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Wreath products in reality-based algebras are generalizations
of wreath products of table algebras and generalized Camina–
Frobenius pairs of C-algebras. In this paper we present
characterizations of the wreath product in a reality-based
algebra by its irreducible characters and by the size of the zero
submatrix of its character table. Applications to finite groups,
table algebras, and association schemes are also discussed. In
particular, we will show that the wreath product of one-class
association schemes is characterized by the zeros in its first
eigenmatrix.
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1. Introduction

The wreath product of association schemes provides a useful way to construct new
association schemes from old ones (cf. [10,16], etc.). The wreath product of table alge-
bras was first used by Arad and Muzychuk [3] for the classification of certain classes
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of standard integral table algebras. Since the Bose–Mesner algebra of an association
scheme is a standard table algebra, and as a table algebra, the Bose–Mesner algebra of
the wreath product of association schemes is exactly isomorphic to the wreath product of
the Bose–Mesner algebras of those association schemes, the study of the wreath product
of table algebras has natural applications to association schemes. Some basic properties
of wreath products of C-algebras, table algebras, and association schemes are presented
in [1,15].

Reality-based algebras are generalizations of table algebras. In this paper we study
wreath products of standard reality-based algebras. Our main results (Theorems 1.6
and 1.8 below) characterize wreath products of these algebras in terms of their character
tables. An immediate consequence of Theorem 1.6 is a result of Arad and Fisman [1,
Lemma 2.11] on C-algebras that are wreath products (see Corollary 1.7 below). Ap-
plications to finite groups, table algebras, and association schemes are also discussed.
In particular, Belonogov’s result [7] for the Camina–Frobenius pairs in finite groups
(Corollary 1.10 below) is a direct consequence of Theorem 1.8, and the first and second
eigenmatrices of the wreath product of one-class association schemes can be easily ob-
tained without calculations from Theorem 1.8 and its proof. Furthermore, by applying
Theorem 1.8, we will show that the wreath product of one-class association schemes is
characterized by the zeros in its first eigenmatrix.

In the rest of this introductory section, we state the main results of the paper explicitly.
Let us start with some necessary definitions and notation.

Definition 1.1. (Cf. [5, Definition 1.16].) A reality-based algebra (RBA) (A,B) is a finite
dimensional associative algebra A over the complex numbers C with a distinguished basis
B := {bi | 0 ≤ i ≤ k}, where b0 = 1A, the identity element of A, and the following three
conditions hold.

(i) The structure constants for B are real numbers; that is, for all bi, bj ∈ B,

bibj =
k∑

m=0
λijmbm, for some λijm ∈ R.

(ii) There is an algebra anti-automorphism (denoted by ∗) of A such that (a∗)∗ = a for
all a ∈ A and b∗i ∈ B for all bi ∈ B. (Hence i∗ is defined by bi∗ = b∗i .)

(iii) For all bi, bj ∈ B, λij0 = 0 if j �= i∗; and λii∗0 = λi∗i0 > 0.

Let (A,B) be a RBA. If all structure constants λijm are nonnegative, then (A,B) is
a table algebra. A degree map (cf. [5, Definition 1.1d]) for (A,B) is an algebra homomor-
phism f : A → C such that f(bi) ∈ R \ {0} for all bi ∈ B. The values f(bi) are called
the degrees of (A,B, f). If (A,B) is a table algebra, then there always exists a (unique)
degree map that is positive on B; such a degree map is called the positive degree map.
If f is a degree map of (A,B) such that f(bi) = λii∗0 for all i, then (A,B, f) is called a
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standard RBA (SRBA), cf. [5, Definition 2.10]. A standard table algebra is a SRBA with
nonnegative structure constants, and a C-algebra (in the sense of [8]) is a commutative
SRBA. The basis B can be rescaled (cf. [5, Definition 2.11]), replacing each bi by μibi
for some μi ∈ R \ {0} such that μi = μi∗ for all i and μ0 = 1. It is clear that the rescaled
basis again yields a RBA. If (A,B) has a degree map f , then there is a unique rescaling
B′ such that (A,B′, f) is a SRBA (cf. [5, Proposition 2.20]).

Let (A,B) be a RBA. Then by [5, Proposition 2.1], there exists a positive definite
sesquilinear form ( , ) on A (that is, the form ( , ) is biadditive, and for all a, b ∈ A

and γ ∈ C, (γa, b) = γ(a, b), (b, a) = (a, b) and (a, a) > 0 if a �= 0) such that for all
bi, bj , bm ∈ B,

(bi, bj) = δijλii∗0 and (bibj , bm) =
(
bj , b

∗
i bm

)
=

(
bi, bmb∗j

)
. (1.1)

Furthermore, A is a semisimple algebra (cf. [5, Proposition 2.3]). As usual, a represen-
tation of A is an algebra homomorphism φ : A → Mn(C) such that φ(1A) = In, where
n is a positive integer, Mn(C) is the algebra of all n × n matrices over C, and In is
the n × n identity matrix. Let φ : A → Mn(C) be a representation of A. φ is called
irreducible if φ(A) acts irreducibly on C

n. The character afforded by φ is the linear map
χ : A → C, a �→ Tr(φ(a)), where Tr(φ(a)) is the trace of φ(a). χ is called irreducible
if φ is irreducible. The set of all irreducible characters of (A,B) is denoted by Irr(A)
or Irr(B).

Let (A,B, χ0) be a SRBA. Then χ0 is an irreducible character of A. Let Irr(B) :=
{χ0, χ1, . . . , χr}, and Irr(B)� := Irr(B) \ {χ0}. For a nonempty subset S of B, define

S+ :=
∑
bi∈S

bi and o(S) :=
∑
bi∈S

χ0(bi) = χ0
(
S+).

A linear map σ : A → C is called a feasible trace (cf. [12]) if for any x, y ∈ A, σ(xy) =
σ(yx). Define

ζ : A → C, x �→ α0, if x =
k∑

i=0
αibi. (1.2)

Then it follows from λii∗0 = λi∗i0 for all i that ζ is a feasible trace of A. According
to [12],

ζ =
r∑

i=0
ziχi, where zi ∈ C are feasible multiplicities. (1.3)

Furthermore, each zi > 0 by [5, Lemma 2.11(i)]. Let ei be the central primitive idempo-
tent of A corresponding to χi ∈ Irr(B), 0 ≤ i ≤ k. Then by [5, Proposition 2.14],

ei =
k∑ zi

χ0(bl)
χi

(
b∗l
)
bl, 0 ≤ i ≤ k.
l=0
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In particular, e0 = z0B+. Thus, z0o(B) = χ0(z0B+) = χ0(e0) = 1. So z0 = o(B)−1,
and hence e0 = o(B)−1B+. e0 will also be denoted by eB. Since e0A has dimension
χ0(1) = 1,

bieB = χ0(bi)eB, for all bi ∈ B.

Let (A,B) be a RBA. For any bi, bj ∈ B, define

Supp(bibj) :=
{
bl ∈ B

∣∣ (bibj , bl) �= 0
}
.

Note that for any bi, bj , bl ∈ B, (1.1) implies that

bl ∈ Supp(bibj) ⇔ bi ∈ Supp
(
blb

∗
j

)
⇔ bj ∈ Supp

(
b∗i bl

)
. (1.4)

For any nonempty subsets S and T of B, define the set product ST by

ST :=
⋃

bi∈S,bj∈T

Supp(bibj).

Note that the set product need not be associative for RBAs. A nonempty subset N of
B is called a closed subset if N = N∗ and NN ⊆ N, where N∗ := {b∗i | bi ∈ N}. If N
is a closed subset of B, then (CN,N) is also a RBA, where CN is the C-space spanned
by N. Furthermore, when N is a closed subset of B, then (1.4) implies that

N(B \ N) ∪ (B \ N)N ⊆ B \ N. (1.5)

Definition 1.2. Let (A,B, χ0) be a SRBA, and N a nonempty subset of B. If

Supp(bibj) = Supp(bjbi) = {bj}, for all bi ∈ N, bj ∈ B \ N,

then (A,B, χ0) is called a wreath product (B,N).

Remark 1.3. (i) The above definition implies that if (A,B, χ0) is a wreath product (B,N),
then N is a closed subset. In fact, for any bi ∈ N such that bi �= b0, since b0 ∈ Supp(bib∗i ),
we see that Supp(bib∗i ) �= {b∗i }, and hence b∗i ∈ N. Thus, N∗ = N. For any bi, bj ∈ N,
if there is bl ∈ B \ N such that bl ∈ Supp(bibj), then by (1.4), bj ∈ Supp(b∗i bl) = {bl},
a contradiction. Hence, NN ⊆ N. Thus, N is a closed subset.

(ii) In the above definition for any bi ∈ N and bj ∈ B \N, Supp(bibj) = Supp(bjbi) =
{bj} is equivalent to bibj = bjbi = χ0(bi)bj . Hence, if A is commutative, then Defi-
nition 1.2 is the same as the definition of a generalized Camina–Frobenius pair for a
C-algebra in [1].

(iii) The definition of a generalized Camina–Frobenius pair for RBAs in [6, Defini-
tion 1.5] is a mild generalization of Definition 1.2 above. In particular, when there is no
degree map, then the product bibj can be 0.
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(iv) Let (A,B) and (C,D) be SRBAs, with B = {b0 = 1A, b1, ..., bk} and D = {d0 =
1C , d1, ..., dh}. It is immediate that (A ⊗ C,B ⊗ D) is an SRBA, the same as for table
algebras in [2] or [14]. Also as for table algebras, the (constructive) wreath product
(A � C,B � D) is defined as

B � D := {b0 ⊗ dj | 0 ≤ j ≤ h} ∪
{
bi ⊗ D+ ∣∣ 1 ≤ i ≤ k

}
.

Then (A � C,B � D) is a wreath product (B � D, b0 ⊗ D) in the sense of Definition 1.2,
where b0 ⊗ D := {b0 ⊗ dj | 0 ≤ j ≤ h}.

Definition 1.4. Let (A,B, χ0) be a SRBA, and N a closed subset of B. For each χ ∈
Irr(B), define

χ↓N = χ↓CN and Irr(χ↓N) :=
{
ψt ∈ Irr(CN)

∣∣∣∣ χ↓CN =
∑
t

mtψt with mt > 0
}
.

Remark 1.5. (i) Let (A,B, χ0) be a SRBA. Let N be a closed subset of B, and ψ0 the
degree map of (CN,N). Then χ0↓CN = ψ0.

(ii) Let ζ be the feasible trace of A defined by (1.2). Then ζ↓CN is the feasible trace
of CN. Since the feasible multiplicities defined in (1.3) for ζ and ζ↓CN are positive, each
ψ ∈ Irr(N) is in Irr(χ↓N) for some χ ∈ Irr(B).

Let (A,B) be a RBA, and χ ∈ Irr(B). Then for any nonempty subset S of B, let
χ(S) := {χ(bi) | bi ∈ S}. Now we are ready to state the main results of the paper.

Theorem 1.6. Let (A,B, χ0) be a SRBA, and N a closed subset of B. Then the following
are equivalent.

(i) (A,B, χ0) is a wreath product (B,N).
(ii) For any ψ ∈ Irr(N)�, ψ = χ↓N for some χ ∈ Irr(B) such that χ(B \ N) = {0}.

Let (A,B, χ0) be a SRBA. Assume that A is commutative. That is, (A,B, χ0) is
a C-algebra. Then up to exact isomorphism, (A,B, χ0) has a unique dual C-algebra
(A, B̂χ0 , χ0). For any nonempty subset N of B, the kernel of N, kerχ0 N, is a subset
of B̂χ0 . The reader is referred to [4] for more details about dual C-algebras and kernels of
subsets. The following result of Arad and Fisman (cf. [1, Lemma 2.11]) is an immediate
consequence of Theorem 1.6 and (3.3) in its proof (see below).

Corollary 1.7. (Cf. [1, Lemma 2.11].) Let (A,B, χ0) be a C-algebra that is a wreath
product (B,N) for some closed subset N. Then the dual C-algebra (A, B̂χ0 , χ0) is a
wreath product (B̂χ0 , kerχ0 N).

Let (A,B, χ0) be a SRBA. The character table of (A,B, χ0) is regarded as a ma-
trix whose columns are indexed by the elements of B and whose rows are indexed
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by the irreducible characters of A. Assume that B = {b0 = 1A, b1, . . . , bk} and
Irr(A) = {χ0, χ1, . . . , χr}. Then for any 0 ≤ i ≤ r and 0 ≤ j ≤ k, the (χi, bj)-entry
of the character table is χi(bj). If the character table of (A,B, χ0) has an s × t zero
submatrix, then we will prove that s + t ≤ |B| − 1 (see Proposition 3.1 below).

Theorem 1.8. Let (A,B, χ0) be a SRBA. Then the following are equivalent.

(i) By permuting the rows and columns if necessary, the character table of (A,B) has
an s× t zero submatrix such that s + t = |B| − 1, and the irreducible characters of
A corresponding to the zero submatrix are linear.

(ii) There is a proper closed subset N of B such that CN is commutative, |N| = s + 1,
and (A,B, χ0) is a wreath product (B,N).

Remark 1.9. Let G be an extra-special p-group of order p2n+1. That is, |G| = p2n+1,
|Z(G)| = p, and G/Z(G) is an elementary abelian p-group, where Z(G) is the center
of G. Let (A,B) := (CG,G), and N = Z(G). Then (A,B) is a standard table algebra,
and N is a closed subset of B. It is well known that A has p − 1 irreducible characters
χj of degree pn such that χj(B \ N) = {0}. Let s = p − 1, and t = |B| − p. Then
s + t = |B| − 1, and by permuting the rows and columns if necessary, the character
table of (A,B) has an s × t zero submatrix. However, (A,B) is not a wreath product
(B,N). ((A,B) is not a wreath product (B,M) for any proper closed subset M such
that |M| > 1, because B is a group.) So in the above theorem, if the assumption that the
irreducible characters corresponding to the zero submatrix are linear is removed, then
the implication (i) ⇒ (ii) is false, even if (A,B) is a standard table algebra. Also note
that for group G as above, (Z(CG),Cla(G)) is a wreath product (Cla(G), Z(G)), where
Z(CG) is the center of the group algebra CG, and Cla(G) consists of class sums.

For a finite group G and a normal subgroup N of G, let k(G) denote the number of
conjugacy classes of G, and kG(N) the number of conjugacy classes of G contained in N .
As a direct application of Proposition 3.1 and Theorem 1.8 to (Z(CG),Cla(G)) and its
irreducible (central) characters, we have the following

Corollary 1.10. (See [7, Corollary 1.2, Theorem 1.2].) Let G be a finite group. Then the
following hold.

(i) If the character table of G has an s× t zero submatrix, then s + t ≤ k(G) − 1.
(ii) The following are equivalent.

(a) By permuting the rows and columns if necessary, the character table of G has
an s× t zero submatrix such that s + t = k(G) − 1.

(b) G has a proper normal subgroup N such that kG(N) + k(G/N) = k(G) + 1.
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Let G be a finite group. If G has a proper normal subgroup N such that kG(N) +
k(G/N) = k(G)+1, then (G,N) is called a Camina–Frobenius pair. The reader is referred
to [7] for more details.

Let X = (X, {Ri}0≤i≤d) be an association scheme, and let A0, A1, . . . , Ad be its
adjacency matrices. Let A be the Bose–Mesner algebra of X . Then (A,B) is a standard
table algebra, where B := {A0, A1, . . . , Ad}. A subset T of {Ri}0≤i≤d is a closed subset
of X if {Ai | Ri ∈ T} is a closed subset of B. Let T be a closed subset of X , and X/T :=
{xT | x ∈ X}, where xT := {y ∈ X | (x, y) ∈ t for some t ∈ T}. Then we have the
quotient scheme X//T on the set X/T . Furthermore, fix x ∈ X, and let txT := t∩ (xT ×
xT ), for any t ∈ T . Then we have the subscheme TxT := {txT | t ∈ T} on xT . The reader
is referred to [20] for more details about subschemes and quotient schemes. Also see [17,
19]. It is well known that for a closed subset T of X and x ∈ X, the Bose–Mesner algebras
of X//T and TxT are exactly isomorphic to the quotient table algebra (A//N,B//N)
(see Section 3) and table subalgebra (CN,N), respectively, where N := {Ai | Ri ∈ T}.

Since the first eigenmatrix of a commutative association scheme is the character ta-
ble of the adjacency algebra, the next corollary is immediate from Proposition 3.1 and
Theorem 1.8. More applications to commutative association schemes will be discussed in
Section 4. For the definition of the wreath product of association schemes, see Section 4.

Corollary 1.11. Let X = (X, {Ri}0≤i≤d) be a commutative association scheme. Then the
following hold.

(i) If the first eigenmatrix P of X has an s× t zero submatrix, then s + t ≤ d.
(ii) The following are equivalent.

(a) By permuting the rows and columns if necessary, the first eigenmatrix P of X
has an s× t zero submatrix such that s + t = d.

(b) There is a proper closed subset T of X such that |T | = s+1 and the Bose–Mesner
algebra of X is exactly isomorphic to the Bose–Mesner algebra of the wreath
product (X//T ) � TxT as table algebras.

The rest of the paper is organized as follows. In Section 2 we present some preliminary
lemmas. Then in Section 3, we prove Theorems 1.6 and 1.8, and discuss applications to
table algebras. Applications to association schemes are presented in Section 4.

2. Preliminary lemmas

In this section we present a few results that will be needed for the proofs of Theo-
rems 1.6 and 1.8 in the next section. Let (A,B, χ0) be a SRBA, with B := {bi | 0 ≤
i ≤ k}. For any characters φ, ρ of A, define the form

〈φ, ρ〉B :=
k∑ 1

χ0(bl)
φ
(
b∗l
)
ρ(bl).
l=0
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Since φ(b∗l ) is the complex conjugate of φ(bl) for any bl ∈ B, the form is Hermitian, and
the following holds.

Lemma 2.1 (Orthogonality Relations). (Cf. [5, Proposition 2.12], [2, Theorem 3.6].) Let
(A,B, χ0) be a SRBA. Then for any χi, χj ∈ Irr(B),

〈χi, χj〉B = χi(1)
zi

δij ,

where zi is the feasible multiplicity.

The next lemma is a result for semisimple algebras over C in general.

Lemma 2.2. Let A be a finite dimensional semisimple algebra over C, and S a semisimple
subalgebra of A with 1A ∈ S. Let Φ : A → Mn(C) (for some n) be a representation of A
such that Φ↓S is irreducible, and χ the character of A afforded by Φ. Let C be a C-subspace
of A that is a left (or similarly, a right) S-module. Then for χ(C) := {χ(c) | c ∈ C},

χ(C) = {0} if and only if Φ(C) = {0}.

Proof. It is obvious that if Φ(C) = {0}, then χ(C) = {0}. Now assume that χ(C) = {0}.
Toward a contradiction, suppose that Φ(c) �= 0 for some c ∈ C. Then for some 1 ≤ i,
j ≤ n, the (i, j)-entry γi,j of Φ(c) is nonzero. Since S is semisimple and Φ↓S is irreducible,
Φ(S) = Mn(C). So there is s ∈ S such that Φ(s) = Eji, the matrix unit with 1 as the
(j, i)-entry, and 0 elsewhere. Now sc ∈ C by hypothesis, and

Φ(sc) = Φ(s)Φ(c) = EjiΦ(c),

a matrix with γij as its (j, j)-entry, and all other diagonal entries equal to zero. So
χ(sc) = γij �= 0, a contradiction. This proves that Φ(C) = {0}. �

As a direct consequence of Lemma 2.2, we have the following

Corollary 2.3. Let (A,B, χ0) be a SRBA, and N a closed subset of B. Let Φ be a rep-
resentation of A such that Φ↓CN is irreducible, and χ the character of A afforded by Φ.
Then

χ(B \ N) = {0} if and only if Φ(B \ N) = {0}.

Proof. It is known that CN is a semisimple subalgebra of A with 1A ∈ CN. Let
C := C(B \ N) be the C-subspace of A spanned by B \ N. Then C is a left and right
(CN)-module by (1.5). So the corollary holds by Lemma 2.2. �
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3. Proofs of Theorems 1.6 and 1.8

In this section we first prove Theorems 1.6 and 1.8. We will also present an upper
bound for the size of a zero submatrix in the character table of a SRBA, and discuss
applications to table algebras.

Proof of Theorem 1.6. (i) ⇒ (ii) Let eN = o(N)−1N+, the central primitive idempotent
of CN that corresponds to the degree map ψ0 of (CN,N). If ψ ∈ Irr(N)� and M is
an irreducible (CN)-module that affords ψ, then eNM = {0}. Let bj ∈ B \ N. Since
bibj = bjbi = ψ0(bi)bj for all bi ∈ N, it follows that bjeN = eNbj = bj , and (bjb∗j , bi) =
(bj , bibj) = ψ0(bi)χ0(bj) by (1.1). Hence,

bjb
∗
j = χ0(bj)N+ +

∑
bm∈B\N

λjj∗mbm.

Therefore, M becomes an irreducible A-module with bjx = 0 for all bj ∈ B \ N and
x ∈ M . Let χ be the irreducible character of A afforded by M . Then ψ = χ↓N, and
χ(B \ N) = {0}. So (ii) holds.

(ii) ⇒ (i) Since A is semisimple, there is an algebra isomorphism

Ω : A →
r⊕

i=0
Mni

(C).

Let Πi :
⊕r

j=0 Mnj
(C) → Mni

(C) be the projection, and Ωi = ΠiΩ, 0 ≤ i ≤ r. Then
the irreducible representations of A, up to equivalence, are Ωi, i = 0, 1, . . . , r. For any
bi ∈ N and bj ∈ B \ N, since bibj = bjbi = χ0(bi)bj if and only if Ω(bibj) = Ω(bjbi) =
Ω(χ0(bi)bj), it follows that (i) holds if and only if

Ωl(bibj) = Ωl(bjbi) = Ωl

(
χ0(bi)bj

)
, for all bi ∈ N, bj ∈ B \ N, 0 ≤ l ≤ r. (3.1)

In the following we prove that (3.1) holds. Define

E(N) :=
{
χ ∈ Irr(B)

∣∣ χ↓N ∈ Irr(N)� and χ(B \ N) = {0}
}
. (3.2)

Then by (ii), {χ↓N | χ ∈ E(N)} = Irr(N)�. Let η ∈ Irr(B) \ E(N). Then for any
χ ∈ E(N), χ(B \ N) = {0} and Lemma 2.1 imply that

0 = 〈η, χ〉B = 〈η↓N, χ↓N〉N.

Hence, Irr(η↓N) ∩ Irr(N)� = ∅. Let ψ0 be the degree map of (CN,N). It follows that

η↓N = η(1)ψ0, for all η ∈ Irr(B) \ E(N). (3.3)
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Let Ωl be an irreducible representation of A that affords some χ ∈ E(N). Then Ωl↓CN
is irreducible, and hence Ωl(B \ N) = {0} by Corollary 2.3. Thus, for all bi ∈ N and
bj ∈ B \ N,

Ωl(bibj) = Ωl(bi)Ωl(bj) = 0, Ωl(bjbi) = Ωl(bj)Ωl(bi) = 0,

Ωl

(
χ0(bi)bj

)
= χ0(bi)Ωl(bj) = 0.

Therefore,

Ωl(bibj) = Ωl(bjbi) = Ωl

(
χ0(bi)bj

)
, for all bi ∈ N, bj ∈ B \ N.

Now let Ωm be an irreducible representation of A that affords some η ∈ Irr(B)\E(N).
Then (3.3) implies that for all bi ∈ N, Ωm(bi) = χ0(bi)Inm

, where nm = η(1). So for all
bi ∈ N and bj ∈ B \ N,

Ωm(bibj) = Ωm(bi)Ωm(bj) = χ0(bi)Ωm(bj) = Ωm

(
χ0(bi)bj

)
,

and

Ωm(bjbi) = Ωm(bj)Ωm(bi) = χ0(bi)Ωm(bj) = Ωm

(
χ0(bi)bj

)
.

Therefore, we have shown that (3.1) holds. �
The next proposition gives an upper bound for the size of a zero submatrix in the

character table of a SRBA. We will need this result for the proof of Theorem 1.8.

Proposition 3.1. Let (A,B, χ0) be a SRBA. Assume that the character table of (A,B)
has an s× t zero submatrix. Then s + t ≤ |B| − 1.

Proof. By permuting the rows and columns if necessary, we may assume that the char-
acter table of (A,B) is of the form(

C11 C12
C21 O

)
, where O is an s× t zero submatrix. (3.4)

Note that the rows of the character table are linearly independent by Lemma 2.1. Hence,
the rows of C21 are also linearly independent. Thus, rank(C21) = s. But for any χ ∈
Irr(A)�, χ(eB) = 0, i.e.

∑
bi∈B χ(bi) = 0. So the sum of any row of C21 is zero. Thus, the

columns of C21 are linearly dependent, and hence the number of columns of C21 is at
least rank(C21) + 1. But the number of columns of C21 is |B| − t. Hence |B| − t ≥ s+ 1,
and the proposition holds. �

Now we are ready to prove Theorem 1.8.
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Proof of Theorem 1.8. (ii) ⇒ (i) Let E(N) be the same as in (3.2). Then by Theorem 1.6,
there is a bijection between E(N) and Irr(N)�, via χj ↔ χj↓N. Since CN is commutative,
|E(N)| = | Irr(N)�| = |N| − 1 = s, and every χj ∈ E(N) is linear. Furthermore, all
χj ∈ E(N) vanish on the columns of the character table indexed by the bl ∈ B \ N.
There are t = |B| − |N| = |B| − (s + 1) of these columns. Hence, (i) holds.

(i) ⇒ (ii) Assume that B = {b0 = 1A, b1, . . . , bk} and Irr(B) = {χ0, χ1, . . . , χr} are
indexed in such a way that the character table of (A,B) is of the form (3.4). Hence,

χj(bl) = 0 for all j > r − s and l > s.

Let N := {b0, b1, . . . , bs}. Since s+ t = |B|−1 is maximal for the size of a zero submatrix
in the character table by Proposition 3.1, and χj(b∗l ) is the complex conjugate of χj(bl)
for all j, l, it follows that (B \ N)∗ = B \ N, and hence N∗ = N. For each j > r − s,
Lemma 2.1 and χj(bl) = 0 for all l > s imply that

0 = 〈χ0, χj〉B =
k∑

l=0

1
χ0(bl)

χ0
(
b∗l
)
χj(bl) =

s∑
l=0

χj(bl), for any j > r − s.

Hence, the (s + 1)-tuple (1, 1, . . . , 1)T is in the null space of C21. Since C21 has rank s

and has s + 1 columns, (1, 1, . . . , 1)T spans the null space of C21. Let x ∈ CN such
that χj(x) = 0 for all j > r − s. Assume that x =

∑s
l=0 βlbl for some βl ∈ C. Then

0 =
∑s

l=0 βlχj(bl) for all j > r − s implies that (β0, β1, . . . , βs)T is in the null space
of C21. Hence, (β0, β1, . . . , βs)T = γ(1, 1, . . . , 1)T for some γ ∈ C, and

x ∈ CN and χj(x) = 0 for all j > r − s ⇔ x = γN+ for some γ ∈ C. (3.5)

Let bv ∈ N, bu ∈ B \ N, and set bubv = x + y, where x ∈ RN and y ∈ R(B \ N).
For each j > r − s, χj is linear by the assumption of (i), and hence χj is an algebra
homomorphism from A to C. Thus, and since χj(bu) = 0,

0 = χj(bu)χj(bv) = χj(bubv) = χj(x) + χj(y) = χj(x), for all j > r − s.

Hence by (3.5), x = γN+ for some γ ∈ R. If x �= 0, then b0 ∈ Supp(bubv), and hence
bv = b∗u ∈ B \ N, a contradiction. Thus, x = 0, and

Supp(bubv) ⊆ B \ N, for all bu ∈ B \ N, bv ∈ N. (3.6)

If for some bv1 , bv2 ∈ N, Supp(bv1bv2) contains some bu ∈ B\N, then bv1 ∈ Supp(bub∗v2
) ⊆

B \N by (1.4) and (3.6), a contradiction. Therefore, NN ⊆ N, and N is a closed subset
of B. Furthermore, the s linear characters χj , j > r − s, yield s distinct irreducible
characters χj↓N of Irr(N)�. Since s = |N| − 1, CN is commutative, and {χj↓N | j >

r − s} = Irr(N)�, with χj(B \ N) = {0} for all j > r − s. Thus, (A,B) is a wreath
product (B,N) by Theorem 1.6, and (ii) holds. �
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When (A,B) is a table algebra, several equivalent variations on the statements of
Theorem 1.6 arise. We present them in Corollary 3.4 below. Let (A,B) be a standard
table algebra, and N a closed subset of B. Then for any bi ∈ B, the positive degree of bi
is denoted by o(bi), and the set product N{bi}N is denoted by NbiN. The quotient table
algebra (A//N,B//N) is also a standard table algebra (cf. [2, Theorem 4.9]), where

B//N := {bi//N | bi ∈ B} and bi//N := o(N)−1(NbiN)+.

Furthermore, the positive degree of bi//N is o(bi//N) = o(N)−1o(NbiN), and by [2,
Proposition 4.8],

bi//N = o(bi//N)
o(bi)

(eNbieN).

Also each bi//N is an element of A, and A//N is a subalgebra of A; but 1A /∈ A//N
if N �= {1A}. For any η ∈ Irr(B) such that η↓A//N �= 0, η↓A//N ∈ Irr(A//N) by [18,
Theorem 3.2].

Proposition 3.2. Let (A,B) be a standard table algebra, and N a closed subset of B. Let
η ∈ Irr(B). Then the following are equivalent.

(i) η↓N = η(1)ψ0, where ψ0 is the positive degree map of (CN,N).
(ii) For all bi ∈ B,

η(bi) = o(bi)
o(bi//N)η(bi//N).

(iii) For some character ξ of A//N and all bi ∈ B,

η(bi) = o(bi)
o(bi//N)ξ(bi//N).

Proof. Assume (i). Then for any a ∈ A, η(eNaeN) = η(a) by [18, Lemma 3.4]. Hence,

η(bi//N) = o(bi//N)
o(bi)

η(eNbieN) = o(bi//N)
o(bi)

η(bi),

and (ii) holds.
Assume (ii). Then (iii) follows, with ξ = η↓A//N.
Assume (iii). Then for all bi ∈ N,

η(bi) = o(bi)
o(1A//N)ξ(1A//N) = o(bi)ξ(1A//N).

In particular, η(1A) = o(1A)ξ(1A//N) = ξ(1A//N). So η(bi) = o(bi)η(1) for all bi ∈ N,
and (i) holds. �
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Remark 3.3. If (A,B) is a standard table algebra, then it is immediate from Re-
mark 1.3(iv) and the definition of B//N that (A,B) is a wreath product (B,N) if
and only if (A,B) ∼=x (A//N,B//N) � (CN,N). Also see [15, Lemma 3.1].

The implication (i) ⇒ (v) in the next corollary was proved for association schemes
in [11].

Corollary 3.4. Let (A,B) be a standard table algebra, N a closed subset of B, and E(N)
the same as in (3.2). Then the following are equivalent.

(i) (A,B) ∼=x (A//N,B//N) � (CN,N).
(ii) If η ∈ Irr(B) \ E(N), then η↓N = η(1)ψ0, where ψ0 is the positive degree map of

(CN,N).
(iii) If η ∈ Irr(B) \ E(N), then for some character ξ of A//N and all bi ∈ B,

η(bi) = o(bi)
o(bi//N)ξ(bi//N).

(iv) If η ∈ Irr(B) \ E(N), then

η(bi) =
{
o(bi)η(1A//N), if bi ∈ N,

o(N)η(bi//N), if bi ∈ B \ N.

(v) For any ξ ∈ Irr(A//N), ξ̂ is a character of A, where

ξ̂(bi) =
{
o(bi)ξ(1A//N), if bi ∈ N,

o(N)ξ(bi//N), if bi ∈ B \ N.

Proof. We may assume that N �= B. Then the equivalence of (i) and (ii) follows from
Theorem 1.6, (3.3), and Remark 3.3; and the equivalence of (ii) and (iii) follows from
Proposition 3.2.

Assume (iii). Then for all η ∈ Irr(B) \ E(N) and all bi ∈ B, Proposition 3.2 implies
that

η(bi) =
{
o(bi)η(1A//N), if bi ∈ N,

o(bi)
o(bi//N)η(bi//N), if bi ∈ B \ N.

Then η↓A//N ∈ Irr(A//N) by [18, Theorem 3.2], and (i) implies that for all bi ∈ B \N,
bi//N = o(N)−1bi. Thus, η(bi) = o(N)η(bi//N) for all bi ∈ B \ N, and (iv) holds.

Assume (iv). By [18, Theorem 3.2], there is η ∈ Irr(B) such that ξ = η↓A//N. So
η /∈ E(N). Hence ξ̂ = η, and (v) holds.

Assume (v). Let ξ0 = χ0↓A//N, the positive degree map of (A//N,B//N). Then for
all bi ∈ N, ξ̂0(bi) = o(bi)ξ0(1A//N) = o(bi); hence ξ̂0(1A) = 1, and for all bi ∈ B \ N,
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ξ̂0(bi) = o(N)ξ0(bi//N) = o(NbiN). Thus, ξ̂0 ∈ Irr(B), and is positive-real-valued on B.
By Lemma 2.1, ξ̂0 = χ0. Therefore,

o(bi) = χ0(bi) = ξ̂0(bi) = o(NbiN),

whence NbiN = {bi} for all bi ∈ B \ N. It follows that (A,B) is the wreath product
(B,N), and (i) holds. �
4. Applications to commutative association schemes

In this section we discuss some applications to the wreath products of association
schemes. In particular, we will show that the wreath product of one-class association
schemes is characterized by the zeros in its first eigenmatrix.

Let X := (X, {Ri}0≤i≤d) be a d-class association scheme of order |X|. For any 0 ≤
i ≤ d, the valency and the adjacency matrix of Ri are denoted by ki and Ai, respectively.
Let A be the Bose–Mesner algebra of X , and let B := {A0, A1, ..., Ad}. For the rest of
this section, we will always assume that X is commutative (that is, A is commutative).
Let E0, E1, ..., Ed be the primitive idempotents of A, with E0 = 1

|X|J , where J is the
matrix whose entries are all 1. Then {E0, E1, ..., Ed} is another basis of A. Following the
notation in [8, Section II.3], we assume that

Ai =
d∑

j=0
pi(j)Ej and Ei = 1

|X|

d∑
j=0

qi(j)Aj , 0 ≤ i ≤ d. (4.1)

Let P and Q be the (d + 1) × (d + 1) matrices whose (i, j)-entries are pj(i) and qj(i),
respectively. Then P and Q are called the first and second eigenmatrices of X , respec-
tively. Let Irr(A) := {χ0, χ1, ..., χd} be the set of irreducible characters of A, where χ0
is the degree map of A. Since P is also the character table of the standard table algebra
(A,B), by renumbering χ1, ..., χd if necessary, we may assume that

χj(Ai) = pi(j), 0 ≤ i, j ≤ d. (4.2)

Furthermore, let E := {|X|E0, |X|E1, ..., |X|Ed}, and let ◦ denote the Hadamard product
of matrices. Then (A,E, ◦) is a standard table algebra, called the dual of (A,B). The
primitive idempotents of (A,E, ◦) are A0, A1, ..., Ad, and by (4.1),

|X|Ei =
d∑

j=0
qi(j)Aj , and Ai = 1

|X|

d∑
j=0

pi(j)|X|Ej , 0 ≤ i ≤ d.

Therefore, the first and second eigenmatrices of (A,E, ◦) are Q and P , respectively. Note
that (A,B, χ0) is a C-algebra, and its dual C-algebra

(A, B̂χ0 , χ0) ∼=x (A,E, ◦) as table algebras. (4.3)
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Let X = (X, {Ri}0≤i≤d) and Y = (Y, {Sj}0≤j≤e) be association schemes, and let
A0, A1, . . . , Ad and B0, B1, . . . , Be be the adjacency matrices of X and Y, respectively.
Then the adjacency matrices Cl, 0 ≤ l ≤ d+ e, of the wreath product X � Y are given by

C0 = A0 ⊗B0, C1 = A0 ⊗B1, . . . , Ce = A0 ⊗Be,

Ce+1 = A1 ⊗ Jm, . . . , Ce+d = Ad ⊗ Jm,

where m = |Y | and Jm is the m×m matrix whose entries are all 1. Therefore, the Bose–
Mesner algebra of X �Y is exactly isomorphic to the wreath product of the Bose–Mesner
algebras of X and Y as table algebras. Note that the wreath product X �Y in this paper
is the wreath product Y � X in [13] and [16].

For any positive integer n ≥ 2, let Kn denote the one-class association scheme of
order n. It is clear that the Bose–Mesner algebra of Kn and its dual are exactly iso-
morphic as table algebras. Note that for C-algebras (A,B, f), (C,D, g), and (X,Y, h)
such that (A,B, f) ∼= (C,D, g) � (X,Y, h), by [1, Theorem 2.9] or [15, Theorem 2.9] we
have (A, B̂f , f) ∼= (X, Ŷh, h) � (C, D̂g, g). The next lemma is immediate from this result
and (4.3).

Lemma 4.1. Let X = Kn1 �Kn2 � · · · �Knd
be the wreath product of one-class association

schemes Kn1 ,Kn2 , . . . ,Knd
, where d, n1, n2, . . . , nd are positive integers greater than or

equal to 2. Let (A,E, ◦) be the dual of the Bose–Mesner algebra of X . Then as a table
algebra, (A,E, ◦) is exactly isomorphic to the Bose–Mesner algebra of the wreath product
Knd

� · · · �Kn2 �Kn1 .

The next lemma describes the structures of Bose–Mesner algebras of wreath products
of one-class association schemes.

Lemma 4.2. (See [13, Theorem 2.2].) Let X = Knd
� · · · �Kn2 �Kn1 be the wreath product

of one-class association schemes Knd
. . . ,Kn2 ,Kn1 , where d, n1, n2, . . . , nd are positive

integers greater than or equal to 2. Let A0, A1, . . . , Ad be the adjacency matrices of X ,
and let k0, k1, . . . , kd be the valencies of X . Assume that k0 ≤ k1 ≤ · · · ≤ kd. Then X
has the following properties.

(i) The valencies are k1 = n1 − 1 and

ki = (k0 + k1 + · · · + ki−1)(ni − 1) = n1 · · ·ni−1(ni − 1), for i = 2, 3, ..., d.

(ii) AiAj = kiAj, 0 ≤ i < j ≤ d, and

(Ai)2 = kiA0 + kiA1 + · · · + kiAi−1 + ki(ni − 2)
ni − 1 Ai, 1 ≤ i ≤ d.
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Let X = (X, {Ri}0≤i≤d) be a commutative association scheme. Assume that its first
eigenmatrix P is of the form (3.4) such that s+t = d. Then by Theorem 1.8, Theorem 1.6,
and (3.3), all the rows of C11 are equal.

The next result was first proved by S.-Y. Song (cf. [9,10]). It is clear that Corol-
lary 4.3(i), (ii) follow directly from Lemmas 4.1 and 4.2, and Corollary 4.3(iii), (iv)
directly from Corollary 1.11, Lemma 4.1, and the remark in the above paragraph. That
is, this corollary can be easily obtained from the results proved in this paper without
calculations.

Corollary 4.3. Let X = Knd
� · · · �Kn2 �Kn1 be the wreath product of one-class association

schemes Knd
. . . ,Kn2 ,Kn1 , where d, n1, n2, . . . , nd are positive integers greater than or

equal to 2. Let k0, k1, . . . , kd be the valencies of X such that k0 ≤ k1 ≤ · · · ≤ kd. Let
E0, E1, . . . , Ed be the primitive idempotents of the Bose–Mesner algebra of X , and let
m0,m1, . . . ,md be the multiplicities of X . Assume that m0 ≤ m1 ≤ · · · ≤ md. Then the
following hold.

(i) The multiplicities are m1 = nd − 1 and

mi = (m0 +m1 + · · · +mi−1)(nd+1−i − 1) = nd · · ·nd+2−i(nd+1−i − 1), 2≤ i≤ d.

(ii) Ei ◦ Ej = 1
|X|miEj, 0 ≤ i < j ≤ d, and

Ei ◦ Ei = 1
|X|

(
miE0 + miE1 + · · · + miEi−1 + mi(nd+1−i − 2)

nd+1−i − 1 Ei

)
, 1 ≤ i ≤ d.

(iii) The first eigenmatrix of X is

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 k1 k2 k3 · · · kd−2 kd−1 kd

1 k1 k2 k3 · · · kd−2 kd−1 −
∑d−1

i=0 ki

1 k1 k2 k3 · · · kd−2 −
∑d−2

i=0 ki 0

1 k1 k2 k3 · · · −
∑d−3

i=0 ki 0 0
...

...
...

... .. .
...

...
...

1 k1 k2 −
∑2

i=0 ki · · · 0 0 0

1 k1 −
∑1

i=0 ki 0 · · · 0 0 0

1 −1 0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(iv) Replacing ki by mi in the first eigenmatrix P , 1 ≤ i ≤ d, we obtain the second
eigenmatrix Q of X .

(v) P = Q if and only if mi = ki, i = 0, 1, 2, ..., d, if and only if nd+1−i = ni, i =
1, 2, ..., d.
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Two association schemes X = (X, {Ri}0≤i≤d) and Y = (Y, {Sj}0≤j≤e) are said to be
isomorphic, if there is a bijection ϕ : X ∪ {Ri}0≤i≤d → Y ∪ {Sj}0≤j≤e such that

(i) ϕ(X) = Y and ϕ({Ri}0≤i≤d) = {Sj}0≤j≤e, and
(ii) for any x1, x2 ∈ X such that (x1, x2) ∈ Ri for some 0 ≤ i ≤ d, (ϕ(x1), ϕ(x2)) ∈

ϕ(Ri).

Let X = (X, {Ri}0≤i≤d) be a commutative association scheme, with adjacency matri-
ces A0, A1, ..., Ad and valencies k0, k1, ..., kd such that k0 ≤ k1 ≤ · · · ≤ kd. It is proved
in [16, Theorem 1.1] that X is isomorphic to the wreath product of one-class association
schemes if and only if AiAj = kiAj , for any 0 ≤ i < j ≤ d. Let E0, E1, ..., Ed be the
primitive idempotents of the Bose–Mesner algebra of X , and let m0,m1, ...,md be the
multiplicities of X such that m0 ≤ m1 ≤ · · · ≤ md. Then from Corollary 4.3 and [16,
Theorem 1.1], X is isomorphic to the wreath product of one-class association schemes
if and only if Ei ◦ Ej = 1

|X|miEj , for any 0 ≤ i < j ≤ d. Furthermore, we have the
following

Proposition 4.4. Let X = (X, {Ri}0≤i≤d) be a commutative association scheme. Then
the following are equivalent.

(i) X is isomorphic to the wreath product of one-class association schemes.
(ii) By permuting the rows and columns if necessary, the first eigenmatrix P of X is of

the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ 0
∗ ∗ ∗ ∗ · · · 0 0
...

...
...

... . ..
...

...
∗ ∗ ∗ 0 · · · 0 0
∗ ∗ 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.4)

(iii) By permuting the rows and columns if necessary, the second eigenmatrix Q of X is
of the form (4.4).

Proof. Since (ii) and (iii) are equivalent by [8, Theorem 3.5(i), p. 63], and (i) implies (ii)
by Corollary 4.3, we only need to prove that (ii) implies (i). Without loss of generality,
we may assume that the eigenmatrix P of X is of the form (4.4). Then for any s ∈
{1, 2, . . . , d − 1}, P has an s × t zero submatrix such that s + t = d. Thus, it follows
from the proof of Theorem 1.8 that {R0, R1, . . . , Rs} is a closed subset of X , for any
1 ≤ s ≤ d − 1. Hence, by [16, Theorem 1.1], X is isomorphic to the wreath product of
one-class association schemes, and (i) holds. �
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