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1. Introduction

Recall that a point-line geometry G = (P, L) consists of a set P of points, and a col-
lection L of subsets of P , each of size at least two, called lines. A point p ∈ P is incident
with a line L ∈ L if p is an element of L. Two points incident to the same line are 
collinear. We associate two graphs with every point-line geometry. The incidence graph
of G has as vertices all points and all lines of G, with edges connecting incident point-line 
pairs. The collinearity graph of G has as vertices all points of G, with edges connecting 
collinear pairs of points. It is easy to see that the incidence graph is connected if and 
only if the collinearity graph is connected; if so, then G is connected.

The diameter of a connected graph Γ is the maximal distance between vertices and 
its girth is the shortest length of a cycle.

Definition 1.1. For n ≥ 3, a generalized n-gon is a point-line geometry G satisfying the 
following properties:

(1) the diameter of the incidence graph Γ of G is n;
(2) the girth of Γ is 2n;
(3) G is regular: every point is incident with the same number t + 1 > 1 of lines and 

every line is incident with the same number s + 1 > 1 of points.

This concept was introduced and developed by Tits [13,14].
We are interested in finite generalized n-gons when both s and t are finite. The pair 

(s, t) is the order of G. The generalized n-gon G is thin if s = 1 = t. For every n there 
exists exactly one thin generalized n-gon, which can be described as the geometry of all 
vertices and edges of the usual n-gon.

By a famous theorem of Feit and Higman [10], a finite generalized n-gon with n ≥ 3
is either thin, or satisfies n ∈ {3, 4, 6, 8, 12}. Furthermore, if G is thick (that is, both 
s, t ≥ 2), then n = 12 is impossible. Thus the gonality n of a thick finite generalized 
n-gon is at most eight. This largest gonality, n = 8, is the only case where the smallest 
thick generalized n-gons are not known up to isomorphism. The smallest thick finite 
generalized quadrangles and hexagons are unique (see [7] and [12]).

It follows from [10] that the smallest order for which a thick finite generalized octagon 
can exist is (2, 4). A generalized octagon of order (2, 4) was constructed by Tits [15]
as part of an infinite series of generalized octagons related to the groups 2F4(q). The 
octagon of order (2, 4) is obtained from 2F4(2) by taking for points the maximal parabolic 
subgroups G1 for which G1/O2(G1) is a Frobenius group of order 20, and by taking for 
lines the maximal parabolics G2 of the other type, with incidence between G1 and G2
defined by O2(G1) ⊆ G2; more details are given in Example 1.3.

The uniqueness, or otherwise, of the generalized octagon of order (2, 4) remains an 
open and very difficult problem. In [8], De Bruyn proved that the example of Tits is 
the only one in which the unique generalized octagon of order (2, 1) embeds. In [3], it 
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Table 1
Defining relations for 2F4(2).

u4
1 = u2

2 = u4
3 = u2

4 = 1 u4
5 = u2

6 = u4
7 = u2

8 = 1 v4
1 = v2

2 = v4
3 = v2

4 = 1
v4
5 = v2

6 = v4
7 = v2

8 = 1 [u1, u2] = [u1, u5] = 1 [u2, u4] = [u2, u6] = 1
u3u1 = u1u2u3 u4u1 = u1u

2
3u4 u8u2 = u2u4u6u8

u6u1 = u1u
2
3u4u

2
5u6 u7u1 = u1u2u

3
3u5u7 u8u1 = u1u2u

2
3u4u

3
5u6u7u8

r1 = u1v
2
1u

−1
1 r8 = u8v8u

−1
8 (r1r8)8 = 1

r1u1r1 = v1 r1u2r1 = u8 r1u3r1 = u7

r1u4r1 = u6 r1u5r1 = u5 r1v2r1 = v8

r1v3r1 = v7 r1v4r1 = v6 r1v5r1 = v5

r8u1r8 = u7 r8u2r8 = u6 r8u3r8 = u5

r8u4r8 = u4 r8u8r8 = v8 r8v1r8 = v7

r8v2r8 = v6 r8v3r8 = v5 r8v4r8 = v4

is shown that it is the only one of order (2, 4) admitting a vertex-transitive group of 
automorphisms.

In this paper, we establish its uniqueness under another assumption. Suppose G =
(P, L) is a generalized octagon. Since the incidence graph Γ is by definition bipartite and 
the gonality of G is even, if two vertices of Γ are at the maximal distance, eight, then 
these have the same type: both are points or lines. Elements of G at maximal distance 
in Γ are opposite (cf. [17, p. 5]).

Theorem 1.2. Let G = (P, L) be a generalized octagon of order (2, 4). Assume that it 
admits a group Q of automorphisms of G such that, for some a ∈ P ,

(i) Q fixes a and stabilizes setwise every line on a;
(ii) Q is transitive on the set of points opposite to a.

Then G is the generalized octagon related to the Ree group 2F4(2).

Example 1.3. In Table 1, we summarize the defining relations, given in [15, p. 326], for 
2F4(2) on generators u1, . . . , u8, v1, . . . , v8, r1, and r8.

We denote this group by T . Let Q be its subgroup generated by u2, . . . , u8, let U be 
its subgroup generated by Q and u1, let G1 be its subgroup generated by U and r1, and 
let G2 be its subgroup generated by U and r8. Then Q = O2(G1), and the elements 
g = u−1

1 v1 and f = v1 generate a Frobenius group of order 20 that is a complement to 
Q in G1.

Since G1 and G2 are representatives of the two types of maximal parabolic subgroups 
of T and both contain Q, the construction mentioned above gives the known octagon of 
order (2, 4). Since G1 normalizes Q, the latter fixes a unique point a of the generalized 
octagon. It is easily verified that Q satisfies the conditions of Theorem 1.2. Observe that 
g cyclically permutes the five lines on a and f fixes a unique line on a and cyclically 
permutes the other four.

A motivation for the theorem was Kantor’s construction [11] of generalized 4-gons 
using a group similar to Q; we discuss this in Example 3.4.
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2. Preliminaries

All graphs in this paper are undirected, and their edges have distinct vertices. 
Throughout, G = (P, L) is a generalized octagon of order (2, 4), with incidence graph 
Γ and collinearity graph Δ. We mostly work with Δ, hence our first task is to restate 
what is known about G in terms of Δ. A k-clique of a graph is a set of k pairwise ad-
jacent vertices. Every line in L induces a 3-clique in Δ. A path of length k from a to b
is a sequence a = a0, a1, . . . , ak = b of vertices of Γ such that {ai−1, ai} is an edge for 
i = 1, . . . , k. The path is simple whenever ai−1 �= ai+1 for i = 1, . . . , k − 1. The distance
between two subsets of points of Δ is the minimum among all distances between a point 
from one and a point from the second.

The first condition defining a generalized n-gon implies that the diameter of Δ is 
n/2 = 4. In particular, points are opposite if and only if they are at distance 4 in Δ. 
The second condition implies that the geometric girth of Δ is n = 8; the geometric girth
is the shortest length of a cycle satisfying the extra condition that no three consecutive 
vertices lie in the same clique.

Lemma 2.1. For each point p and line L, there is a unique point in L closest to p in Γ . 
Dually, there exists a unique line containing p closest to L in Γ . Moreover, if two points 
are connected by a simple path of length four in Δ, then they are opposite.

Proof. Since Γ is bipartite and the gonality 8 is even, p and L cannot be opposite. In 
particular, in Γ they are connected by a unique shortest path, since the girth of Γ is 16. 
The unique point of L closest to p is the neighbour of L on this path and, symmetrically, 
the unique line on p closest to L is the neighbour of p.

If the two points were connected by a path of length at most three in Δ, then this 
path, together with the given path, would make a cycle of geometric length at most 7 
in Δ, a contradiction. The final statement follows. �
Corollary 2.2. Every two points, p and q, that are opposite are connected by exactly 
5 = t + 1 shortest paths in Δ, one through each line on p and, symmetrically, one 
through each line on q.

A dual statement also holds for lines that are opposite. We show that the Δ-distance 
between opposite lines is three.

Lemma 2.3. Suppose L and M are lines that are opposite. For each p ∈ L, the unique 
q ∈ M closest to p is at distance three from p in Δ. The map L → M sending every 
point of L to its closest point on M is a bijection from L onto M . In particular, L and 
M are connected by exactly 3 = s + 1 shortest paths, one through each point of L and, 
symmetrically, one through each point of M .
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Proof. Let p ∈ L. By Lemma 2.1, M contains a unique point q closest to p. Clearly, 
the distance d(p, q) in Δ between p and q is less than the diameter, hence d(p, q) ≤ 3. 
If d(p, q) ≤ 2, then in Γ the points p and q are at distance at most four, which implies 
that L and M are at distance at most six; a contradiction since L and M are opposite. 
Therefore d(p, q) = 3.

Symmetrically, L contains a unique point closest to q, so clearly that point is p. This 
establishes the bijection. The last claim is an easy consequence. �
3. Points opposite to a given point

Fix a ∈ P . Let Pa = {b ∈ P | d(a, b) = 4}, the set of points opposite to a. In this 
section we study the subgraph of Δ induced on this set.

Lemma 3.1. |Pa| = 210.

Proof. This follows from a standard argument for finite generalized n-gons, which can 
be found, for instance, in [17, Lemma 1.5.4]. �

Let Σ be the subgraph induced on Pa. We showed in the above proof that every line 
on b ∈ Pa has exactly one point in Δ3(a).

Lemma 3.2. The graph Σ has valency five. It contains no 3-clique and has girth at least 
eight.

Proof. Only the last claim requires comment. Since Σ contains no 3-clique, every cycle 
in Σ satisfies the condition that no three consecutive vertices on it lie on the same line 
of G. The geometric girth of Δ is eight, so the claim follows. �
Corollary 3.3. Each connected component of Σ has at least 170 vertices.

Proof. Picking a vertex b of Σ and setting Σk(b) to be the set of vertices of Σ that 
are at distance k from b (in Σ, which is not necessarily the same distance in Δ), we 
learn that |Σ1(b)| = 5, |Σ2(b)| = |Σ1(b)| · 4 = 20, |Σ3(b)| = |Σ2(b)| · 4 = 80, and finally, 
|Σ4(b)| ≥ |Σ3(b)| · 4/5 = 64. The last inequality uses that every vertex from Σ4(b) is 
adjacent to at most five vertices in Σ3(b). Thus the connected component of Σ containing 
b has at least 1 + 5 + 20 + 80 + 64 = 170 vertices. �
Example 3.4. We digress to show how the Tits generalized octagon of order (2, 4) can be 
obtained directly from the group Q of Example 1.3, by employing Kantor’s generalized 
4-gon construction. Consider the following subgroups of Q:

Q
(1)
j = 〈u8, u7, . . . , u9−j〉 for 1 ≤ j ≤ 6,
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and Q(i)
j for 2 ≤ i ≤ 5 defined by Q(k+1)

j = (Q(k)
j )g, where k ∈ {1, 2, 3, 4} and g is as in 

Example 1.3. These subgroups satisfy the following properties with n = 8, s = 2, and 
t = 4, where Q(i)

0 = 1 and Q(i)
n−1 = Q.

(O) For 1 ≤ i ≤ t + 1 and 1 ≤ j ≤ n − 1, Q(i)
j−1 is a subgroup of Q(i)

j of index t or s
depending on whether n − j is even or odd.

(C) For indices i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , 5} such that im �= im+1 for 1 ≤ m ≤ k− 1
and i1 �= ik and j1 + · · · + jk = n − 1,

1 /∈
(
Q

(i1)
j1

)# · · ·
(
Q

(ik)
jk

)#

where G# := G \ {1}. With this data Q = (Q(i)
j )i,j , we construct a graph Γ (Q) as 

follows. Its vertices are the t + 2 labels a and Li for i = 1, . . . , t + 1, and all right cosets 
of Q(i)

j in Q for 1 ≤ i ≤ t + 1 and 0 ≤ j ≤ n − 2. Its edges are the pairs {a, Li}; the 

pairs {Li, Q
(i)
n−2x}; and all pairs {Q(i)

j x, Q(i)
j+1y} with Q(i)

j x ⊂ Q
(i)
j+1y for 1 ≤ i ≤ t + 1, 

x, y ∈ Q, and 0 ≤ j ≤ n − 3.
Now every graph Γ (Q) for which Q satisfies (O) and (C) is the incidence graph of a 

generalized n-gon of order (s, t). In particular, the above collection Q of subgroups of Q
gives another construction of the known generalized 8-gon.

For n = 3, conditions (O) and (C) are easily seen to be equivalent to the existence of a 
translation plane structure on Q. For n = 4, the conditions translate to those formulated 
by Kantor in [11]. For n = 6, they have been used in [6].

4. Edge colours

Let Σ be the graph induced by Δ on the set of points Pa opposite to a fixed a ∈ P . 
We arbitrarily attach colours 1 to 5 to the five lines on a. Consider an edge {b, c} in Σ
and let L ∈ L be the line containing b and c. Lemma 2.1 shows that there is a unique 
line on a closest to L. We colour {b, c} with the colour of that line. Thus every edge in 
Σ is given a colour from 1 to 5. Corollary 2.2 implies that the five edges on every vertex 
of Σ exhibit all five colours. Hence no two edges incident to the same vertex can have 
the same colour.

Let G admit an automorphism group Q that fixes a, stabilizes every line on a, and is 
transitive on the set Pa of opposites to a. Clearly, Q acts on Σ. Since it stabilizes each 
of the five lines on a, it permutes the edges of Σ preserving each colour.

Lemma 4.1. The group Q acts regularly on Pa.

Proof. In view of assumption (ii) of Theorem 1.2, we need only show that Qb is trivial 
for b ∈ Pa. Since the five edges of Σ on b have pairwise different colours, Qb fixes all 
neighbours of b in Σ: that is, Qb = Qc whenever b and c are adjacent vertices of Σ. Thus 
Qb fixes pointwise the connected component Σ0 of Σ containing b.
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Since Qb fixes the five edges on b and since lines in Γ have three points, Qb fixes 
all points of Γ collinear with b, and the same applies to all vertices of Σ0. Picking an 
arbitrary n-path x0, x1, . . . , xn in Σ, we see that Qb fixes every point on this path and 
furthermore fixes every neighbour of x0 and of x1. Thus, the assumptions of [16, (3.7)]
are satisfied, and so Qb is trivial. �

This, together with Lemma 3.1, determines the order of Q.

Corollary 4.2. The group Q has order 210.

We next show that Σ (the subgraph induced on Pa) is a Cayley graph for Q. We fix 
b ∈ Pa as our initial vertex and let {b, ci} for 1 ≤ i ≤ 5 be the five edges on b where 
{b, ci} has the colour i. Let αi be the unique element of Q taking b to ci.

Lemma 4.3. Each αi is an involution.

Proof. The action of Q is colour-preserving and {b, ci} is the only edge on ci of colour i; 
hence αi stabilizes the edge {b, ci}, and so takes ci back to b. In particular, bα2

i = cαi
i = b. 

Hence α2
i ∈ Qb = 1. �

Let Cay(G, I) be the Cayley digraph of a group G with subset I. The vertices of this 
digraph are the elements of G and (x, y) is a directed edge whenever yx−1 ∈ I. Clearly, 
Cay(G, I) is an undirected graph if every element of I is an involution. In particular, in 
view of Lemma 4.3, Cay(Q, {α1, . . . , α5}) is a graph.

Lemma 4.4. The coloured graph Σ is isomorphic to Cay(Q, {α1, . . . , α5}). The map φ
assigning to each c ∈ Pa the unique element of Q taking b to c is an isomorphism.

Proof. Clearly, φ is a bijection between the vertex sets Pa and Q. Since both graphs have 
valency five, it remains to show that φ takes edges to edges. Consider an edge {d, e} in Σ. 
Let β = φ(d), that is, bβ = d. If i is the colour of {d, e}, then β takes the edge {b, ci}
to {d, e}, which means that cβi = e. But ci = bαi , so e = bαiβ , that is, φ(e) = αiβ. Thus 
φ(e)φ(d)−1 = αiββ

−1 = αi ∈ {α1, . . . , α5}, which proves that φ(d) and φ(e) are adjacent 
in Cay(Q, {α1, . . . , α5}). �

Lemmas 3.2 and 4.4 together imply the following.

Corollary 4.5. The Cayley graph Cay(Q, {α1, . . . , α5}) has girth at least eight. In partic-
ular, each product of at most seven αi in which any two consecutive elements are distinct 
represents a non-identity element of Q.

Let Q0 = 〈α1, . . . , α5〉. It is well known that Cay(G, I) is connected if and only 
if G = 〈I〉. Thus each connected component of Cay(Q, {α1, . . . , α5}) is isomorphic to 
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Cay(Q0, {α1, . . . , α5}). In particular, the size of each connected component of Σ is |Q0|, 
and the number of connected components of Σ is the index [Q : Q0]. Since Q is a 2-group, 
so is Q0. Corollary 3.3 implies the following.

Corollary 4.6. The order of Q0 is 28, 29, or 210. The graph Σ has 4, 2, or 1 connected 
components, respectively.

Example 4.7. We revisit Example 1.3, defining the following elements of T :

α0 = u5 α1 = u2 α2 = u2u
3
3u4u5u6u

2
7u8

α3 = u2u3u4u
2
5u6u

3
7u8 α4 = u2u

2
3u4u

3
5u6u7u8 α5 = u8

That α0, . . . , α5 generate Q is a consequence of the following:

u2 = α1 u3 = α0α5α3α5α4 u4 = α3α1α4α5α2 u5 = α0

u6 = α2α5α3α4α1 u7 = α0α4α2α4α3 u8 = α5

Let b be the image of G1 under v5; as the notation suggests, α1, . . . , α5 are the elements of 
Q moving b to a collinear point in Σ. The Cayley graph Σ has two connected components, 
which are interchanged by α0. This implies that Q0 has order 29.

Here is a defining set of relations for Q in terms of these generators. It enables us to 
study Q and Σ without recourse to T . We write [x, y] = x−1y−1xy for x, y ∈ Q.

α2
1 = α2

2 = · · · = α2
5 = 1,

α2
0 = α5α2α4α1α3,

αα0
1 = α3α1α4α1α2α5,

αα0
2 = α4α2α5α2α3α1,

αα0
3 = α1α3α5α3α2α4,

αα0
4 = α3α4α5α4α1α2,

αα0
5 = α2α5α3α5α1α4,

[αi, αj ]2 = 1 whenever i, j > 0,

[α4, α1] = α5α2α1α4α3,

[α2, α1] = α5α2α1α3α4.

5. Action on neighbours

In this section we examine the action of Q on the set Δ1(a) of points that are adjacent 
to a in Δ. Recall that a is on five lines of G, these are labelled by five distinct colours. By 
assumption, each of the lines is invariant under the action of Q. Therefore every element 
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of Q either fixes the ith line pointwise, or it fixes a and interchanges the remaining two 
points on the line. Thus the induced action of Q on Δ1(a) is a subgroup of the elementary 
abelian group of order 25.

Lemma 5.1. The group induced by Q0 on Δ1(a) is elementary abelian of order 24. The 
group induced by Q has order 24 or 25 and none of α1, . . . , α5 belongs to the Frattini 
subgroup of Q.

Proof. Fix i ∈ {1, . . . , 5} and recall that the element αi of Q0 takes b to its neighbour ci
in Σ. Let Mi be the line containing b and ci and let Lj be the line on a coloured j. Let d
be the point on Lj closest to b and let e be the third point on Mi (other than b and ci). 
If j = i, then there is a shortest path from b to a going through Mi and Li. Clearly this 
shortest path goes through e and d, which implies that the Δ-distance between d and e
is two. This in turn implies that the distance between d and ci is three; so d is the point 
on Li closest to ci. Since αi takes b to ci and stabilizes Li, it must fix d. Hence αi fixes 
Li pointwise.

Now assume j �= i. We claim that the point d of Lj closest to b cannot be closest to ci. 
Indeed, if it is, the distance from both b and ci to d is three. By Lemma 2.1, Mi contains 
a unique point closest to d. This means that closest to d is the third point e and that 
the distance from d to e is two. However, in this case we have a shortest path from a to 
b via d and e, which means that Mi should have the same colour as Lj, a contradiction. 
We proved that d is not closest to ci on Lj , which means that closest to d is the third 
point, say f . The element αi stabilizes Lj and takes b to ci. This yields that αi takes d
to f , that is, αi acting on Lj fixes a and switches the other two points.

To summarize, each αi fixes all three points of the line Li and switches two points in 
each of the other four lines on a. In the action of Q on Δ1(a), the elements αi generate an 
elementary abelian group of order 24, whose elements switch points in an even number 
of lines on a.

Since the Frattini subgroup of Q is the smallest normal subgroup Φ(Q) such that 
Q/Φ(Q) is an elementary abelian 2-group, none of α1, . . . , α5 belongs to Φ(Q). �

Note that any four of the involutions αi generate the group induced by Q0 on Δ1(a). 
In fact, in this action the product of all αi is the identity, and this is the only linear 
relation that the αi satisfy.

Corollary 5.2. The Frattini quotient of Q0 is elementary abelian of order 24 or 25. The 
order is 24 if and only if α1 · · ·α5 (or the product in any other order) belongs to the 
Frattini subgroup Φ(Q0).

Proof. By the above, the rank of Q0/Φ(Q0) is at least four. On the other hand, since 
Q0 is generated by five elements, the rank cannot be more than five. �

The structure of Σ reflects the different orders of Q0/Φ(Q0).
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Lemma 5.3. The graph Σ is bipartite if and only if |Q0/Φ(Q0)| = 25.

Proof. Clearly, Σ is bipartite if and only if every connected component is bipartite. 
Each connected component of Σ is isomorphic to Cay(Q0, {α1, . . . , α5}). Thus we can 
substitute Σ by this Cayley graph.

Let G be a group generated by a set of involutions I. It is well known that Cay(G, I)
is bipartite if and only if G has an index two subgroup H that is disjoint from I. Indeed, 
if the graph is bipartite, then H is the stabilizer of the (unique, since the graph is 
connected) partition. Conversely, if such a subgroup H exists, then the two cosets of H
are the parts of the partition.

If Q̄0 = Q0/Φ(Q0) has order 25, then the images ᾱi of the five involutions αi form a 
basis for Q̄0. We choose H as the full preimage in Q0 of the subgroup in Q̄0 consisting of 
all elements having an even number of nonzero coordinates with respect to the basis {ᾱi}. 
Thus, the Cayley graph is bipartite.

If Q̄0 has order 24, then it follows from Lemma 5.1 that Φ(Q0) is the kernel of the 
action of Q0 on Δ1(a). Note that every index 2 subgroup H in Q0 contains Φ(Q0). Since 
the product of all five αi (in any order) lies in Φ(Q0) (see Corollary 5.2), it also lies in H. 
But this implies that if four of the αi lie outside of H, then the fifth lies in H. Thus, no 
such H exists in Q0, so the Cayley graph is not bipartite. �
Example 5.4. Consider again the group Q and elements g and f from Examples 1.3, 3.4, 
and 4.7. In their conjugation action on Q, both g and f leave {α0, . . . , α5} invariant and 
act on the indices according to the permutations (1, 2, 3, 4, 5) and (1, 2, 4, 3), respectively. 
Observe that Φ(Q) = Φ(Q0) has order 32 and equals the commutator subgroups of both 
Q and Q0.

6. Apartments and factorizations

An apartment in a generalized n-gon is a 2n-cycle in the corresponding incidence 
graph Γ . In the collinearity graph Δ, it is a geometric n-cycle. Hence, in our context, an 
apartment is a geometric 8-cycle in Δ. Every such cycle is a union of two shortest paths 
connecting two opposite points. We choose a particular apartment C through the selected 
points a and b. It is the union of the two shortest paths between a and b passing through 
the lines on a carrying colours 1 and 5. We say that this apartment has colour {1, 5}. 
Clearly, for each pair of colours and each c ∈ Pa there is a unique apartment through a
and c coloured with that pair of colours. Note that every apartment on a is “coloured”, 
and Q permutes these apartments and preserves colour.

We name all components of C: let it pass from a to point a1 via line A1 (labelled with 
colour 1), from a1 to a2 via line A2, from a2 to a3 via A3, from a3 to b via A4 (hence 
the intersection of A4 with Pa is an edge of Σ of colour 1), from b to b1 via line B1 (its 
intersection with Pa has colour 5), from b1 to b2 via B2, from b2 to b3 via B3, and finally, 
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from b3 back to a via B4, which is the line on a marked with colour 5. This notation is 
Δ-style, because it distinguishes between points and lines.

It is convenient to also use a more symmetric, Γ -style notation. Let p1 = A1, p2 = a1, 
p3 = A2, p4 = a2, p5 = A3, p6 = a3 and p7 = A4. Symmetrically, let q1 = B1, q2 = b1, 
q3 = B2, q4 = b2, q5 = B3, q6 = b3 and q7 = B4. For i, j ∈ {1, . . . , 7}, define Uij to be 
the stabilizer in Q of both pi and qj , and set Ui = Uii.

For i ∈ {1, . . . , 7}, the opposite vertices pi and qi of C, whether points or lines, are 
opposite. By definition, Q fixes the base point a, so Ui fixes every vertex on the half of 
C which is the shortest path between pi and qi passing through a. Hence Ui resembles 
what for Moufang generalized polygons is a root subgroup [16]. In Proposition 6.1(i) we 
show that it has the same order as a root group. However, we cannot prove (directly, 
without use of our main result) that Ui is a root group as this would require that it fix 
all vertices of Γ adjacent to a non-end vertex of the root (that is, the shortest path from 
pi to qi through a).

We also use a Δ-style notation for Ui that distinguishes between points and lines. For 
i ∈ {1, . . . , 4}, let Si be the joint setwise stabilizer in Q of Ai and Bi. Then Si = U2i−1. 
Similarly, for i ∈ {1, 2, 3}, we let Ti be the stabilizer in Q of both ai and bi, so Ti = U2i.

Proposition 6.1. The groups Si (i = 1, 2, 3, 4) and Ti (i = 1, 2, 3) satisfy the following 
properties.

(i) Every Si has order 2, every Ti has order 4.
(ii) If i ≤ j, then Uij = UiUi+1 · · ·Uj. In particular, Q = U17 = S1T1S2T2S3T3S4.
(iii) Every contiguous subproduct in the factorization of (ii) is a subgroup of Q.
(iv) Each element of Q can be uniquely written as s1t1s2t2s3t3s4, where si ∈ Si and 

ti ∈ Ti.

Proof. We claim that the vertex-wise stabilizer in Q of every simple path of length at 
least nine in Γ is trivial if this path contains a. It suffices to consider the case where the 
path has length exactly nine. Such a path lies in a unique apartment in Γ , which in turn 
contains a unique point from Pa. Since the action of Q on Pa is regular, the stabilizer of 
the path is trivial, proving the claim.

Note that Uij stabilizes vertex-wise the path γ in Γ obtained by combining the shortest 
path from qj to a and the shortest path from a to pi. This combined path γ has length 
8 + i − j. Hence, if j < i then the claim implies that Uij = 1.

Suppose now that i ≤ j. Let δi = 4 if i is even (so pi and qi are points), and δi = 2
otherwise. We claim that |Uij | = δiδi+1 · · · δj . Let N denote the right-side product. Note 
that the path γ extends in N ways to a simple path of length nine in Γ , and hence 
γ is contained in exactly N apartments, say C1, . . . , CN . We claim that the action of 
Uij on the N apartments Ck is regular. Indeed, every Ck contains a unique point wk

from Pa. Since Uij ≤ Q, the stabilizer of wk in Uij is trivial, and hence also the stabilizer 
in Uij of Ck is trivial. Now pick two apartments, Ck and Ck′ . Note that both Ck and 
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Ck′ pass through p1 = A1 and q7 = B4. Hence Ck and Ck′ have colour {1, 5}. It follows 
that x ∈ Q taking wk to wk′ also takes Ck to Ck′ . This element fixes all vertices in the 
intersection of Ck and Ck′ . In particular, x fixes pi and qj and so x ∈ Uij , proving that 
Uij acts regularly on the N apartments Ck. This shows that |Uij | = N . Since Ui = Uii, 
it follows that |Ui| = δi, which proves (i).

Next consider Uij and Ui′j′ , where i ≤ i′, j ≤ j′, and i′ ≤ j + 1. It follows from 
the definition that Uij ∩ Ui′j′ = Ui′j . Both Uij and Ui′j′ are subgroups of Uij′ , so 
UijUi′j′ ⊆ Uij′ . On the other hand,

|UijUi′j′ | = |Uij | · |Ui′j′ |
|Uij ∩ Ui′j′ |

= |Uij | · |Ui′j′ |
|Ui′j |

= δi · · · δjδi′ · · · δj′
δi′ · · · δj

= δi · · · δj′ = |Uij′ |,

proving that UijUi′j′ = Uij′ . Applying this factorization consecutively, with i < j, we 
find Uij = Ui,j−1Ujj = . . . = UiiUi+1,i+1 · · ·Ujj = UiUi+1 · · ·Uj . In particular, Q =
U17 = U1U2 · · ·U7, which completes the proof of (ii) and (iii).

Since δ1δ2 · · · δ7 = 21+2+1+2+1+2+1 = 210, the number of products s1t1s2t2s3t3s4

coincides with |Q|, so (iv) follows. �
This factorization of Q has consequences for α1, . . . , α5 and Cay(Q, {α1, . . . , α5}).

Lemma 6.2.

(i) S1 = 〈α5〉 and S4 = 〈α1〉.
(ii) For each i ∈ {2, 3, 4} and x ∈ (U1 · · ·Ui)# ∪ (U8−i · · ·U7)#, the distance of x in 

Cay(Q, {α1, . . . , α5}) to 1 is at least 8 − i.

Proof. Observe α1 takes b to the other point c1 of the line A4 that lies in Pa, so α1

stabilizes A4. Since Q stabilizes B4, we deduce that α1 ∈ S4, proving that S4 = 〈α1〉. 
Symmetrically, S1 = 〈α5〉. This implies (i).

As for (ii), if x ∈ (U1 · · ·Ui)#, then x fixes the vertex qi of Γ . But qi has distance 
i to b in Γ , so bx has the same distance to qi. This implies that d(b, bx) is at most 2i
in Γ and so at most i in Δ. The path from b to bx via qi does not lie in Σ and i ≤ 4
and the geometric girth of Δ is eight, so the distance between b and bx in Σ is at least 
8 − i. The conclusion of the statement now follows from Lemma 4.4. The argument for 
x ∈ (U8−i · · ·U7)# is similar, as such an element fixes p8−i. �
Lemma 6.3. Suppose that |Q0/Φ(Q0)| = 25.

(i) If X is the set of all vertices of Cay(Q0, {α1, . . . , α5}) at distance at least six 
from the vertex 1, then X has a subset of size five with all mutual distances in 
Cay(Q0, {α1, . . . , α5}) at least two.
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(ii) Assume that |Q0| ≥ 29. If X is the set of all vertices of Cay(Q0, {α1, . . . , α5}) at 
distance at least seven from the vertex 1, then X has a subset of size five with all 
mutual distances in Cay(Q0, {α1, . . . , α5}) at least four.

Proof. Instead of Cay(Q0, {α1, . . . , α5}), we use the isomorphic graph Σ0, the con-
nected component of Σ containing b. Since |Q0/Φ(Q0)| = 25, this graph is bipartite 
by Lemma 5.3.

(i) Assume first that |Q0| = 28. Let X = Σ≥6(b), the set of vertices of Σ0 at distance 
at least six from b. We need to find a subset Z of X of size five so that all mutual 
distances in Z are at least two. Each colour i contributes one vertex zi to Z. We describe 
this for i = 1 and then invoke similarity for all other colours.

Let i = 1. If R = U57, then R is the setwise stabilizer in Q of the line A3. By Propo-
sition 6.1(ii), (iv), R = S3T3S4 has order 16. Corollary 4.6 implies that [Q : Q0] ≤ 4, so 
|R ∩ Q0| ≥ 4. Since S4 = 〈α1〉 ≤ Q0 by Lemma 6.2, R ∩ Q0 > S4 and so we can select 
x ∈ (R ∩ Q0) \ S4. Let e be the edge {b, bα1} = {b, c1} (this edge is the intersection 
of A4 with Pa) and let f = ex. Since x is not in S4, we deduce that Ax

4 �= A4. Hence 
the distance between every vertex on e and every vertex on f in Δ is at most three; 
furthermore, the shortest path goes via the lines A4, A3, and Ax

4 . Since the geometric 
girth of Δ is eight, the distance in Σ0 between e and f is at least five.

Since Σ0 is bipartite, f contains a vertex z1 at distance at least six from b. Hence 
z1 ∈ X. Similarly, construct zi for each colour i ≥ 2 (notice that Lemma 6.2 holds for 
other choices than 1 and 5 with the indices suitably permuted).

Consider two of these vertices, zi and zj ; since each is connected to b via a path in 
Δ of length three, there is a path of length six in Δ going from zi via b to zj and this 
simple path has no edges from Σ. Therefore the distance in Σ0 between zi and zj is at 
least two, proving (i).

(ii) Assume now that |Q0| = 210−d for d ∈ {0, 1}. Let X be the set of vertices of Σ0

at distance at least seven from b, and take R = U67, the stabilizer in Q of the point a3. 
Note that R = T3S4 and so |R| = 8. Thus |R∩Q0| ≥ 23−d ≥ 4, since [Q : Q0] = 2d. This 
again allows us to choose x ∈ (R ∩Q0) \ S4. As above, let e = {b, c1} and f = ex. Since 
Ax

4 �= A4 and a3 ∈ A4 is stabilized by x, so a3 ∈ A4 ∩ Ax
4 , the distance in Δ between 

every vertex on e and every vertex on f is two and, furthermore, the shortest path goes 
via a3. Thus the distance between e and f in Σ0 is at least six.

Since Σ0 is bipartite, we find a vertex z1 on f such that the distance in Σ0 between 
b and z1 is at least seven, so z1 ∈ X. By similarity, select zi for each colour i.

If i �= j, then Δ contains a simple path of length four going from zi via b to zj . 
Consequently, the distance in Δ between zi and zj is four, so, by Lemma 2.1, their 
mutual distance in Σ0 is at least four. �

Recall that the distance between a pair of edges is the minimum of the four distances 
between the end vertices of the edges.
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Lemma 6.4. Suppose that |Q0/Φ(Q0)| = 24 and |Q0| ≥ 29. Let X be the set of all vertices 
x of Cay(Q0, {α1, . . . , α5}) which are at distance at least six from the vertex 1, and such 
that x2 = 1. Let (X, E) be the subgraph of Cay(Q0, {α1, . . . , α5}) induced on X. Then E
has a subset S = {f1, . . . , f5}, where fi has colour i, satisfying the following properties.

(i) The distance between every pair of edges in S is at least four.
(ii) If fi = {xi, yi} then xi and yi commute with αi in Q0 and they do not commute 

with αj when j �= i.

Proof. Once again we work in Σ0 instead of Cay(Q0, {α1, . . . , α5}). We exploit the same 
idea as in Lemma 6.3, except this time Σ0 is not bipartite. We provide complete details 
only for f1 and select all other fi by similarity.

Let e = {b, c1}, where c1 = bα1 , and set R = U67 = T3S4. Since [Q : Q0] ≤ 2, |S4| = 2, 
and |R| = 8, we deduce that R ∩Q0 > S4. Next we select x ∈ (R ∩Q0) \ S4, but we 
must ensure that x2 = 1 and x commutes with α1 (recall 〈α1〉 = S4 from Lemma 6.2).

Since R = T3S4 and R ∩Q0 > S4, we can write R ∩Q0 = (T3 ∩Q0)S4. Since T3 ∩Q0

has index 2 in R ∩ Q0, it is a normal subgroup. In particular, T3 ∩ Q0 contains an 
involution that is central in R ∩ Q0. Choose this element as x. Clearly, x2 = 1 and x
commutes with α1. Also x ∈ T3 and so x /∈ S4 in view of Proposition 6.1(iv).

Let f1 = ex. Note that f1 = ex = {b, bα1}x = {bx, bα1x}. Hence, using the map φ of 
Lemma 4.4, we can take x1 and y1, as in (ii), to be x and α1x. Clearly, both x1 and y1

are involutions and commute with α1.
Manifestly, every shortest path between the vertices on e and f1 has length two and 

passes through a3. This implies that both vertices of f1 lie in the set of all vertices of Σ0

that are at distance at least six from b.
This also implies that x = x1 does not commute with αj for all j �= 1. We set z = bx. 

Assuming that xαj = αjx, we obtain that cxj = bαjx = bxαj = zαj . Since there is a path 
in Δ of length two from b and z via a3 and the colour 1 lines A4 and Ax

4 , we deduce 
that cj = bαj and zαj are connected by a path of length two in Δ involving two lines 
of colour 1. On the other hand, b and cj are connected by an edge of colour j in Σ0, 
so z = bx and zαj = cxj are also connected in Σ0 by an edge of colour j. This gives a 
geometric cycle in Δ of length six, which is a contradiction. Hence x1 and αj cannot 
commute. The argument for y = y1 is similar if we set z = by instead of bx. Hence y1

and αj do not commute.
We select fi similarly for i ≥ 2. It remains to check the distances between different fi. 

Taking vertices u on fi and v on fj , we observe as in Lemma 6.3 that there is a simple 
path of length four in Δ going from u to v via b. Therefore the distance in Σ0 between 
u and v is at least four. �
Example 6.5. The groups Ui, for 1 ≤ i ≤ 7, defined at the beginning of this section for 
the colours {1, 5}, coincide with 〈u9−i〉 defined in Example 1.3.
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To find easily computable necessary conditions for groups Q of order 210 to appear in 
the conclusion of Theorem 1.2, we study how factorizations of W = U26 = T1S2T2S3T3
can be extended to factorizations of Q.

Lemma 6.6. The group W has order 28 and is normal in Q, and Q/W ∼= 22.

Proof. The claim about the order of W follows from Proposition 6.1. Since W has index 2 
in each of S1W and WS4, it is normal in both and also in S1WS4 = Q. Recall from 
Lemma 6.2 that S1 = 〈α5〉 and S4 = 〈α1〉. Thus, Q/W has order 4 and is generated by 
two involutions, so it is elementary abelian. �
Definition 6.7. Let G be a 2-group with a collection of subgroups H1, . . . , Hk such that 
(1) G = H1H2 . . . Hk; (2) |G| = |H1| · |H2| · · · |Hk|; and (3) for all i ≤ j, the product 
HiHi+1 · · ·Hj is a subgroup of G. Then H1, . . . , Hk form a tight factorization of G.

The factorizations of Q in Proposition 6.1(ii) are tight.
Given two factorizations G = H1 · · ·Hk and G′ = H ′

1 · · ·H ′
k with the same number k

of factors, an isomorphism between the two factorizations is a group isomorphism ψ :
G → G′ such that ψ(Hi) = H ′

i for all i. Clearly, for all i ≤ j, the map ψ induces an 
isomorphism of Hi · · ·Hj onto H ′

i · · ·H ′
j .

Define the left automorphism group Aut−(G; H1, . . . , Hk) of the factorization to be 
the group of automorphisms of G normalizing each subproduct subgroup H1 · · ·Hi for 
i = 1, . . . , k. Similarly, the right automorphism group Aut+(G; H1, . . . , Hk) consists of all 
automorphisms of G normalizing each subproduct subgroup Hi · · ·Hk for i = 1, . . . , k. 
Let Aut(G; H1, . . . , Hk) be those automorphisms of G normalizing each Hi. Clearly, 
Aut(G; H1, . . . , Hk) = Aut−(G; H1, . . . , Hk) ∩ Aut+(G; H1, . . . , Hk).

Recall that W is normal in Q = S1WS4 with S1 = 〈α5〉 and S4 = 〈α1〉. Observe that 
U2j = U2 · · ·Uj has index 2 in U1j = U1U2 · · ·Uj . Hence α5 ∈ S1 = U1 normalizes each 
subgroup U2 · · ·Uj . Similarly, α1 ∈ S4 = U7 normalizes each subgroup Ui · · ·U6.

Lemma 6.8. Let L = Aut−(W ; T1, S2, T2, S3, T3) and R = Aut+(W ; T1, S2, T2, S3, T3). 
The involution α5 induces an automorphism of W contained in L and, symmetrically, 
α1 induces an automorphism of W contained in R.

We now investigate restrictions on the elements αi for i = 2, 3, 4.

Lemma 6.9. For each i ∈ {2, 3, 4} there exists wi ∈ W \ (T1S2T2 ∪ T2S3T3 ∪Φ(Q0)) such 
that αi = α5wiα1.

Proof. We first show αi ∈ α5Wα1. Since Q = S1WS4, each x ∈ Q is one (and only one) 
of the following types: x = w, α5w, wα1, or α5wα1 for some w ∈ W . Therefore it suffices 
to show that αi does not belong to WS4 ∪ S1W . By Lemma 5.1 each αi fixes all three 
points on the line containing a that is marked with colour i, and moves two points on 
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each of the other four lines on a. In particular, αi does not lie in WS4 = U27, which is 
the pointwise stabilizer in Q of the line A1 marked with colour 1. Similarly, αi is not 
contained in S1W = U16, which is the pointwise stabilizer of the line B4 of colour 5.

Since αi = α5wiα1 for some wi ∈ W , we deduce that wi = α5αiα1 is at distance 
three to 1 in Cay(Q0, {α1, . . . , α5}). By Lemma 6.2(ii) and Corollary 5.2, respectively, 
this implies wi /∈ T1S2T2 ∪ T2S3T3 and wi /∈ Φ(Q0). �
Lemma 6.10. The element r = (α5α1)2 = [α5, α1] of W satisfies the following:

(i) r = wiw
α5α1
i for i ∈ {2, 3, 4};

(ii) rα5 = rα1 = r−1;
(iii) r ∈ Φ(Q0) \ (T1S2 ∪ S3T3).

Proof. Recall that each αi has order 2. Since α2
i = (α5wiα1)2 = α5wiα1α5wiα1, we 

deduce that α5wiα1α5wiα1 = 1, so wiα1α5wiα1α5 = 1. Multiplying both sides on the 
right with r = (α5α1)2 and cancelling α1α5α5α1 establishes (i). Part (ii) follows from 
the definition of r. Part (iii) follows from Lemma 6.2(ii), Corollary 5.2, and the fact that 
r is at distance four to 1 in Cay(Q0, {α1, . . . , α5}). �
Lemma 6.11. Φ(Q) = Φ(W )[α5, W ][α1, W ].

Proof. Clearly, the right hand side is contained in Φ(Q), so we only need to establish the 
reverse inclusion. Note that X = Φ(W )[α5, W ][α1, W ] is normal in W and also invariant 
under α5 and α1, since it contains [α5, W ] and [α1, W ], respectively. In particular, X is 
normal in Q. Hence we just need to verify that Q̄ = Q/X is elementary abelian. Observe 
that α5 and α1 have order 2, and all nontrivial elements of W/X have order 2 since 
X ≥ Φ(W ). Hence it suffices to show that Q̄ is abelian. Clearly, W/X is abelian and 
also the images ᾱ5 and ᾱ1 of α5 and α1 modulo X centralize W/X. To show that ᾱ5

and ᾱ1 commute, we prove that r ∈ X. By Lemma 6.10, r = wiw
α5α1
i = w2

i [wi, α5α1]. 
Since each of ᾱ5 and ᾱ1 centralize W/X, the product ᾱ5ᾱ1 centralizes W/X. Therefore 
r̄ = w̄2

i [w̄i, ᾱ5ᾱ1] = w̄2
i = 1, since W/X is elementary abelian. �

Recall from Corollary 5.2 that Q0/Φ(Q0) is isomorphic to 24 or 25. Since Q/W ∼= 22

and Φ(Q) = Φ(W )[α5, W ][α1, W ] ≤ W , we obtain the following result when Σ has a 
single connected component.

Corollary 6.12. If Q0 has order 210, then W/Φ(W )[α5, W ][α1, W ] is isomorphic to 22

or 23.

This nontrivial condition on W cannot be verified without first knowing the automor-
phisms induced by α5 and α1. Hence we need a weaker form that can be verified directly 
from the factorization W = T1S2T2S3T3. The automorphisms of W induced by α5 and 
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α1 are in L and R, respectively. The following is a consequence of Corollary 6.12 and 
the fact that both α5 and α1 are involutions.

Corollary 6.13. If Q0 has order 210, then W/Φ(W )[L, W ][R, W ] is elementary abelian of 
rank at most 3.

Proof. The automorphisms induced by α5 and α1 lie in L and R, respectively, so 
Φ(W )[α5, W ][α1, W ] ≤ Φ(W )[L, W ][R, W ]. �
Lemma 6.14. The elements w2, w3, w4 satisfy the following properties:

(i) |wi| > 2;
(ii) wα5

i wi, w
α1
i wi lie outside T1S2 ∪ S3T3;

(iii) |w−1
i wj | > 2 if i �= j;

(iv) |Q0/Φ(Q0)| = 24 if and only if w2w3w4 ∈ Φ(Q0);
(v) w3 �= w4w2.

Proof. (i) The square of wi = α5αiα1 is at distance at most six to 1 in Cay(Q0,

{α1, . . . , α5}), which has girth at least eight, so |wi| ≥ 4.
(ii) wα5

i wi = αiα1αiα1 is at distance four to 1 in Cay(Q0, {α1, . . . , α5}), so does not 
belong to T1S2 ∪ S3T3 by Lemma 6.2.

Claim (iii) follows from the fact that w−1
i wj is conjugate to αiαj .

(iv) Corollary 5.2 implies that α5α2α3α4α1 ∈ Φ(Q0) if and only if |Q0/Φ(Q0)| = 24. 
The assertion follows from w2w

−1
3 w4 = α5α2α3α4α1 and w2

3 ∈ Φ(Q0).
(v) This is immediate from the previous computation as α5α2α3α4α1 = 1 would 

contradict the girth of Σ being at least eight. �
7. The groups of order dividing 29

Corollary 4.6 states that Q0 = 〈α1, . . . , α5〉 is a group of order 2n for 8 ≤ n ≤ 10. 
We now prove Theorem 1.2 when the order of Q0 divides 29 (or, equivalently, Σ is 
disconnected).

Definition 7.1. (G, I) is an involution pair if I is a set of involutions which generates a 
2-group G, and Cay(G, I) has girth at least eight.

Observe that if (G, I) is an involution pair, then, for every subset S of I, the pair 
(〈S〉, S) is an involution pair.

Corollary 4.5 establishes that each of Cay(Q, {α1, . . . , α5}) and Cay(Q0, {α1, . . . , α5})
has girth at least eight. Corollary 5.2 implies that |Q0/Φ(Q0)| = 2k where k ∈ {4, 5}. 
Lemma 5.1 and the observation that the Frattini subgroup of any subgroup (here, Φ(Q0)) 
is contained in the Frattini subgroup of its overgroup (here, Φ(Q)) show that none of 
the αi is in Φ(Q0).
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Table 2
Number of groups of order 28 and 29 satisfying Theorem 7.2(i).

Order |G/Φ(G)| Number
28 24 20 241
28 25 28 653
29 24 359 611
29 25 7 111 878

We use these properties to obtain a list of candidate groups for Q0.

Theorem 7.2. Consider a group G of order 28 or 29 that satisfies the following:

(i) |G/Φ(G)| is 24 or 25;
(ii) G has a generating set I of size 5 such that (G, I) is an involution pair.

There are 14 such groups of order 28, all satisfying |G/Φ(G)| = 25. There are 421 and 
32 555 such groups of order 29, satisfying |G/Φ(G)| = 24 and 25, respectively.

Theorem 7.2 was proved by investigating the relevant groups of order dividing 29; 
these are in the SmallGroups library [2], distributed with GAP [1] and Magma [4].

We can easily determine those groups G which satisfy condition (i) of Theorem 7.2. 
The number of such groups is recorded in Table 2.

The algorithm used to determine if G satisfies (ii) is the following.

(1) Determine the set J of involutions of G which lie outside Φ(G).
(2) Construct a list M3 of all G-automorphism class representatives of 3-element subsets 

of J .
(3) Construct the list L3 of all X in M3 such that (〈X〉, X) is an involution pair.
(4) For each X ∈ L3, choose α4 ∈ J to obtain Y = X ∪ {α4} of size 4; decide if (〈S〉, S)

is an involution pair for every S ⊆ Y of cardinality 3 or 4. Record those Y which 
satisfy this condition to obtain L4.

(5) For each X ∈ L4, choose α5 ∈ J to obtain Y = X ∪ {α5} of size 5; decide if (〈S〉, S)
is an involution pair for every S ⊂ Y of cardinality 3 or 4. Record those Y which 
satisfy this condition to obtain L5.

(6) For each I ∈ L5, decide if Cay(G, I) has girth at least eight. If not, then G does not 
satisfy condition (ii) of Theorem 7.2, and we remove I from the list L5.

(7) Return L5.

We now use additional properties of Q0 to eliminate all but one of the groups of 
Theorem 7.2.

Proposition 7.3. Among the groups G appearing in Theorem 7.2,

(i) none of the 14 groups of order 28 and none of the 32 555 groups of order 29 with 
|G/Φ(G)| = 25 satisfies Lemma 6.3;
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(ii) precisely two of the 421 groups of order 29 with |G/Φ(G)| = 24 satisfy condition (i) 
of Lemma 6.4: namely, 512#233 888 and 512#384 204;

(iii) 512#233 888 does not satisfy condition (ii) of Lemma 6.4.

Hence Q0 is uniquely determined as 512#384 204; of course, this is the group of 
Example 4.7.

Proposition 7.4. Up to isomorphism, there is a unique generalized octagon of order (2, 4)
satisfying the condition of Theorem 1.2 in which Q0 is as in Example 4.7.

Proof. Assume that G is a generalized octagon as in the hypothesis. Straightforward 
calculations show that, up to automorphism classes of Q0, there is, up to ordering of the 
indices, a unique 5-tuple α1, . . . , α5 such that the Cayley graph Cay(Q0, {α1, . . . , α5})
satisfies the conclusions of Lemma 6.4. Consequently, we may assume, without loss of 
generality, that α1, . . . , α5 are as given in Example 4.7. This means that Σ, the graph 
induced by Δ on the set of points Pa opposite to a, being the disjoint union of two copies 
of Cay(Q0, {α1, . . . , α5}), is the same as in the known octagon of order (2, 4). Let Σ0 be 
the component of Σ containing the vertex b used to define the involutions αi. Let Σ1 be 
the other connected component of Σ.

Let P0 be the vertex set of Σ0. We first determine the Δ-distance on P0. In view of 
transitivity of Q0 on P0, it suffices to find the distances from b to all other points c. 
Clearly, if the distance between b and c in Σ is at most 4, then their distance in Δ is the 
same. As Σ0 has diameter 6, we may assume that c is at Σ-distance 5 or 6 to b. Now c
has Δ-distance 2, 3, or 4 to b, and the shortest path from c to b in Δ goes via Δ3(a).

Suppose that the Δ-distance between b and c is 2. This means that b and c are both 
collinear to a point d ∈ Δ3(a). Let {b, b′, d} be the line through b and d and let {c, c′, d}
be the line through c and d. Since the geometric girth of Δ is 8, the edges {b, b′} and 
{c, c′} of Σ must be at distance 6. For every edge of Σ there are exactly four vertices at 
distance 6 from that edge, and on these vertices there is only one edge. It follows that 
there are exactly 2 · 5 = 10 points in P0 that are at Δ-distance 2 from b, but not at 
distance 2 in Σ.

The above observation also implies that every d ∈ Δ3(a) lies on at most two lines 
meeting Σ0. Since this equally applies to Σ1 and d lies on a total of four lines meeting Σ, 
we conclude that d lies on exactly two lines meeting Σ0 and exactly two lines meeting Σ1. 
This allows us to claim that there is a bijection between Δ3(a) and the collection of all 
4-sets in P0 formed by two edges at distance 6. We call such 4-sets double edges. The 
stabilizer in Q0 of a double edge D has size 4 and acts regularly on D. We have shown 
that the points of P0 at distance 2 from b can be identified uniquely.

This also gives us some information about points at distance 3 to b, namely, all 
points c such that either there exists a point b′ adjacent to b that is at distance 2 from c, 
or symmetrically, there exists a point c′ adjacent to c that is at distance 2 from b. Clearly, 
all such points c can be identified. If c is not of this kind and at distance 3 to b in Δ, 
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then the unique shortest path from b to c goes via adjacent points d and d′ of Δ3(a). 
Let D and D′ be the double edges on b and c, corresponding to d and d′, respectively.

We claim that the stabilizer in Q0 of D ∪D′ coincides with the stabilizer of the edge 
{d, d′} and has order 8. In view of the regularity of Q0 on P0, it suffices to show that 
every member g of Q0 mapping b to an element of D ∪D′ preserves all of D ∪D′. The 
third point, say e, on the line containing d and d′ is collinear with a unique point, say f , 
in Δ1(a). This implies that all four edges of D ∪ D′ in Σ0 have the same colour. In 
particular, g maps the edge {b, b′} on b in D to an edge of the same colour, which forces 
the third point on the line containing bg and (b′)g to be d or d′. Since all points of D∪D′

have Δ-distance 3 to f and 4 to a, the element g fixes f , and hence also e. This implies 
that g stabilizes {d, d′}, and, because of the bijective correspondence mentioned above, 
also D ∪D′. This settles the claim. Observe that the distance between D and D′ in Σ
is at least 5.

The claim allows us to identify all pairs (b, c) at distance 3. Namely, the set of all 
points from P0 at Σ-distance ≥ 5 to D consists of exactly 12 points and it is a disjoint 
union of three double edges D′. Only one of these sets D′ satisfies the property that the 
stabilizer in Q0 of D∪D′ is of size 8 (it is of size 4 for the other two double edges). Hence 
we can uniquely identify all points in P0 at Δ-distance 3 from b. As the only remaining 
Δ-distance is 4, the Δ-distance between any pair of points from P0 is uniquely determined 
(and, hence, as in Example 4.7).

To show that knowledge of Σ0 and the Δ-distance on P0 determine Δ uniquely, we 
change our language. The graph Δ, being distance regular, can be realized by unit vectors 
in a Euclidean space (an eigenspace of its adjacency matrix) in such a way that all mutual 
inner products only depend on the distances of the corresponding vertices in Δ. See [5, 
Proposition 4.4.1] for details. In particular, Δ can be realized by 1755 unit vectors ex
(x ∈ P ) in a 78-dimensional Euclidean space in such a way that (ex, ey) = (−1

2 )k, where 
k is the Δ-distance between x and y.

We know all distances on the set P0. This gives us the Gram matrix of size 512 × 512. 
The rank of this matrix is exactly 78. Hence we have found the unique (up to an isometry) 
realization of P0 by unit vectors. If {x, y, z} is a line of Δ then, by an easy calculation, 
the vector ex + ey + ez has length zero. Hence ex + ey + ez = 0. Since every d ∈ Δ3(a)
lies on a line {d, c, c′}, where c and c′ are adjacent vertices of Σ0, we can now construct 
all vectors ed as −ec − ec′ for all edges {c, c′} of Σ0. The above inner product formula 
provides the complete information about the Δ-distances among the vertices of Δ3(a). 
Taking all adjacent vertices in Δ3(a) and repeating the above argument, we construct 
all vectors ed for d ∈ Δ2(a), also in Δ1(a), and finally Δ0(a) = {a}.

Hence we have uniquely recovered the system of unit vectors representing the points 
in P \ P1, where P1 = Pa \ P0 is the vertex set of Σ1. It remains to recover P1.

To this end, we define the purple graph on Δ3(a), whose edges are all pairs {d, d′}
such that (ed, ed′) = 1

4 and the distance between d and d′ in the subgraph of Δ induced 
on P \ P1 is not 2. Clearly, {d, d′} is an edge of the purple graph if and only if there is 
a (unique) point x in P1 collinear with both d and d′.
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Table 3
Number of groups of order dividing 28 arising in 
involution pairs.

Order #I Number
26 3 11
27 3 33
27 4 20
28 3 124
28 4 539

Since the geometric girth of Δ is 8, the three edges in every 3-clique of the purple 
graph must correspond to the same x ∈ P1. Every x ∈ P1 is collinear with exactly five 
points from Δ3(a). It follows that the maximal cliques in the purple graph have size 5
and they bijectively correspond to the points from P1. Furthermore, different maximal 
cliques meet trivially or in one point.

Now that we can identify points of P1 with maximal cliques of the purple graph, we 
can decide if two points of P1 are adjacent: two points x and x′ of P1 are adjacent if and 
only if the corresponding maximal cliques X and X ′ of the purple graph meet in one 
point d (the third point on the line through x and x′) and additionally all Δ-distances 
between points in X \{d} and points in X ′ \{d} are 3. Since these distances can be read 
off from the known vectors representing points in Δ3(a), this shows that the collinearity 
graph Δ is unique. �

This establishes Theorem 1.2 in the case where |Q0| ≤ 29. We finish this section 
with some remarks on the computations. These were performed using Magma. The
SmallGroups library provides a function to identify a group of order dividing 28. 
As a preprocessing step, we applied (an obvious variation of) the algorithm used in 
Theorem 7.2 to determine all involution pairs (G, I) where |G| divides 256 and 3 ≤
|I| ≤ 4. We record the number of such groups in Table 3. Hence we could readily decide in 
steps (4)–(5) whether or not (〈S〉, S) is an involution pair. The automorphism group of a 
2-group was computed using the algorithm of [9]. The memory resources used to establish 
the result are small, but the time taken is significant: an estimate is approximately 10 
CPU years running Magma 2.15. Most of this was used to prove Theorem 7.2.

8. The groups of order 210

We now finish the proof of Theorem 1.2 by showing that the assumption |Q0| = 210

leads to a contradiction.
There are 49 487 365 422 groups of order 210 (see [2]), too many for the methods of 

Section 7 to be feasible. Our approach is based on Proposition 6.1: namely, Q = Q0

admits a tight factorization Q = S1T1S2T2S3T3S4 with the property that every fac-
tor Si has order two and every factor Ti has order four. We call such a factorization 
a 2 424 242-factorization, and similarly for subproducts. However, the number of tight 
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factorizations of Q is also prohibitively large. Therefore we focus instead on the ‘middle’ 
of Q, the tight 42 424-factorization of W = U26 = T1S2T2S3T3 as in Section 6.

Using a standard extension algorithm, all tight 42 424-factorizations of groups of order 
256 were constructed using GAP. These factorizations were also determined directly by 
processing each relevant group of order 256 in Magma. This led to the following result.

Lemma 8.1. Exactly 3090 of the 56 092 groups of order 256 have at least one tight 
42 424-factorization.

The 3090 groups have 1 948 859 tight 42 424-factorizations, representing all possibil-
ities for W = T1S2T2S3T3. For each factorization, an algorithm described below was 
applied in GAP that produces a list of all 5-tuples corresponding to a generating set 
α1, . . . , α5 of an overgroup Q of W and to an extension of T1S2T2S3T3 to a tight 
2 424 242-factorization S1T1S2T2S3T3S4 satisfying the necessary conditions of Sections 4
and 6 for Q to be as in the hypotheses of Theorem 1.2.

Let Fk be the set of all words of length at most k in the symbols α1, . . . , α5 without 
repetitions. A member of Fk is 1-balanced if the sum of the occurrences of αj over all 
j �= 5 is even, and 5-balanced if the sum of the occurrences of αj over all j �= 1 is even. 
Observe that 1-balanced or 5-balanced words can be evaluated to elements of W by 
substituting αj by α5wjα1 for j = 2, 3, 4 and interpreting α1 and α5 as automorphisms 
of W . (Note that Lemma 6.10 is needed here.) For a nonempty list S of elements from 
W of length at most 3, we define Ek(S) to be the set of all evaluations of words in Fk

as above with wj (for j ∈ {2, 3, 4}) the (j− 1)-st element of S. In our description below, 
we call the check that E7(S) does not contain the identity the girth test on S. This is 
justified by Lemma 3.2 or Corollary 4.5. If a triple w2, w3, w4 passes this test, then the 
girth of Cay(Q, {α1, . . . , α5}) is at least eight because the products of αi of length at 
most seven that are not tested have an odd number of α1 or of α5 and so are non-trivial.

Similarly, we use Lemma 6.2 to check (using computations in W only) that, for a 
5-tuple (a5, a1, w2, w3, w4), where ai is the automorphism of W induced by αi, the dis-
tance conditions in Cay(G, {α1, . . . , α5}) on elements of (U1 · · ·Ui)#∪(U8−i · · ·U7)#, for 
i ∈ {2, 3, 4}, are satisfied. This check is called the distance test.

Let W , a group of order 28, have tight factorization T1S2T2S3T3. The algorithm to 
process the factorization is the following.

(1) Compute L = Aut−(W ; T1, S2, T2, S3, T3), R = Aut+(W ; T1, S2, T2, S3, T3) and ini-
tialize L as the empty list.

(2) Compute F = Φ(W ) and the subgroup X = F [L, W ][R, W ] of W . If |W/X| > 23, 
then return L (in view of Corollary 6.13).

(3) Compute the sets W of all elements of W \ (T1S2T2 ∪T2S3T3 ∪F ) of order at least 4 
and R = X \ (T1S2 ∪ S3T3). If |W| < 3, then return L (in view of Lemmas 6.9
and 6.14). If R = ∅, then return L (in view of Lemma 6.10(iii)).
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(4) Compute the list CL of conjugacy classes of elements x of order at most two in L
such that |W/〈F, [W, x]〉| ≥ 4, and, similarly, CR with R instead of L. If CL = ∅ or 
CR = ∅ then return L (in view of Corollary 6.12).

(5) Compute A = L ∩R and compile a list X5 of A-class representatives in the union of 
all conjugacy classes in CL.

(6) Compute the union X1 of all conjugacy classes in CR.
(7) For each automorphism a5 ∈ X5:

i. Compute R5 = {r ∈ R | ra5 = r−1} and W5 = {w ∈ W \ F [W, a5] | wa5w /∈
T1S2 ∪ S3T3}. If R5 = ∅ or |W5| < 3, then continue with the next a5 (in view of 
Lemmas 6.10, 6.11, and 6.14).

ii. For each a1 ∈ X1:
(a) Compute Y = F [W, a5][W, a1]. If |W/Y | > 23, then continue with the next a1

(in view of Corollary 6.12).
(b) Compute R1 = {r ∈ R5 ∩ Y | ra1 = r−1} and W1 = {w ∈ W5 \ Y | wa1w /∈

T1S2 ∪S3T3}. If R1 = ∅ or |W1| < 3, then continue with the next a1 (in view 
of Lemmas 6.10, 6.11, and 6.14).

(c) Replace R1 by its subset of all r such that conjugation by r on W coincides 
with (a5a1)2. If R1 is empty, then continue with the next a1 (in view of 
Lemma 6.10).

(d) Compute the set W2 of all members w of W1 such that wwa5a1 ∈ R1 and the 
girth test on S = {w} is passed. If |W2| < 3, then continue with the next a1
(in view of Lemma 6.14).

(e) For each w2 ∈ W2:
I. Compute r = w2w

a5a1
2 and the set W3 of all w ∈ W2 \ w2Y such that 

wwa5a1 = r, |w−1w2| > 2, and the girth test on S = {w2, w} is passed. 
If |W3| < 2 or r /∈ R1, then continue with the next w2 (in view of Corol-
lary 4.5 and Lemma 6.14).

II. For each w3 ∈ W3:
-i- Compute the set W4 of all w ∈ W3 \ w3Y such that |w−1w3| > 2, 

and the girth test on S = {w, w2, w3} is passed; if |W/Y | = 8, then 
also require w /∈ w2w3Y .

-ii- If W4 is empty, then continue with the next w3 (in view of Corol-
lary 4.5 or Lemma 6.14).

-iii- For each w4 ∈ W4, if (a5, a1, w2, w3, w4) passes the distance test, add 
it to the list L.

Return L.

The list L produced by applying the above algorithm to each tight factorization is 
empty.

Theorem 8.2. None of the 3090 groups W of order 256 of Lemma 8.1 has a tight 
42 424-factorization W = T1S2T2S3T3 that extends to a group Q, generated by invo-
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lutions α1, . . . , α5, with a tight 2 424 242-factorization Q = S1T1S2T2S3T3S4 for which 
the conclusions of Lemmas 4.3, 6.2, 6.9, 6.10, 6.11, 6.14 and Corollaries 4.5, 5.2, 6.12,
6.13 with Q0 = Q are satisfied.

Proof. If α1, . . . , α5 were as stated in the assumptions, then (a5, a1, w2, w3, w4), where ai
(for i = 1, 5) is the automorphism induced on W by conjugation by αi and wj = α5αjα1
(for j = 2, 3, 4), would appear in the output L of the algorithm, contradicting that L is 
the empty list. �

This result implies Theorem 1.2 in case Q0 = Q. Since the case Q0 < Q was resolved 
in Section 7, this completes the proof of Theorem 1.2.

We finish with some remarks on the computations. The steps in our algorithm are 
chosen so as to filter out cases as early as possible. In our GAP implementation, we per-
formed all group operations in W (represented as a permutation group) without having 
to build Q; this was critical to the speed of the computations. The above interpretation 
of balanced words in αi as elements of W is part of this effort. The number of tight 
factorizations for a group of order 256 varied from 1 to 60 322. The most expensive cal-
culations were those for 256#6823, 256#27 519, and 256#27 633, with 4456, 4101, and 
27 125 tight factorizations respectively. Again, the memory resources required to estab-
lish the result are small, but the time taken is significant: an estimate is approximately 
15 CPU years running GAP 4.6.5.
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