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If we are given an H-G-biset U for finite groups G and H , then
any Mackey functor on G can be transformed by U into a Mackey
functor on H . In this article, we show that the biset transformation
is also applicable to Tambara functors when U is right-free, and
in fact forms a functor between the category of Tambara functors
on G and H . This biset transformation functor is compatible with
some algebraic operations on Tambara functors, such as ideal
quotients or fractions. In the latter part, we also construct the left
adjoint of the biset transformation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let G and H be arbitrary finite groups. By definition, an H-G-biset U is a set U with a left H-action
and a right G-action, which satisfy

(hu)g = h(ug)

for any h ∈ H , u ∈ U , g ∈ G [2]. In this article, an H-G-biset is always assumed to be finite.
If we are given an H-G-biset U , then there is a functor

U ◦
G
− : G set → H set

which preserves finite direct sums and fiber products [2]. In fact, for any X ∈ Ob(G set), the object
U ◦

G
X ∈ Ob(H set) is given by
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U ◦
G

X = {
(u, x) ∈ U × X

∣∣ u G � Gx
}
/G,

where the equivalence relation (/G) is defined by

– (u, x) and (u′, x′) are equivalent if there exists some g ∈ G satisfying u′ = ug and x = gx′ .

We denote the equivalence class of (u, x) by [u, x]. Then U ◦
G

X is equipped with an H-action

h[u, x] = [hu, x] (∀h ∈ H, ∀[u, x] ∈ U ◦
G

X
)
.

For any f ∈ G set(X, Y ), the morphism U ◦
G

f ∈ H set(U ◦
G

X, U ◦
G

Y ) is defined by

U ◦
G

f
([u, x]) = [

u, f (x)
] (∀[u, x] ∈ U ◦

G
X
)
.

This functor U ◦
G
− enables us to transform a Mackey functor M on H into a Mackey functor M ◦

U = M(U ◦
G
−) on G [3,2]. In fact, this construction gives a functor [2]

− ◦ U : Mack(H) → Mack(G); M �→ M ◦ U ,

which, in this article, we would like to call the biset transformation along U . Here, Mack(G) and
Mack(H) denote the category of Mackey functors on G and H , respectively.

In this article, we show that the functor U ◦
G
− : G set → H set also preserves exponential diagrams

if U is right-free, namely if any element u ∈ U satisfies

ug = u ⇒ g = e

for g ∈ G . As a corollary we obtain a biset transformation for Tambara functors

− ◦ U : Tam(H) → Tam(G); T �→ T ◦ U

for any right-free biset U , where Tam(G) and Tam(H) are the category of Tambara functors on G
and H .

This biset transformation is compatible with some algebraic operations on Tambara functors, such
as ideal quotients or fractions. If we are given an ideal I of a Tambara functor T on H [6], then I
is transformed into an ideal I ◦ U of T ◦ U , and there is a natural isomorphism of Tambara functors

(T /I ) ◦ U
∼=−→(T ◦ U )/(I ◦ U ).

Or, if we are given a multiplicative semi-Mackey subfunctor S of a Tambara functor T on H [7], then
S is transformed into a multiplicative semi-Mackey subfunctor S ◦ U of T ◦ U , and there is a natural
isomorphism of Tambara functors

(
S −1T

) ◦ U
∼=−→(S ◦ U )−1(T ◦ U ).

In the latter part, we construct a left adjoint functor

LU : Tam(G) → Tam(H)
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of the biset transformation − ◦ U : Tam(H) → Tam(G). As an immediate corollary of the adjoint prop-
erty, LU becomes compatible with the Tambarization functor Ω[−] (Corollary 3.12).

Tam(H) Tam(G)

SMack(H) SMack(G)

LU

ΩH [−] ΩG [−]

LU

�

For any finite group G , we denote the category of (resp. semi-)Mackey functors on G by Mack(G)

(resp. SMack(G)). If G acts on a set X from the left (resp. right), we denote the stabilizer of x ∈ X by
Gx (resp. xG). The category of finite G-sets is denoted by G set.

We denote by Set the category of sets. For any category C , we denote the category of covariant
functors from C to Set by Fun(C , Set). For functors E, F : C → Set, we denote the set of natural
transformations from E to F by Nat(C ,Set)(E, F ) = Fun(C , Set)(E, F ). If C admits finite products, let
Add(C , Set) denote the category of covariant functors F : C → Set preserving finite products.

Definition 1.1. For each f ∈ G set(X, Y ) and p ∈ G set(A, X), the canonical exponential diagram generated
by f and p is the commutative diagram

X

Y

A X ×
Y

Π f (A)

Π f (A)

expf

p e

f ′

π

where

Π f (A) =
⎧⎨
⎩(y,σ )

∣∣∣∣∣
y ∈ Y ,

σ : f −1(y) → A is a map of sets,
p ◦ σ is equal to the inclusion f −1(y) ↪→ X

⎫⎬
⎭ ,

π(y,σ ) = y, e
(
x, (y,σ )

) = σ(x),

and f ′ is the pullback of f by π . On Π f (A), G acts by

g(y,σ ) = (gy, gσ),

where gσ is the map defined by gσ(x′) = gσ(g−1x′) for any x′ ∈ f −1(gy). A diagram in G set isomor-
phic to one of the canonical exponential diagrams is called an exponential diagram.

Remark 1.2. We denote the comma category of G set over X ∈ Ob(G set) by G set/X . For each morphism
f ∈ G set(X, Y ), the functor

Π f : G set/X → G set/Y ; (A
p→ X) �→ (

Π f (A)
π→ Y

)
gives a right adjoint of the pullback functor

− ×Y X : G set/Y → G set/X .
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Definition 1.3. (See [8].) A semi-Tambara functor T on G is a triplet T = (T ∗, T+, T•) of two covariant
functors

T+ : G set → Set, T• : G set → Set

and one additive contravariant functor

T ∗ : G set → Set

which satisfies the following.

(1) T α = (T ∗, T+) and T μ = (T ∗, T•) are objects in SMack(G). T α is called the additive part of T , and
T μ is called the multiplicative part of T .

(2) (Distributive law) If we are given an exponential diagram

X

Y

A Z

B

expf

p λ

ρ

q

in G set, then

T (X)

T (Y )

T (A) T (Z)

T (B)

T•( f )

T+(p) T ∗(λ)

T•(ρ)

T+(q)

�

is commutative.

If T = (T ∗, T+, T•) is a semi-Tambara functor, then T (X) becomes a semi-ring for each X ∈
Ob(G set), whose additive (resp. multiplicative) monoid structure is induced from that on T α(X) (resp.
T μ(X)). For each f ∈ G set(X, Y ), those maps T ∗( f ), T+( f ), T•( f ) are often abbreviated to f ∗, f+, f• .

A morphism of semi-Tambara functors ϕ : T → S is a family of semi-ring homomorphisms

ϕ = {
ϕX : T (X) → S(X)

}
X∈Ob(G set),

natural with respect to all of the contravariant and the covariant parts. We denote the category of
semi-Tambara functors by STam(G).

If T (X) is a ring for each X ∈ Ob(G set), then a semi-Tambara functor T is called a Tambara functor.
The full subcategory of Tambara functors in STam(G) is denoted by Tam(G).

Remark 1.4. In [8], it was shown that the inclusion functor Tam(G) ↪→ STam(G) has a left adjoint
γG : STam(G) → Tam(G).

Remark 1.5. Taking the multiplicative parts, we obtain functors

(−)μ : STam(G) → SMack(G), (−)μ : Tam(G) → SMack(G).
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In [5], it was shown that (−)μ : STam(G) → SMack(G) has a left adjoint

S : SMack(G) → STam(G).

Composing with γG , we obtain a functor called Tambarization

ΩG [−] = γG ◦ S : SMack(G) → Tam(G),

which is left adjoint to (−)μ : Tam(G) → SMack(G).

2. Biset transformation

In this section, we consider transformation of a Tambara functor along a biset, and show how the
functors in the previous section are related.

First, we remark the following.

Remark 2.1. Assume we are given an exponential diagram

X

Y

A Z

Π f (A)

expf

p λ

ρ

π

(2.1)

in G set. For any H-G-biset U , since U ◦
G
− preserves pullbacks, we obtain a pullback diagram (we will

denote pullback diagrams with a square �)

U ◦
G

X

U ◦
G

Y

U ◦
G

Z

U ◦
G
Π f (A)

�U ◦
G

f

(U ◦
G

p)◦(U ◦
G

λ)

U ◦
G
ρ

U ◦
G
π

in H set. If we take an exponential diagram associated to

U ◦
G

X
U ◦

G
f

←− U ◦
G

Y
U ◦

G
p

←− U ◦
G

A

as

U ◦
G

X

U ◦
G

Y

U ◦
G

A Z ′

ΠU ◦
G

f (U ◦
G

A) ,

expU ◦
G

f

U ◦
G

p

then by the adjointness between
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− ×
U ◦

G
Y
(U ◦

G
X) : H set/U ◦

G
Y → H set/U ◦

G
X

and

ΠU ◦
G

f : H set/U ◦
G

X → H set/U ◦
G

Y ,

we obtain a natural bijection

H set/U ◦
G

Y
(
U ◦

G
Π f (A),ΠU ◦

G
f (U ◦

G
A)

)
∼= H set/U ◦

G
X
((

U ◦
G
Π f (A)

) ×
U ◦

G
Y
(U ◦

G
X), U ◦

G
A
)

∼= H set/U ◦
G

X (U ◦
G

Z , U ◦
G

A).

Thus there should exist a morphism

U ◦
G
Π f (A) → ΠU ◦

G
f (U ◦

G
A)

corresponding to U ◦
G
λ : U ◦

G
Z → U ◦

G
A.

With this view, we construct an H-map

Φ : U ◦
G
Π f (A) → ΠU ◦

G
f (U ◦

G
A)

explicitly for any H-G-biset U , for the later use.
By definition, we have

U ◦
G
Π f (A) =

{[
u, (y,σ )

] ∣∣∣ u ∈ U ,

(y,σ ) ∈ Π f (A), u G � G(y,σ )

}
,

ΠU ◦
G

f (U ◦
G

A) =

⎧⎪⎪⎨
⎪⎪⎩

([u, y], τ ) ∣∣∣∣∣
[u, y] ∈ U ◦

G
Y ,

τ : (U ◦
G

f )−1([u, y]) → U ◦
G

A is a map,

satisfying (U ◦
G

p) ◦ τ = incl.

⎫⎪⎪⎬
⎪⎪⎭ .

Remark 2.2. Let U be any H-G-biset. For any [u, y] ∈ U ◦
G

Y , the following hold.

(1) An element [u0, x0] ∈ U ◦
G

X belongs to (U ◦
G

f )−1([u, y]) if and only if there exists g0 ∈ G satisfy-

ing

u = u0 g0 and g0 y = f (x0). (2.2)

In particular, g−1
0 · x0 ∈ f −1(y).
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(2) Let [u0, x0] be an element in (U ◦
G

f )−1([u, y]). If g0 satisfies (2.2) and g′
0 similarly satisfies

u = u0 g′
0 and g′

0 y = f (x0),

then we have g−1
0 · x0 = g′ −1

0 · x0.

Proof. (1) We have

[u0, x0] ∈ (U ◦
G

f )−1([u, y]) ⇔ [
u0, f (x0)

] = [u, y]

⇔ ∃g0 ∈ G such that u = u0 g0, g0 y = f (x0).

(2) Since u0 g0 = u0 g′
0 implies g′

0 g−1
0 ∈ u0 G � Gx0 , it follows g′

0 g−1
0 · x0 = x0. �

Lemma 2.3. For any [u, (y, σ )] ∈ U ◦
G
Π f (A), define Φ([u, (y, σ )]) by

Φ
([

u, (y,σ )
]) = ([u, y], τσ ,u

)
,

where τσ ,u : (U ◦
G

f )−1([u, y]) → U ◦
G

A is a map defined by

τσ ,u
([u0, x0]

) = [
u,σ

(
g−1

0 x0
)] (∀[u0, x0] ∈ (U ◦

G
f )−1([u, y])),

where g0 ∈ G is an element satisfying (2.2). (It can be easily confirmed that [u, σ (g−1
0 x0)] belongs to U ◦

G
A,

by using (2.2).)
Then Φ : U ◦

G
Π f (A) → ΠU ◦

G
f (U ◦

G
A) becomes a well-defined H-map.

Proof. By Remark 2.2, this σ(g−1
0 x0) is independent of the choice of g0.

It suffices to show the following.

(1) τσ ,u is well-defined for each [u, (y, σ )] ∈ U ◦
G
Π f (A).

(2) Φ is well-defined.
(3) Φ is an H-map.

(1) Suppose [u′
0, x′

0] = [u0, x0] and take g0, g′
0 ∈ G satisfying

u = u0 g0, g0 y = f (x0),

u = u′
0 g′

0, g′
0 y = f

(
x′

0

)
.

Since [u′
0, x′

0] = [u0, x0], there exists some g ∈ G satisfying

u′
0 = u0 g, x′

0 = g−1x0.

Then we obtain

[
u,σ

(
g′ −1

0 x′
0

)] = [
u,σ

(
g′ −1

0 g−1x0
)]

.
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Since u0 g0 = u = u′
0 g′

0 = u0 gg′
0, we have

g0 g′ −1
0 g−1 ∈ u0 G � Gx0 ,

which means g′ −1
0 g−1x0 = g−1

0 x0, and thus

[
u,σ

(
g′ −1

0 x′
0

)] = [
u,σ

(
g−1

0 x0
)]

.

(2) Suppose [u, (y, σ )] = [u′, (y′, σ ′)]. There exists g ∈ G satisfying

u′ = ug and
(

y′,σ ′) = g−1 · (y,σ ),

namely y′ = g−1 y, σ ′ = g−1
σ . In particular we have [u, y] = [u′, y′], and thus

(U ◦
G

f )−1([u, y]) = (U ◦
G

f )−1([u′, y′]).
For any [u0, x0] ∈ (U ◦

G
f )−1([u, y]), take g0 and g′

0 satisfying

u = u0 g0, g0 y = f (x0),

u′ = u0 g′
0, g′

0 y′ = f (x0).

Since u0 g0 g = ug = u′ = u0 g′
0 implies gg′ −1

0 x0 = g−1
0 x0 as in the above argument, we have

τσ ′,u′
([u0, x0]

) = [
u′,σ ′(g′ −1

0 x0
)] = [

ug, g−1σ
(

gg′ −1
0 x0

)]
= [

ug, g−1σ
(

g−1
0 x0

)] = [
u,σ

(
g−1

0 x0
)] = τσ ,u

([u0, x0]
)
.

Thus we obtain ([u, y], τσ ,u) = ([u′, y′], τσ ′,u′), and Φ is well-defined.
(3) Let [u, (y, σ )] be any element. For any h ∈ H , we have

Φ
(
h
[
u, (y,σ )

]) = Φ
([

hu, (y,σ )
])

= ([hu, y], τσ ,hu
) = (

h[u, y], τσ ,hu
)
.

Thus it suffices to show τσ ,hu = hτσ ,u .
Let [u†, x†] ∈ (U ◦

G
f )−1([hu, y]) be any element. Take g† ∈ G satisfying

hu = u† g†, g† y = f (x†). (2.3)

By the definition of τσ ,hu , we have

τσ ,hu
([u†, x†]

) = [
hu,σ

(
g−1

† x†
)] = h

[
u,σ

(
g−1

† x†
)]

(2.4)

for any [u†, x†] ∈ (U ◦
G

f )−1([hu, y]).

We have the following.
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Remark 2.4.

(1) When [u†, x†] runs through the elements in (U ◦
G

f )−1([hu, y]), then

h−1[u†, x†] = [
h−1u†, x†

]
runs through the elements in (U ◦

G
f )−1([u, y]).

(2) If g† ∈ G satisfies (2.3), then we have

u = h−1u† g†, g† y = f (x†).

Thus by the definition of τσ ,u , we have

τσ ,u
([

h−1u†, x†
]) = [

u,σ
(

g−1
† x†

)]
.

By (2.4) and Remark 2.4, we obtain

hτσ ,u[u†, x†] = hτσ ,u
([

h−1u†, x†
])

= h
[
u,σ

(
g−1

† x†
)] = τσ ,hu

([u†, x†]
)

for any [u†, x†] ∈ (U ◦
G

f )−1([hu, y]). Namely, τσ ,hu = hτσ ,u . �
So far we obtained an H-map Φ : U ◦

G
Π f (A) → ΠU ◦

G
f (U ◦

G
A). We show that this map is bijective,

when U is right-free.

Proposition 2.5. Let G, H be finite groups, and let U be a right-free H-G-biset. Then

U ◦
G
− : G set → H set

preserves exponential diagrams.

Remark 2.6. When U is not right-free, this does not necessarily hold. For example, let U be a singleton
U = {∗} with a trivial H-G-action, and put

X = G/e, Y = G/G, A = G/e � G/e,

f : X → Y ; the unique constant map,

p : A → X; the folding map.

If G is non-trivial, then we have ΠU ◦
G

f (U ◦
G

A) ∼= Y , while U ◦
G
Π f (A) ∼= Y � Y .

Proof of Proposition 2.5. Let (2.1) be any exponential diagram as before. By Lemma 2.3, we have a
well-defined H-map

Φ : U ◦
G
Π f (A) → ΠU ◦

G
f (U ◦

G
A).

It suffices to construct the inverse Ψ of Φ .
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Remark that since U is right-free, we have

U ◦
G

X = (U × X)/G

for any X ∈ Ob(G set). Thus for any [u, y] ∈ U ◦
G

Y and any x† ∈ f −1(y), we have

[
u, x†] ∈ (U ◦

G
f )−1([u, y])

by Remark 2.2.
For any ([u, y], τ ) ∈ ΠU ◦

G
f (U ◦

G
A), define Ψ ([u, y], τ ) by

Ψ
([u, y], τ ) = [

u, (y,στ ,u)
]
,

where στ,u : f −1(y) → A is a map satisfying

[
u,στ ,u

(
x†)] = τ

([
u, x†]) (∀x† ∈ f −1(y)

)
. (2.5)

Here, we have the following.

Remark 2.7. If [u,a], [u′,a′] ∈ U ◦
G

A satisfy

[u,a] = [
u′,a′] and u = u′,

then we have a = a′ .

Thus στ,u(x†) is well-defined by (2.5) for each x†. To show Proposition 2.5, it suffices to show the
following.

(1) Ψ : ΠU ◦
G

f (U ◦
G

A) → U ◦
G
Π f (A) is a well-defined map.

(2) Ψ ◦ Φ = id.
(3) Φ ◦ Ψ = id.

(1) Suppose ([u, y], τ ) = ([u′, y′], τ ′). Then obviously we have τ ′ = τ . There exists some g ∈ G
satisfying

u = u′g, gy = y′.

In particular we have f −1(y′) = g · f −1(y). By definition of στ,u and στ,u′ , we have

[
u,στ ,u

(
x†)] = τ

([
u, x†]),[

u′,στ ,u′
(

gx†)] = τ
([

u′, gx†])
for any x† ∈ f −1(y).
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Thus it follows

[
u,στ ,u

(
x†)] = τ

([
u, x†]) = τ

([
u′g, x†])

= τ
([

u′, gx†]) = [
u′,στ ,u′

(
gx†)]

= [
ug−1,στ ,u′

(
gx†)] = [

u, g−1
στ,u′

(
x†)].

By Remark 2.7, this means στ,u = g−1
στ,u′ . Thus it follows

[
u, (y,στ ,u)

] = [
u′g,

(
g−1 y′, g−1

στ,u′
)]

= [
u′g, g−1(y′,στ ,u′

)] = [
u′,

(
y′,στ ,u′

)]
,

and thus Ψ is well-defined.
(2) Let [u, (y, σ )] ∈ U ◦

G
Π f (A) be any element. We have

Ψ ◦ Φ
([

u, (y,σ )
]) = Ψ

([u, y], τσ ,u
) = [

u, (y,στσ ,u ,u)
]
,

where τσ ,u and στσ,u ,u are defined by

τσ ,u
([u0, x0]

) = [
u,σ

(
g−1

0 x0
)] (∀[u0, x0] ∈ (U ◦

G
f )−1([u, y])),

[
u,στσ ,u ,u

(
x†)] = τσ ,u

([
u, x†]) (∀x† ∈ f −1(y)

)
,

using g0 ∈ G satisfying u = u0 g0 and g0 y = f (x0). In particular we have

τσ ,u
([

u, x†]) = [
u,σ

(
x†)] (∀x† ∈ f −1(y)

)
,

and thus

[
u,στσ ,u ,u

(
x†)] = τσ ,u

([
u, x†]) = [

u,σ
(
x†)]

for any x† ∈ f −1(y). By Remark 2.7, it follows στσ,u ,u = σ , and thus Ψ ◦ Φ([u, (y, σ )]) = [u, (y, σ )].
(3) Let ([u, y], τ ) ∈ ΠU ◦

G
f (U ◦

G
A) be any element. We have

Φ ◦ Ψ
([u, y], τ ) = Φ

([
u, (y,στ ,u)

]) = ([u, y], τστ,u ,u
)
,

where στ,u and τστ,u ,u are defined by

[
u,στ ,u

(
x†)] = τ

([
u, x†]) (∀x† ∈ f −1(y)

)
,

τστ,u,u
([u0, x0]

) = [
u,στ ,u

(
g−1

0 x0
)] (∀[u0, x0] ∈ (U ◦

G
f )−1([u, y])),

using g0 ∈ G satisfying u = u0 g0 and g0 y = f (x0). It follows

τστ,u ,u
([u0, x0]

) = τ
([

u, g−1
0 x0

]) = τ
([u0, x0]

)
for any [u0, x0] ∈ (U ◦ f )−1([u, y]), and thus Φ ◦ Ψ ([u, y], τ ) = ([u, y], τ ). �
G
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Proposition 2.5 allows us to transform Tambara functors along a biset.

Corollary 2.8. Let U be a right-free H-G-biset. For any T ∈ Ob(Tam(H)), if we define T ◦ U by

T ◦ U (X) = T (U ◦
G

X)
(∀ X ∈ Ob(G set)

)
,

(T ◦ U )∗( f ) = T ∗(U ◦
G

f ),

(T ◦ U )+( f ) = T+(U ◦
G

f )
(∀ f ∈ G set(X, Y )

)
,

(T ◦ U )•( f ) = T•(U ◦
G

f )

then T ◦ U becomes an object in Tam(G).
If ϕ : T → S is a morphism in Tam(H), then

ϕ ◦ U = {ϕU ◦
G

X }X∈Ob(G set)

forms a morphism ϕ ◦ U : T ◦ U → S ◦ U in Tam(G).
This correspondence gives a functor − ◦ U : Tam(H) → Tam(G). In the same way, we obtain a functor

− ◦ U : STam(H) → STam(G).

Remark 2.9. Since U ◦
G
− : G set → H set preserves finite direct sums and pullbacks, this induces a func-

tor

− ◦ U : SMack(H) → SMack(G),

defined in the same way. (For the case of Mackey functors, see [3].)
Clearly by the construction, these functors are compatible. Namely, we have the following commu-

tative diagrams of functors.

Tam(H) Tam(G)

STam(H) STam(G)

SMack(H) SMack(G)

−◦U

−◦U

−◦U

(−)μ (−)μ

�

�

Tam(H) Tam(G)

Mack(H) Mack(G)

−◦U

(−)α (−)α

−◦U

� (2.6)

Corollary 2.10. In [6], an ideal I of a Tambara functor T on H is defined to be a family of ideals

{
I (X) ⊆ T (X)

}
X∈Ob(H set),

which satisfies the following for any f ∈ H set(X, Y ).

(i) f ∗(I (Y )) ⊆ I (X),
(ii) f+(I (X)) ⊆ I (Y ),

(iii) f•(I (X)) ⊆ f•(0) + I (Y ).
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If I ⊆ T is an ideal, then the objectwise ideal quotient

T /I = {
T (X)/I (X)

}
X∈Ob(H set)

carries a natural Tambara functor structure on H induced from that on T .
Concerning Corollary 2.8, suppose we are given a right-free H-G-biset U . If we define I ◦ U by

I ◦ U (X) = I (U ◦
G

X)

for each X ∈ Ob(G set), then I ◦ U ⊆ T ◦ U becomes again an ideal, and we obtain a natural isomorphism of
Tambara functors on G

(T /I ) ◦ U ∼= (T ◦ U )/(I ◦ U ).

Corollary 2.11. Let T be a Tambara functor on H. In [7], it was shown that for any semi-Mackey subfunctor
S ⊆ T μ , the objectwise ring of fractions

S −1T = {
S (X)−1T (X)

}
X∈Ob(H set)

carries a natural Tambara functor structure on H induced from that on T .
Concerning Corollary 2.8, suppose we are given a right-free H-G-biset U . Then S ◦U ⊆ (T ◦U )μ = T μ ◦U

becomes again a semi-Mackey subfunctor, and we obtain a natural isomorphism of Tambara functors on G

(
S −1T

) ◦ U ∼= (S ◦ U )−1(T ◦ U ).

3. Adjoint construction

In the rest, we construct a left adjoint of − ◦ U : Tam(H) → Tam(G) constructed in Corollary 2.8.
We use the following theorem shown in [8].

Fact 3.1. Let G be a finite group. There exists a category UG with finite products satisfying the follow-
ing properties.

(1) Ob(UG) = Ob(G set).

(2) There is a categorical equivalence μG : Add(UG , Set)
�−→ STam(G).

We recall the structure of U briefly. Details can be found in [8].
The set of morphisms UG(X, Y ) is defined as follows, for each X, Y ∈ Ob(UG) = Ob(G set).

UG(X, Y ) =
{
(X

w← A
v→ B

u→ Y )

∣∣∣ A, B ∈ Ob(G set), u ∈ G set(B, Y )

v ∈ G set(A, B), w ∈ G set(A, X)

}
/ ∼

equiv.
,

where (X
w← A

v→ B
u→ Y ) and (X

w ′← A′ v ′→ B ′ u′→ Y ) are equivalent if and only if there exists a pair of
isomorphisms a : A → A′ and b : B → B ′ such that u = u′ ◦ b, b ◦ v = v ′ ◦ a, w = w ′ ◦ a.
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Y

B

B ′

A

A′

X

u

u′

b

v

v ′

a

w

w ′

� ��

Let [X
w← A

v→ B
u→ Y ] denote the equivalence class of (X

w← A
v→ B

u→ Y ). The composition law in
UG is defined by [Y ← C → D → Z ] ◦ [X ← A → B → Y ] = [X ← A′′ → D̃ → Z ], with the morphisms
appearing in the following diagram:

Z

D

D̃

C̃

A′′

C

B ′
A′

Y

B

A

X

exp
�

�

�

For any X, Y ∈ Ob(UG ), we use the notation

• Tu = [X
id← X

id→ X
u→ Y ] for any u ∈ G set(X, Y ),

• Nv = [X
id← X

v→ Y
id→ Y ] for any v ∈ G set(X, Y ),

• R w = [X
w← Y

id→ Y
id→ Y ] for any w ∈ G set(Y , X).

Remark 3.2. For any pair of objects X, Y ∈ Ob(UG), if we let X � Y be their disjoint union in G set and
let ιX ∈ G set(X, X � Y ), ιY ∈ G set(Y , X � Y ) be the inclusions, then

X
RιX←− X � Y

RιY−→ Y

gives the product of X and Y in UG .

Remark 3.3. For any T ∈ Ob(Add(UG , Set)), the corresponding semi-Tambara functor T = μG(T ) ∈
Ob(STam(G)) is given by

• T (X) = T (X) for any X ∈ Ob(G set).
• T ∗( f ) = T (R f ), T•( f ) = T (N f ), T+( f ) = T (T f ), for any morphism f in G set.

As a corollary of Proposition 2.5, the following holds.

Corollary 3.4. Let U be a right-free H-G-biset. Then U ◦
G
− : G set → H set induces a functor FU : UG → UH

preserving finite products, given by

FU (X) = U ◦
G

X

for any X ∈ Ob(G set) and
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FU
([X

w← A
v→ B

u→ Y ]) = [U ◦
G

X
U ◦

G
w

←− U ◦
G

A
U ◦

G
v

−→ U ◦
G

B
U ◦

G
u

−→ U ◦
G

Y ]

for any morphism [X
w← A

v→ B
u→ Y ] ∈ UG(X, Y ).

Proof. Since U ◦
G
− : G set → H set preserves finite coproducts, pullbacks and exponential diagrams, it

immediately follows that FU preserves the compositions, and thus in fact becomes a functor. More-
over by Remark 3.2, FU preserves finite products. �
Remark 3.5. The biset transformation obtained in Corollary 2.8 is compatible with the composition
by FU :

Add(UH , Set) Add(UG , Set)

STam(H) STam(G)

−◦FU

μH � μG�

−◦U

�

In the following argument, we construct a functor

L FU : Fun(UG , Set) → Fun(UH , Set)

for each right-free H-G-biset U . In fact, we associate a functor L F : Fun(UG , Set) → Fun(UH , Set) to
any functor F : UG → UH preserving finite products. The construction involves Kan extension, and
basically depends on [1].

Definition 3.6. Let G , H be arbitrary finite groups, and let F : UG → UH be a functor preserving finite
products. For any X ∈ Ob(UH ), define a category CX and a functor AX : CX → UG as follows.

– An object e= (E, κ) in CX is a pair of a finite G-set E and κ ∈ UH (F (E), X).
– A morphism in CX from e to e′ = (E ′, κ ′) is a morphism a ∈ UG(E, E ′) satisfying κ = κ ′ ◦ F (a).

F (E) F
(

E ′)

X

F (a)

κ κ ′
�

– For any e ∈ Ob(CX ), define AX (e) ∈ Ob(UG) by AX (e) = E .
– For any morphism a ∈ CX (e, e′), define AX (a) ∈ UG(AX (e),AX (e′)) by AX (a) = a : E → E ′ .

Definition 3.7. Let G , H , F be as in Definition 3.6, and let T be any object in Fun(UG , Set). Using the
functor AX : CX → UG in Definition 3.6, we define (L FT )(X) ∈ Ob(Set) by

(L FT )(X) = colim(T ◦AX )

for each X ∈ Ob(UH ).
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For any morphism υ ∈ UH (X, Y ), composition by υ induces a functor

υ� : CX → CY ,

(E, κ) �→ (E,υ ◦ κ)

compatibly with AX and AY .

CX CY

UG

υ�

AX AY

�

This yields a natural map

(L FT )(υ) : colim(T ◦AX ) → colim(T ◦AY ),

and L FT becomes a functor L FT : UH → Set.
Moreover, if ϕ : T → S is a morphism between T ,S ∈ Fun(UG , Set), this induces a natural trans-

formation

ϕ ◦AX : T ◦AX �⇒ S ◦AX

and thus a map of sets

(L FT )(X) → (L FS)(X)

for each X . These form a natural transformation from L FT to L FS , which we denote by L F ϕ:

L F ϕ : L FT �⇒ L FS.

This gives a functor L F : Fun(UG , Set) → Fun(UH , Set).

This functor satisfies the following property.

Proposition 3.8. For any functor F : UG → UH preserving finite products, we have the following.

(1) If T belongs to Add(UG , Set), then L FT also belongs to Add(UH , Set). Thus, L F defines a functor

L F : Add(UG , Set) → Add(UH , Set).

(2) The functor obtained in (1) is left adjoint to the functor

− ◦ F : Add(UH , Set) → Add(UG , Set),

which is defined by the composition of F .

By virtue of Remark 3.5, this leads to the following theorem.
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Theorem 3.9. Let U be a right-free H-G-biset. Then the functor

LU = μH ◦ L FU ◦ μ−1
G : STam(G) → STam(H)

gives a left adjoint of the biset transformation functor − ◦ U : STam(H) → STam(G) obtained in Corollary 2.8.

Remark 3.10. A similar argument proves that − ◦ U : SMack(H) → SMack(G) admits a left adjoint
LU : SMack(G) → SMack(H). (For the case of Mackey functors, see also [3].)

As a corollary of the theorem, we will obtain the following.

Corollary 3.11. Let U be a right-free H-G-biset. Then the functor − ◦ U : Tam(H) → Tam(G) admits a left
adjoint.

Proof. This immediately follows from Theorem 3.9. In fact γH ◦ LU gives the left adjoint. We also
abbreviate this functor to LU . �
Corollary 3.12. Let U be a right-free H-G-biset. The functors LU and LU are compatible.

Tam(H) Tam(G)

SMack(H) SMack(G) .

LU

ΩH [−] ΩG [−]

LU

�

Proof. This follows from the commutativity of (2.6), and the uniqueness of left adjoint functors. �
In the rest, we show (1) and (2) in Proposition 3.8. First we remark that (2) follows from (1) and

the following.

Remark 3.13. (Cf. Theorem 3.7.7 in [1].) L F is left adjoint to − ◦ F : Fun(UH , Set) → Fun(UG , Set).

Proof. For any X ∈ Ob(UH ), we abbreviate T ◦AX to TX . We denote the colimiting cone for TX by

δX : TX �⇒ �L F T (X),

where �L F T (X) : CX → Set is the constant functor valued in L FT (X) [4].
We briefly state the construction of the bijection

Nat(UG ,Set)(T ,S ◦ F ) Nat(UH ,Set)(L FT ,S)

∈ ∈

θ ω

∼=

(∀T ∈ Ob
(
Fun(UG , Set)

)
, ∀S ∈ Ob

(
Fun(UH , Set)

))
.

Suppose we are given ω ∈ Nat(UH ,Set)(L FT ,S). For any A ∈ Ob(UG ), the object (A, idF (A)) is ter-
minal in CF (A) , and δF (A) becomes an isomorphism. The compositions
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θω,A = ωF (A) ◦ δF (A),(A,idA) = (
T (A)

δF (A),(A,idA )−→ L FT
(

F (A)
)ωF (A)−→ S

(
F (A)

))
form a natural transformation θω : T → S ◦ F .

Conversely, suppose we are given θ ∈ Nat(UG ,Set)(T ,S ◦ F ). For any X ∈ Ob(UH ) and any morphism
a ∈ CX (e, e′) between

e = (E, κ), e′ = (
E ′, κ ′),

we have a commutative diagram in Set

TX (e) T (E) S ◦ F (E)

S(X).

TX
(
e′
)

T
(

E ′) S ◦ F
(

E ′)

θE

S(κ)

θE′
S(κ ′)

TX (a) T (a) S◦F (a)� � �

This gives a cone TX �⇒ �S(X) , and thus there induced a map ωθ,X : L FT (X) → S(X) for each
X ∈ Ob(UH ). These form a natural transformation ωθ : L FT → S . �

It remains to show (1) in Proposition 3.8. By definition, this is equal to the following.

Claim 3.14. If T belongs to Add(UG , Set), then for each pair of objects X, Y in UH , the natural map

(
L FT (RιX ), L FT (RιY )

) : L FT (X � Y ) → L FT (X) × L FT (Y )

is bijective, where ιX : X ↪→ X � Y , ιY : Y ↪→ X � Y are the inclusions in H set.

To show Claim 3.14, we prepare a set Z = colim(TX ∗ TY ) and a map (πX ,πY ) : Z → L FT (X) ×
L FT (Y ) as follows.

Construction 3.15. Let T , X , Y be as in Claim 3.14.

(1) For any pair of objects X, Y ∈ Ob(UH ), define AX ∗AY to be the composition of functors

CX × CY
AX ×AY−→ UG × UG

�−→ UG ,

(A, B) �→ A � B.

Since T is additive, T ◦ (AX ∗AY ) becomes naturally isomorphic to

CX × CY
TX ×TY−→ Set × Set

×−→ Set.

We abbreviate this to TX ∗ TY , put Z = colim(TX ∗ TY ) and denote the colimiting cone for TX ∗ TY by

δ : TX ∗ TY �⇒ �Z .
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(2) Let CX × CY
prX−→CX be the projection, and let ℘X : TX ∗ TY �⇒ TX ◦ prX be the natural transformation

induced from the projection.

CX × CY CX

Set

prX

TX ∗TY TX

℘X

By the universality of the colimiting cone, there uniquely exists a map of sets

πX : Z → L FT (X)

which makes the following diagram of natural transformations commutative.

TX ∗ TY TX ◦ prX

�Z (�L F T (X)) ◦ prX

℘X

δ δX ◦prX

πX

� (3.1)

Similarly, we have a canonical map πY : Z → L FT (Y ). Thus we obtain a natural map

(πX ,πY ) : Z → L FT (X) × L FT (Y ),

which is shown to be bijective, as in Lemma 3.7.6 in [1].

Definition 3.16. Let X, Y ∈ Ob(UH ) be any pair of objects. For any

s = (S,σ ) ∈ Ob(CX�Y ),

define sX ∈ Ob(CX ) and sY ∈ Ob(CY ) by

sX = (RιX )�(s) ∈ Ob(CX ),

sY = (RιY )�(s) ∈ Ob(CY ),

where ιX : X ↪→ X � Y , ιY : Y ↪→ X � Y are the inclusions in H set.

Definition 3.17. Let X, Y ∈ Ob(UH ) be arbitrary objects. For any e = (E, κ) ∈ Ob(CX ) and d = (D, λ) ∈
Ob(CY ), define e� d ∈ Ob(CX�Y ) by

e� d = (E � D, κ � λ),

where κ � λ is the abbreviation of

F (E � D) ∼= F (E) � F (D)
κ�λ−→ X � Y .
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Lemma 3.18. Let (e,d) ∈ Ob(CX × CY ) be any object. If we denote the inclusions in G set by

ιE : E ↪→ E � D, ιD : D ↪→ E � D,

then we obtain morphisms RιE ∈ CX ((e� d)X , e) and RιD ∈ CY ((e� d)Y ,d).

Proof. By the commutativity of the diagram

F (E � D) ∼= F (E) � F (D) X � Y

F (E) X

κ�λ

RιXF (RιE )
RιF (E)

κ

�
�

(
ιF (E) : F (E) ↪→ F (E) � F (D) is the inclusion in H set

)
in UH , we obtain RιE ∈ CX ((e� d)X , e). Similarly for RιD . �

As a corollary of Lemma 3.18, we obtain commutative diagrams in Set

TX
(
(e� d)X

)
TX (e)

L FT (X)

TX (RιE )

δX,(e�d)X δX,e

�
,

TY
(
(e� d)Y

)
TY (d)

L FT (Y )

TY (RιD )

δY ,(e�d)Y δY ,d

�
. (3.2)

Claim 3.19. Let τ : CX × CY → CX�Y be the functor defined as follows.

– For any e= (E, κ) ∈ Ob(CX ) and d = (D, λ) ∈ Ob(CY ), define τ (e,d) by τ (e,d) = e� d.
– For any a ∈ CX (e, e′) and b ∈ CY (d,d′), define τ (a,b) by

τ (a,b) = a � b : e� d→ e′ � d′.

Then τ is a final functor in the sense of [4]. Namely, the comma category (s ↓ τ ) is non-empty and connected,
for any s ∈ Ob(CX�Y ).

If Claim 3.19 is shown, then Claim 3.14 follows. In fact if τ is final, then by [4], the unique map

h ∈ Set
(

Z , L FT (X � Y )
)

which makes the following diagram commutative for any (e,d) ∈ Ob(CX × CY ), becomes an isomor-
phism.

(TX ∗ TY )(e,d) = TX (e) × TY (d) ∼= TX�Y (e� d)

Z L FT (X � Y )

δ(e,d) δX�Y ,e�d∼=
h

� (3.3)
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From (3.2), (3.3) and the definition of L FT (RιX ), we obtain a commutative diagram

(TX ∗ TY )(e,d)

TX�Y (e� d)

Z

L FT (X � Y )

TX
(
(e� d)X

)
TX (e)

L FT (X),

∼=
δ(e,d)

℘X,(e,d)

δX�Y ,e�d∼=
h

TX (RιE )

δX,(e�d)X

δX ,e

L F T (RιX )

�

�

�
�

for any (e,d) ∈ Ob(CX × CY ). Comparing with (3.1), we see that πX satisfies πX = L FT (RιX ) ◦ h, and
thus

Z L FT (X � Y )

L FT (X)

h

∼=
πX L F T (RιX )

�

becomes commutative. For Y , similarly πY satisfies L FT (RιY )◦h = πY . Thus we obtain a commutative
diagram

Z L FT (X � Y )

L FT (X) × L FT (Y ) .

h

∼=
(πX ,πY ) (

L F T (RιX ),L F T (RιY )
)�

Since h and (πX ,πY ) are isomorphisms, it follows that

(
L FT (RιX ), L FT (RιY )

) : L FT (X � Y ) → L FT (X) × L FT (Y )

is an isomorphism for any X, Y ∈ Ob(UH ), and Claim 3.14 is shown.
Thus it remains to show Claim 3.19.

Proof of Claim 3.19. Let s = (S, σ ) ∈ Ob(CX�Y ) be any object. Since the folding map ∇ : S � S → S
makes the diagram

F (S) F (S � S)

X � Y

F (R∇ )

σ σX �σY

�

in UH commutative, this gives a morphism R∇ : s → sX � sY in CX�Y . Thus (s ↓ τ ) is non-empty.
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Moreover, let (e,d) ∈ Ob(CX × CY ) be any object, where

e = (E, κ), d = (D, λ),

and let a ∈ CX�Y (s, e� d) be any morphism. Denote the inclusions by

ιE : E ↪→ E � D, ιD : D ↪→ E � D,

and put

aE = RιE ◦ a ∈ UG(S, E),

aD = RιD ◦ a ∈ UG(S, D).

Then, by the commutativity of the diagram

F (S) X � Y

F (E � D)

X

F (E)

σ

F (a) κ�λ RιX

F (RιE )

κ

F (aE )

�

�
�

in UH , we obtain a morphism aE ∈ CX (sX , e). Similarly we obtain aD ∈ CY (sY ,d), and thus a mor-
phism (aE ,aD) : (sX , sY ) → (e,d) in CX × CY .

Now there are three morphisms in CX�Y

R∇ : s → sX � sY = τ (sX , sY ),

a : s → e� d = τ (e,d),

aE � aD = τ (aE ,aD) : τ (sX , sY ) → τ (e,d),

and the commutativity of the diagram in UG

S S � S

E � D

R∇

a aE�aD

�

implies the compatibility of these morphisms.

s τ (sX , sY )

τ (e,d)

R∇

a
τ (aE ,aD )�
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Thus for any (s
a→τ (e,d)) ∈ Ob((s ↓ τ )), there exists a morphism from (s

R∇→τ (sX , sY )) to (s
a→τ (e,d))

in (s ↓ τ ). In particular, (s ↓ τ ) is connected. �
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