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Let H and B be subgroups of a finite group G such that G =
NG (H)B . Then we say that H is quasipermutable (respectively,
S-quasipermutable) in G provided H permutes with B and with
every subgroup (respectively, with every Sylow subgroup) A of B
such that (|H|, |A|) = 1. In this paper we analyze the influence of
S-quasipermutable and quasipermutable subgroups on the struc-
ture of G . As an application, we give new characterizations of sol-
uble PST-groups.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is
always supposed to be a prime and π is a subset of the set P of all primes; π(G) denotes the set of
all primes dividing |G|.

A subgroup H of G is said to be quasinormal or permutable in G if H permutes with every subgroup
A of G , that is, H A = AH ; H is said to be S-permutable in G if H permutes with every Sylow subgroup
of G .
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A group G is called a PT-group if permutability is a transitive relation on G , that is, every per-
mutable subgroup of a permutable subgroup of G is permutable in G . A group G is called a PST-group
if S-permutability is a transitive relation on G .

As well as T -groups, PT-groups and PST-groups possess many interesting properties (see Chapter 2
in [1]). The general description of PT-groups and PST-groups was first obtained by Zacher [2] and
Agrawal [3], for the soluble case, and by Robinson in [4], for the general case. Nevertheless, in the
further publications, authors (see for example the recent papers [5–16]) have found out and described
many other interesting characterizations of soluble PT- and PST-groups.

In this paper we give new “Hall”-characterizations of soluble PST-groups on the basis of the fol-
lowing

Definition 1.1. We say that a subgroup H is quasipermutable (respectively S-quasipermutable) in G
provided there is a subgroup B of G such that G = NG(H)B and H permutes with B and with every
subgroup (respectively with every Sylow subgroup) A of B such that (|H |, |A|) = 1.

Examples and some applications of quasipermutable subgroups were discussed in the papers [17]
and [18] (see also remarks in Section 7 below). In this paper, we prove the following result, which
we consider as one more motivation for introducing the concept of quasipermutability.

Theorem A. Let D = GN and π = π(D). Then the following statements are equivalent:

(i) D is a Hall subgroup of G and every Hall subgroup of G is quasipermutable in G.
(ii) G is a soluble PST-group.

(iii) Every subgroup of G is quasipermutable in G.
(iv) Every π -subgroup of G and some minimal supplement of D in G are quasipermutable in G.

We prove Theorem A in Section 6 on the basis of quasipermutability properties which we study in
Sections 2–5. In particular, we use in the proof of this theorem the following three results.

A subgroup S of G is called a Gaschütz subgroup of G (L.A. Shemetkov [19, IV, 15.3]) if S is
supersoluble and for any subgroups K � H of G , where S � K , the number |H : K | is not prime.

Theorem B. The following statements are equivalent:

(I) G is soluble, and if S is a Gaschütz subgroup of G, then every Hall subgroup H of G satisfying π(H) ⊆ π(S)

is quasipermutable in G.
(II) G is supersoluble and the following hold:

(a) G = DC, where D = GN is an abelian complemented subgroup of G and C is a Carter subgroup of G;
(b) D ∩C is normal in G and (p, |D/D ∩C |) = 1 for all prime divisors p of |G| satisfying (p −1, |G|) = 1;
(c) For any non-empty set π of primes, every π -element of any Carter subgroup of G induces a power

automorphism on the Hall π ′-subgroup of D.
(III) Every Hall subgroup of G is quasipermutable in G.

Let F be a class of groups. If 1 ∈ F, then we write GF to denote the intersection of all normal
subgroups N of G with G/N ∈ F. The class F is said to be a formation if either F = ∅ or 1 ∈ F and
every homomorphic image of G/GF belongs to F for any group G . The formation F is said to be
saturated if G ∈ F whenever G/Φ(G) ∈ F. A subgroup H of G is said to be an F-covering subgroup of G
provided H ∈ F and E = EFH for any subgroup E of G containing H . By the Gaschütz theorem [20,
VI, 9.5.4 and 9.5.6], for any saturated formation F, every soluble group G has an F-covering subgroup
and any two F-covering subgroups of G are conjugate.

Theorem C. Let F be a saturated formation containing all nilpotent groups. Suppose that G is soluble and
let π = π(C) ∩ π(GF), where C is an F-covering subgroup of G. If every maximal subgroup of every Sylow
p-subgroup of G is S-quasipermutable in G for all p ∈ π , then GF is a Hall subgroup of G.
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Theorem D. Let F be a saturated formation containing all supersoluble groups and π = π(F ∗(GF)). If GF �= 1,
then for some p ∈ π some maximal subgroup of a Sylow p-subgroup of G is not S-quasipermutable in G.

In this theorem F ∗(GF) denotes the generalized Fitting subgroup of GF , that is, the product of all
normal quasinilpotent subgroups of GF .

We prove Theorem B in Section 4. But before, in Section 3, we describe groups with a quasi-
permutable supersoluble Hall subgroup.

Theorems C and D are proved in Section 5. And the main tool for that is the following

Proposition. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that |P | > p.

(i) If every member V of some fixed Mφ(P ) is S-quasipermutable in G, then E is p-supersoluble.
(ii) If every maximal subgroup of P is S-quasipermutable in G, then every chief factor of G between E and

O p′ (E) is cyclic.
(iii) If every maximal subgroup of every Sylow subgroup of E is S-quasipermutable in G, then every chief factor

of G below E is cyclic.

In this proposition we write Mφ(G), by analogy with [21], to denote a set of maximal subgroups
of G such that Φ(G) coincides with the intersection of all subgroups in Mφ(G).

Note that Proposition may be independently interesting because this result unifies and generalizes
many known results, and in particular, Theorems 1.1–1.5 in [21] (see Section 7). In Section 7 we also
discuss some further applications of the results.

All unexplained notation and terminology are standard. The reader is referred to [19,22], or [23] if
necessary.

2. Basic lemmas

Let H be a subgroup of G . Then we say, following [17], that H is propermutable (respectively,
S-propermutable) in G provided there is a subgroup B of G such that G = NG(H)B and H permutes
with all subgroups (respectively, with all Sylow subgroups) of B .

Lemma 2.1. Let H � G and N a normal subgroup of G. Suppose that H is quasipermutable (S-quasipermuta-
ble) in G.

(1) If either H is a Hall subgroup of G or for every prime p dividing |H | and for every Sylow p-subgroup H p
of H we have H p � N, then H N/N is quasipermutable (S-quasipermutable, respectively) in G/N.

(2) If π = π(H) and G is π -soluble, then H permutes with some Hall π ′-subgroup of G.
(3) H permutes with some Sylow p-subgroup of G for every prime p dividing |G| such that (p, |H |) = 1.
(4) |G : NG(H ∩ N)| is a π -number, where π = π(N) ∪ π(H).
(5) If H is propermutable (S-propermutable) in G, then H N/N is propermutable (S-propermutable, respec-

tively) in G/N.
(6) If H is S-propermutable in G, then H permutes with some Sylow p-subgroup of G for any prime p divid-

ing |G|.
(7) Suppose that G is π -soluble. If H is a Hall π -subgroup of G, then H is propermutable (S-propermutable,

respectively) in G.

Proof. By hypothesis, there is a subgroup B of G such that G = NG(H)B and H permutes with B and
with all subgroups (with all Sylow subgroups, respectively) A of B such that (|H |, |A|) = 1.

(1) It is clear that

G/N = (
NG(H)N/N

)
(BN/N) = NG/N(H N/N)(BN/N).

Let K/N be any subgroup (any Sylow subgroup, respectively) of BN/N such that (|H N/N|, |K/N|) = 1.
Then K = (K ∩ B)N . Let B0 be a minimal supplement of K ∩ B ∩ N to K ∩ B . Then K/N = (K ∩
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B)N/N = B0(K ∩ B ∩ N)N/N = B0N/N and K ∩ B ∩ N ∩ B0 = N ∩ B0 � Φ(B0). Therefore π(K/N) =
π(K ∩ B/K ∩ B ∩ N) = π(B0), so (|H N/N|, |B0|) = 1. Suppose that some prime p ∈ π(B0) divides
|H |, and let H p be a Sylow p-subgroup of H . We shall show that H p � N . In fact, we may suppose
that H is a Hall subgroup of G . But in this case, H p is a Sylow p-subgroup of G . Therefore, since
p ∈ π(B0) ⊆ π(G/N), H p � N . Hence p divides |H N/N|, a contradiction. Thus (|H |, |B0|) = 1, so in
the case, when H is quasipermutable in G , we have H B0 = B0 H and hence H N/N permutes with
K/N = B0N/N . Thus H N/N is quasipermutable in G/N .

Finally, suppose that H is S-quasipermutable in N . In this case, B0 is a p-subgroup of B , so for
some Sylow p-subgroup B p of B we have B0 � B p and (|H |, p) = 1. Hence K/N = B0N/N � B p N/N ,
which implies that K/N = B p N/N . But H permutes with B p by hypothesis, so H N/N permutes with
K/N . Therefore H N/N is S-quasipermutable in G/N .

(2) By [20, VI, 4.6], there are Hall π ′-subgroups E1, E2 and E of NG(H), B and G , respectively,
such that E = E1 E2. Then H permutes with all Sylow subgroups of E2 by hypothesis, so

H E = H(E1 E2) = (H E1)E2 = (E1 H)E2

= E1(H E2) = E1(E2 H) = (E1 E2)H = E H

by [22, A, 1.6].
(3) See the proof of (2).
(4) Let p be a prime such that p /∈ π . Then by (3), there is a Sylow p-subgroup P of G such that

H P = P H is a subgroup of G . Hence H P ∩ N = H ∩ N is a normal subgroup of H P . Thus p does not
divide |G : NG(H ∩ N)|.

(5) See the proof of (1).
(6) See the proof of (2).
(7) Since G is π -soluble, B is π -soluble. Hence by [20, VI, 1.7], B = Bπ Bπ ′ where Bπ is a Hall

π -subgroup of B and Bπ ′ is a Hall π ′-subgroup of B . By [20, VI, 4.6], there are Hall π -subgroups Nπ ,
Bπ and Gπ of NG(H), B and G , respectively, such that Gπ = Nπ Bπ . But since H � Nπ , Nπ is a Hall
π -subgroup of G . Therefore Gπ = Nπ Bπ = Nπ , so Bπ � Nπ . Hence G = NG(H)B = NG(H)Bπ Bπ ′ =
NG(H)Bπ ′ , so H is propermutable (S-propermutable, respectively) in G . �
Lemma 2.2. Let H and B be subgroups of G. If G = NG(H)B and H V b = V b H for some subgroup V of B and
for all b ∈ B, then H V x = V x H for all x ∈ G.

Proof. Since G = NG(H)B we have x = nb for some n ∈ NG(H) and b ∈ B . Hence H V x = H V nb =
Hn(V b)n−1 = n(V b)n−1 H = V x H . �
Lemma 2.3. Suppose that for the subgroups A and B of G we have AB = B A and G = NG(A)B. Then

(1) AG = A(AG ∩ B).
(2) If A permutes with all Sylow p-subgroups of B, then A permutes with all Sylow p-subgroups of AG ∩ B.
(3) If p is a prime dividing |AG | such that p does not divide |A| and A permutes with all Sylow p-subgroups

of B, then A permutes with all Sylow p-subgroups of AG .

Proof. (1) Since AB = B A, AB is a subgroup of G and so AG = ANG (A)B = AB � 〈A, B〉 = AB . Hence
AG = AG ∩ AB = A(AG ∩ B).

(2) By (1) we have AG = A(AG ∩ B). Let P be any Sylow p-subgroup of AG ∩ B and P � B p

where B p is a Sylow p-subgroup of B . Then AB p = B p A and P = AG ∩ B ∩ B p = AG ∩ B p . Hence
AB p ∩ AG = A(B p ∩ AG) = A P = P A.

(3) Let P be any Sylow p-subgroup of AG . Then, since p does not divide |A|, for some x ∈ A, P x is
a Sylow p-subgroup of AG ∩ B by (1). Let B p be a Sylow p-subgroups of B such that P x � B p . Then
AB p = B p A is a subgroup of G , so AB p ∩ AG = A(B p ∩ AG) = A P x = P x A. Now, since x ∈ A, we have

(A P x)x−1 = Ax−1
P = A P = P A. �
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Lemma 2.4. (See Kegel [25].) Let A and B be subgroups of G such that G �= AB and ABx = Bx A, for all x ∈ G.
Then G has a proper normal subgroup N such that either A � N or B � N.

Lemma 2.5. (See Knyagina and Monakhov [24].) Let H, K and N be subgroups of G. If N is normal in G, H
permutes with K and H is a Hall subgroup of G, then

N ∩ H K = (N ∩ H)(N ∩ K ).

A group G is said to be a Cπ -group provided G has a Hall π -subgroup and any two Hall π -sub-
groups of G are conjugate.

Lemma 2.6. Let H be a Hall S-quasipermutable subgroup of G. If π = π(|G : H |), then G is a Cπ -group.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then
|π | > 1. By hypothesis there is a subgroup B of G such that G = NG(H)B and H permutes with B
and with every Sylow subgroup A of B such that (|H |, |A|) = 1.

(1) H G = G = H B .
By Lemma 2.3, H G = H(H G ∩ B) and H permutes with all Sylow p-subgroups of H G ∩ B for all

primes p ∈ π . Hence H is S-quasipermutable in H G . Suppose that H G �= G . Then H G is a Cπ -group by
the choice of G . On the other hand, G/H G is a π -group since H is a Hall π ′-subgroup of G . Therefore
G is a Cπ -group by [19, IV, 18.12], contrary to the choice of G . Hence G = H G = H(H G ∩ B) = H B .

(2) If Q is a Sylow q-subgroup of G, where q is a prime dividing |G| such that q ∈ π , then Q G �= G .
Since |π | > 1, H Q �= G . On the other hand, by (1) and Lemma 2.2, H Q x = Q x H for all x ∈ G .

Hence in view of (1) and Lemma 2.4 we have Q G �= G .
(3) Q G is a Cπ -group.
By Lemma 2.5, Q G = (Q G ∩ H)(Q G ∩ B), where Q G ∩ H is a Hall π ′-subgroup of Q G . Let R

be a Sylow r-subgroup of Q G ∩ B , where r ∈ π . Then for some Sylow r-subgroup Br of B we have
H Br = Br H and

R = Br ∩ (
Q G ∩ B

) = Br ∩ Q G .

Therefore by Lemma 2.5,

Q G ∩ H Br = (
Q G ∩ H

)(
Q G ∩ Br

) = (
Q G ∩ H

)
R = R

(
Q G ∩ H

)
.

Thus the hypothesis holds for (Q G , Q G ∩ H). Therefore we have (3) by (2) and the choice of G .
Final contradiction. By Lemma 2.1 the hypothesis holds for G/Q G . Therefore G/Q G is a Cπ -group

by the choice of G . Hence G is a Cπ -group by (3) and [19, IV, 18.12]. This final contradiction completes
the proof. �
Lemma 2.7. Let E be a normal subgroup of G and H a Hall π -subgroup of E. If H is nilpotent and
S-quasipermutable in G, then E is π -soluble.

Proof. See proof of Lemma 2.6 and use the Kegel–Wielandt theorem on solubility of the product of
nilpotent groups [20, VI, 4.3]. �
Lemma 2.8. Let A and B be subgroups of G. If Ax B = B Ax for all x ∈ G, then ABx = Bx A for all x ∈ G.

Proof. From Ax−1
B = B Ax−1

we get ABx = (Ax−1
B)x = (B Ax−1

)x = Bx A. �
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3. Groups with a Hall quasipermutable subgroup

A group G is said to be π -separable if every chief factor of G is either a π -group or a π ′-group.
Every π -separable group G has a series

1 = P0(G) � M0(G) < P1(G) < M1(G) < · · · < Pt(G) � Mt(G) = G

such that

Mi(G)/Pi(G) = Oπ ′
(
G/Pi(G)

)

(i = 0,1, . . . , t) and

Pi+1(G)/Mi(G) = Oπ

(
G/Mi(G)

)

(i = 1, . . . , t).
The number t is called the π -length of G and denoted by lπ (G) (see [34, p. 249]).
In this section we prove the following result.

Theorem 3.1. Let H be a Hall subgroup of G and π = π(H). Suppose that H is quasipermutable in G.

(I) If p > q for all primes p and q such that p ∈ π and q divides |G : NG(H)|, then H is normal in G.
(II) If H is supersoluble, then G is π -soluble.

(III) If G is π -separable, then the following holds:
(i) H ′ � Oπ (G). If, in addition, NG(H) is nilpotent, then G ′ ∩ H � Oπ (G).

(ii) lπ (G) � 2 and lπ ′ (G) � 2.
(iii) If for some prime p ∈ π ′ a Hall π ′-subgroup E of G is p-supersoluble, then G is p-supersoluble.

Let M and H be non-empty formations. Then the Gaschütz product M ◦ H of these formations is
the class of all groups G such that GH ∈ M. It is well-known that such an operation on the set of all
non-empty formations is associative (W. Gaschütz). The symbol Mt denotes the product of t copies
of M.

We shall need the following well-known lemma of Gaschütz and Shemetkov [26, Corollary 7.13].

Lemma 3.2. The product of any two non-empty saturated formations is also a saturated formation.

Lemma 3.3. The class F of all π -separable groups G with lπ (G) � t is a saturated formation.

Proof. It is not difficult to show that for any non-empty set ω ⊆ P the class Gω of all ω-groups
is a saturated formation and that F = (Gπ ′ ◦ Gπ )t ◦ Gπ ′ . Hence F is a saturated formation by
Lemma 3.2. �
Lemma 3.4. Suppose that G is separable. If Hall π -subgroups of G are abelian, then lπ (G) � 1.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let N be
a minimal normal subgroup of G . Since G is π -separable, N is a π -group or a π ′-group. It is clear
that the hypothesis holds for G/N , so lπ (G/N) � 1 by the choice of G . By Lemma 3.3, the class of all
π -soluble groups with lπ (G) � 1 is a saturated formation. Therefore N is a unique minimal normal
subgroup of G , N � Φ(G) and N is not a π ′-group. Hence N is a π -group and N = CG(N) by [22, A,
15.2]. Therefore N � H , where H is a Hall π -subgroup of G . But since H is abelian, N = H is a Hall
π -subgroup of G . Hence lπ (G) � 1. �

A group G is called π -closed provided G has a normal Hall π -subgroup.
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Lemma 3.5. Let H be a Hall π -subgroup of G. If G is π -separable and H � Z(NG(H)), then G is π ′-closed.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then G �= H .
The class F of all π ′-closed groups coincides with the product Gπ ′ ◦ Gπ . Hence F is a saturated
formation by Lemma 3.2. Let N be a minimal normal subgroup of G . Since G is π -separable, N is a
π -group or a π ′-group. Moreover, G is a Cπ -group by [34, 9.1.6], so the hypothesis holds for G/N .
Hence G/N is π ′-closed by the choice of G . Therefore N is the only minimal normal subgroup of G ,
N �Φ(G) and N is a π -group. Therefore N � H and N = CG(N) by [22, A, 15.2]. Since H � Z(NG(H))

and H is a Hall π -subgroup of G , N = H . Therefore N � Z(G), which implies that N = H = G . This
contradiction completes the proof of the lemma. �

The following lemma is well-known (see for example Lemma 2.1.6 in [1]).

Lemma 3.6. If G is p-supersoluble and O p′ (G) = 1, then p is the largest prime dividing |G|, G is supersoluble
and F (G) = O p(G) is a Sylow p-subgroup of G.

Finally, we also need the following elegant result of V.S. Monakhov.

Lemma 3.7. (See Monakhov [28].) If G = AB, where A is a supersoluble subgroup of G and B is a Sylow
p-subgroup of G for some odd prime p, then G is soluble.

Proof of Theorem 3.1. Suppose that this theorem is false and let G be a counterexample of minimal
order. By hypothesis, there is a subgroup B of G such that G = NG(H)B and H permutes with B and
with every subgroup A of B such that (|H |, |A|) = 1. By Lemma 2.3, H G = H(H G ∩ B) and H permutes
with every subgroup A of H G ∩ B such that (|H |, |A|) = 1. Therefore H is quasipermutable in H G .

(I) Suppose that this assertion is false.
(1) V = H G ∩ B is a Cπ ′ -group. Hence H G = H B0 , where B0 is a Hall π ′-subgroup of V .
Let H0 = H ∩ V . Since H is a Hall π -subgroup of H G , H0 is a Hall π -subgroup of V . Now let A be

a subgroup of V such that (|H0|, |A|) = 1. Then (|H |, |A|) = 1, which implies that H A = AH . Hence
H A ∩ V = A(H ∩ V ) = AH0 = H0 A. Therefore H0 is quasipermutable in V . Thus V is a Cπ ′ -group by
Lemma 2.6.

(2) The hypothesis holds for (H G , H).
By (1), H G = H B0, where B0 is a Hall π ′-subgroup of H G ∩ B , so H permutes with all sub-

groups of B0. Now let p be a prime dividing |H G : NH G (H)|. Let P � G p , where P and G p are Sylow
p-subgroups of H G and G , respectively. Suppose that there is a prime q ∈ π such that p > q. Then, by
hypothesis, for some x ∈ G we have (G p)x � NG(H). Hence (G p)x ∩ H G = (G p ∩ H G)x = P x � NH G (H).
Hence p does not divide |H G : NH G (H)|. This contradiction shows that for any primes p and q, where
p ∈ π and q divides |H G : NH G (H)| we have p > q. Therefore the hypothesis holds for (H G , H).

(3) H G = H B0 = G, where B0 is a Hall π ′-subgroup of B .
Suppose that H G �= G . Then H is normal, and so also characteristic in H G , by (2) and the choice

of G . Hence H is normal in G , a contradiction. Thus we have (3) by (1).
In view of (3), we assume without loss of generality that B0 = B is a Hall π ′-subgroup of G .
(4) G = H P for some Sylow p-subgroup P of G such that P � B and p < q for all primes q ∈ π .
Let P be a Sylow p-subgroup of G such that p divides |G : NG(H)|. Then p < q for all primes

q ∈ π by hypothesis, so for some x ∈ G we have P x � B . Then H P = P H and H permutes with all
subgroups of P by Lemma 2.2. Hence the hypothesis holds for H P . Suppose that H P �= G . Then, H is
normal in H P by the choice of G . Therefore p does not divide |G : NG(H)|. This contradiction shows
that G = H P .

(5) The hypothesis holds for every subgroup E of G containing H .
By (4), E = H(E ∩ P ), H is quasipermutable in E and p < q for all primes q ∈ π .
Final contradiction for (I).
Let V be a maximal subgroup of P . Then by (4) and (5) the hypothesis holds for H V , so H is

normal in H V by the choice of G . On the other hand, since |G : H V | = p and p < q for all primes
q ∈ π , H V is normal in G . Therefore H is normal in G , contrary to the choice of G . Hence we have (I).
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(II) Suppose that this assertion is false. Then H G = G = H B . Otherwise, since H is quasipermutable
in H G , H G and G/H G are π -soluble by the choice of G , which implies the π -solubility of G . Now
let Q be a Sylow q-subgroup of G , where q is a prime dividing |G| such that q /∈ π . Then a Sylow
q-subgroup Q of B is a Sylow subgroup of G and H Q x = Q x H for all x ∈ G by Lemma 2.2. Suppose
that H Q = G . Since H is supersoluble, q = 2 by Lemma 3.7 since G is not soluble. Hence H is normal
in G by Assertion (I). But then G is π -soluble, a contradiction. Therefore H Q �= G , so Q G �= G by
Lemma 2.4. Now arguing similarly as in the proof of Lemma 2.6 one can show that the hypothesis
holds for Q G and so Q G is π -soluble by the choice of G , which implies the π -solubility of G . This
contradiction completes the proof of Assertion (II).

(III) Since G is π -separable, G is a Cπ ′ -group by [34, 9.1.6]. Let E be a Hall π ′-subgroup of G .
(i) Suppose that this assertion is false. Then:
(1) Oπ (N) = 1 for any normal subgroup N of G .
Suppose that Oπ (G) �= 1. By Lemma 2.1(1), the hypothesis holds for G/Oπ (G). Hence Assertion (i)

is true for G/Oπ (G) by the choice of G . Thus

H ′ Oπ (G)/Oπ (G) �
(

H/Oπ (G)
)′ � Oπ

(
G/Oπ (G)

) = 1,

and if NG(H) is nilpotent, then

(
G/Oπ (G)

)′ ∩ (
H/Oπ (G)

) = (
G ′ Oπ (G)/Oπ (G)

) ∩ (
H/Oπ (G)

)

= Oπ (G)
(
G ′ ∩ H

)
/Oπ (G) � Oπ

(
G/Oπ (G)

) = 1.

Hence we have H ′ � Oπ (G) in the former case, and G ′ ∩ H � Oπ (G) in the case, when NG(H) is
nilpotent. Thus Assertion (i) is true for G , a contradiction. Therefore Oπ (G) = 1. Finally, since Oπ (N)

is characteristic in N , Oπ (N) � Oπ (G) = 1. Hence we have (1).
(2) H is not abelian.
Suppose that H is abelian and NG(H) is nilpotent. Then H � Z(NG(H)), so G is π ′-closed by

Lemma 3.5. Hence E is normal in G . Since H is abelian, G ′ � E . Therefore G ′ ∩ H = 1 � Oπ (G),
contrary to our assumption on G . Hence we have (2).

(3) CG(Oπ ′ (G)) � Oπ ′(G) �= 1.
By (1), Oπ (G) = 1. Therefore, since G is π -separable, Oπ ′(G) �= 1 and CG (Oπ ′(G)) � Oπ ′ (G) by

[27, 6, 3.2].
(4) H G = G and G = H B .
Suppose that H G �= G . Since H G = H(H G ∩ B) and H is quasipermutable in H G , it follows that

H ′ � Oπ (H G) by the choice of G . But by (1), Oπ (H G) = 1. Therefore H ′ = 1, so H is abelian, which
contradicts (2). Thus H G = G and G = H B .

(5) G is not supersoluble.
Suppose that G is supersoluble. Then G ′ � F (G), so G ′ ∩ H � Oπ (G) = 1. Hence H � G ′H/G ′ is

abelian, contrary to (2). Hence we have (5).
(6) H Oπ ′ (G) = G .
Suppose that E = H Oπ ′(G) �= G . By (4) we have Oπ ′(G) � B . Hence H is quasipermutable in E .

Thus H ′ � Oπ (E) by the choice of G . Therefore H ′ � CG(Oπ ′ (G)) � Oπ ′(G) by (3). Hence H is abelian,
which contradicts (2). Thus H Oπ ′(G) = G .

(7) Final contradiction for (i). Let V be any subgroup of Oπ ′ (G). Then by (4) for any x ∈ G we
have H V x = V x H . Hence V Hx = Hx V for all x ∈ G by Lemma 2.8. Now note that V = Hx V ∩ Oπ ′(G)

is normal in Hx V , so Hx � NG(V ). But then, by (4), G = H G � NG(V ). Therefore every subgroup of
Oπ ′ (G) is normal in G . Hence every chief factor of G below Oπ ′(G) is cyclic. But by (3) we have
CG (Oπ ′(G)) � Oπ ′(G), so G/Oπ ′ (G) is supersoluble by the Schmid–Shemetkov theorem on U-stable
groups of automorphisms. [19, II, 9.2]. But then G is supersoluble, contrary to (5). Therefore Asser-
tion (i) is true for G .

(ii) Suppose that this assertion is false. Since by (i) we have H ′ � Oπ (G), the Hall π -subgroup
H Oπ (G)/Oπ (G) of G/Oπ (G) is abelian. Hence, by lπ (G/Oπ (G)) � 1 by Lemma 3.4. But then
lπ (G) � 2.
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It is clear that lπ ′ (G/Oπ (G)) = lπ ′ (G). Hence in the case when Oπ (G) �= 1 the choice of G implies
that lπ ′ (G) � 2, contrary to our assumption on G . Therefore Oπ (G) = 1. But by (i) we have H ′ �
Oπ (G), so H is abelian. Hence by Lemma 3.4, lπ (G) � 1. Thus lπ ′(G) � 2.

(iii) Suppose that this assertion is false. Let N be a minimal normal subgroup of G . Then the
hypothesis holds for G/N , so G/N is p-supersoluble by the choice of G . Therefore O p′ (G) = 1. In
particular, N � H and p divides |N|, which implies that N � E and N is a p-group since E is
p-supersoluble. Moreover, since the class of all p-supersoluble groups is a saturated formation, N
is the only minimal normal subgroup of G and N � Φ(G). Hence N � H G , and N = CG(N) by [22, A,
15.2]. Since H G = H(H G ∩ B), it follows that N � B . Thus H permutes with all subgroups of N . Since
E is p-supersoluble, N has a maximal subgroup V such that V is normal in E . On the other hand,
H V ∩ N = V is normal in H V . Hence G = H E � NG(V ), which in view of the minimality of N implies
that V = 1. Hence |N| = p, so G/N = G/CG (N) is a cyclic group of exponent dividing p − 1. But then
G is supersoluble. This contradiction completes the proof of Assertion (iii). The theorem is proved. �
4. Proof of Theorem B

(I) ⇒ (II). Suppose that this is false and let G be a counterexample of minimal order. Then G is
not nilpotent, so D = GN �= 1. Since G is soluble, the class of all Gaschütz subgroups of G coincides
with the set of all U-covering subgroups of G by [19, 15.1]. Therefore by [34, VI, 9.5.4 and 9.5.6],
G has a Gaschütz subgroup and any two Gaschütz subgroups of G are conjugate, since the class of all
supersoluble groups is a saturated formation. Let S be a Gaschütz subgroup of G and π = π(S). Let
C be a Carter subgroup of G , a any π -element of C and E the Hall π ′-subgroup of D .

(1) The hypothesis holds for any quotient G/N of G .
It is clear that G/N is soluble. Now, let S1/N be a Gaschütz subgroup of G/N and π1 = π(S1/N).

Let W be a Gaschütz subgroup of S1. Then S1/N = W N/N � W /W ∩ N . Moreover, in view of [19, IV,
15.1], W is a Gaschütz subgroup of G , so π1 ⊆ π(W ) = π(S) = π . Let H1/N be any Hall subgroup of
G/N with π2 = π(H1/N) ⊆ π1. Let E be a Hall π2-subgroup of H1. Then E is a Hall π2-subgroup of G
and H1/N = E N/N . Hence E is quasipermutable in G by hypothesis and so H1/N is quasipermutable
in G/N by Lemma 2.1. Hence the hypothesis holds for G/N .

(2) G is supersoluble and G = DC, where C is a Carter subgroup of G .
First we shall show that G is supersoluble. Suppose that this is false. Let N be a minimal normal

subgroup of G . Since G is soluble, N is a p-group for some prime p. Moreover, the hypothesis holds
for G/N by (1). Hence G/N is supersoluble by the choice of G . Therefore G = N S = N � S since G is
not supersoluble. Moreover, N is the only minimal normal subgroup of G and |N| > p. Let E be a Hall
p′-subgroup of S . Then E is quasipermutable in G . Let B be a subgroup of G such that G = NG(E)B
and E permutes with all subgroups A of B satisfying (|E|, |A|) = 1. By Lemma 2.3, EG = E(EG ∩ B).
It is clear that N � EG , which implies that N � B and so E permutes with all subgroups of N . Let
V be a maximal subgroup of N such that V is normal in a Sylow p-subgroup G p of G . Then V �= 1
and E V = V E is a subgroup of G . Therefore N ∩ V E = V is normal in V E . Hence G = G p E � NG(V ),
which contradicts the minimality of N . Hence G is supersoluble.

Finally, since G is supersoluble, D � F (G) by [20, VI, 9.1]. Therefore for any Carter subgroup C of G
we have G = DC by [20, VI, 12.3].

(3) D is a p-group for some prime p.
Suppose that |π(D)| > 1. We shall show that under this hypothesis Assertions (a)–(c) are true

for G . Let P and Q be the Sylow p-subgroup and the Sylow q-subgroup of D , respectively, where
p �= q are primes dividing |D|. In view of (1), the hypothesis holds for G/P and for G/Q . Hence
Assertions (a)–(c) are true for G/P and for G/Q by the choice of G . By Assertion (a), D/P = (G/P )N

and D/Q = (G/Q )N are abelian. Hence D is abelian since D � D/P ∩ Q is isomorphic to a subgroup
of the direct product (D/P ) × (D/Q ), and so D is complemented in G by [22, IV, 5.18]. Thus, in view
of (2), Assertion (a) is true for G .

By [20, IV, 11.3], P C/P is a Carter subgroup of G/P and so every π -element of P C/P induces a
power automorphism on the Hall π ′-subgroup P E/P of D/P . Thus for any subgroup H of E we have
a ∈ NG(H P ). Similarly, a ∈ NG(H Q ). Thus a ∈ NG(H P ∩ H Q ) = NG(H), so Assertion (b) is true for G .
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Since D is abelian and G = DC , the subgroup C ∩ D is normal in G . Finally, let r be any prime
satisfying (r − 1, |G|) = 1. Then (r − 1, |G/P |) = 1 and (r − 1, |G/Q |) = 1. Hence r does not divide
|D/P : (D/P ) ∩ (P C/P )| = |D : P (D ∩ C)| since Assertion (c) is true for G/P . Similarly, we deduce that
r does not divide |D : Q (D ∩ C)|. Hence (r, |D/D ∩ C |) = 1 since |D : D ∩ C | = |P (D ∩ C) : D ∩ C ||D :
P (D ∩ C)| = |Q (D ∩ C) : D ∩ C ||D : Q (D ∩ C)| and p �= q. Therefore Assertion (c) is true for G . But then
Assertions (a)–(c) are true for G , contrary to the choice of G . Hence we have (3).

(4) A Sylow p-subgroup P of G is normal in G .
Indeed, since P/D is a Sylow p-subgroup of the nilpotent group G/D = G/GN , P is normal in G .
(5) (p − 1, |G|) �= 1. Hence p > 2.
Suppose that (p − 1, |G|) = 1. Since G �= C and G = DC , D ∩ C �= D . Let H/K be any chief factor

of G such that D ∩ C � K < H � D . Since G is supersoluble, |H/K | = p. Hence G/CG(H/K ) is a cyclic
group of exponent dividing p − 1. But then CG(H/K ) = G since (p − 1, |G|) = 1. Therefore C covers
H/K , that is, (H ∩ C)K = H by [20, VI, 13.4 and 11.10]. But since D ∩ C � K , we have H ∩ C � K and
hence (H ∩ C)K = K . This contradiction shows that (p − 1, |G|) �= 1.

Now let W be a Hall p′-subgroup of G contained in C . Let B be a subgroup of G such that
G = NG(W )B and W permutes with all subgroups A of B satisfying (|W |, |A|) = 1. Then W G =
W (W G ∩ B) by Lemma 2.3.

(6) Let B0 = W G ∩ P . Then W G = W B0 and D � B0 � B .
Indeed, W G = W G ∩ P W = W (W G ∩ P ) = W B0. By [20, VI, 12.2], C is abnormal in G . Hence

C W G = C W B0 = C B0 = G . Hence G/B0 = C B0/B0 � C/C ∩ B0 is nilpotent. Therefore D � B0. Finally,
since B0 � W G � W B and B0 is normal in G , we get B0 � B .

(7) W G � NG(H) for any subgroup H of D . Hence every element of W induces a power automorphism
on D .

Since D � B0 � B and D is normal in G , W Hx = HxW is a subgroup of G for all x ∈ G . Hence
H W x = W x H for all x ∈ G by Lemma 2.8. Therefore H = D ∩ W x H is normal in W x H . Thus W G �
NG(H).

(8) The group D is abelian.
First note that in view of (6) and (7), D is a Dedekind group. On the other hand, by (5), p > 2 and

hence D is abelian.
Final contradiction for the implication (I) ⇒ (II). In view of (3) we may assume that E = D . Then

for some x ∈ G we have a ∈ W x , so a induces a power automorphism on D by (7). Therefore all
Assertions (a)–(c) are true for G , which contradicts the choice of G .

(II) ⇒ (III). Let E be any Hall subgroup of G . We shall show that E is quasipermutable in G . Since
G is supersoluble, G = NG(E)D . Hence we have only to show that E permutes with any subgroup H
of D . In fact, in view of [22, A, 1.6], it is enough to consider the case where H is a p-group and E
is a Sylow q-group of G for some primes q �= p. But in this case, by hypothesis, every element of E
induces a power automorphism on D p , where D p is the Sylow p-subgroup of D and so E � NG(H).
Hence E H = H E . Thus E is quasipermutable G .

(III) ⇒ (I). This implication follows from Theorem 3.1.
The theorem is proved.

5. Proofs of Proposition and Theorems C and D

A chief factor H/K of G is called F-central in G provided (H/K )� (G/CG (H/K )) ∈ F. The symbol
ZF(G) denotes the product of all normal subgroups E of G such that every chief factor of G below E
is F-central [22, p. 389].

Lemma 5.1. (See Theorem B in [29].) Let F be any formation and E a normal subgroup of G. If F ∗(E) � ZF(G),
then E � ZF(G).

The formation F is said to be hereditary if H ∈ F whenever H � G ∈ F.

Lemma 5.2. (See Corollary 1.6 in [32].) Let F be a hereditary saturated formation containing all nilpotent
groups and E a normal subgroup of G. If E/E ∩ Φ(G) ∈ F, then E ∈ F.
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The following lemma is well-known (see for example Lemma 2.2 in [29]).

Lemma 5.3. Let E be a normal p-subgroup of G. If E � ZU(G), then G/CG (E) is an extension of some p-group
by an abelian group of exponent dividing p − 1.

Lemma 5.4. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that (p − 1, |G|) = 1. If
either P is cyclic or G is p-supersoluble, then E is p-nilpotent and E/O p′ (E) � Z∞(G/O p′ (E)).

Proof. First note that in view of the proof of [34, 10.1.9], E is p-supersoluble. Let H/K be any chief
factor of G such that O p′ (E) � K < H � E . Then |H/K | = p, so G/CG (H/K ) divides p − 1. But by
hypothesis, (p − 1, |G|) = 1. Hence CG (H/K ) = G . Thus E/O p′ (E) � Z∞(G/O p′ (E)). �
Proof of Proposition. Suppose that this proposition is false and let G be a counterexample with
|G| + |E| minimal.

(i) Suppose that this assertion is false. Let V ∈ Mφ(P ). By hypothesis there is a subgroup B of G
that G = NG(V )B and V permutes with B and with every Sylow q-subgroup of B for all primes q �= p
dividing |B|.

(1) V G = V (V G ∩ B) and V permutes with every Sylow q-subgroup of V G ∩ B for all primes q �= p dividing
|V G ∩ B| (this directly follows from Lemma 2.3).

(2) O p′ (N) = 1 for every normal subgroup N of G contained in E .
Suppose that for some normal subgroup N of G contained in E we have O p′ (N) �= 1. Since O p′ (N)

is a characteristic subgroup of N , it is normal in G . On the other hand, by Lemma 2.1, the hypothesis
holds for (G/O p′ (N), E/O p′ (N)). Hence E/O p′ (N) is p-supersoluble by the choice of (G, E). Thus E
is p-supersoluble, a contradiction.

(3) If L is a minimal normal subgroup of G, then L �Φ(P ).
Indeed, in the case, where L � Φ(P ), we have L � Φ(E) and the hypothesis holds for (G/L, E/L)

by Lemma 2.1. Hence E/L is p-supersoluble by the choice of (G, E). Therefore E is p-supersoluble by
Lemma 5.2, which contradicts to our assumption on E .

(4) If D is a normal p-soluble subgroup of G contained in E, then D is supersoluble and p-closed.
By (2), O p′ (D) = 1. Therefore O p = O p(D) �= 1. Let N be a minimal normal subgroup of G con-

tained in O p . In view of (3) we have N � Φ(P ). Hence for some subgroup W ∈ Mφ(P ) we have
P = NW . Let S = N ∩ W . Then S is normal in P . On the other hand, by Lemma 2.1, for any prime
q �= p dividing |E|, there are Sylow q-subgroups Q and Eq of G and E , respectively, such that
W Q = Q W and Eq = Q ∩ E . Hence S = Q W ∩ N is a normal subgroup of Q W and so Eq � NE(S).
Thus S is normal in E . By Proposition 4.13(c) in [22, Chapter A], N = N1 × · · · × Nt , where N1, . . . , Nt

are minimal normal subgroups of E , and from the proof of this proposition we also know that
|Ni | = |N j | for all i, j. Therefore there is a minimal normal subgroup L of E such that N = S L and
S ∩ L = 1. Then |L| = p, so N1, . . . , Nt are groups of order p by [22, A, 3.2]. Hence P = L � W , which
implies by the Gaschütz theorem [20, I, 17.4] that L has a complement M in E . Thus N � Φ(E). It
is clear that Φ(E) ∩ O p is normal in G . Therefore Φ(E) ∩ O p = 1. Hence every minimal normal sub-
group of E contained in O p is not contained in Φ(P ). Therefore O p = L1 × · · · × Lr , where L1, . . . , Lr

are minimal normal subgroups of E by [22, A, 13.8(b)]. Moreover, as above, it can be shown that
|Li | = p for all i = 1, . . . , r. Therefore every chief factor of E below O p is cyclic by [22, A, 3.2]. It is
clear that C E (O p) = C E (L1) ∩ · · · ∩ C E (Lr). Hence E/C E (O p) is an abelian group of exponent dividing
p − 1. Hence DC E (O p)/C E (O p) � D/C E (O p) ∩ D is abelian. But since D is p-soluble and O p′ (D) = 1,
C E (O p) ∩ D = C D(O p) � O p by [27, 6, 3.2]. Hence D is supersoluble and O p is a Sylow p-subgroup
of D , by Lemma 3.6, since O p′ (D) = 1.

(5) E is p-soluble.
Assume that E is not p-soluble.
(a) If O p(E) �= 1, then P is not cyclic.
Suppose that P is cyclic. Let L be a minimal normal subgroup of G contained in O p(E) � P .

Suppose that C E (L) = E , so L � Z(E). Let N = NE(P ). If P � Z(N), then E is p-nilpotent by Burnside’s
theorem [20, IV, 2.6], which contradicts to our assumption on E . Hence N �= C E (P ). Let x ∈ N\C E (P )
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with (|x|, |P |) = 1 and K = P � 〈x〉. By [20, III, 13.4], P = [K , P ] × (P ∩ Z(K )). Since L � P ∩ Z(K ) and
P is cyclic, it follows that P = P ∩ Z(K ) and so x ∈ C K (P ). This contradiction shows that C E (L) �= E .

Since P is cyclic, |L| = p. Hence G/CG(L) is a cyclic group of order dividing p − 1. If |P/L| > p,
then the hypothesis holds for (G/L, E/L) by Lemma 2.1. Hence E/L is p-supersoluble by the choice
of (G, E) and so E is p-soluble, a contradiction. Thus |P/L| = p and hence V = L is normal in G .
Therefore the hypothesis holds for (G, C E (L)), so C E (L) is p-supersoluble since C E (L) �= E . But then E
is p-soluble since E/C E (L) = E/E ∩ CG (L) � ECG(L)/CG(L) is cyclic. This contradiction shows that we
have (a).

(b) If P � V G , then V is normal in G .
Indeed, since P � V G � E , V is a Sylow p-subgroup of V G . On the other hand, by (1) we have that

V G = V (V G ∩ B) and V is S-quasipermutable in V G . Therefore V G is p-soluble by Lemma 2.7. Thus
V is normal in V G by (4). Since V is a Sylow p-subgroup of V G , V is characteristic in V G . Hence
V = V G is normal in G .

(c) P is not cyclic.
Suppose that P is cyclic. Then Mφ(P ) = {V }, and by (a) and (b) we have P � V G = V (V G ∩ B)

and V permutes with every Sylow q-subgroup of V G ∩ B for all primes q �= p dividing |V G ∩ B|. Hence
the hypothesis holds for (V G , V G). Assume that V G �= G . Then V G is p-supersoluble by the choice of
(G, E). Hence by (4), P is normal in G , which contradicts (a). Therefore V G = G , which implies that
G = V B by (1). Hence P = P ∩ V B = V (P ∩ B), so P � B since P is cyclic. Therefore B = G , so V is
S-permutable in G . Hence V � P E � O p(E), which contradicts (a). Hence P is not cyclic.

(d) P permutes with every Sylow q-subgroup Q of P G for all primes q �= p dividing |P G |.
Let D = P G . In view (c), there is a subgroup W ∈Mφ(P ) such that V �= W . Then P = V W . Hence

we have only to show that V and W permute with Q . In view of (b) we may assume that P � V G

and P � W G . Then D = P G � V G and so by (1), D = V (D ∩ B) and V permutes with every Sylow
q-subgroup Q 1 of D ∩ B . It is also clear that Q 1 is a Sylow q-subgroup of D . Therefore for some x ∈ D
we have Q 1 = Q x . Hence V permutes with Q by Lemma 2.2. Similarly, it may be proved that W
permutes with Q .

Final contradiction for (5). By (d), P is S-quasipermutable in P G . Therefore by Lemma 2.7, P G is
p-soluble. Hence by (4), P is normal in G . Therefore E is p-soluble. This contradiction completes the
proof of (5).

By (5), E is p-soluble. Hence E is supersoluble by (4). This contradiction completes the proof of (i).
(ii) Let Z = ZU(G). First we shall show that O p′ (E) = 1. Indeed, suppose that O p′ (E) �= 1. It is clear

that O p′ (E) is normal in G . Moreover, the hypothesis holds for (G/O p′ (E), E/O p′ (E)) by Lemma 2.1.
Therefore every chief factor of G/O p′ (E) between E/O p′ (E) and 1 is cyclic by the choice of (G, E).
Hence every chief factor of G between E and O p′ (E) is cyclic, a contradiction. Thus O p′ (E) = 1.

By (i), E is p-supersoluble. Hence in view of Lemma 3.6, E is supersoluble and P = F (E). Therefore
the hypothesis is true for (G, P ). If P �= E , then every chief factor of G below P is cyclic by the choice
of (G, E). Hence every chief factor of G below E is cyclic by Lemma 5.1, contrary to the choice of
(G, E). Hence P = E .

Let N be any minimal normal subgroup of G contained in P . Then every chief factor of G/N below
P/N is cyclic. Indeed, if |P/N| > p, then the hypothesis holds for (G/N, P/N), so this assertion is true
by the choice of (G, E) = (G, P ). Thus |N| > p. Assume that N � Φ(P ). Then, in view of Lemma 5.3
and [27, 5, 1.4 ], G/CG (P ) is an extension of some p-group by an abelian group of exponent dividing
p − 1. Therefore G/CG (N) is an abelian group of exponent dividing p − 1 since O p(G/CG (N)) = 1 by
[22, A, 13.6]. Hence |N| = p by [30, 1, 1.4]. This contradiction shows Φ(P ) = 1 and so P is elementary
abelian. Let W be a maximal subgroup of N such that W is normal in a Sylow p-subgroup G p of G .
Let V = W S , where S is a complement of N in P . Then W = V ∩ N and V is S-quasipermutable
in G by hypothesis. Hence by Lemma 2.1(4), G = G p NG(W ). Hence W is normal in G , so W = 1. This
contradiction shows that we have (ii).

(iii) In view of (ii) we have P �= E . Let p be the smallest prime dividing |E| and P a Sylow
p-subgroup of E . Then E is p-nilpotent. Indeed, if |P | = p, it follows directly from Lemma 5.4. If
|P | > p, then E is p-supersoluble by (i), so E is p-nilpotent again by Lemma 5.4. Let V = O p′ (E).
Since V is characteristic in E , it is normal in G and the hypothesis holds for (G, V ) and (G/V , E/V )
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by Lemma 2.1. Since P �= E , V �= 1, so E/V � ZU(G/V ) by the choice of (G, E). It is also clear that
V � ZU(G). Hence E � ZU(G), a contradiction. The proposition is proved. �
Proof of Theorem C. Suppose that this theorem is false and let G be a counterexample of minimal
order.

Let D = GF . Then G �= D �= 1 and for any F-covering subgroup C of G we have G = DC . Let P be
a Sylow p-subgroup of D such that 1 < P < G p for a Sylow p-subgroup G p of G . Then |G p| > p and
p ∈ π .

(1) The hypothesis holds on G/N for any minimal normal subgroup N of G .
Indeed, let W /N be an F-covering subgroup of G/N and π0 = π(W /N) ∩ π(DN/N) = π(W /N) ∩

π((G/N)F ). Then, by [20, VI, 7.9 and 7.10], there is an F-covering subgroup C of G such that W /N =
C N/N � C/C ∩ N . Hence π0 ⊆ π . Let V /N be a maximal subgroup of a Sylow q-subgroup Q /N of
G/N , where q ∈ π0. Then for some Sylow q-subgroup Gq of G and for some maximal subgroup Q 1 of
Gq we have V /N = Q 1N/N . Therefore by hypothesis, Q 1 is S-quasipermutable in G . Hence V /N is
S-quasipermutable in G by Lemma 2.1. Hence we have (1).

(2) If N is a minimal normal subgroup of G contained in D, then N = O p(D) = F (D) is a Sylow p-subgroup
of D and every Sylow q-subgroup Q of D, where q �= p, is a Sylow q-subgroup of G .

Since G is soluble, N is an r-group for some prime r. By (1), the hypothesis holds on G/N , so
D/N = (G/N)F is a Hall subgroup of G by the choice of G . Therefore, if S is a Sylow subgroup of
D such that (|S|, r) = 1, then N S/N is a Sylow subgroup of G/N , which implies that S is a Sylow
subgroup of G . Hence r = p, N = O p(D) = F (D) = P and Q is a Sylow q-subgroup of G .

(3) O p′ (G) = 1.
Suppose that O p′ (G) �= 1 and let R be a minimal normal subgroup of G contained in O p′ (G). Then,

in view (2), R ∩ D = 1. Moreover, the hypothesis holds for G/R by (1). Therefore (G/R)N = D R/R � D
is a Hall subgroup of G/R . But then P = G p , a contradiction. Hence we have (3).

(4) G is supersoluble, D = N and G p is normal in G .
Since |G p| > p and p ∈ π , G is p-supersoluble by Proposition. Hence in view of (3) and Lemma 3.6,

G is supersoluble and G p is normal in G . Thus D = N � F (G) = G p by (3) since F contains all
nilpotent groups by hypothesis.

(5) Φ(G p) = 1, that is, G p is elementary abelian.
Suppose that Φ(G p) �= 1 and let R be a minimal normal subgroup of G contained in Φ(G p). Then

R � Φ(G). If R = D = GF , then G ∈ F since the formation F is saturated by hypothesis. But then
D = 1, a contradiction. Hence R �= D . It is also clear that R D �= G p . But the hypothesis holds for
G/R by (1), so D R/R = G p/N by the choice of G . Thus R D = G p . This contradiction shows that we
have (5).

(6) Every subgroup of G p is normal in G .
In view of (4) we only need show that every maximal subgroup V of G p is normal in G . By

hypothesis V is S-quasipermutable in G . Hence by Lemma 2.1 for any prime q �= p there is a Sylow
q-subgroup Q of G such that V Q = Q V , which implies that V = V Q ∩ G p is normal in V Q . Hence
|G : NG(V )| is a p-number, so V is normal in G .

Final contradiction. By the Maschke’s theorem, G p = 〈a〉 × 〈a2〉 × · · · × 〈at〉, where 〈ai〉 is a minimal
normal subgroup of G , 〈a〉 = D . Write a1 = aa2 . . .at . Then since 〈a1〉 ∩ 〈a2〉 . . . 〈at〉 = 1, we have G p =
〈a1〉 × 〈a2〉 × · · · × 〈at〉. Note that 〈a1〉 is normal in G . Therefore from the G-isomorphism D〈a1〉/D �
〈a1〉 we have 〈ai〉 � ZF(G). It is also clear that 〈a2〉 × · · · × 〈at〉 � ZF(G). Hence G p � ZF(G), which
implies that G ∈ F, a contradiction. The theorem is proved. �
Proof of Theorem D. Suppose that this theorem is false and let G be a counterexample of minimal or-
der. Then for every p ∈ π every maximal subgroup of a Sylow p-subgroup of G is S-quasipermutable
in G . We shall show that under this condition every chief factor of G below of F ∗(GF) is cyclic. First
we show that F ∗(GF) is soluble. Let p be the smallest prime in π and P a Sylow p-subgroup of G .
Then F ∗(GF) is p-nilpotent. Indeed, if |P | = p, then F ∗(GF) is p-nilpotent directly by Lemma 5.4.
Otherwise, G is p-supersoluble by Proposition and so F ∗(GF) is p-nilpotent by Lemma 5.4 again.
Hence F ∗(GF) is soluble by the Feit–Thompson theorem, which implies that F ∗(GF) = F (GF) by
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[31, X, 13.7]. Now let H/K be any chief factor of G below F ∗(GF). Suppose that |H/K | = qn , where
n > 1. Then G is q-supersoluble by Proposition. Hence H/K is cyclic, that is, n = 1, a contradiction.
Thus every chief factor of G below of F ∗(GF) is cyclic, so every chief factor of G below of GF is also
cyclic by Lemma 5.1. But then G ∈ F since F contains all supersoluble groups by hypothesis. Hence
D = 1. This contradiction completes the proof of the theorem.

6. Proof of Theorem A

Recall that G is a soluble PST-group if and only if G = D � M , where D = GN is an abelian Hall
subgroup of G and every element x ∈ M induces a power automorphism on D [3]. Therefore the
implication (i) ⇒ (ii) is a direct corollary of Theorem B.

Now suppose that G = D � M , where D = GN , is a soluble PST-group. Let H be any subgroup
of G and S a Hall π ′-subgroup of H . Since G is soluble, we may assume without loss of generality
that S � M . Hence H = (D ∩ H)(M ∩ H) = (D ∩ H)S and D ∩ H is normal in G . Let π1 = π(S).
Let A be a Hall π1-subgroup of M and E a complement to A in M . Then E � CG (S). Therefore
G = DM = D AE = NG(H)(D A) and every subgroup L of D A satisfying (|H |, |L|) = 1 is contained
in D . Thus H is quasipermutable in G . Thus (ii) ⇒ (iii).

(iv) ⇒ (ii) By Theorems C and D, G is supersoluble and D is a Hall subgroup of G . Therefore
G = D � W , where W is a Hall π ′-subgroup of G . By hypothesis, W is quasipermutable in G . Now
arguing similarly as in the proof of Theorem B one can show that D is abelian and every subgroup of
D is normal in G . Therefore G is a PST-group.

7. Final remarks

1. The subgroup S3 is quasipermutable, S-propermutable and not propermutable in S4. If H is the
subgroup of order 3 in S3, then H is S-quasipermutable and not quasipermutable in S4.

2. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 7.1. Suppose that G is soluble and let π = π(GN). Then G is a PST-group if and only if every sub-
normal π -subgroup and a Hall π ′-subgroup of G are propermutable in G.

3. If G is metanilpotent, that is G/F (G) is nilpotent, then for every Hall subgroup E of G we
have G = NG(E)F (G). Therefore, in this case, every characteristic subgroup of every Hall subgroup
of G is S-propermutable in G . In particular, every Hall subgroup of every supersoluble group is
S-propermutable. This observation makes natural the following question: What is the structure of G
under the hypothesis that every Hall subgroup of G is propermutable in G? Theorem B gives an answer to
this question.

4. Every maximal subgroup of a supersoluble group is quasipermutable. Therefore, in fact, Theo-
rem A shows that the class of all soluble groups in which quasipermutability is a transitive relation
coincides with the class of all soluble PST-groups.

5. We say that G is an SQT-group if S-quasipermutability is a transitive relation in G . Arguing
similarly to the proof of Theorem A one can prove the following fact.

Theorem 7.2. A soluble group G is an SQT-group if and only if G = D � M is supersoluble, where D and M are
Hall nilpotent subgroups of G and the index |G : DNG (H ∩ D)| is a π(H)-number for every subgroup H of G.

6. A subgroup H of G is called S S-quasinormal [21] (semi-normal [33]) in G provided G has a
subgroup B such that H B = G and H permutes with all Sylow subgroups (H permutes with all sub-
groups, respectively) of B .

It is clear that every S S-quasinormal subgroup is S-propermutable and every semi-normal sub-
group is propermutable. Moreover, there are simple examples (consider, for example, the group
C7 � Aut(C7), where C7 is a group of order 7) which show that, in general, the class of all S-pro-
permutable subgroups of G is wider than the class of all its S S-quasinormal subgroups and the class
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of all propermutable subgroups of G is wider than the class of all its semi-normal subgroups. There-
fore Proposition covers the main results (Theorems 1.1–1.5) in [21].

7. We have already used Theorem 3.1 in the proof of Theorem B. From this result we also get

Corollary 7.3. (See [35, Theorem 5.4].) Let H be a Hall semi-normal subgroup of G. If p > q for all primes p
and q such that p divides |H | and q divides |G : H |, then H is normal in G.

Corollary 7.4. (See [36, Theorem].) Let P be a Sylow p-subgroup of G. If P is semi-normal in G, then the
following statements hold:

(i) G is p-soluble and P ′ � O p(G).
(ii) lp(G) � 2.

(iii) If for some prime q ∈ p′ a Hall p′-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 7.5. (See [37, Theorem 3].) If a Sylow p-subgroup P of G, where p is the largest prime dividing |G|,
is semi-normal in G, then P is normal in G.
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