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We will give an example of a branch group G that has exponential
growth but does not contain any non-abelian free subgroups. This
answers question 16 from Bartholdi et al. (2003) [1] positively. The
proof demonstrates how to construct a non-trivial word wa,b(x, y)

for any a,b ∈ G such that wa,b(a,b) = 1. The group G is not just
infinite. We prove that every normal subgroup of G is finitely
generated as an abstract group and every proper quotient soluble.
Further, G has infinite virtual first Betti number but is not large.
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1. Introduction

Groups acting on infinite rooted trees have provided remarkable examples in the last decades.
Starting with Grigorchuk’s group in [4] of intermediate growth branch groups received more and
more attention. Let T be a rooted tree and Aut(T ) the group of automorphisms acting on T . A branch
group H is a subgroup of Aut(T ) which fulfills a certain stabilizing condition. A standard introduction
to this topic is the survey [1] by Bartholdi, Grigorchuk and Sunik.

In their section on open questions the authors of [1] ask whether there exist branch groups
which have exponential word growth but do not contain any non-abelian free subgroups. We an-
swer this question affirmatively by constructing explicit words wa,b(x, y) for any a,b ∈ G such that
wa,b(a,b) = 1. It is a result by Grigorchuk and Zuk [6] that the weakly branch Basilica group has
exponential growth but no free subgroups. Sidki and Wilson constructed in [10] branch groups that
contain free subgroups and hence have exponential growth. Nekrashevych proved in [8] that branch
groups containing free subgroups fall into one of two cases. These cases are defined via the action of
the group on the boundary of the rooted tree.

The group G in this paper will depend on an infinite sequence of primes. In order to establish
that G has exponential growth and no free subgroups we have to make restrictions on this sequence.
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If we weaken those assumptions we can prove by other means that G is not large. We do not know
whether these restrictions are necessary. We also do not know whether our group G is amenable.
Motivated by a result of Brieussel [3], we suspect that this could hold at least if the sequence of
primes grows slowly. Consideration of the abelianization of certain normal subgroups shows that G
has infinite virtual first Betti number.

Most of the examples studied in the literature are groups acting on regular, rooted, spherically
transitive trees. In this paper we look at finitely generated automorphism groups of an irregular rooted
tree. A similar class of examples was first mentioned by Segal in [9]. A related construction was
investigated by Woryna [11] and Bondarenko [2] where the authors describe generating sets of infinite
iterated wreath products.

2. Rooted trees and automorphisms

In this section we will recall some of the notation and definitions from [1] and [9].

2.1. Trees

A tree is a connected graph which has no non-trivial cycles. If T has a distinguished root vertex r
it is called a rooted tree. The distance of a vertex v from the root is given by the length of the path
from r to v and called the norm of v . The number

dv = ∣∣{e ∈ E(T ): e = (v1, v2), v = v1 or v = v2
}∣∣

is called the degree of v ∈ V (T ). The tree is called spherically homogeneous if vertices of the same norm
have the same degree. Let Ω(n) denote the set of vertices of distance n from the root. This set is called
the n-th level of T . A spherically homogeneous tree T is determined by a finite or infinite sequence
l̄ = {ln}n=1 where ln + 1 is the degree of the vertices on level n for n � 1. The root has degree l0.
Hence each level Ω(n) has

∏n−1
i=0 li vertices. Let us denote this number by mn = |Ω(n)|. We denote

such a tree by Tl̄ . A tree is called regular if li = li+1 for all i ∈ N. Given a spherically homogeneous
tree T we denote by T [n] the finite tree where all vertices have norm less or equal to n and write T v

for the subtree of T with root v . For all vertices v, u ∈ Ω(n) we have that Tu � T v . Denote a tree iso-
morphic to T v for v ∈ Ω(n) by Tn . This will be the tree with defining sequence (ln, ln+1, . . .). To each
sequence l̄ we associate a sequence {Xn}n∈N of alphabets where Xn = {v(n)

1 , . . . , v(n)

ln
} is an ln-tuple

so that |Xn| = ln . A path beginning at the root of length n in Tl̄ is identified with the sequence
x1, . . . , xi, . . . , xn where xi ∈ Xi and infinite paths are identified in a natural way with infinite se-
quences. Vertices will be identified with finite strings in the alphabets Xi . Vertices on level n can be
written as elements of Yn = X0 × · · · × Xn−1. Alphabets induce the lexicographic order on the paths
of a tree and therefore the vertices.

2.2. Automorphisms

An automorphism of a rooted tree T is a bijection from V (T ) to V (T ) that preserves edge incidence
and the distinguished root vertex r. The set of all such bijections is denoted by Aut(T ). This group acts
as an imprimitive permutation group on the set Ω(n) of vertices on level n for each n � 2. Consider
an element g ∈ Aut(T ). Let y be a letter from Yn , hence a vertex of T [n] and z a vertex of Tn . Then
g(y) induces a vertex permutation g y of Yn . If we denote the image of z under g y by g y(z) then

g(yz) = g(y)g y(z).

With any group G � Aut(T ) we associate the subgroups

StG(u) = {
g ∈ G: g(u) = u

}
,
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the stabilizer of a vertex u. Then the subgroup

StG(n) =
⋂

u∈Ω(n)

StG(u)

is called the n-th level stabilizer and it fixes all vertices on the n-th level. Another important class of
subgroups associated with G � Aut(T ) consists of the rigid vertex stabilizers

rstG(u) = {
g ∈ G: ∀v ∈ V (T ) \ V (Tu): g(v) = v

}
.

The subgroup

rstG(n) =
∏

u∈Ω(n)

rstG(u)

is called the n-th level rigid stabilizer. Obviously rstG(n) � StG(n).

Definition 2.1. Let G be a subgroup of Aut(T ) where T is a spherically homogeneous rooted tree. We
say that G acts on T as a branch group if it acts transitively on the vertices of each level of T and
rstG(n) has finite index for all n ∈N.

The definition implies that branch groups are infinite and residually finite groups. We can specify
an automorphism g of T that fixes all vertices of level n by writing g = (g1, g2, . . . , gmn )n with gi ∈
Aut(Tn) where the subscript n of the brackets indicates that we are on level n. Each automorphism
can be written as g = (g1, g2, . . . , gmn )n · α with gi ∈ Aut(Tn) and α an element of Sym(ln−1) � · · · �
Sym(l0). Automorphisms acting only on level 1 by permutation are called rooted automorphisms. We
can identify those with elements of Sym(l0).

3. The construction

In this subsection we describe the main construction of the group. The trees in this paper will
have a defining sequence {li}i∈N where all li are pairwise distinct primes greater or equal than 7.
We further, without loss of generality, assume the sequence {li} to be ascending. This sequence of
valencies will prove to be the key to the exponential growth and the non-existence of non-abelian
free subgroups. The group G constructed here is finitely generated, but recursively presented. We
shall prove that for every normal subgroup N �= 1, N is finitely generated as an abstract group and
that G/N is soluble.

3.1. The generators

Let {li}i∈N be a sequence as described above and {Ai}i∈N a sequence of finite cyclic groups of
pairwise coprime orders li = |Ai | and we assume li � 3 for the rest of this paper unless stated other-
wise. Fix a generator ai for each Ai . Let us consider the rooted tree with defining sequence {li}i∈N as
described in Subsection 2.1.

We study the group

G = 〈a0,b〉
where a0 is the chosen generator of A0 acting as rooted automorphism and b is recursively defined
on each level n � 0 by

bn = (bn+1,an+1,1, . . . ,1)n+1
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Fig. 1. The automorphism b.

where an+1 is the generator of the group An+1. This means the action on the first vertex of level n
is given by bn+1 and the action on the second vertex by the rooted automorphism an+1. Fig. 1 shows
the action of the automorphism b on the tree. The action of b on all unlabeled vertices v in the figure
will be given by the identity on T v .

Proposition 3.1. G acts as the iterated wreath product An−1 � · · · � A1 � A0 on the set Ω(n) of mn vertices of
each level n.

Proof. We argue by induction. The action on level 1 is given by A0. Now assume that the action of G
on Ω(n − 1) is given by An−2 � · · · � A0. The automorphism bmn−1 acts as a

mn−1
n−1 on v ∈ Ω(n − 1) and

trivially above level n − 1. There exists an integer q such that a
q·mn−1
n−1 = an−1 because ln−1 and mn−1

are coprime. Hence for all ak
n−1 ∈ An−1 there exists a g = bq·mn−1 ∈ G such that g|T v = ak

n−1. This holds
for any vertex of level n − 1 by the transitivity of An−2 � · · · � A0. Therefore G induces the action of
An−1 � · · · � A0 on Ω(n). �
Corollary 3.2. G/StG(n) = An−1 � · · · � A0 .

We denote conjugation by xy = y−1xy and commutators by [x, y] = x−1 y−1xy. Define with b = b0
the following automorphisms and groups:

bn(i) = bak−1
n

n for k ≡ i mod ln, i ∈ Z

and

Bn = 〈
bn(1), . . . ,bn(ln−1)

〉
for n � 0 and similarly to G the groups

Gn = 〈an,bn〉
for n � 0. Write G0 = G , A = A0, B = B0 and b(i) short for b0(i) and we see from the definition of
bn(i) that bn(i) = bn( j) whenever i ≡ j mod ln .

Write Γ ′ for the derived subgroup [Γ,Γ ] of a group Γ and by Γ (n) for n � 1 the n-th derived
subgroup Γ (n) = [Γ (n−1),Γ (n−1)] where Γ (0) = Γ . We denote by Gn ×· · ·×Gn the subgroup of Aut(T )

which acts as Gn on each vertex of level n and similarly for Bn and later the subgroups Nn .
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Proposition 3.3. With the above definitions we get the following statements:

(a) G = B � A and so G ′ = B ′ · 〈[B, A]〉.
(b) StG(1) � G1 × · · · × G1 .
(c) B = StG(1).

Proof.

(a) Clearly B ∩ A = 1 and B � G .
(b) StG(1) is generated by a-conjugates of b0 = (b1,a1,1, . . . ,1)1. But b1 and a1 are in G1, hence

StG(1) � G1 × · · · × G1.
(c) We see that B � StG(1). For the other inclusion we use G = B · A and the modular law with

B � StG(1). We get StG(1) = B(A ∩ StG(1)) = B because A ∩ StG(1) = 1. �
Lemma 3.4. The subgroup B defined above satisfies B ′Bl1 � rstG(1).

Proof. We first prove B ′ � rstG(1) and claim that

[
b(i),b( j)

] =
{

(1, . . . ,1, [a1,b1],1, . . . ,1)1 if j ≡ i + 1 mod l0,
(1, . . . ,1, [b1,a1],1, . . . ,1)1 if i ≡ j + 1 mod l0,
1 otherwise.

(1)

We look at the action of [b(i),b( j)] = b(i)−1b( j)−1b(i)b( j) on the first layer for the first and third
case. The second one follows similarly. Denote by underbracing the positions of the respective ele-
ments.

• j ≡ i + 1 mod l0:

b(i)−1b( j)−1b(i)b( j) = (
1, . . . ,1,b−1

1 b1︸ ︷︷ ︸
i

,a−1
1 b−1

1 a1b1︸ ︷︷ ︸
j=i+1

,a−1
1 a1︸ ︷︷ ︸
j+1

,1, . . . ,1
)

1

= (
1, . . . ,1, [a1,b1],1, . . . ,1

)
1.

• |i − j| mod l0 > 1:

b(i)−1b( j)−1b(i)b( j) = (
1, . . . ,1,b−1

1 b1︸ ︷︷ ︸
i

,a−1
1 a1︸ ︷︷ ︸
i+1

,1, . . . ,1,b−1
1 b1︸ ︷︷ ︸

j

,a−1
1 a1︸ ︷︷ ︸
j+1

,1, . . . ,1
)

1 = 1.

It remains to show Bl1 � rstG(1).

b(k)l1 = (
1, . . . ,1, bl1

1︸︷︷︸
k

,al1
1 ,1, . . . ,1

)
1

= (
1, . . . ,1, bl1

1︸︷︷︸
k

,1, . . . ,1
)

1 ∈ rstG(1) for i = 1, . . . , l0. �

3.2. Introducing N

In this subsection we define a normal subgroup N that will be proved to be equal to the derived
group of G . However, this explicit construction and the explicit finite set of generators that we will
obtain will be very useful.



630 E. Fink / Journal of Algebra 397 (2014) 625–642
Let Fl0 = 〈x1, . . . , xl0 〉 be the free group on l0 generators. The map

f :
{

Fl0 → Z,

xi 
→ 1 for all i ∈ {1, . . . , l0} (2)

is surjective. Its kernel K (x1, . . . , xl0 ) = ker( f ) consists of all words in the generators where the sum
over all exponents is 0.

Lemma 3.5. The kernel of f is given by K (x1, . . . , xl0) = 〈x−1
i x j | i, j = 1, . . . , l0〉F .

Proof. Define X = 〈x−1
i x j | i, j = 1, . . . , l0〉F . We first show F ′ � X . We can write

x−1
i x−1

j xi x j = (
x−1

j xi
)xi · x−1

i x j

which proves the claim. Clearly X � K . We observe that K/F ′ = X/F ′ which yields that K = X . �
Define

Nn = K
(
bn(1), . . . ,bn(ln)

)
for n � 0 and write N = N0 for the rest of this paper. The following lemma follows straight from the
definition.

Lemma 3.6. Nn � Bn for n � 0.

Lemma 3.7. If l0 � 5, then N is finitely generated. A set of generators is given by the elements {b(2)−1b(1),

b(3)−1b(2), . . . ,b(1)−1b(l0)}.

The essential property used in this proof is that each generator of B commutes with most of the
others. More precisely we have the identities [b(i),b(k)] = 1 if |i − k| �≡ 1 mod l0.

Proof. Set D = 〈b(2)−1b(1), . . . ,b(1)−1b(l0)〉. We show that (b(2)−1b(1))b(k) ∈ D . Concatenation yields
that b( j)−1b(i) ∈ D for all i, j ∈ {1, . . . , l0}. Using that l0 � 5 we can see that

b(i)b(i − 1)−1 = b(i + 2)−1b(i) · b(i − 1)−1b(i + 2)

because [b(i),b( j)] = 1 if i, j are such that |i − j| mod l0 > 1 by Lemma 3.4. Hence all elements
b( j)b(k)−1 for all j, k are in 〈D〉. We can write

(
b(i)−1b(i − 1)

)b(k) = b(k)−1b(i)−1b(i − 1)b(k)

= b(k)−1b(i + 2) · b(i + 2)b(i)−1 · b(i + 2)−1b(i − 1) · b(i + 2)−1b(k)

because b(i + 2) commutes with b(i) and b(i − 1). The latter is a product of four elements of D . This
yields Db � D for all b ∈ B and so D B = D which gives N = D and so N is finitely generated. �
Proposition 3.8. G ′

n = Nn for n � 0.

Proof. N is the kernel of a map whose image is abelian hence G ′ � N . Looking at the generators of N
we see that N/G ′ = 1 and hence the groups are equal. �
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Lemma 3.9. B ′ = N1 × · · · × N1 and so B ′ � B1 × · · · × B1 .

Proof. We have B = StG(1) � G1 × · · · × G1 and hence B ′ � G ′
1 × · · · × G ′

1 = N1 × · · · × N1 by Corol-
lary 3.8. We now prove N1 × · · · × N1 � B ′ . The group N1 is generated by elements of the form
b1( j + 1)−1b1( j) = [b(1),b(2)]b(1) j−1

and hence in B ′ . �
Corollary 3.10. B ′

n−1 = Nn × · · · × Nn � Bn × · · · × Bn for n � 1.

Lemma 3.11. We have the following identities for the subgroups defined above for n � 0:

(a) N ′ = B ′ .
(b) N ′

n = Nn+1 × · · · × Nn+1 with ln factors in the direct product.
(c) G(n+1) = G ′

n × · · · × G ′
n with mn factors in the direct product.

(d) G(n+1) ⊆ rstG(n).

Proof.

(a) Elementary commutator manipulation shows that

[
b(2),b(1)

] = [
b(4)−1b(2),b(2)−1b(1)

]
.

This implies B ′ � N ′ . The other inclusion follows straight from N � B .
(b) By Corollary 3.10 we have N ′

n = B ′
n = Nn+1 × · · · × Nn+1.

(c) We start with

G(n+1) = (
G ′)(n) = N(n) = (

N ′)(n−1) = (N1 × · · · × N1︸ ︷︷ ︸
lo times

)(n−1) = N(n−1)
1 × · · · × N(n−1)

1

and apply (b) iteratively together with Proposition 3.8 and get

Nn × · · · × Nn︸ ︷︷ ︸
mn times

= G ′
n × · · · × G ′

n.

(d) The proof of (c) implies G(n+1) = Nn × · · · × Nn � (G ∩ Gn) × · · · × (G ∩ Gn) = rstG(n). �
Corollary 3.12. B ′′

n = B ′
n+1 × · · · × B ′

n+1 and B(n) = B ′
n−1 × · · · × B ′

n−1 for n � 0.

Lemma 3.13. StG(n) = G ∩ (Gn × · · · × Gn) for n � 0.

Proof. It is obvious that G ∩ (Gn × · · · × Gn) is contained in StG(n). The other inclusion is given by
Proposition 3.3 for n = 1 and follows iteratively from StG(n + 1) � StStG (n)(1) for all n � 1. �
Lemma 3.14. bmn+1 = (b

mn+1
n ,1, . . . ,1)n = (b

mn+1
n−1 ,1, . . . ,1)n−1 ∈ G for n � 0.

Proof. Every an has order ln . Hence (bn,an,1, . . . ,1, )
l0...ln
n = (bl0,...,ln

n ,1, . . . ,1)n . �
Lemma 3.15. The following statements hold for n � 0:

(a) B ′
n · B

mn+1
n � G where B

mn+1
n = 〈bn(i)mn+1 〉 for n ∈ N.

(b) B ′
n−1 Bmn

n−1 × · · · × B ′
n−1 Bmn

n−1 � rstG(n).
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Proof. Lemma 3.11 implies B ′
n × · · · × B ′

n = N ′
n × · · · × N ′

n � Nn × · · · × Nn = G(n+1) and together with
Lemma 3.14 this gives B ′

n · B
mn+1
n � G which proves both parts. �

Lemma 3.16. (Gn+1 × · · · × Gn+1 ∩ G)′ = G ′
n+1 × · · · × G ′

n+1 for n � 0.

Proof. We have G ′
n × · · · × G ′

n � (Gn+1 × · · · × Gn+1) ∩ G and we get

G ′
n+1 × · · · × G ′

n+1 = G ′′
n × · · · × G ′′

n �
(
(Gn+1 × · · · × Gn+1) ∩ G

)′

�
(
G ′

n+1 × · · · × G ′
n+1

) ∩ G ′ = G(n+2) ∩ G ′ = G(n+2) = G ′
n+1 × · · · × G ′

n+1. �
Lemma 3.17. The following statements hold:

(a) rstG(1) = B ′ · Bl1 .
(b) rstG(n) �

∏mn−1
i=1 B ′

n−1 · Bmn+1 for n � 1.
(c) rstG(n) � StG(n + 1) for n � 1.

Proof. We first see that rstG(1) = B ′ · Bl1 because of Lemma 3.15 and rstG(1) � B = StG(1). Hence
rstG(n) �

∏mn−1
i=1 rstGn−1 (1) = ∏

B ′
n−1 · Bmn+1 which fixes layer n + 1. �

Proposition 3.18. rstG(n)′ = G(n+2) for n � 1, in particular rstG(n)′ is finitely generated.

Proof. Lemma 3.17 states rstG(1) = B ′ · Bl1 and therefore rstG(1)′ = B ′′ · [B ′, Bl1 ](Bl1)′ . For the first
group we have B ′′ = B ′

1 × · · · × B ′
1 and for the last one we see that Bl1 � B1 × · · · × B1. It there-

fore remains to observe that [B ′, Bl1 ] �
∏

B ′
1 which follows from B ′ � B1 and Bl1 � B1. This implies

rstG(1)′ = B ′
1 × · · · × B ′

1 = N2 × · · · × N2 by Corollary 3.10 which is finitely generated. It is now left
to show that this implies rstG(n)′ is finitely generated for all n ∈ N. By Lemma 3.17(c) we have the
following inclusions:

rstG(n)′ � (Gn+1 × · · · × Gn+1 ∩ G)′

= G ′
n+1 × · · · × G ′

n+1 = (
G ′

n × · · · × G ′
n

)′ � rstG(n)′

because G ′
n+1 × · · · × G ′

n+1 = G(n+2) � G ′ . So by this we have

Nn+1 × · · · × Nn+1 = G ′
n+1 × · · · × G ′

n+1 = (
G ′

n × · · · × G ′
n

)′ = rstG(n)′

which is therefore finitely generated by Lemma 3.7. �
Theorem 3.19. The group G is a branch group. Further the quotient StG (n)

rstG (n)
for n � 1 is abelian and has expo-

nent dividing l1l2 . . . ln−1ln.

Proof. In the case n = 1 we have StG(1) = B . We have StG(n) � Bn−1 × · · · × Bn−1 for n > 1 and so

StG(n)l1...ln � (Bn−1 × · · · × Bn−1)
l1...ln = (Bn × · · · × Bn)

l1...ln � rstG(n)

by Lemma 3.14. Now Lemma 3.11 implies

StG(n)′ = G ′ ∩ (
G ′

n × · · · × G ′
n

) = G ′ ∩ G(n+1) � rstG(n).
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The quotient StG (n)
rstG (n)

is therefore abelian and has exponent dividing l1l2 . . . ln−1ln . The n-th level stabi-
lizers StG(n) always have finite index, hence rstG(n) is of finite index in G . �
Lemma 3.20. Bn

Nn
� Z for n � 0.

Proof. Let Fl0 = 〈x1, . . . , xl0 〉 be the free group on l0 generators and π the natural projection

π :
{

Fl0 → B,

xi 
→ b(i) ∈ B for all i = 1, . . . , l0.

The map from Eq. (2) together with the natural injection

ι :
{

N(x1, . . . , xl0) ↪→ Fl0 ,

xi 
→ xi for all i = 1, . . . , l0

gives the following sequence:

1 ↪→ N(x1, . . . , xl0) ↪→ Fl0 � Z → 0

↓ π

Nπ � B.

We see that Fl0/N � Z and hence its image B/N under π must be an infinite cyclic group. �
3.3. Finite generation of normal subgroups

We quote a theorem by Grigorchuk [5].

Theorem 3.21. Let Γ � Aut(T ) be a spherically transitive subgroup of the full automorphism group on T . If
1 �= N � Γ , then there exists an n such that rstΓ (n)′ � N.

Proposition 3.22. Every proper quotient of G is soluble.

Proof. This follows straight from Theorem 3.21 and Lemma 3.11. �
Theorem 3.23. In the group G defined above every normal subgroup is finitely generated.

Proof. By Theorem 3.21 every normal subgroup K � G contains some rst′G(n). Proposition 3.18
states that rstG(n)′ is finitely generated. So it suffices to show that K/ rstG(n)′ is finitely gen-
erated. The group K/ rstG(n)′ is a finite extension of the finitely generated abelian group (K ∩
rstG(n))/ rst′G(n). �
3.4. Congruence subgroup property

We recall that a branch group Γ has the congruence subgroup property if for every subgroup H � Γ

of finite index in Γ there exists an n such that StΓ (n) � H .

Theorem 3.24. G does not have the congruence subgroup property.
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Proof. The quotient

rstG(n)

rstG(n)′ rstG(n)p

is an elementary abelian p-section for every prime p. By taking n large enough we can find p-sections
of arbitrarily large rank in G . Because G is a branch group rstG(n) has finite index. On the other hand
any congruence quotient G/H is a quotient of Ak−1 � · · · � A for some k ∈ N. Hence its p-rank is finite
and determined by the sequence of primes we chose. �

This implies that the profinite completion maps onto the congruence completion with non-trivial
congruence kernel.

Theorem 3.25. The rank of StG (n+1)
rstG (n)

is less than or equal to mn+1 = ∏n
i=0 li for n � 0.

Proof. The inclusions StG(n+1) �
∏mn

i=1 Bn and Nn ×· · ·× Nn = G(n+1) � rstG(n) give that the quotient
StG (n+1)

rstG (n)
is a section of Bn×···×Bn

Nn×···×Nn
. Hence the first quotient has rank less than or equal to mn+1 by

Lemma 3.20. �
4. Abelianization

This section is devoted to computing the abelianization Gab = G/G ′ of G where G ′ is the derived
group. This will allow us to determine the abelianizations of the n-th level rigid stabilizers rstG(n).
Considering those we show that the virtual first Betti number of G is infinite.

4.1. Abelianization of G

The abelianization of G as a 2-generator group must be an image of the free abelian group F ab
2 =

〈x1, x2〉 on two generators, in particular an image of F ab
2 = C∞ × C∞ .

Theorem 4.1. Gab = Cl0 × C∞ .

Proof. The abelianization can be presented as Gab = 〈a,b | aei bdi = 1〉 for possibly infinitely many
pairs of exponents ei,di ∈ Z. By construction the order of a is o(a) = l0. We now show that the image
of b has infinite order in the abelianization. Corollary 3.2 describes the quotients

G

StG(n)
= Aln−1 � · · · � Al0 =: W (n).

Consider the natural projections

ϕ : G � G

G ′ � W (n)

W ′(n)
= Aln−1 × · · · × Al0 .

The image of b under the composite of these has order o(ϕ(b)) = ∏n−1
i=0 li . This order tends to infinity

with n and must therefore be infinite in Gab . �
Corollary 4.2. Gab

n = Cln × C∞ for n � 1.
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4.2. Abelianization of subgroups

In this subsection we determine the abelianization of the subgroups B and rstG(n). This will yield
that G is not just infinite.

Proposition 4.3. Bab � ∏l0
i=1 Z.

Proof. The elements b(i)l1 are all in B . The image of each b(i) in Gab has infinite order by the proof
of Theorem 4.1. The subgroup H = 〈b(1)l1 , . . . ,b(l0)l1 〉 � B is therefore free abelian of rank l0, hence
H ∩ B ′ = 1. We get that

H � H

H ∩ B ′ � H B ′

B ′ � B

B ′

and hence Bab has rank at least l0. But B is generated by l0 elements and so Bab � ∏l0
i=1 Z. �

Corollary 4.4. Bab
n � ∏ln

i=1 Z for n � 1.

Theorem 4.5. rstG(n)ab = ∏mn+1
i=1 Z for n � 1.

Proof. Proposition 3.18 gives the equality rstG(n)′ = G ′
n+1 × · · ·× G ′

n+1 = Nn+1 × · · ·× Ni+1 and hence

rstG(n)

rstG(n)′
= rstG(n)

Nn+1 × · · · × Nn+1
�

∏
Bn∏
B ′

n
�

mn∏
i=1

ln∏
j=1

Z.

It remains to prove that we have full rank mn+1 = mn · ln . We observe that the elements bn(i)mn for
i = 1, . . . , ln all lie in rstG(n) and have disjoint support. The subgroup

mn∏
i=1

〈
b(1)mn+1 , . . . ,b(ln)

mn+1
〉

of rstG(n) therefore maps onto a rank mn+1 subgroup of rstG(n)ab which proves the claim. �
Corollary 4.6. G is not just infinite.

Proof. Theorem 4.1 states that the quotient Gab = G/G ′ is infinite. �
We recall that the first Betti number b1(Γ ) of a group Γ is the dimension of H1(Γ ;Z) ⊗Q. This

is the rank of Γ ab . The virtual first Betti number of a group Γ is defined [7] to be

vb1(G) = sup
{

b1(H): |G/H| < ∞}
.

Corollary 4.7. vb1(G) is infinite.

Proof. Theorem 4.5 states that the rank of rstG(n)ab is mn+1 for all n. �
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5. Growth

Denote for any finitely generated group Γ = 〈X〉 for any element α = ∏mα
i=1 x±1

ji
, x ji ∈ X in Γ by

λ(α) = min

{
mα: α =

mα∏
i=1

x±1
ji

, x ji ∈ X

}

the word length of α in the generators X of Γ . Write γΓ (n) = |{α ∈ Γ : λ(α) � n}| for the growth
function of Γ .

Proposition 5.1. The group G does not have polynomial growth.

Proof. The free abelian group F ab
n of rank n embeds into G for all n ∈ N as the proof of Theorem 4.5

shows. �
If we say a group G acts as Gn on a vertex v of level n, then we mean that the projection of G

onto a vertex v of level n acts as Gn on v .

Lemma 5.2. Let vi ∈ Ω(1) be the i-th vertex on level 1. Then the projection of G acts as G1 on vi for i ∈
{1, . . . , l0}.

Proof. The action of the projection of G onto v2 is given by b(1) = (b1,a1,1, . . . ,1)1 and b(2) =
a−1ba = (1,b1,a1, . . . ,1)1. Hence b(1) and b(2) generate G1 on v2. The same follows for every ver-
tex vi on level 1 with b(i − 1) and b(i). �

The last Lemma 5.2 allows us to make assumptions about G akin to assumptions that can be made
about self-similar groups. In the next Lemma 5.3 we only decorate a third of the vertices of level i
with Gi and then distribute them among the mi vertices.

Lemma 5.3. γG(mi(n + i)) � γGi (n)
� mi

3i � · (� 2li−1
3 �)�

mi
3i �

.

Proof. Assume w is a word in the generators a, b of G such that w(a,b) is a generator of G1 on
the second vertex v2 of level 1. Then w can be chosen to have length at most 3, because a1 can be
obtained from b(1) and b1 from b(2) = a−1ba. Every word in the generators a1, b1 of G1 on vi ∈ Ω(1)

can be obtained by one in the generators a1, b1 of G1 on v2 and then conjugated by at most a±� l0
2 � ,

which adds l0 to its word length in {a,b}. In order to get l0
3 words w j ∈ G1 on positions 0 < j < l0

it is enough to construct
∏�l0/3�

j=1 w j · aq j with 1 � q j � l0, depending on where we place the � l0
3 �

words w j and
∑�l0/3�

j=1 q j = l0. Hence we get a recursion

γG

(⌊
l0
3

⌋
3n + l0

)
� γG1(n)�

l0
3 � ·

(⌊
2l0
3

⌋)� l0
3 �

.

We can estimate this expression by l0
3 · 3n + l0 � l0n + l0. Iterating this we get (l0n + l0)l1 + l1 =

l0l1n + l0l1 + l1 and so for the i-th step we can see that mi(n + i) gives an upper bound for this
expression. Hence we get

γG
(
mi(n + i)

)
� γGi (n)

� mi
3i � ·

(⌊
2li−1

3

⌋)� li−1
3 �·� mi−1

3i−1 �
. �
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We are now able to show that G has exponential growth under certain assumptions.

Theorem 5.4. The 2-generator group G has exponential growth rate if {li}i∈N0 is a sequence of distinct primes

and is such that li � C3i+1·(2+i)+1 for some C > 1.

Proof. We want an estimate for γG(r). We can assume that r = mi(1 + i), as the latter term grows
unboundedly with i. Lemma 5.3 then gives

γG(r) = γG
(
mi(1 + i)

)
� γGi (1)

mi
3i ·

(
2li−1

3

) li−1
3 · mi−1

3i−1

.

We want to find an α > 0 such that γG(r) � eαr . With γGi (1) = 2, we get that we will need

eαmi(1+i) � 2
mi
3i ·

(
2li−1

3

)mi
3i

which can be transformed into

α · mi(1 + i) � mi

3i
log(2) + mi

3i
log

(
2li−1

3

)
.

It is enough to find a bound for α > 0, so we focus on the second term of the sum on the right hand
side which gives

α � log(2) + log(li−1) − log(3)

3i · (1 + i)

and it is further enough to have

α � log(li−1) − 1

3i · (1 + i)
.

We see that in order to be able to find such an α > 0 independent of i we have to require that
li−1 � C3i ·(1+i)+1 for some C > 1 which gives that any α � log(C) can be chosen. �
6. Non-trivial words

Our object in this section is to show that if the defining sequence satisfies li � 36i for all i ∈ N then
the group constructed above has no free subgroups of rank 2. Indeed, given any two elements g1, g2
of the group we construct explicitly a non-trivial word w g1,g2 in the free group of rank 2 such that
w g1,g2 (g1, g2) = 1.

We can write every g ∈ G as g = ar ∏t
i=1 b(ki)

qi with r,qi ∈ Z, ki ∈ {1, . . . , l0} and t ∈ N.

Definition 6.1. A spine s = g−1bq g is a power of a g-conjugate of b with g ∈ G and some q ∈ Z \ {0}.
Denote by

ξ(g) = min

{
t
∣∣∣ g = ar

t∏
i=1

b(ki)
qi

}

the number of spines of g and by
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λ(g) = r +
t∑

i=1

(qi + 2ki − 2)

the length of g as before. This is the usual notation for the word length of an element which can be
seen by considering the definition of b(i) = a−i+1bai−1.

Lemma 6.2. λ(gh) � λ(g) + λ(h) and hence λ(gh) � λ(g) + 2λ(h) for any g,h ∈ G.

Proof. This follows immediately from the definition. �
Let g1, g2 ∈ G be fixed for the rest of this section. Recursively define commutators

c1 = [g1, g2] and ci = [
ci−1, c

ci−2
i−1

]
, for i � 2 with c0 = g1. (3)

With those definitions we get the following lemma:

Lemma 6.3. If g1, g2 ∈ G, then the length λ(ci) of the commutator ci defined as above is bounded by λ(ci) �
5i(λ(g1) + λ(g2)) for all i � 0.

Proof. We use induction. It follows from Lemma 6.2 that λ(c1) � 2λ(g1) + 2λ(g2) � 5(λ(g1) + λ(g2)).
Then by induction hypothesis

λ(ci) � 4λ(ci−1) + 4λ(ci−2)

� 4 · 5i−1(λ(g1) + λ(g2)
) + 4 · 5i−2(λ(g1) + λ(g2)

)
� 5i(λ(g1) + λ(g2)

)
. �

The strategy is to observe that the number of spines of the commutators ci grows more slowly
than the number of vertices on each level. We note the position of the spines of ci and aim to move
them by conjugation such that none of the conjugated spines is at an old position. This new element
will then commute with ci .

Lemma 6.4. For every i � 1 we have ci ∈ rstG(i − 1) � StG(i).

Proof. We have c2 ∈ G ′′ � rstG(1) � G . Hence cc1
2 ∈ rstG(1) and so

c3 = [
c2, cc1

2

] ∈ rstG(1)′ � rstG(2).

Now assume cn−1 ∈ rstG(n − 2) � G . Then c
cn−2
n−1 ∈ rstG(n − 2) and hence again

cn = [
cn−1, c

cn−2
n−1

] ∈ rstG(n − 2)′ � rstG(n − 1).

The last statement rstG(n − 1) � StG(n) is given by Lemma 3.17. �
We will now describe the commutators ci . We will see below that after some finite level, their

non-trivial decorations can only be one of two rather simple types of elements.

Proposition 6.5. The commutators ci have the recursive form ci = (di,k,1, . . . ,di,k,mk )k on level k where each
di,k, j falls into one of the four cases:

1. di,k, j = 1,
2. di,k, j = bt

k for t ∈ Z, bk the generator of Gk, bk ∈ Bk,
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3. di,k, j = aq
k · z with q �≡ 0 mod li , z ∈ Bk, ak ∈ Ak or

4. di,k, j = (di,k+1,1+( j−1)li , . . . ,di,k+1, j·li )k+1 .

Further, there exists some level n such that all di,n, j will have fallen into one of the first three cases.

The indices in di,k, j are as follows:

• i: means that di,k, j is coming from the commutator ci ,
• k: describes the level k on which we look at the commutator ci ,
• j: indicates the position j on level k on which di,k, j acts.

Write �i/ j� for the biggest integer q such that q � i
j .

Proof. From Lemma 6.4 we have ci = (di,i,1, . . . ,di,i,mi )i ∈ Gi × · · · × Gi with

di,i, j = a
q j

i

u j∏
k=0

bi(ri, j,k)
f i, j,k

and q j, f i, j,k ∈ Z, u j ∈ N, ri, j,k ∈ {1, . . . , li}. As an element of Gi , di,i, j can only either be of the
form aq

i z with ai ∈ Ai , z ∈ Bi which is the third case, or di,i, j ∈ Bi . If di,i, j is an element of
Bi × · · · × Bi � Gi+1 × · · · × Gi+1 then it can be written as

di,i, j =
r∏

k=1

bi(rk).

Now assume that r > 1, hence di,i, j is not of the form bt
i for some t ∈ Z, hence does not fall into the

second case. Then di,i, j can be expressed as

di,i, j = (di,i+1,1+( j−1)li , . . . ,di,i+1, j·li )i+1 ∈ StG(i + 1),

where each of the di,i+1,h is an element of Bi+1 for h ∈ {1, . . . ,mi+1}. Assume that at least one di,i+1,h
is again of this form, which is the fourth case. Then

di,i+1,h = aqh
i+1

yh∏
s=1

bi+1( fh,s)
zh,s

with qh, zh,s ∈ Z, yh ∈ N and fh,s ∈ {1, . . . , li}. We assume that not all fh,s are equal to 1 and that
qh ≡ 0 mod li to eliminate cases 2 and 3. However, if there exists an fh,s0 �= 1 then di,i, j was such
that bi+1( fh,s0) = bi(c)bi(c−1)q

for some c ∈ {1, . . . , li−1} and some q ∈ Z \ {0}. This yields that the
word lengths satisfy λ(di,i+1,h) < λ(di,i, j) − 1 if j = �h/li� and hence there exists a level n such that
all di,n,m fall into one of the first three cases. �

The following proposition deduces from the decoration of a particular vertex v what the decoration
of the vertex directly above v must look like.

Proposition 6.6. Let x, y be elements of rstG(n − 1). If [x, y] /∈ rstG(n + 1) then either x /∈ rstG(n) or y /∈
rstG(n).
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Proof. The elements x and y can also be seen as elements of Gn−1. The word

[x, y] = (h1, . . . ,hmn )n

is a commutator and hence by Proposition 6.5 we get that each h j falls into one of the four cases
above. Now assume that both x and y are of the form 1, 2 or 4. Then x, y ∈ Bn × · · · × Bn and so

[h,k] ∈ B ′
n × · · · × B ′

n = N ′
n × · · · × N ′

n = rstG(n)′ � rstG(n + 1) � StG(n + 2)

and hence h j cannot be of the third type because this case does not stabilize level n. �
Corollary 6.7. For every di,i, j in ci that is of the second or third type we have that either

di,i−1,� j/li� = aq
i−1z or d

di−2,� j/(li−1li )�
i,i−1,� j/li� = aq

i−1z

with q �≡ 0 mod li , z ∈ Bi−1 , hence at least one of the two was of type 3.

Proof. This is an application of Proposition 6.6 with x = di,i−1,� j/li� and y = d
di,i−2,� j/(li−1li )�
i,i−1,� j/li� . �

Corollary 6.7 allows us to deduce that if we have a vertex with non-trivial decoration, then there
must be a decoration above it with a non-trivial rooted part, a power of some ai ∈ Ai .

Theorem 6.8. Assume that the defining sequence {li} satisfies li � 36i where the li are pairwise coprime odd
integers and we have l0 � 3. Then G has no free subgroup of rank 2.

Proof. Let g1, g2 ∈ G . From these we construct a non-trivial word w g1,g2 (x, y) such that we have
w g1,g2 (g1, g2) = 1. Find a level k such that

λ(ck) � 6k. (4)

Such a k exists because we had that λ(ck) � 5k(λ(g1) + λ(g2)) by Lemma 6.3.
Write ck = (dk,k,1, . . . ,dk,k,mk )k . Some of the dk,k,t might be of the fourth, recursive, case. Propo-

sition 6.5 states that this case only occurs down to some finite level n. Every dk,k,t that is of the
recursive case will then satisfy that there exists a level it such that dk,it , jt is of case 1, 2 or 3, decorat-

ing a vertex v jt of level it with k � it � n and all jt with � jt/(
∏it−1

r=k lr)� = t . In this situation we have
that dk,it , jt decorates a subtree T v jt

, with root v jt ∈ Ω(it). We need to look at those vertices which
have a non-recursive decoration coming from ck . Those will as just argued lie on different levels it

between n and k.
We now aim to form commutator words. Let v jt ∈ Ω(it) be the vertex of level it on which dk,it , jt

acts. By Corollary 6.7 we now have either

ck−1|v jt
= aq

it
z or c

ck−2
k−1 |v jt

= aq
it

z (5)

with q �≡ 0 mod lit and z ∈ Bit . We now shift the spines of ck|v jt
by conjugation such that their new

position does not overlap with their previous one assuming lit is large enough which we will justify
in the second half of this proof. We are using the non-trivial power q of ait from (5) to conjugate the
spines of dk,it , jt to empty positions. This conjugated element of dk,it , jt will then commute with dk,it , jt .
The non-trivially decorated subvertices of v jt can only have positions p with −λ(ck) < p < λ(ck)
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because in order to decorate a subvertex of v jt at position p on level it + 1 we need to have
a power ap

it
, which will add p to the word length of ck . We have found 6k to be an upper bound

for the word length of ck in (4). With these considerations we conclude that either

d = [
dk,it , jt ,d

d6k
k,it −1,� j/lit

�
k,it , jt

]
or e = [

dk,it , jt ,d
(d

dk,it −2,� j/(lklit −1)�
k,it −1,� j/lit

� )6k

k,it , jt

]
(6)

is such that d|v jt
= 1 or e|v jt

= 1 for all vertices v jt ∈ Ω(it). We have the case that d|v jt
= 1 if we

had ck−1|v jt
= aq

it
z in Eq. (5) and we have e|v jt

= 1 if we had c
ck−2
k−1 |v jt

= aq
it

z.
We now describe how this will yield a word w g1,g2 (x, y) ∈ F (x, y). Similarly to the definition of ck

recursively define commutators in F (x, y) as

γ0 = x, γ1 = [x, y], γi = [
γi−1, γ

γi−2
i−1

]
with γi ∈ F (x, y)(i) , the i-th derived group of F (x, y). We begin our word w by w1 = [γk, (γ

γk−1
k )6k ].

This will give identity on the vertices v j with d|v j = 1 with d as in (6). We will then proceed with

w2 = [w1, w
(c

ck−2
k−1 )

1 ] to get identity for the vertices in which only the case e|v j = 1 applied.
The two cases in (6) are the only ones possible for any vertex v j . Hence we either have

w1(g1, g2)|v j = 1 after the first step or w2(g1, g2)|v jt
= 1 after the second step. Assume

w1(g1, g2)|v j �= 1 for some vertex v j . Then this means that dk,it−1,� j/lit � ∈ Bit−1, hence there is no
rooted action and conjugating by dk,it−1,� j/lit � will not move or add any spines. We then get that
w2(g1, g2)|v j = 1 in the second step.

We now have to justify that li is big enough in each step. We are conjugating by the power 6k

in (6). This applies to an element aq
it

, where |q| < λ(ck) � 6k . We get that this moves spines by at

most 62k − 6k . Hence we need at most 62k places to fit these at most 6k spines in and so each li for
i � k must be such that 62k � li for i � k. It is hence enough to require that the sequence {li}i∈N0 is
such that li � 36i .

This yields that the procedure described above will result in a non-trivial word w g1,g2 (x, y) in the
free group F (x, y) on the two generators x and y. This word has the form of a nested commutator
and is an element of F (x, y)(k) , the k-th derived group of F (x, y), where k depends on the number of
spines in the two chosen elements g1 and g2. This now implies that G cannot contain a non-abelian
free subgroup under the given assumptions on the defining sequence {li}. �

This immediately implies that G cannot be large in this case. However, we can prove for any
coprime sequence {li} with li � 3 that G is not large:

Theorem 6.9. The group G is not large.

Proof. Assume for a contradiction that G is large. Then there exists a finite index subgroup H that
maps onto the non-abelian free group of rank 2, hence also onto the alternating group A5. Denote
the kernel of the canonical map H → A5 by N � H . Then N0 = ⋂

g∈G N g is a proper normal subgroup
of G . The quotient G/N0 is soluble by Proposition 3.22 and hence cannot have a section isomorphic
to A5. �

Theorem 6.8 explicitly describes a relation that holds between two given elements of the group.
In [8] Nekrashevych proves a theorem which describes which branch groups contain free subgroups.

Theorem 6.10. (See [8].) Let Γ be a group acting faithfully on a locally finite rooted tree T . Then one of the
following holds.
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1. Γ has no free non-abelian subgroups,
2. there is a free non-abelian subgroup F < Γ and a point ω ∈ ∂T such that the stabilizer Fω is trivial,
3. there is a point ω ∈ ∂T such that the group of Γ -germs Γ(ω) has a free non-abelian subgroup.

Here the group of Γ -germs Γ(ω) is the quotient of the stabilizer Γω by the subgroup of automor-
phisms g of the tree T acting trivially on a neighborhood U g ⊂ ∂T of ω.

It might conceivably be possible to derive Theorem 6.8 using this criterion, but it does not seem
to be a straightforward consequence. In particular, it can be shown that there exist subgroups with
trivial stabilizer of every point in the boundary. This suggests, that excluding the second condition of
Theorem 6.10 needs some similar considerations as in the proof of Theorem 6.8.
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