 � r � p − 1.
(b) Sr(V pm−t) ∼= Sr/p(V pm−1) ⊕ free for r ≡ 0 (mod p) and t in the range 0 � t � p − 1.

Lemma 3.2. For any non-negative integer s and 0 � r � p − 1, we have

Ssp+r(V 2) ∼= Vr+1 ⊕ sV p . (3.1)

Proof. If r = 0, then Ssp(V 2) ∼= Ss(V 1) ⊕ free, which follows from Proposition 3.1(b), and this holds
for all prime p. Comparing the dimension of either side of (3.1) immediately yields the desired re-
sult. Thus, r is assumed to be positive hereafter. To accomplish our purpose, we use mathematical
induction on sp + r. Note that S1(V 2) ∼= V 2. Suppose that the decomposition of Sk(V 2) satisfies our
assertion for all k < sp + r, where sp + r > 1. Since sp + r is not divisible by p, in this case we have

sp+r∑
i=0

(−1)iΛi(V 2)Ssp+r−i(V 2) = 0 (3.2)

in RS(p). Thus,

Ssp+r(V 2) − V 2 Ssp+r−1(V 2) + Ssp+r−2(V 2) = 0.

If p 	= 2, the induction hypothesis implies that

0 = Ssp+r(V 2) − V 2(Vr + sV p) + Ssp+r−2(V 2)

=
{

Ssp+r(V 2) − V 2 − 2sV p + V p + (s − 1)V p if r = 1,

Ssp+r(V 2) − Vr+1 − Vr−1 − 2sV p + Vr−1 + sV p otherwise

=
{

Ssp+r(V 2) − V 2 − sV p if r = 1,

Ssp+r(V 2) − Vr+1 − sV p otherwise.

The second equality follows from Proposition 2.4(a). Conversely, if p = 2, we have

0 = Ssp+1(V 2) − V 2(V 1 + sV 2) + S(s−1)p+1(V 2)

= Ssp+1(V 2) − V 2 − 2sV 2 + sV 2

= Ssp+1(V 2) − (s + 1)V 2.

This completes the proof. �
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Remark 3.3. For any KG-module V , consider the following exact sequence:

0 → Λd(V ) → Λd−1 ⊗ S1(V ) → ·· · → Λ1(V ) ⊗ Sd−1(V ) → Sd(V ) → 0.

It is well known that the above exact sequence splits whenever d is invertible, and hence Eq. (3.2)
follows [1, Theorem 2.3].

Next we introduce a result due to Shank and Wehlau on the decomposition of Sn(V p+1) into
a direct sum of indecomposable modules [11]. We first review the notation required. Let G be a finite
group and let H be a subgroup of G . For any KG-module V , let ResH(V ) denote the KH-module
obtained from V by restriction. Since restriction commutes with direct sums and tensor products, we
can extend ResH to a ring homomorphism from RSK (G) to RSK (H). Furthermore, it is well known that
ResH commutes with the exterior powers and symmetric powers. Conversely, for any KH-module W
let IndG(W ) denote the KG-module obtained from W by induction. Since induction commutes with
direct sums, IndG can also be extended to a Z-linear map from RSK (H) to RSK (G). A KG-module is
said to be induced if it is induced from a KH-module for some subgroup H of G and an element of
RSK (G) is said to be induced if it is a Z-linear combination of induced modules. Now assume that K
is a field of characteristic p, G is a cyclic group of order pk , and H is the unique subgroup of index p
in G . Then we have

ResH(V s) = s1 V s0+1 + (p − s1)V s0 , (3.3)

where s = s0 p + s1 with 0 � s1 � p − 1 and, for r = 1, . . . , pk−1,

IndG(Vr) = Vrp .

It is not difficult to show that Vr is induced from a module of a proper subgroup of G if and only
if r is divisible by p. Hereafter, we write Res for ResH, the restriction map (3.3), for simplicity. The
following theorem is key in the proof of our main result.

Theorem 3.4. (See [11].) Let K be a field of characteristic p, let G be a cyclic group of order p2 and let d be
any non-negative integer. In the decomposition of Sn(V p+1) into a direct sum of indecomposable KG-modules,
there is at most one indecomposable summand Vr that is not induced from a representation of a proper sub-
group. In particular, writing n = ap2 + bp + c, where 0 � b, c � p − 1, Sn(V p+1) is an induced module when
b = p − 1 and there is exactly one non-induced indecomposable summand when b � p − 2 that is isomorphic
to V cp+b+1 .

Note that

St
(
Res(V p+1)

) = St
(
(p − 1)V 1 + V 2

)
= (

1 + t + t2 + · · ·)p−1(
1 + S1(V 2)t + S2(V 2)t

2 + · · ·).
Thus, the coefficient of tn in St(Res(V p+1)) is given by

Sn(V 2) +
((

p − 1

1

))
Sn−1(V 2) + · · · +

((
p − 1

n − 1

))
S1(V 2) +

((
p − 1

n

))
V 1, (3.4)

where the notation
((n

k

))
denotes the number of k-multicombinations (or k-combinations with rep-

etitions) of an n-element set. Note that
((n

k

)) = (n+k−1
k

)
. To apply Lemma 3.2, we write the above

summation as
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c+1∑
j=0

((
p − 1

j

))
Sn− j(V 2) +

ap+b−2∑
i=0

p−1∑
j=0

((
p − 1

c + 2 + pi + j

))
Sn−(c+2+pi+ j)(V 2)

+
p−2∑
j=0

((
p − 1

n + 2 − p + j

))
Sn−(n+2−p+ j)(V 2), (3.5)

where n = ap2 + bp + c with 0 � b, c � p − 1. Using the convention that
((n

k

))
is zero when k is a neg-

ative integer, in view of Lemma 3.2, we can write the summation in Eq. (3.5) as a linear combination

p∑
k=1

c(k)Vk

of V 1, . . . , V p , where

c(k) =
ap+b∑
i=0

((
p − 1

c + 1 − k + ip

))
, 1 � k � p − 1

and

c(p) =
⎧⎨
⎩

∑ap+b
i=0 (ap + b − i)

∑p−1
j=0

(( p−1
c+1− j+ip

))
if c 	= p − 1,∑ap+b

i=0 (ap + b − i)
∑p−1

j=0

(( p−1
c+1− j+ip

)) + ap + b + 1 if c = p − 1.
(3.6)

Moreover, for 0 � c � p − 1 and 0 � j � p − 1, it is easy to show that
(( p−1

c+1− j−p

)) = 0 unless
c = p − 1 and j = 0. Thus, two cases in Eq. (3.6) can be merged as

c(p) =
ap+b∑
i=−1

(ap + b − i)
p−1∑
j=0

((
p − 1

c + 1 − j + ip

))
.

Next, we recall the identity

Sn(Res(V p+1)
) = Res

(
Sn(V p+1)

)
,

which follows from the fact that the restriction map commutes with symmetric power. Using Theo-
rem 3.4, we can derive

Sn(V p+1) =
{

V cp+b+1 + cn(1)V p + cn(2)V 2p + · · · + cn(p)V p2 if b � p − 2,

cn(1)V p + cn(2)V 2p + · · · + cn(p)V p2 if b = p − 1,
(3.7)

for some non-negative integers cn(i) (1 � i � p). To Eq. (3.7) we apply the formulae

Res(V cp+b+1) = (p − b − 1)V c + (b + 1)V c+1

and

Res(Vkp) = pVk
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and then compare the coefficient of V i on either side of Sn(Res(V p+1)) = Res(Sn(V p+1)). This enables
us to derive the explicit decomposition of Sn(V p+1) into indecomposables.

Theorem 3.5. Writing n = ap2 + bp + c with 0 � b, c � p − 1, we have

Sn(V p+1) = (1 − δb,p−1)V cp+b+1 +
p∑

k=1

cn(k)Vkp,

where if b = p − 1, then

pcn(k) ==
⎧⎨
⎩

∑ap+b
i=0

(( p−1
c+1−k+ip

))
if 1 � k � p − 1,∑ap+b

i=−1(ap + b − i)
∑p−1

j=0

(( p−1
c+1− j+ip

))
if k = p

and if b 	= p − 1, then

pcn(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ap+b
i=0

(( p−1
c+1−k+ip

))
if 1 � k � p − 1, k 	= c, c + 1,∑ap+b

i=0

(( p−1
1+ip

)) − p + b + 1 if k = c,∑ap+b
i=0

((p−1
ip

)) − b − 1 if k = c + 1, k 	= p,∑ap+b
i=−1(ap + b − i)

∑p−1
j=0

(( p−1
(i+1)p− j

)) − b − 1 if k = c + 1, k = p,∑ap+b
i=−1(ap + b − i)

∑p−1
j=0

(( p−1
c+1− j+ip

))
if k 	= c + 1, k = p.

Example 3.6. Let p = 5. According to Theorem 3.5, the first ten Sn(V 6) value (1 � n � 10) are decom-
posed into indecomposable modules in the following fashion.

S1(V 6) V 6

S2(V 6) V 11 ⊕ 2V 5

S3(V 6) V 16 ⊕ 4V 5

S4(V 6) V 21 ⊕ 7V 5 ⊕ 4V 10 ⊕ 2V 15

S5(V 6) V 2 ⊕ 11V 5 ⊕ 7V 10 ⊕ 4V 15 ⊕ 2V 20 ⊕ V 25

S6(V 6) V 7 ⊕ 17V 5 ⊕ 11V 10 ⊕ 7V 15 ⊕ 4V 20 ⊕ 3V 25

S7(V 6) V 12 ⊕ 26V 5 ⊕ 17V 10 ⊕ 11V 15 ⊕ 7V 20 ⊕ 7V 25

S8(V 6) V 17 ⊕ 37V 5 ⊕ 26V 10 ⊕ 17V 15 ⊕ 11V 20 ⊕ 14V 25

S9(V 6) V 22 ⊕ 51V 5 ⊕ 37V 10 ⊕ 26V 15 ⊕ 17V 20 ⊕ 25V 25

S10(V 6) V 3 ⊕ 68V 5 ⊕ 51V 10 ⊕ 37V 15 ⊕ 26V 20 ⊕ 43V 25

4. The value of Adams operations at V p+1 and Kouwenhoven’s conjecture

The purpose of this section is to disprove Conjecture 2.5 for every odd prime. We first provide
a brief outline of our argument. Assume that Iq is closed for the exterior powers. Then it is also
closed for all Adams operations associated with the exterior powers, that is, ψn

Λ(Iq) ⊆ Iq for all
positive integers n, because each ψn

Λ can be expressed as a polynomial in λn (n � 1) with inte-
ger coefficients. Consequently, ψ

p
Λ(V p2−(p+1)) should be equal to ψ

p
Λ(V p2 − V p+1) modulo I p2 since

V p+1(V p2 − V p2−1 − V 1) = V p2 − V p2−(p+1) − V p+1 ∈ I p2 . However, we show that this phenomenon
does not occur if p is odd. Throughout this section, p denotes an odd prime.

First, we express ψ
p
Λ(V p2 − V p+1) as a linear combination of V i values modulo I p2 . To use Propo-

sition 2.3(a), we multiply by V p+1 − V p−1. Since ψ
p
Λ(V p2) = pV p by Proposition 2.3(b), it follows

that
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(V p+1 − V p−1)ψ
p
Λ(V p2 − V p+1)

= (V p+1 − V p−1)
(

pV p − ψ
p
Λ(V p+1)

)
= pV p(V p+1 − V p−1) − (V p+1 − V p−1)ψ

p
Λ(V p+1 − V p−1)

− (V p+1 − V p−1)ψ
p
Λ(V p−1). (4.1)

The term (V p+1 − V p−1)ψ
p
Λ(V p+1 − V p−1) is equal to 2ψ

p−1
Λ (V p+1 − V p−1) by Proposition 2.3(a)

because χ1 = V p+1 − V p−1. Furthermore, from [3, Lemma 3.4] it follows that ψ
p
Λ(V p−1) ≡

(p − 1)V 1 (mod I p2 ). Substituting these into Eq. (4.1) yields the modulo equivalence

(V p+1 − V p−1)ψ
p
Λ(V p2 − V p+1)

≡ pV p(V p+1 − V p−1) − 2ψ
p−1
Λ (V p+1 − V p−1)

− (p − 1)(V p+1 − V p−1) (mod I p2). (4.2)

Moreover, by Propositions 2.3(c) and 2.2(b), we can deduce that ψ
p−1
Λ (V p−1) = V p − V 1, and hence

ψn
Λ(V p+1) = θγ (n)p

(
ψn(V 1)

) + θγ (0)p
(
ψn

Λ(V p−1)
)

= Vnp+1 − Vnp−1 + ψn
Λ(V p−1)

=
{

Vnp+1 − Vnp−1 + V p−1 if n is odd,

Vnp+1 − Vnp−1 + V p − V 1 if n is even,
(4.3)

where 1 � n � p − 1. Applying Eq. (4.3) to Eq. (4.2), we finally have the following identities.

Lemma 4.1.

(V p+1 − V p−1)ψ
p
Λ(V p2 − V p+1) ≡ pV p(V p+1 − V p−1) − (p + 1)(V p+1 − V p−1) (mod I p2)

and

ψ
p−1
Λ (V p+1) ≡ V p+1 (mod I p2).

Letting q = p2, s = p2 − (p + 1) in Proposition 2.2(b) yields the identity

(V p+1 − V p−1)ψ
p
Λ(V p2−(p+1)) ≡ (V p+1 − V p−1)

(
Ω

(
ψ

p
S (V p+1) − pV p

))
(mod ZV p2). (4.4)

Note that Ω(Vr) ≡ V p2 − Vr (mod I p2 ) since the Heller operation Ω translates Vr to V p2−r in RS(p2).
Therefore, we have the following lemma.

Lemma 4.2.

(V p+1 − V p−1)ψ
p
Λ(V p2−(p+1))

≡ pV p(V p+1 − V p−1) − ψ
p
S (V p+1)(V p+1 − V p−1) (mod I p2). (4.5)
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Proof. The desired result can be obtained by comparing the dimension on either side of Eq. (4.5). �
Thus, if Conjecture 2.5 is true, then by Lemmas 4.1 and 4.2,

ψ
p
S (V p+1)(V p+1 − V p−1) ≡ (p + 1)(V p+1 − V p−1) (mod I p2).

We now show that this modulo equivalence does not hold unless p = 2 by computing the explicit
value of ψ

p
S at V p+1.

We first introduce multiplication formulae necessary for computation of ψ
p
S (V p+1), all of which

can be derived from Proposition 2.4 by direct calculation.

(P1) If s > r, then

(V sp+1 − V sp−1 + V p−1)Vrp = (V sp+1 − V sp−1 + V p − V 1)Vrp

= V (s+r)p − V (s−r)p + (p − 1)Vrp .

(P2) If s = r, then

(V sp+1 − V sp−1 + V p−1)Vrp = (V sp+1 − V sp−1 + V p − V 1)Vrp

= V 2rp + (p − 1)Vrp .

(P3) If s < r, then

(V sp+1 − V sp−1 + V p−1)Vrp = (V sp+1 − V sp−1 + V p − V 1)Vrp

= V (s+r)p + V (r−s)p + (p − 1)Vrp .

(P4) If 1 � r � p−1
2 , then

(V (p−r)p+1 − V (p−r)p−1 + V p−1)Vrp+1

= (p − 2)Vrp − V p2−1 + 2V p2 + V (r+1)p−1 − V (p−2r)p−1.

(P5) If 1 � r � p−1
2 , then

(V (p−r)p+1 − V (p−r)p−1 + V p − V 1)Vrp+1

= (p − 1)Vrp − V p2−1 + 2V p2 + V (r+1)p − V (p−2r)p−1 − Vrp+1.

(P6) If p+1
2 � r � p − 1, then

(V (p−r)p+1 − V (p−r)p−1 + V p−1)Vrp+1

= (p − 2)Vrp − V p2−1 + 2V p2 + V (r+1)p−1 + V (2r−p)p+1.

(P7) If p+1
2 � r � p − 1, then

(V (p−r)p+1 − V (p−r)p−1 + V p − V 1)Vrp+1

= (p − 1)Vrp − V p2−1 + 2V p2 + V (r+1)p + V (2r−p)p+1 − Vrp+1.
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Theorem 4.3. For every odd prime p, we have

ψ
p
S (V p+1) = pV 2 + V p−1 − V p + (p − 2)V p2−1 − (p − 2)V p2 .

Proof. In view of Theorem 3.5, we obtain

Si(V p+1) = V ip+1 +
i−1∑
r=1

(
p − 1 + i − r

p − 2

)
p−1 Vrp, (4.6)

where 1 � i � p − 1, and

S p(V p+1) = V 2 +
((

2p − 2

p − 2

)
− 1

)
p−1 V p +

p−1∑
r=2

(
2p − 1 − r

p − 2

)
p−1 Vrp + V p2 . (4.7)

In addition, Eq. (2.1) implies that

ψ
p
S (V p+1) = pS p(V p+1) −

p−1∑
i=1

ψ
p−i
S (V p+1)Si(V p+1).

For any V in RS(pk), let [V ]Ind denote the sum of induced indecomposable summands in the de-
composition of V into indecomposables. More precisely, if V = ∑

i�1 ci V i , then [V ]Ind is defined as∑
i�1 cpi V pi . Using this notation, we can rewrite ψ

p
S (V p+1) as

pV 2 + p
[

S p(V p+1)
]

Ind −
p−1∑
i=1

ψ
p−i
S (V p+1)V ip+1 −

p−1∑
i=1

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind. (4.8)

To express Eq. (4.8) as a linear combination of indecomposables, we first focus on the last term,

p−1∑
i=1

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind.

Utilizing Theorem 2.1 and Eq. (4.3), we can show that ψ
p−i
S (V p+1) is equal to

{
V sp+1 − V sp−1 + V p−1 if s is odd,

V sp+1 − V sp−1 + V p − V 1 if s is even,

where s = p − i. We then multiply ψ
p−i
S (V p+1) by [Si(V p+1)]Ind using formulae (P1), (P2) and (P3).

For each 1 � i � p − 1, the multiplicity of V ep (1 � e � i − 1) in Si(V p+1) is given by

m(i, e) :=
(

p − 1 + i − e

p − 2

)
p−1

in view of Eq. (4.6). For e � i − 1, we set m(i, e) to zero. Therefore, we obtain

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind =

∑
m(i, e)ψ p−i

S (V p+1)V ep,
e
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where

ψ
p−i
S (V p+1)V ep =

⎧⎪⎨
⎪⎩

V (p−i+e)p − V (p−i−e)p + (p − 1)V ep if e < p − i,

V 2ep + (p − 1)V ep if e = p − i,

V (p−i+e)p + V (e+i−p)p + (p − 1)V ep if e > p − i.

(4.9)

It should be noted that V (p−i+e)p in Eq. (4.9) cannot be V p2 because e ranges from 1 to i − 1 for each
1 � i � p − 1. In what follows, for each r with 1 � r � p − 1, we compute the multiplicity of Vrp in∑

i ψ
p−i
S (V p+1)[Si(V p+1)]Ind, which is equal to

∑
i

∑
e<p−i

m(i, e)
(

V (p−i+e)p − V (p−i−e)p + (p − 1)V ep
)

+
∑

i

m(i, p − i)
(

V 2p(p−i) + (p − 1)V p(p−i)
)

+
∑

i

∑
e>p−i

m(i, e)
(

V (p−i+e)p + V (e+i−p)p + (p − 1)V ep
)
.

Thus, the coefficient of Vrp in
∑

i ψ
p−i
S (V p+1)[Si(V p+1)]Ind is given by

∑
1�i�p−1
1�e�i−1
i−e=p−r

m(i, e) −
∑

1�i�p−1
1�e�i−1
i+e=p−r

m(i, e) +
∑

1�i<p−r
r+1�i

m(i, r)(p − 1)

+ m(p − r/2, r/2) + m(p − r, r)(p − 1)

+
∑

1�i�p−1
p−i�e�i−1

i−e=p−r

m(i, e) +
∑

1�i�p−1
1�e�i−1
i+e=p+r

m(i, e) +
∑

p−r<i�p−1
r+1�i

m(i, r)(p − 1).

Here, if r is odd, m(p − r/2, r/2) is set to zero. We now simplify the above summation.
First, note that if i + e = p − r, then 1 � i � p − r − 1 since e = p − i − r � 1. In the same fashion,

if i + e = p + r, then r + 1 � i � p − 1 since e = p − i + r � p − 1. As a consequence,

I := −
∑

1�i�p−1
1�e�i−1
i+e=p−r

m(i, e) +
∑

1�i�p−1
1�e�i−1
i+e=p+r

m(i, e)

= −
∑

1�i�p−r−1

m(i, p − r − i) +
∑

r+1�i�p−1

m(i, p + r − i)

= −
∑

1�i�p−r−1

m(i, p − r − i) +
∑

1�i�p−r−1

m(i + r, p − i) (by replacing i by i + r)

= 0.

The final equality follows from the identity m(i, p − r − i) = m(i + r, e).
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Second, note that

II :=
∑

1�i<p−r
r+1�i

m(i, r)(p − 1) + m(p − r, r)(p − 1) +
∑

p−r<i�p−1
r+1�i

m(i, r)(p − 1)

= (p − 1)
∑

r+1�i�p−1

m(i, r)

=
{

p−1
p [( p

p−2

) + (p+1
p−2

) + · · · + (2p−2−r
p−2

)] if 1 � r � p − 2,

0 if r = p − 1.

Third, note that if i − e = p − r, then m(i, e) = (2p−1−r
p−2

)
p−1. Conversely, if

1 � i � p − 1, 1 � e � i − 1, i − e = p − r,

then 1 � e = i − p + r < p − i and thus p − r + 1 � i < p − r
2 . Consequently,

∑
1�i�p−1
1�e�i−1
i−e=p−r

m(i, e) =
⎧⎨
⎩

r−1
2

(2p−1−r
p−2

)
p−1 if r is odd,

( r
2 − 1)

(2p−1−r
p−2

)
p−1 if r is even.

Similarly,

∑
1�i�p−1

p−i�e�i−1
i−e=p−r

m(i, e) =
⎧⎨
⎩

r−1
2

(2p−1−r
p−2

)
p−1 if r is odd,

( r
2 − 1)

(2p−1−r
p−2

)
p−1 if r is even.

We also note that

m(p − r/2, r/2) =
{

0 if r is odd,(2p−1−r
p−2

)
p−1 if r is even.

Putting these together, it is evident that

III :=
∑

1�i�p−1
1�e�i−1
i−e=p−r

m(i, e) + m(p − r/2, r/2) +
∑

1�i�p−1
p−i�e�i−1

i−e=p−r

m(i, e)

equals (r − 1)
(2p−1−r

p−2

)
p−1.

Since the coefficient of Vrp in
∑p−1

i=1 ψ
p−i
S (V p+1)[Si(V p+1)]Ind equals I + II + III, we obtain

p−1∑
i=1

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind =

p−1∑
r=1

xr p−1 Vrp, (4.10)
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where

xr = (r − 1)

(
2p − 1 − r

p − 2

)
+

p−r−1∑
i=1

(p − 1)

(
p − 1 + i

p − 2

)
.

Note that

p

(
2p − 1 − r

p − 2

)
− (r − 1)

(
2p − 1 − r

p − 2

)
− (p − 1)

p−r−1∑
i=1

(
p − 1 + i

p − 2

)

= (p − r + 1)

(
2p − 1 − r

p − 2

)
− (p − 1)

[
−p +

(
p + 1

p − 1

)
+

(
p + 1

p − 2

)
+ · · · +

(
2p − 2 − r

p − 2

)]

= (p − r + 1)

(
2p − 1 − r

p − 2

)
− (p − 1)

(
2p − 1 − r

p − 1

)
+ p(p − 1)

= p(p − 1).

Here the second and third equalities come from the well-known formula
(n

k

) = (n−1
k−1

) + (n−1
k

)
. We now

apply this identity to Eqs. (4.7) and (4.10) to obtain

p
[

S p(V p+1)
]

Ind −
p−1∑
i=1

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind = (p − 2)V p +

p−1∑
r=2

(p − 1)Vrp + pV p2 .

Conversely, by Eq. (4.3) and formulae (P4)–(P7), we derive the identity

ψ
p−i
S (V p+1)V ip+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(p − 1)V ip + V (i+1)p − V p2−1 + 2V p2 − V (p−2i)p−1 − V ip+1 if 1 � i � p−1
2 odd,

(p − 2)V ip − V p2−1 + 2V p2 − V (p−2i)p−1 + V (i+1)p−1 if 1 � i � p−1
2 even,

(p − 1)V ip + V (i+1)p − V p2−1 + 2V p2 + V (2i−p)p+1 − V ip+1 if p+1
2 � i � p − 2 odd,

(p − 2)V ip − V p2−1 + 2V p2 + V (2i−p)p+1 + V (i+1)p−1 if p+1
2 � i � p − 2 even,

(p − 2)V ip + 2V p2 + V (2i−p)p+1 if i = p − 1.

This implies that

p−1∑
i=1

ψ
p−i
S (V p+1)V ip+1 =

p−1∑
i=1

(p − 1)V ip − (p − 2)V p2−1 + 2(p − 1)V 2
p

−
p−1

2∑
i=1

V (p−2i)p−1 +
∑

1�i� p−1
2

even

V (i+1)p−1 +
∑

p+1
2 �i�p−2

even

V (i+1)p−1 (4.11)

+
p−1∑

i= p+1
2

V (2i−p)p+1 −
∑

1�i� p−1
2

V ip+1 −
∑

p+1
2 �i�p−2

V ip+1. (4.12)
odd odd
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Since {p − 2i: 1 � i � p−1
2 } is the same as {i: 1 � i � p − 2, odd}, (4.11) equals

−
p−2∑
i=1
odd

V ip−1 +
p−2∑
i=2
even

V (i+1)p−1 = −
p−2∑
i=1
odd

V ip−1 +
p−2∑
i=2
odd

V ip−1 = −V p−1.

In the same manner, we can show that (4.12) = 0 and hence

p−1∑
i=1

ψ
p−i
S (V p+1)V ip+1 =

p−1∑
i=1

(p − 1)V ip − (p − 2)V p2−1 + 2(p − 1)V 2
p − V p−1.

As a consequence,

ψ
p
S (V p+1) = pV 2 + p

[
S p(V p+1)

]
Ind −

p−1∑
i=1

ψ
p−i
S (V p+1)V ip+1 −

p−1∑
i=1

ψ
p−i
S (V p+1)

[
Si(V p+1)

]
Ind

= pV 2 + (p − 2)V p +
p−1∑
r=2

(p − 1)Vrp + pV p2

−
(p−1∑

r=1

(p − 1)Vrp − (p − 2)V p2−1 + 2(p − 1)V 2
p − V p−1

)

= pV 2 + V p−1 − V p + (p − 2)V p2−1 − (p − 2)V p2 ,

as required. �
Theorem 4.4. If p = 2, then ψ

p
S (V p+1) = 2V 2 − V 1 .

Proof. The desired result is straightforward from Proposition 2.4(b), Theorem 3.5 and Eq. (2.1). �
Recall that we have already shown that if I p2 is closed for the exterior powers, then

ψ
p
S (V p+1)(V p+1 − V p−1) ≡ (p + 1)(V p+1 − V p−1) (mod I p2).

If p is odd, then Theorem 4.3 states

ψ
p
S (V p+1) ≡ pV 2 − (p − 1)V 1 (mod I p2),

and hence

ψ
p
S (V p+1)(V p+1 − V p−1) − (p + 1)(V p+1 − V p−1)

≡ p
(

V 2(V p+1 − V p−1) − 2(V p+1 − V p−1)
)

(mod I p2)

≡ p(V p+2 − V p−2 − 2V p+1 + 2V p−1) (mod I p2)

≡ p(V 2p − V 2p−2 − 2V p+1 + 3V p − V p−2 − 2V 1) (mod I p2). (4.13)
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However, (4.13) cannot be zero modulo I p2 because all the indecomposable modules in the last term

are contained in {Vap+ j: 0 � a � p−1
2 , j = 1,3, . . . , p}, which is a Z-basis of RS(p2)/I p2 (Proposi-

tion 2.6).

Corollary 4.5. For every odd prime p, Conjecture 2.5 is not true.

Proof. The proof follows from the natural embedding from RS(q) → RS(pq) mapping Vn to Vn for all
n � q. �
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