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1. Introduction

Let A be a fusion category. The Brauer–Picard group BrPic(A) of A consists of equiv-
alence classes of semisimple invertible A-bimodule categories (see [12]). Brauer–Picard
groups play an important role in the theory of fusion categories. In particular, they are
used in the classification of graded extensions of fusion categories [12]. In the case when
A is the category of representations of a Hopf algebra the group BrPic(A) is known as
the strong Brauer group, see [1].

Computing Brauer–Picard groups for concrete examples of fusion categories is an
important task. A number of special results of this type were obtained in the literature,
see, e.g., [2,3,16]. In this paper we develop techniques that allow to compute explicitly
Brauer–Picard groups of pointed (and, hence, group-theoretical) fusion categories. We
use the following characterization of Brauer–Picard groups established in [12]. For any
fusion category A there is a canonical isomorphism:

Φ : BrPic(A) → Autbr
(
Z(A)

)
, (1)

where Z(A) is the Drinfeld center of A and Autbr(Z(A)) is the group of braided au-
toequivalences of Z(A). The latter group has a distinct geometric flavor (e.g., when A
is the representation category of a finite Abelian group A, the group Autbr(Z(A)) is
the split orthogonal group O(A ⊕ Â)). This suggests the use of “categorical-geometric”
methods for computation of Autbr(Z(A)) (which is identified with BrPic(A) via isomor-
phism (1)).

In this paper we analyze the action of Autbr(Z(A)), where A = VecG is the category
of vector spaces graded by a finite group G, on the categorical Lagrangian Grassman-
nian L(G) associated to it. By definition, the latter is the set of Lagrangian subcategories
of Z(A). The set L(G) was described in group-theoretical terms in [20]. We determine
the point stabilizers for this action and explicitly compute the corresponding permuta-
tion groups in a number of concrete examples. Note that Mombelli in [16] studied the
group BrPic(VecG) using methods different from ours.

Module categories over a braided fusion category C can be regarded as C-bimodule
categories. In this case the group BrPic(C) contains a subgroup Pic(C), called the Picard
group of C, consisting of invertible C-module categories [12]. This group is isomorphic to
the group of Morita equivalence classes of Azumaya algebras in C (the latter group was
introduced in [22]).

One defines a homomorphism

∂ : Pic(C) → Autbr(C), (2)
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in a way parallel to (1). It was shown in [12] that (2) is an isomorphism for every
non-degenerate braided fusion category C. One has Pic(Z(A)) ∼= BrPic(A) for any fusion
category A.

The paper is organized as follows.
In Section 3 we collect results about finite group cohomology that will be used for

computations. Section 4 contains definitions and basic facts about fusion categories and
their Brauer–Picard groups.

In Section 5 we present a useful parameterization of the group BrPic(VecG) previously
obtained by Davydov in [5]. This parameterization allows one easily recognize involutions
in BrPic(VecG) (see Corollary 5.6).

In Section 6 we describe, following [12], the construction of isomorphism (1) between
the Brauer–Picard group of a fusion category and the group of braided autoequivalences
of its center. This allows us to concentrate on the computation of the latter group.
For a braided fusion category C we find the subgroup of Autbr(Z(C)) stabilizing the
subcategory C ⊂ Z(C) (see Proposition 6.8 and Corollary 6.9).

The action of Autbr(Z(VecG)) on the Lagrangian Grassmannian L(G) (which is, by
definition, the set of Lagrangian subcategories of Z(VecG)) is studied in Section 7. In
general, this action is not transitive. We show in Proposition 7.6 that the orbit of this
action containing the canonical subcategory Rep(G) ⊂ Z(VecG) is precisely the set L0(G)
of subcategories of Z(VecG) braided equivalent to Rep(G).

Sections 8 through 11 illustrate our techniques. They contain explicit computations
of groups Autbr(Z(VecG)) for several classes of finite groups G. The common feature
of these examples is that in each case it is possible to describe the set L0(G) and the
corresponding action of Autbr(Z(VecG)). Combining information about this action with
previously developed machinery we determine groups Autbr(Z(VecG)). As a byproduct,
we obtain interesting examples of non-integral weakly group-theoretical fusion categories,
see Examples 8.1, 9.3, and 10.3.

2. Conventions and notation

Throughout this paper we work over an algebraically closed field k of characteristic 0.
All categories considered in this paper are finite, Abelian, semisimple, and k-linear. All
functors are additive and k-linear. We freely use the language and basic results of the
theory of fusion categories and module categories over them [11,12,10]. We will denote Vec
the fusion category of finite-dimensional k-vector spaces.

For a finite group G we denote Aut(G) the group of automorphisms of G and by Out(G)
the group of (congruence classes of) outer automorphisms of G. For a G-module A we
denote by Zn(G,A) the group of n-cocycles on G with values in A and by Hn(G,A) the
corresponding nth cohomology group. We will often identify cohomology classes with
cocycles representing them.

For any (not necessarily Abelian) group G we denote Ĝ = Hom(G, k×) the group of
linear characters of G.
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We can view the multiplicative group k× as a G-module with the trivial action. There
is an obvious action of Aut(G) on Hn(G, k×). This action factors through the subgroup
of inner automorphisms and, hence, gives rise to an action of Out(G). For a subgroup
L ⊂ G, a cocycle f ∈ Zn(L, k×), and an automorphism θ ∈ Aut(G) denote

fθ = f ◦
(
θ−1 × · · · × θ−1) ∈ Zn

(
θ(L), k×

)
. (3)

It is clear that the cohomology class of fθ in Hn(L, k×) is well defined. When θ is the
inner automorphism x �→ gxg−1, x ∈ G, we denote fθ by fg.

For any positive integer n we denote D2n ∼= Z/nZ � Z/2Z the dihedral group of
order 2n, Sn the symmetric group of degree n, and An the alternating group of degree n.
More generally, for any set Ω we denote Sym(Ω) the symmetric group of Ω.

Finally, for a finite group G we denote by VecG the fusion category of finite-
dimensional G-graded vector spaces and by Rep(G) the symmetric fusion category of
finite-dimensional representations of G.

3. Some facts about cohomology of finite groups

Let G be a finite group.

Remark 3.1. Let A be a G-module. It is well known that H1(G,A) classifies homomor-
phisms G → A � G which are right inverse to the standard projection A � G → G, up
to a conjugation by elements of A.

Proposition 3.2. Let G be a finite group and let A be a finite G-module such that the
orders |G| and |A| are relatively prime. Then Hn(G,A) = 0 for all n.

The following result is taken from [23] and [15, Theorem 2.2.5]. It can also be proved
by means of the Hochschild–Serre spectral sequence.

Theorem 3.3. Let G = N �T and let M̃(G) ⊂ H2(G, k×) be the kernel of the restriction
homomorphism H2(G, k×) → H2(T, k×). Then

H2(G, k×
) ∼= H2(T, k×)× M̃(G) (4)

and there is an exact sequence

0 → H1(T, N̂) → M̃(G) res−−−→ H2(N, k×
)T → H2(T, N̂), (5)

where the homomorphism res : M̃(G) → H2(N, k×)T is induced by the restriction
H2(G, k×) → H2(N, k×).

The following result [15, Theorem 2.1.2] will be useful for our computations.
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Theorem 3.4. Let G be a finite group and let P be a Sylow p-subgroup of G. The restriction
map H2(G, k×) → H2(P, k×) is injective on the p-primary component of H2(G, k×).

4. Fusion categories and their Brauer–Picard groups

For a fusion category A let Aut(A) denote the group of isomorphism classes of tensor
autoequivalences of A. It is known that this group is finite [11].

A fusion category is called pointed if all its simple objects are invertible with respect
to the tensor product. A most general example of a pointed fusion category is the cate-
gory VecωG of vector spaces graded by a finite group G with the associativity constraint
given by a 3-cocycle ω ∈ Z3(G, k×). In this paper we only consider the case when ω is
cohomologically trivial, i.e., we work with pointed categories of the form VecG. Let δg,
g ∈ G, denote simple objects of VecG. We have δg ⊗ δh ∼= δgh. In particular, the unit
object of VecG is δ1.

The following result is well known.

Proposition 4.1. Let G be a finite group. Then Aut(VecG) ∼= H2(G, k×) � Aut(G).

For ζ ∈ H2(G, k×) and a ∈ Aut(G) the corresponding autoequivalence F(a,ζ) of VecG
is defined as follows. As a functor, F(a,ζ)(δg) = δa(g), while the tensor structure of F(a,ζ)
is given by

ζ(g, h) idδa(gh) : F(a,ζ)(δg) ⊗ F(a,ζ)(δh) ∼−−→ F(a,ζ)(δgh), g, h ∈ G.

Let A be a fusion category. The notion of a tensor product �A of A-bimodule
categories was introduced in [12]. With respect to this product equivalence classes of
A-bimodule categories form a monoid. The unit of this monoid is the regular A-bimodule
category A. A semisimple A-bimodule category M is called invertible if there is an
A-bimodule category N such that M �A N ∼= A and N �A M ∼= A. By definition,
the Brauer–Picard group of A is the group BrPic(A) of equivalence classes of invertible
A-bimodule categories.

The Brauer–Picard group is an important invariant of a fusion category. It is used, in
particular, in the classification of extensions of fusion categories [12]. Let G be a finite
group. By a G-extension of a fusion category A we mean a faithfully G-graded fusion
category

B =
⊕
g∈G

Bg, with Be
∼= A. (6)

Such extensions are parameterized by group homomorphisms c : G → BrPic(A) and
certain cohomological data associated to G (provided that certain obstructions vanish,
see [12] for details). One has c(g) = Bg for all g ∈ G. We say that an extension (6) is
non-trivial if Bg � A (as a left A-module category) for some g ∈ G.
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Remark 4.2. In a particularly simple situation when |G| and the Frobenius–Perron di-
mension of A are relatively prime, for any fixed homomorphism c : G → BrPic(A)
extensions (6) exist and are parameterized by a torsor over H3(G, k×), see [12, Theo-
rem 9.5].

5. Parameterization of BrPic(VecG)

Let G be a finite group. In this section we recall a group-theoretical parameterization
of the Brauer–Picard group of VecG. This description was obtained by Davydov in [5]
(in terms of equivalences of centers, cf. isomorphism (1)). We provide an alternative
argument for the reader’s convenience.

Recall [21] that indecomposable VecG-module categories are parameterized by
pairs (L, μ), where L ⊂ G is a subgroup and μ ∈ Z2(L, k×). Namely, the cate-
gory M(L, μ) corresponding to such a pair consists of vector spaces graded by the
set of cosets G/L with the action of VecG induced by the translation action of G on G/L

and the module category structure induced by μ.
Two VecG-module categories M(L, μ) and M(L′, μ′) are equivalent if and only if there

is g ∈ G such that L′ = gLg−1 and 2-cocycles μ′ and μg are cohomologous in H2(L′, k×).
Fix a subgroup L of G. Let E denote the group of isomorphism classes of right

VecG-module autoequivalences of M(L, μ) isomorphic to the identity as an additive
functor. It follows from [19] that there is a group isomorphism

ι : E → L̂ : F �→ ιF (7)

such that the VecG-module functor structure δx⊗F (L) ∼−−→ F (δx⊗L) = F (xL) is given
by ιF (x) idF (xL) for all x ∈ L.

Let G1, G2 be a pair of normal subgroups of G centralizing each other. Let us define

L1 := G1 ∩ L, L2 := G2 ∩ L.

Any 2-cocycle μ ∈ Z2(L, k×) determines a group homomorphism

a : L1 → L̂2 : g �→ ag, where ag(h) := μ(g, h)
μ(h, g) , h ∈ L2. (8)

Similarly, μ determines a group homomorphism L2 → L̂1.

Lemma 5.1. Let G1, G2 be a pair of commuting normal subgroups of G such that G1L =
G2L = G. For g ∈ G1 let Fg denote the functor of left tensor multiplication by δg
on M(L, μ). Then Fg is equivalent to the identity as a left VecG2-module autoequivalence
of M(L, μ) if and only if g ∈ L1 and ag = 1 on L2.
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Proof. It is clear that Fg is isomorphic to idM(L,μ) as an additive functor if and only
if g ∈ L1. Let C = HomL(G, k×) and let μ̃ ∈ Z2(G,C) be a 2-cocycle such that the
cohomology class of μ̃ in H2(G,C) is identified with the class of μ in H2(L, k×) via
Shapiro’s lemma, i.e., μ(h1, h2) = μ̃(h1, h2)(L) for all x1, x2 ∈ L.

Then the VecG2 -module structure on Fg is given by

μ̃(g,g2)(xL)
μ̃(g2,g)(xL) idg2xL : Fg(δg2 ⊗ xL) ∼−−→ δg2 ⊗ Fg(xL), x, g2 ∈ L2.

Using isomorphism (7) we conclude that for g ∈ L1 one has Fg
∼= id as a left

VecG2-module functor if and only if ag = 1, as required. �
Let μ be a 2-cocycle on G. Let L1, L2 ⊂ G be a pair of subgroups centralizing each

other. It is straightforward to check that the function

Alt(μ) : L1 × L2 → k× : (x1, x2) �→
μ(x1, x2)
μ(x2, x1)

, (9)

is a bicharacter, i.e., is multiplicative in both arguments.
Note that a VecG-bimodule category is the same thing as a VecG×Gop -module category,

where Gop is G with the opposite multiplication.

Proposition 5.2. Let G be a finite group, let L be a subgroup of G × Gop, and let μ ∈
Z2(L, k×) be a 2-cocycle. Then VecG-bimodule category M(L, μ) is invertible if and only
if the following three conditions are satisfied:

(i) L(G× {1}) = L({1} ×Gop) = G×Gop,
(ii) L1 := L ∩ (G× {1}) and L2 := L ∩ ({1} ×Gop) are Abelian groups,
(iii) bicharacter Alt(μ) : L1 × L2 → k× defined in (9) is non-degenerate.

Proof. Let us denote M := M(L, μ). Condition (i) is equivalent to (G×Gop)/L being
transitive as both left and right G-set, i.e., to M being indecomposable as left and right
VecG-module category. It implies that L1 is a normal subgroup of G and L2 is a normal
subgroup of Gop.

For g ∈ G let L(g) (respectively, R(g)) denote the additive endofunctor of M given by
the action of δg�1 (respectively, 1�δg). By [12] M is invertible if and only if the functors
VecG → FunVecG(M,M) : g �→ R(g) (respectively, VecG → Fun(M,M)VecG : g �→ L(g))
are equivalences. Since those functors are tensor, the above conditions are equivalent
to L(g) � idM as a right VecG-module functor (respectively, to R(g) � idM as a left
VecG-module functor) for all g �= 1.

We apply Lemma 5.1 with G replaced by G×Gop, G1 = G×{1} and G2 = {1}×Gop.
It follows that the above conditions are satisfied if and only if group homomorphisms
defined as in (8), i.e.,
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L1 → L̂2 : x �→ ax, where ax(h) := μ(x, h)
μ(h, x) , h ∈ L2, (10)

and

L2 → L̂1 : y �→ a′y, where a′y(g) := μ(y, g)
μ(g, y) , g ∈ L1, (11)

are injective. This is equivalent to L1, L2 being Abelian and Alt(μ) being non-degenerate
on L1 × L2. �
Remark 5.3. For an invertible VecG-bimodule category M(L, μ) the subgroups L1 ⊂ G

and L2 ⊂ Gop are normal and restrictions μ|L1×L1 and μ|L2×L2 are G-invariant.

Remark 5.4. It is easy to describe a one-sided restriction of the VecG-module cat-
egory M(L, μ) from Proposition 5.2. Namely, as a left VecG-module category it is
equivalent to M(L1, μ|L1×L1).

There is a convenient way to determine which of the categories M(L, μ) described in
Proposition 5.2 are involutions in the Brauer–Picard group.

Remark 5.5. Let G be a finite group, let L be a subgroup of G×Gop, and let μ ∈ Z2(L, k×)
be a 2-cocycle satisfying conditions of Proposition 5.2. Then the inverse of M(L, μ) in
BrPic(VecG) is M(L∨, (μ∨)−1), where

L∨ =
{
(x2, x1)

∣∣ (x1, x2) ∈ L
}
,

μ∨((x1, x2), (y1, y2)
)

= μ
((
x−1

2 , x−1
1

)
,
(
y−1
2 , y−1

1
))
.

Indeed, it was shown in [12] that the inverse of a bimodule category is given by taking
its opposite.

Corollary 5.6. The category M(L, μ) has order � 2 in BrPic(VecG) if and only if there is
g ∈ G×Gop such that L∨ = gLg−1 and μg and (μ∨)−1 are cohomologous in H2(L∨, k×).

6. Braided autoequivalences of centers

Let C be a braided fusion category with braiding cX,Y : X⊗Y ∼−−→ Y ⊗X. Let D be a
fusion subcategory of C. The centralizer of D in C [17] is the fusion subcategory D′ ⊂ C
consisting of objects X such that cY X ◦ cXY = idX⊗Y for all objects Y in C. A braided
fusion category C is symmetric if C = C′ and non-degenerate if C′ = Vec. A symmet-
ric fusion category is called Tannakian if it is equivalent to Rep(G), the category of
representations of a finite group G.

Let Autbr(C) denote the group of isomorphism classes of braided autoequivalences
of C. The following result is well known.
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Proposition 6.1. Let G be a finite group. We have Autbr(Rep(G)) ∼= Out(G).

Proof. By the result of Deligne [7], every braided tensor functor F : Rep(G) → Vec
is isomorphic to the obvious forgetful functor. Furthermore, the group GF of ten-
sor automorphisms of F is isomorphic to G. Hence, a braided tensor autoequivalence
α ∈ Autbr(Rep(G)) induces a group automorphism ι(α) ∈ Aut(GF ). The assignment
V �→ F (V ) is a braided tensor equivalence between Rep(G) and Rep(GF ). Under this
equivalence α corresponds to the autoequivalence of Rep(GF ) induced by the automor-
phism ι(α).

Hence, every braided autoequivalence of Rep(G) is induced by an automorphism of G.
It is straightforward to verify that the above autoequivalence ι(α) is isomorphic to the
identity tensor functor if and only if the corresponding group automorphism is inner.
This implies the result. �

For any fusion category A let Z(A) denote its center. The objects of Z(A) are
pairs (Z, γ) where Z is an object of A and γ = {γX}X∈A, where

γX : X ⊗ Z ∼−−→ Z ⊗X,

is a natural isomorphism satisfying certain compatibility conditions. We will usually
simply write Z for (Z, γ). It is known that Z(A) is a non-degenerate braided fusion
category [18,10].

Let A be a fusion category and let M be an invertible A-bimodule category. One
assigns to M a braided autoequivalence ΦM of Z(A) as follows. Note that Z(A) can
be identified with the category of A-bimodule endofunctors of M in two ways: via the
functors Z �→ Z ⊗ − and Z �→ − ⊗ Z. Define ΦM in such a way that there is an
isomorphism of A-bimodule functors

Z ⊗− ∼= −⊗ ΦM(Z) (12)

for all Z ∈ Z(A).
The following result was established in [12].

Theorem 6.2. Let A be a fusion category. The assignment

M �→ ΦM (13)

gives rise to an isomorphism

BrPic(A) � Autbr
(
Z(A)

)
. (14)

Remark 6.3. The inverse to the above isomorphism (13) is constructed as follows (see
[12, Section 5]). Let I : A → Z(A) be the right adjoint of the forgetful functor



200 D. Nikshych, B. Riepel / Journal of Algebra 411 (2014) 191–214
F : Z(A) → A. For a braided autoequivalence α ∈ Autbr(Z(A)) consider the commu-
tative algebra A := α−1(I(1)) in Z(A). Let Mα be any indecomposable component of
the category of F (A)-modules in A. It has a structure of invertible A-bimodule category
and the assignment α �→ Mα is the inverse of (13).

Let A be a finite Abelian group. Then Theorem 6.2 implies that

BrPic(VecA) ∼= O(A⊕ Â, q), (15)

where O(A ⊕ Â, q) is the group of automorphisms of A ⊕ Â preserving the canonical
quadratic form

q(a, χ) = χ(a), a ∈ A, χ ∈ Â.

For any fusion category A there is an induction homomorphism

Δ : Aut(A) → Autbr
(
Z(A)

)
: α �→ Δα, (16)

where Δα(Z, γ) = (α(Z), γα) and γα is defined by the following commutative diagram

X ⊗ α(Z)
γα
X

α(Z) ⊗X

α(α−1(X)) ⊗ α(Z)

Jα−1(X),Z

α(Z) ⊗ α(α−1(X))

JZ,α−1(X)

α(α−1(X) ⊗ Z)
α(γα−1(X))

α(Z ⊗ α−1(X)).

(17)

Here α−1 is a quasi-inverse of α and JX,Y : α(X) ⊗ α(Z) ∼−−→ α(X ⊗ Z) is the tensor
functor structure of α.

Example 6.4. Let A be a fusion category and let α ∈ Aut(A). Consider an invertible
A-bimodule category Aα, where Aα = A and the actions of A on Aα are given by

(X,V ) �→ α(X) ⊗ V, (V, Y ) �→ V ⊗ Y (18)

for all X,Y ∈ A and V ∈ Aα. Under isomorphism (14) this category Aα corresponds to
the induced autoequivalence Δα, i.e.,

ΦAα
= Δα.

For a finite group G let Inn(G) ⊂ Aut(G) denote the normal subgroup of inner auto-
morphisms of G and let Out(G) = Aut(G)/Inn(G).
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Proposition 6.5. The kernel of induction homomorphism

Δ : Aut(VecG) → Autbr
(
Z(VecG)

)
is Inn(G).

Proof. By Theorem 6.2 and Example 6.4, the kernel of Δ consists of all autoequivalences
α ∈ Aut(VecG) such that the VecG-bimodule category (VecG)α is equivalent to the regular
VecG-bimodule category VecG.

Let α = F(a,ζ), a ∈ Aut(G), ζ ∈ H2(G, k×) (we use notation from Section 4). It follows
from definition of (VecG)α (see (18)) that any right VecG-module equivalence between
(VecG)α and VecG is of the form δg �→ δx ⊗ δg, g ∈ G, for some invertible x ∈ G. This
autoequivalence is compatible with the left VecG-module structure of (VecG)α if and
only if a is equal to the conjugation by x and ζ is the trivial cohomology class. �

Let C be a braided fusion category. Then C is embedded into Z(C) via X �→ (X, c−,X),
where c denotes the braiding of C. In what follows we will identify C with a fusion
subcategory of Z(C) (the image of this embedding). Left C-module categories can be
viewed as C-bimodule categories (analogously to how modules over a commutative
ring can be viewed as bimodules). Invertible left C-module categories form a subgroup
Pic(C) ⊂ BrPic(C) called the Picard group of C. Note that the action of the group Autbr(C)
on Pic(C) factors through Out(C).

Remark 6.6. The restriction of the induction homomorphism (16) to Autbr(C) is injective.

Let Autbr(Z(C); C) ⊂ Autbr(Z(C)) be the subgroup consisting of braided autoequiva-
lences of Z(C) that restrict to the trivial autoequivalence of C.

The following result was established in [6].

Theorem 6.7. The image of Pic(C) under isomorphism (14) is Autbr(Z(C); C).

The group Autbr(Z(C)) acts on the lattice of fusion subcategories of Z(C). Let Stab(C)
denote the stabilizer of the subcategory C ⊂ Z(C) under this action.

Proposition 6.8. For a braided fusion category C we have

Stab(C) ∼= Pic(C) � Autbr(C). (19)

Proof. Observe that the subgroup N := Autbr(Z(C); C) is normal in Stab(C) and N ∼=
Pic(C) by Theorem 6.7. Since the image of a braided autoequivalence of C under the
induction homomorphism (16) belongs to Stab(C) we see from Remark 6.6 that Stab(C)
contains a subgroup H ∼= Autbr(C).
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Any α ∈ Stab(C) restricts to a braided autoequivalence α̃ of C. Let β = Δα̃ ∈ H

be the element of Autbr(Z(C)) induced from α̃. The restriction of β on C is α̃, hence,
α ◦ β−1 ∈ N restricts to a trivial autoequivalence of C. This proves Stab(C) = NH, i.e.,
Stab(C) is the semi-direct product of N and H. �

We can apply Proposition 6.8 to centers of Tannakian categories. Let G be a finite
group.

Corollary 6.9. We have

Stab
(
Rep(G)

) ∼= H2(G, k×
)
� Out(G). (20)

Proof. It was shown in [14] that Pic(Rep(G)) ∼= H2(G, k×). Combining this with Propo-
sition 6.1 we get the result. �

Let us describe the above stabilizer Stab(Rep(G)) in terms convenient for computa-
tions. Note that Z(Rep(G)) ∼= Z(VecG) and so we can consider the induction homomor-
phism

Δ : Aut(VecG) → Autbr
(
Z
(
Rep(G)

))
.

Lemma 6.10. Stab(Rep(G)) = Δ(Aut(VecG)).

Proof. This follows from Propositions 4.1 and 6.5. �
For a ∈ Out(G) and ζ ∈ H2(G, k×) let

Δ(a,ζ) ∈ Autbr
(
Z
(
Rep(G)

)) ∼= Autbr
(
Z(VecG)

)
(21)

denote the braided autoequivalence induced from the tensor autoequivalence F(a,ζ)
of VecG introduced in Section 4. By Lemma 6.10, Δ(a,ζ) ∈ Stab(Rep(G)).

Example 6.11. We can compute the effect of autoequivalence Δa,ζ on objects of Z(VecG).
Recall that objects of Z(VecG) can be viewed as G-equivariant vector bundles of G, i.e.,
G-graded vector spaces

V =
⊕
g∈G

Vg

along with linear isomorphisms γ(x, g) : Vg → Vxgx−1 , x, g ∈ G, satisfying

γ(xy, g) = γ
(
x, ygy−1) ◦ γ(y, g), g, x, y ∈ G. (22)
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In particular, simple objects of Z(VecG) are parameterized by pairs (K,χ), where K is
a conjugacy class of G and χ is an irreducible character of the centralizer CG(g) of an
element g ∈ K. Let Z(K,χ) denote the corresponding simple object.

Let us denote
⊕

gεG(Vg, {γ(x, g)}x,g∈G) a typical object in Z(VecG).
We have

Δ(a,ζ)

(⊕
g∈G

Vg,
{
γ(x, g)

}
x,g∈G

)
=

(⊕
g∈G

Va−1(g),
{
γ̃(x, g)

}
x,g∈G

)
, (23)

where

γ̃(x, g) = γ
(
a−1(x), a−1(g)

)ζ(a−1(x), a−1(g))
ζ(a−1(g), a−1(x)) .

In particular, Δ(a,ζ)(Z(K,χ)) = Z(a(K),(χ◦a−1)ρg
a), where ρga, g ∈ a(K), is the linear char-

acter of CG(g) given by

ρga(x) = ζ(a−1(x), a−1(g))
ζ(a−1(g), a−1(x)) .

7. Action on the categorical Lagrangian Grassmannian

Let C be a non-degenerate braided fusion category.

Definition 7.1. A fusion subcategory D ⊂ C is called Lagrangian if D is Tannakian and
D = D′.

It was shown in [10] that C contains a Lagrangian subcategory if and only if C is
braided equivalent to the center of a pointed fusion category.

Lagrangian subcategories of Z(VecG) were classified in [20]. They are parameterized
by pairs (N,μ) where N is a normal Abelian subgroup of G and μ is a G-invariant
cohomology class in H2(N, k×). The Lagrangian subcategory L(N,μ) corresponding to
the pair (N,μ) is identified with the subcategory of G-equivariant bundles V =

⊕
a∈N Va

supported on N whose G-equivariant structure (22) satisfies

γ(x, a) = μ(a, x)
μ(x, a) idVa

for all a, x ∈ N .

Example 7.2. The canonical subcategory Rep(G) ⊂ Z(VecG) consisting of vector bundles
supported on the identity element of G is L(1,1).
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We have L(N,μ) ∼= Rep(G(N,μ)) for some group G(N,μ) such that |G(N,μ)| = |G|. The
group G(N,μ) is not isomorphic to G in general. It can be described as follows (see [19]
for details). There exists a canonical homomorphism

H2(N, k×
)G → H2(G/N, N̂). (24)

Let ν ∈ H2(G/N, N̂) be the image of μ under this homomorphism. Then G(N,μ) is an
extension

1 → N̂ → G(N,μ) → G/N → 1

corresponding to ν.

Remark 7.3.

(1) If μ ∈ H2(N, k×)G is trivial then G(N,μ) is isomorphic to the semidirect product
N̂ �G/N .

(2) For non-degenerate μ the group G(N,μ) first appeared in [4].

Definition 7.4. Let C be a non-degenerate braided fusion category. The set of Lagrangian
subcategories of C will be called the categorical Lagrangian Grassmannian of C.

Let L(G) denote the categorical Lagrangian Grassmannian of Z(VecG). Let

L0(G) :=
{
L ∈ L(G)

∣∣ L ∼= Rep(G) as a braided fusion category
}
. (25)

This set is non-empty since it contains the canonical subcategory Rep(G) ⊂ Z(VecG),
see Example 7.2.

To simplify notation in what follows we will denote

A(G) := Autbr
(
Z(VecG)

)
. (26)

By Theorem 6.2 we have

A(G) ∼= BrPic(VecG) = BrPic
(
Rep(G)

)
. (27)

Clearly, the group A(G) acts on the set L(G) and leaves the subset L0(G) invariant.
Let us denote C = Z(VecG).

Remark 7.5. For every category L ∈ L0(G) the algebra

AL := Fun
(
G, k×

)
∈ L ∼= Rep(G) (28)
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is commutative and separable (i.e., is an étale algebra in terminology of [8]) and the fusion
category CAL of AL-modules in C is equivalent to VecG. Indeed, by [10], this category
is pointed and has a faithful G-grading. Hence, CAL is equivalent to VecωG for some
ω ∈ Z3(G, k×). By [8] Z(CAL) ∼= Z(VecG) and, hence, CAL and VecG are categorically
Morita equivalent [12]. This implies that ω is cohomologically trivial.

Proposition 7.6. The action of A(G) on L0(G) is transitive.

Proof. Let L1,L2 ∈ L0(G) be Lagrangian subcategories of C and let A1 and A2 be the
corresponding étale algebras in C defined in (28). By Remark 7.5 C-module categories
CA1 and CA2 are equivalent to VecG. Pick a tensor equivalence

φ : CA1
∼−−→ CA2 .

It follows from the results of [8] that there are braided equivalences

Φi : C ∼−−→ Z(CAi
), i = 1, 2.

Let α := Φ−1
2 ◦Δφ ◦Φ1 ∈ Autbr(C), where Δφ : Z(CA1) → Z(CA2) is the braided equiva-

lence induced from φ. Then α(A1) ∼= A2. Note that Ai is isomorphic, as an object of C,
to the regular object in Li, i = 1, 2. Hence, α(L1) = L2, which proves the statement. �

Thus, the image of A(G) is a transitive subgroup of Sym(L0(G)). Let

A0(G) := Stab
(
Rep(G)

)
(29)

denote the stabilizer of the canonical Lagrangian subcategory Rep(G) ⊂ C in A(G). By
Corollary 6.9,

A0(G) ∼= H2(G, k×
)
� Out(G). (30)

Since the cardinality of a transitive set is equal to the index of the stabilizer of a point,
we have

[
A(G) : A0(G)

]
=

∣∣L0(G)
∣∣. (31)

The next corollary allows to find the order of the Brauer–Picard group.

Corollary 7.7. Let G be a finite group. Then

∣∣A(G)
∣∣ =

∣∣H2(G, k×
)∣∣ · ∣∣Out(G)

∣∣ · ∣∣L0(G)
∣∣.
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Corollary 7.8. Let G be a finite group without normal Abelian subgroups (e.g., a simple
non-Abelian group). Then

A(G) ∼= H2(G, k×
)
� Out(G).

Corollary 7.9. Let G be a finite non-Abelian simple group. Then the Brauer–Picard group
of VecG is solvable.

Proof. This is a consequence of the Schreier conjecture [9, p. 133] stating that Out(G)
is solvable (this conjecture is verified using the classification of finite simple groups). �
Remark 7.10. It can happen that the group A(G) is trivial. This is the case for every
simple group G such that both Out(G) and H2(G, k×) are trivial. Among the groups
that have these properties are the Mathieu group M11 and the Fischer–Griess Monster
group.

On the other hand, if G is a p-group of order > 2 then A(G) is non-trivial, since in
this case the group Out(G) is non-trivial [13].

The next proposition describes the action of A0(G) on L(G).
By Lemma 6.10, elements of A0(G) are precisely braided autoequivalences induced

from Aut(VecG) and so are of the form Δ(a,ζ) for some a ∈ Out(G) and ζ ∈ H2(G, k×),
see (21).

Proposition 7.11. Let L(N,μ) be a Lagrangian subcategory of Z(VecG). Then

Δ(a,ζ)(L(N,μ)) = L(a(N),μaζa).

Proof. Let us apply Δ(a,ζ) to an object (
⊕

g∈N Vg, {γ(x, g)}) of L(N,μ). Using Exam-
ple 6.11, we obtain

Δ(a,ζ)

(⊕
g∈G

Vg,
{
γ(x, g)

}
x,g∈G

)
=

(⊕
g∈G

Va(g),
{
γ̃(x, g)

}
x,g∈G

)
,

where

γ̃(x, g) = γ
(
a−1(x), a−1(g)

)ζa(x, g)
ζa(g, x) = μa(x, g)

μa(g, x)
ζa(x, g)
ζa(g, x) idVg

, (32)

for all x, g ∈ N , which implies the result. �
Proposition 7.12. Let L be a subgroup of G×Gop and let μ be a 2-cocycle in Z2(L, k×)
satisfying conditions of Proposition 5.2. Let M(L, μ) denote the corresponding element
of BrPic(VecG) and let α(L,μ) be the braided autoequivalence of Z(VecG) corresponding
to M(L, μ) upon the isomorphism (14). Then
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α(L,μ)(L(1,1)) = L(L1,μ|L1×L1 ), (33)

where L1 = L ∩ (G× 1).

Proof. Let α ∈ Autbr(Z(VecG)) be an autoequivalence such that α(L(1,1)) = L(N,ν).
Let Mα ∈ BrPic(VecG) be the corresponding invertible VecG-bimodule category (see
discussion after Theorem 6.2). By Remark 6.3 Mα is identified, as a left VecG-module
category, with the category of modules over the twisted subgroup algebra (kN)ν , i.e.,
Mα

∼= M(N, ν). Comparing this with Remark 5.4 we obtain the result. �
Remark 7.13. Here is an alternative way to deduce Proposition 7.12. It was observed
in [20] that there is a bijection between the set of VecG-module categories M such
that the dual category (VecG)∗M is pointed and L(G). This bijection is equivariant with
respect to the group isomorphism BrPic(VecG) ∼−−→ Autbr(Z(VecG)). This implies (33).

8. Examples: symmetric and alternating groups

8.1. Symmetric group S3

It is well known that H2(S3, k
×) = 0, see [15, Theorem 2.12.3] and Out(S3) = 1,

hence A0(S3) = 1. The only nontrivial normal Abelian subgroup of S3 is isomorphic to
Z/3Z. It follows that |L0(S3)| = 2. By Corollary 7.7 |A(S3)| = 2, thus

A(S3) ∼= Z/2Z. (34)

Example 8.1. By (34) we have BrPic(Rep(S3)) ∼= Z/2Z. There exists a non-trivial
Z/2Z-extension of the fusion category Rep(S3), namely the category C(sl(2), 4) of highest
weight integrable modules over the affine Lie algebra ŝl(2) of level 4. This is a weakly
integral fusion category of dimension 12. Its simple objects lying in the non-trivial com-
ponent have dimension

√
3.

8.2. Symmetric group S4

It is known that H2(S4, k
×) ∼= Z/2Z, see [15, Theorem 2.12.3], and Out(S4) = 1.

Hence, A0(S4) ∼= Z/2Z.
The set L(S4) consists of three subcategories (see [20, Example 5.2]):

L(1,1), L(Z/2Z×Z/2Z,1), and L(Z/2Z×Z/2Z,μ),

where Z/2Z× Z/2Z is identified with a normal subgroup of S4 and μ is the non-trivial
class in H2(Z/2Z× Z/2Z, k×).

We claim that A(S4) permutes the two later categories. To prove this we apply Propo-
sition 7.11. It is enough to check that the restriction
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H2(S4, k
×) → H2(Z/2Z× Z/2Z, k×

)
is injective. This follows from Theorem 3.3 since H1(S3,Z/2Z× Z/2Z) = 1.

Thus, the map A(S4) → Sym(L0(S4)) is injective and, hence

A(S4) ∼= S3. (35)

8.3. Alternating group A4

It is known that H2(A4, k
×) ∼= Z/2Z, see [15], and Out(A4) ∼= Z/2Z. The set L0(A4)

consists of three Lagrangian subcategories (see [20, Example 5.2]):

L(1,1), L(Z/2Z×Z/2Z,1), and L(Z/2Z×Z/2Z,μ),

where Z/2Z×Z/2Z is identified with the Sylow 2-subgroup of A4 and μ is the non-trivial
class in H2(Z/2Z × Z/2Z, k×). We claim that H2(A4, k

×) ⊂ A0(A4) permutes the two
later categories. To prove this we apply Proposition 7.11. It is enough to check that the
restriction

H2(A4, k
×) → H2(Z/2Z× Z/2Z, k×

)
is injective, which follows immediately from Theorem 3.4. Hence, the map

π : A(A4) → Sym
(
L0(A4)

) ∼= S3

is surjective.
By Corollary 7.7 A(A4) is a non-Abelian group of order 12. Its Sylow 2-subgroup is

isomorphic to Z/2Z×Z/2Z ∼= A0(A4). Furthermore, A(A4) contains a normal subgroup
of order 2 (the kernel of π). It is easy to check that the only group of order 12 with above
properties is the dihedral group of order 12. Thus,

A(A4) ∼= D12. (36)

Remark 8.2. Let G = An or Sn, where n � 5. Then G has no normal Abelian subgroups
and A(G) = H2(G, k×) � Out(G) by Corollary 7.8. The groups H2(G, k×) and Out(G)
in this case are well known, see [15, Section 2.12]:

H2(Sn, k
×) = Z/2Z, Out(Sn) =

{
1 n �= 6,

Z/2Z n = 6,

H2(An, k
×) =

{
Z/2Z n �= 6, 7,

Z/6Z n = 6, 7,
Out(An) =

{
Z/2Z n �= 6,

Z/2Z× Z/2Z n = 6.
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9. Examples: non-Abelian groups of order 8

9.1. Dihedral group D8

The following is a standard representation of D8 by generators and relations:

D8 =
〈
r, s

∣∣ r4 = s2 = 1, sr = r−1s
〉
.

We have Out(D8) ∼= Z/2Z, where the nontrivial element is represented by the automor-
phism a given by

a(r) = r, a(s) = sr.

Also, H2(D8, k
×) ∼= Z/2Z, see [15, Theorem 2.11.4]. Thus, A0(D8) ∼= Z/2Z× Z/2Z.

By analyzing subgroup structure of D8 we see that Z(VecD8) has seven Lagrangian
subcategories,

L(1,1), L(〈r〉,1), L(〈s,r2〉,1), L(〈sr,r2〉,1), L(〈s,r2〉,μ1),

L(〈sr,r2〉,μ2), and L(〈r2〉,1), (37)

where μ1, μ2 denote nontrivial cohomology classes of the respective subgroups.
The following fact was established in [20, Example 5.1]. It is included here for the

reader’s convenience.

Lemma 9.1. The Lagrangian subcategories in L0(D8) are precisely the following:

L(1,1), L(〈r〉,1), L(〈s,r2〉,1), L(〈sr,r2〉,1), L(〈s,r2〉,μ1), and L(〈sr,r2〉,μ2). (38)

Proof. Clearly, L(1,1) ∈ L0(D8). Using Remark 7.3 we see that Lagrangian subcategories
L(〈r〉,1), L(〈s,r2〉,1), and L(〈sr,r2〉,1) are all equivalent to Rep(D8), i.e., belong to L0(D8).
To see that subcategories L(〈s,r2〉,μ1) and L(〈sr,r2〉,μ2) are in L0(D8) note that each of
them is equivalent to a category Rep(G), where G is a non-Abelian group of order 8
having a normal subgroup isomorphic to Z/2Z × Z/2Z. The only group G with this
property is D8.

Finally, L(〈r2〉,1) is equivalent to Rep(Z/2Z×Z/2Z×Z/2Z) and so is not in L0(D8). �
Lemma 9.2. The restriction map H2(D8, k

×) → H2(Z/2Z × Z/2Z, k×) is an isomor-
phism.

Proof. By Theorem 3.4 the restriction map M(S4) → M(D8) is injective. We saw in
Section 8.2 that the restriction

H2(S4, k
×) → H2(Z/2Z× Z/2Z, k×

)
is an isomorphism. This implies the claim. �
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Let us describe the action of A0(D8) on Sym(L0(D8)).
Let μ ∈ H2(D8, k

×) ⊂ A0(D8) and a ∈ Out(D8) ⊂ A0(D8) be the generators of
A0(D8) ∼= H2(D8, k

×) � Out(D8) ∼= Z/2Z × Z/2Z. By Lemma 9.2 μ maps L(〈s,r2〉,1)
to L(〈s,r2〉,μ1) and L(〈sr,r2〉,1) to L(〈sr,r2〉,μ2). Also a maps L(〈s,r2〉,1) to L(〈sr,r2〉,1) and
L(〈s,r2〉,μ1) to L(〈sr,r2〉,μ2).

Thus, π : A(D8) → Sym(L0(D8)) ∼= S6 is injective, i.e., A(D8) is a transitive subgroup
of S6. By Corollary 7.7 |A(D8)| = 24.

Enumerating Lagrangian subcategories in the list (38) we have

A0(D8) =
{
1, (35)(46), (34)(56), (36)(45)

}
as a subgroup of S6. Other stabilizers of points in L0(D8) are the following conjugates
of A(D8):{

1, (12)(56), (15)(26), (16)(25)
}

and
{
1, (12)(34), (13)(24), (14)(23)

}
. (39)

Note that the elements

s1 := (13)(24), s2 := (15)(26), s3 := (14)(23)

satisfy the usual symmetric group relations

(s1s2)3 = 1, (s2s3)3 = 1, s1s3 = s3s1, s2
1 = s2

2 = s2
3 = 1,

and, hence, generate a subgroup isomorphic to S4. Thus,

A(D8) ∼= S4. (40)

Example 9.3. Using Remark 4.2 we can construct a non-trivial Z/3Z-extension of Rep(D8)
(or VecD8). Any such an extension is an integral fusion category of dimension 24 all whose
non-invertible simple objects have dimension 2.

9.2. Quaternion group Q8

Let Q8 = {±1,±i,±j,±k} denote the quaternion group.
It is known that H2(Q8, k

×) = 1, see [15], and Out(Q8) = S3. Thus, A0(D8) ∼= S3.
It is easy to find Lagrangian subcategories of Z(VecQ8). There are five normal Abelian

subgroups of Q8:

1, 〈−1〉, 〈i〉, 〈j〉, and 〈k〉.

Since H2(N, k×) = 1 for each of these subgroups there are precisely five Lagrangian sub-
categories of Z(VecQ8). By Remark 7.3 the Lagrangian subcategory L(N,1) is equivalent
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to Rep(N̂ � (Q8/N)). But Q8 is not isomorphic to any non-trivial semidirect product.
Thus, Rep(N̂ � (Q8/N)) is equivalent to Rep(Q8) if and only if N is trivial. It follows
that there is precisely one Lagrangian subcategory in L0(Q8). Thus,

A(Q8) ∼= S3. (41)

Remark 9.4. Since BrPic(Rep(Q8)) ∼= BrPic(VecQ8) = Out(Q8) we see that categories
Rep(Q8) and VecQ8 have no non-trivial extensions.

10. Examples: groups of order pq

Let p, q be prime numbers such that q ≡ 1 (mod p). It is well known that there is a
unique (up to an isomorphism) finite group G of order pq, namely G = Z/qZ � Z/pZ.

We will need the following presentation of G by generators and relations:

G =
〈
x, y

∣∣ xq = yp = 1 and yxy−1 = xa
〉
, (42)

for a fixed a such that ap ≡ (1 mod q).

Lemma 10.1. The group Out(G) is isomorphic to Z/ q−1
p Z.

Proof. It is clear that any automorphism α of G maps 〈x〉 to itself. Since all subgroups
of G of order p are conjugate to each other it follows that the composition of α with
some inner automorphism of G maps 〈y〉 to itself. Thus, modulo an inner automorphism,
α is given by

α(x) = xm, α(y) = yn (43)

for some m,n such that 1 � m < q and 1 � n < p. It is straightforward to check that
in order to preserve defining relations (42) of G we must have n = 1. Also, automor-
phisms (43) with m = ai, i = 0, . . . , p− 1 are inner. Thus,

Out(G) ∼= (Z/qZ)×/(Z/pZ) ∼= Z/ q−1
p Z,

as required. �
It is known that H2(G, k×) = 1, see [15, Corollary 2.1.3]. The only normal Abelian

subgroups of G are 1 and Z/qZ. Hence, Z(VecG) contains precisely two Lagrangian
subcategories.

L(1,1) and L(Z/qZ,1).

This implies that |A(G)| = 2(q−1) .
p
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Lemma 10.2. Any α ∈ A(G) such that α /∈ A0(G) has order 2.

Proof. The condition α /∈ A0(G) means that α permutes the pair of Lagrangian subcat-
egories of Z(VecG).

Consider the subgroup L ⊂ G×Gop generated by (y, y−1) and 〈x〉 × 〈x〉. We have

L ∼= (Z/qZ× Z/qZ) � Z/pZ.

By Theorem 3.3 the restriction map

H2(L, k×) → H2(Z/qZ× Z/qZ, k×
) ∼= Z/qZ

is an isomorphism. By Corollary 5.6 the braided auto-equivalence α(L,μ) corresponding
to the VecG-bimodule category M(L, μ) has order 2 in A(G) for any non-trivial μ ∈
H2(L, k×).

It is straightforward to check that every α /∈ A0(G) is isomorphic to some α(L,μ) (there
are q−1

p isomorphism classes of such equivalences). �
Lemma 10.2 implies that

A(G) ∼= D 2(q−1)
p

. (44)

Example 10.3. Suppose that p, q are odd. Using Remark 4.2 we conclude that any “re-
flection” element of BrPic(VecG) ∼= D 2(q−1)

p
gives rise to a non-trivial Z/2Z-extension

of VecG. Any such an extension is a weakly integral fusion category of dimension 2pq.
The non-trivial component of this extension contains p classes of simple objects of di-
mension √

q.

11. Examples: dihedral groups D2n where n is odd

Recall that for any integer n � 3 we denote by D2n the dihedral group on n vertices.
That is,

D2n =
〈
r, s

∣∣ rn = 1, s2 = 1, and (sr)2 = 1
〉
. (45)

Let � be the number of distinct prime divisors of n.

Lemma 11.1. Out(D2n) ∼= (Z/nZ)×/{±1}.

Proof. For any i relatively prime to n consider ai ∈ Aut(D2n) given by

ai(s) = s, ai(r) = ri.
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It is straightforward to check that the automorphisms ai and aj are congruent modulo
an inner automorphism of D2n if and only if i ≡ −j (mod n) and that every outer
automorphism of D2n is congruent to some ai. This implies the result. �

When n is odd, H2(D2n, k
×) = 0 [15, Proposition 2.11.4].

Corollary 11.2. Stab(Rep(D2n)) ∼= (Z/nZ)×/{±1}.

Proposition 11.3. The set L0(D2n) consists of subcategories L(〈rb〉,1) where b divides n

and n
b and b are relatively prime.

Proof. Lagrangian subcategories of Z(VecD2n) are all of the form L(〈rb〉,1), where b di-
vides n. By Remark 7.3 the category L(〈r〉,1) is equivalent to

Rep
((

Z/
n

b
Z× Z/bZ

)
� Z/2Z

)
.

The latter category is equivalent to Rep(D2n) if and only if the group Z/n
bZ×Z/bZ has

an element of order n, which is the case precisely when n
b and b are relatively prime. �

Remark 11.4. Note that A0(D2n) stabilizes all Lagrangian subcategories in L0(D2n) and,
hence, it is a normal subgroup of A(D2n).

Lemma 11.5. The image of A(D2n) in Sym(L0(D2n)) is isomorphic to (Z/2Z)
.

Proof. Let α ∈ A(D2n) be a braided autoequivalence such that α /∈ Stab(Rep(D2n)). It
suffices to show that the image of α in Sym(L0(D2n)) has order 2. For this end, observe
that for any fixed L0 ∈ L0(D2n) all the dimensions dim(L0 ∩ L), L ∈ L0(D2n) are
distinct (they correspond to subsets of the set of prime divisors of n). Since α preserves
dimensions of subcategories, we have

dim
(
L ∩ α(L)

)
= dim

(
α(L) ∩ α2(L)

)
,

and, hence, α2(L) = L for any L ∈ L0(D2n). �
Corollary 11.6. There is a short exact sequence

1 → (Z/nZ)×/{±1} → A(D2n) → (Z/2Z)
 → 1. (46)

Remark 11.7. When � = 1, i.e., when n is a prime power, an argument similar to that
in Section 10 shows that A(D2n) ∼= (Z/nZ)×/{±1}�Z/2Z, i.e., A(D2n) is a generalized
dihedral group. We conjecture that in general the sequence (46) splits, i.e.,

A(D2n) ∼= (Z/nZ)×/{±1}� (Z/2Z)
.
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