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Let G be a graph and let I := I(G) be its edge ideal. In 
this paper, we provide an upper bound of n from which 
depthR/I(G)n is stationary, and compute this limit explicitly. 
This bound is always achieved if G has no cycles of length 
4 and every its connected component is either a tree or a 
unicyclic graph.
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Introduction

Let R = K[x1, . . . , xr] be a polynomial ring over a field K and I be a homogeneous 
ideal in R. Brodmann [2] showed that depthR/In is a constant for sufficiently large n. 
Moreover

lim
n→∞

depthR/In � dimR− �(I),
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where �(I) is the analytic spread of I. It was shown in [6, Proposition 3.3] that this 
is an equality when the associated graded ring of I is Cohen–Macaulay. We call the 
smallest number n0 such that depthR/In = depthR/In0 for all n � n0, the index of 
depth stability of I, and denote this number by dstab(I). It is of natural interest to 
find a bound for dstab(I). As until now we only know effective bounds of dstab(I) for 
few special classes of ideals I, such as complete intersection ideals (see [5]), square-free 
Veronese ideals (see [8]), polymatroidal ideals (see [10]). In this paper we will study this 
problem for edge ideals.

From now on, every graph G is assumed to be simple (i.e., a finite, undirected, loopless 
and without multiple edges) without isolated vertices on the vertex set V (G) = [r] :=
{1, . . . , r} and the edge set E(G) unless otherwise indicated. We associate to G the 
quadratic squarefree monomial ideal

I(G) = (xixj | {i, j} ∈ E(G)) ⊆ R = K[x1, . . . , xr]

which is called the edge ideal of G.
If I is a polymatroidal ideal in R, Herzog and Qureshi proved that dstab(I) < dimR

and they asked whether dstab(I) < dimR for all Stanley–Reisner ideals I in R (see 
[10]). For a graph G, if every its connected component is nonbipartite, then we can 
see that dstab(I(G)) < dimR from [4]. In general, there is no an absolute bound of 
dstab(I(G)) even in the case G is a tree (see [20]). In this paper we will establish a 
bound of dstab(I(G)) for any graph G. In particular, dstab(I(G)) < dimR.

The first main result of the paper shows that the limit of the sequence depthR/I(G)n
is the number s of connected bipartite components of G and depthR/I(G)n immediately 
becomes constant once it reaches the value s. Moreover, dstab(I(G)) can be obtained 
via its connected components.

Theorem 4.4. Let G be a graph with p connected components G1, . . . , Gp. Let s be the 
number of connected bipartite components of G. Then

(1) min{depthR/I(G)n | n � 1} = s.
(2) dstab(I(G)) = min{n � 1 | depthR/I(G)n = s}.
(3) dstab(I(G)) =

∑p
i=1 dstab(I(Gi)) − p + 1.

The second one estimates an upper bound for dstab(I(G)). Before stating our result, 
we recall some terminologies from graph theory. In a graph G, a leaf is a vertex of degree 
one and a leaf edge is an edge incident with a leaf. A connected graph is called a tree if 
it contains no cycles, and it is called a unicyclic graph if it contains exactly one cycle. 
We use the symbols υ(G), ε(G) and ε0(G) to denote the number of vertices, edges and 
leaf edges of G, respectively.

Theorem 4.6. Let G be a graph. Let G1, . . . , Gs be all connected bipartite components of 
G and let Gs+1, . . . , Gs+t be all connected nonbipartite components of G. Let 2ki be the 
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maximum length of cycles of Gi (ki := 1 if Gi is a tree) for all i = 1, . . . , s; and let 
2ki − 1 be the maximum length of odd cycles of Gi for every i = s + 1, . . . , s + t. Then

dstab(I(G)) � υ(G) − ε0(G) −
s+t∑
i=1

ki + 1.

It is interesting that this bound is always achieved if G has no cycles of length 4 and 
every its connected component is either a tree or a unicyclic graph (see Theorem 5.1).

Our approach is based on a generalized Hochster formula for computing local cohomol-
ogy modules of arbitrary monomial ideals formulated by Takayama [24]. The efficiency 
of this formula was shown in recent papers (see [7,12,17–19]). Using this formula and an 
explicit description of it for symbolic powers of Stanley–Reisner ideals given in [17], we 
are able to study the stability of depths of powers of edge ideals.

The paper is organized as follows. In Section 1, we give some useful formulas on 
dstab(I(G)) for the case when all components of G are either nonbipartite or bipartite. 
We also recall the generalized Hochster formula to compute local cohomological modules 
of monomial ideals formulated by Takayama. In Section 2 and Section 3 we set up an 
upper bound of the index of depth stability for connected graphs which are either nonbi-
partite or bipartite, respectively. The core of the paper is Section 4. There we compute 
the limit of the sequence depthR/I(G)n. Then combining with results in Sections 2 and 
3 on the index of depth stability of connected graphs we obtain a bound of dstab(I(G))
for all any graph G. In the last section, we compute the index of depth stability of trees 
and unicyclic graphs.

1. Preliminary

We recall some standard notation and terminology from graph theory here. Let G be 
a graph. The ends of an edge of G are said to be incident with the edge, and vice versa. 
Two vertices which are incident with a common edge are adjacent, and two distinct 
adjacent vertices are neighbors. The set of neighbors of a vertex v in G is denoted by 
NG(v) and the degree of a vertex v in G, denoted by degG(v), is the number of neighbors
of v in G. If there is no ambiguity in the context, we write deg v instead of degG(v). 
The graph G is bipartite if its vertex set can be partitioned into two subsets X and Y
so that every edge has one end in X and one end in Y ; such a partition (X, Y ) is called 
a bipartition of G. It is well-known that G is bipartite if and only if G contains no odd 
cycle (see [1, Theorem 4.7]).

Let I be a homogeneous ideal in a polynomial ring R = K[x1, . . . , xr] over the field K. 
As introduced in [9] we define the index of depth stability of I to be the number

dstab(I) := min{n0 � 1 | depthS/In = depthS/In0 for all n � n0}.

In this paper we will establish a bound of dstab(I(G)) for any graph G. First we have 
some information about dstab(I(G)) when every component of G is nonbipartite.
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Lemma 1.1. Let G be a graph with connected components G1, . . . , Gt. If all these compo-
nents are nonbipartite, then

(1) dstab(I(G)) = min{n � 1 | depthR/I(G)n = 0};
(2) dstab(I(G)) =

∑t
i=1 dstab(I(Gi)) − t + 1.

Proof. (1) Let mi := (xj | j ∈ V (Gi)) and Ri := K[xj | j ∈ V (Gi)], i.e., mi is the 
maximal homogeneous ideal of Ri, for i = 1, . . . , t. Let m := (xj | j ∈ V (G)) be the 
maximal homogeneous ideal of R, so that m = m1 + · · · + mt.

By [4, Corollary 3.4] we have mi ∈ Ass(Ri/I(Gi)ni) for some integer ni � 1. Let 
n0 :=

∑t
i=1(ni − 1) + 1. By [4, Corollary 2.2] we have m ∈ Ass(R/I(G)n) for all n � n0. 

On the other hand, the sequence {Ass(R/I(G)n)}n�1 is increasing by [15, Theorem 
2.15] and note that depthR/I(G)n = 0 if and only if m ∈ Ass(R/I(G)n), this implies 
dstab(I(G)) = min{n � 1 | depthR/I(G)n = 0}.

(2) By Part 1 we also have dstab(I(Gi)) = min{n � 1 | mi ∈ Ass(R/I(Gi)n)} for each 
component Gi. On the other hand, by [4, Corollary 2.2] we have m ∈ Ass(R/I(G)n) if 
and only if we can write n =

∑t
i=1(ni − 1) + 1 where the ni are positive integers such 

that mi ∈ Ass(Ri/I(Gi)ni). Thus the statement follows. �
Next, we consider bipartite graphs. Note that all connected components of such graphs 

are bipartite as well. Bipartite graphs have a nice algebraic characterization.

Lemma 1.2. (See [22].) A graph G is bipartite if and only if I(G)n = I(G)(n) for all 
n � 1.

Using this characterization we obtain.

Lemma 1.3. Let G be a bipartite graph with s connected components. Then

(1) min{depthR/I(G)n | n � 1} = s, and
(2) dstab(I(G)) = min{n � 1 | depthR/I(G)n = s}.

Proof. Since G is bipartite, by Lemma 1.2 we have I(G) is normally torsion-free, and so 
by [13] the Rees ring R[I(G)] of I(G) is Cohen–Macaulay. Then by [14] the associated 
graded ring of I(G) is Cohen–Macaulay as well. Hence, by [6, Proposition 3.3] we have

(1) min{depthR/I(G)n | n � 1} = r − �(I(G)), and
(2) dstab(I(G)) = min{n � 1 | depthR/I(G)n = r − �(I(G))}.

On the other hand, r − �(I(G)) = s (see [25, Page 50]). Thus the lemma follows. �
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In the general case, our main tool to study dstab(I(G)) is a generalized version of a 
Hochster’s formula (see [23, Theorem 4.1 in Chapter II]) to compute local cohomology 
modules of monomial ideals given in [24].

Let m := (x1, . . . , xr) be the maximal homogeneous ideal of R and I a monomial ideal 
in R. Since R/I is an Nr-graded algebra, Hi

m(R/I) is an Zr-graded module over R/I. 
For every degree α ∈ Z

r we denote by Hi
m(R/I)α the α-component of Hi

m(R/I).
Let Δ(I) denote the simplicial complex corresponding to the Stanley–Reisner ideal √
I. For every α = (α1, . . . , αr) ∈ Z

r we set Gα := {i | αi < 0} and we denote by 
Δα(I) the simplicial complex of all sets of the form F \ Gα, where F is a face of Δ(I)
containing Gα such that for every minimal generator xβ of I there exists an i /∈ F such 
that αi < βi. To represent Δα(I) in a more compact way, for every subset F of [r] let 
RF := R[x−1

i | i ∈ F ∪ Gα] and IF := IRF . This means that the ideal IF of RF is 
generated by all monomials of I by setting xi = 1 for all i ∈ F ∪ Gα. Then xα ∈ RF

and by [7, Lemma 1.1] we have

Δα(I) = {F ⊆ [r] \Gα | xα /∈ IF }. (1)

Lemma 1.4. (See [24, Theorem 1].) dimK Hi
m(R/I)α = dimK H̃i−|Gα|−1(Δα(I); K).

Let F(Δ) denote the set of facets of Δ. If F(Δ) = {F1, . . . , Fm}, we write Δ =
〈F1, . . . , Fm〉. The Stanley–Reisner ideal of Δ can be written as (see [16, Theorem 1.7]):

IΔ =
⋂

F∈F(Δ)

PF ,

where PF is the prime ideal of R generated by variables xi with i /∈ F . For every integer 
n � 1, the n-th symbolic power of IΔ is the monomial ideal

I
(n)
Δ =

⋂
F∈F(Δ)

Pn
F .

Note that Δ(I(n)
Δ ) = Δ. In [17, Lemma 1.3] there was given an useful formula for com-

puting Δα(I(n)
Δ ). We apply it to edge ideals.

An independent set in a graph G is a set of vertices no two of which are adjacent 
to each other. An independent set S in G is maximal if the addition to S of any other 
vertex in the graph destroys the independence. Let Δ(G) be the set of independent sets 
of G. Then Δ(G) is a simplicial complex and this complex is the so-called independence 
complex of G; and facets of Δ(G) are just maximal independent sets of G. It is easy to 
see that I(G) = IΔ(G).

Now we can compute Δα(I(G)n) for bipartite graphs G.
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Lemma 1.5. Let G be a bipartite graph. Then, for all α ∈ N
r and n � 1, we have

Δα(I(G)n) =
〈
F ∈ F(Δ(G)) |

∑
i/∈F

αi � n− 1
〉
.

Proof. Let Δ := Δ(G). Then, IΔ = I(G). By Lemma 1.2, we have I(G)n = I(G)(n). 
Therefore, Δα(I(G)n) = Δα(I(n)

Δ ). The lemma now follows from [17, Lemma 1.3]. �
We conclude this section with some remarks about operations on monomial ideals. Let 

A := K[x1, . . . , xs], B := K[y1, . . . , yt] and R := K[x1, . . . , xs, y1, . . . , yt] be polynomial 
rings where {x1, . . . , xs} and {y1, . . . , yt} are two disjoint sets of variables. Then for 
monomial ideals I, I1, I2 of R we have

I ∩ (I1 + I2) = I ∩ I1 + I ∩ I2. (2)

Let I1, I2 be monomial ideals in A and let J1, J2 be monomial ideals in B. For simplicity, 
we denote IsR by Is and JsR by Js for s = 1, 2, then by [11, Lemma 1.1] we have

I1J1 ∩ I2J2 = (I1 ∩ I2)(J1 ∩ J2). (3)

Lemma 1.6. Let I be a proper monomial ideal of A and J a proper monomial ideal of B. 
Then, for all n � 1 we have

depthR/(I + J)n � min{depthA/Im | 1 � m � n}.

Proof. Since the case I = 0 or J = 0 is obvious, so we may assume that I and J are 
nonzero ideals. For each i = 0, . . . , n, we put:

Wi := IiJn−i + · · · + InJ0 ⊆ R,

where I0 = J0 = R. Since W0 = (I+J)n, in order to prove the lemma it suffices to show 
that

depthR/Wi � min{depthA/Ij | max{i, 1} � j � n} for all i = 0, . . . , n. (4)

Indeed, if i = n, then depthR/Wn = depthR/In = depthA/In + t � depthA/In. Next 
assume that the claim holds for i + 1 with 0 � i < n. By Equations (2) and (3) we have 
IiJn−i ∩Wi+1 = Ii+1Jn−i. Since Wi = IiJn−i + Wi+1, we have an exact sequence

0 −→ R/Ii+1Jn−i −→ R/IiJn−i ⊕R/Wi+1 −→ R/Wi −→ 0.

By Depth Lemma (see, e.g., [3, Proposition 1.2.9]), we have

depthR/Wi � min{depthR/Ii+1Jn−i − 1, depthR/IiJn−i, depthR/Wi+1}.
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On the other hand, by [11, Lemma 2.2] we have

depthR/Ii+1Jn−i − 1 = depthA/Ii+1 + depthB/Jn−i � depthA/Ii+1.

Together with the induction hypothesis we then get

depthR/Wi � min{depthR/IiJn−i, depthA/Ij | j = i + 1, . . . , n}.

If i � 1, by [11, Lemma 2.2] we have

depthR/IiJn−i = depthA/Ii + depthB/Jn−i + 1 � depthA/Ii,

which yields the claim.
If i = 0, then depthR/W0 � min{depthR/Jn, depthA/Ij | j = 1, . . . , n}. Note that 

depthR/Jn = s + depthB/Jn � s � depthA/I, hence the claim also holds. The proof 
now is complete. �
2. Depths of powers of edge ideals of connected nonbipartite graphs

Note that for a graph G we always assume that V (G) = [r]; R = K[x1, . . . , xr] is a 
polynomial ring over fields K and m = (x1, . . . , mr) is the maximal homogeneous ideal 
of R. In this section we always assume that G is a connected nonbipartite graph.

By Lemma 1.1 we have dstab(I(G)) = min{n � 1 | m ∈ AssR/I(G)n}. Based on [4], 
we will determine explicitly when m ∈ AssR/I(G)n for a unicylic graph G.

Recall that a vertex cover (or a cover) of G is a subset S of V (G) such that every 
edge of G has at least one endpoint in S. A cover is minimal if none of its proper subsets 
is itself a cover. It is well-known that P = (xi1 , . . . , xit) is a minimal prime of the edge 
ideal I(G) if and only if {i1, . . . , it} is a minimal cover of G. For a subset U of V (G), 
the neighbor set of U is the set

N(U) := {v ∈ V (G) | v is adjacent to some vertex in U}.

We now describe the process that builds AssR/I(G)n for a unicylic graph G. Let C
be a cycle of G of length 2k − 1. Let Rk be the set of vertices of C, Bk := N(Rk) \ Rk

and a monomial

dk :=
∏
i∈Rk

xi.

We now build recursively sets Rn, Bn and a monomial dn for n � k. Suppose that 
i ∈ Rs and j ∈ Rs ∪ Bs for some s � k such that {i, j} is an edge of G. Now if 
j ∈ Rs, then let Rs+1 := Rs and Bs+1 := Bs. If j ∈ Bs, then let Rs+1 := Rs ∪ {j} and 
Bs+1 := (Bs ∪N(j)) \Rs+1. In either case, let ds+1 := ds(xixj).
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Now for such a couple (Rn, Bn) with n � k, we take V to be any minimal subset of 
V (G) such that Rn∪Bn∪V is a cover of G. Then, (Rn, Bn, V ) := (xi | i ∈ Rn∪Bn∪V )
is an associated prime of R/I(G)n by [4, Theorem 3.3]. Let Pn be the set of such all 
prime ideals. Then, by [4, Theorem 5.6] we have

AssR/I(G)n = Min(R/I(G)) ∪ Pn. (5)

For unicyclic graphs, we have the following observation.

Remark 2.1. Assume that G is a unicyclic graph with a cycle C such that G �= C. For 
any v ∈ V (G) \ V (C), there is a unique simple path of the form: v0, v1 . . . , vd, where 
v0 ∈ V (C), v1, . . . , vd /∈ V (C) and vd = v. We say that this path connects C and v. 
Moreover,

(1) dG(v, C) = d.
(2) This simple path can extend to a simple path connecting C to a leaf, i.e., there are 

vertices u1, . . . , ut such that us is a leaf and v0, v1 . . . , vd, u1, . . . , ut is a simple path.
(3) If dG(v, C) is maximal, i.e., dG(v, C) � dG(u, C) for any u ∈ V (G), then v is a leaf. 

Assume further that d � 2, then NG(vd−1) contains only one non-leaf vd−2.

We now can determine dstab(I(G)) with unicyclic nonbipartite graphs G.

Lemma 2.2. Let G be a unicyclic nonbipartite graph. If the length of the unique cycle is 
2k − 1, then dstab(I(G)) = υ(G) − ε0(G) − k + 1.

Proof. By [4, Corollaries 3.4 and 4.3] we have

m ∈ AssR/I(G)n for all n � υ(G) − ε0(G) − k + 1.

Therefore,

depthR/I(G)n = 0 for all n � υ(G) − ε0(G) − k + 1,

so that dstab(I(G)) � υ(G) − ε0(G) − k + 1.
We next prove the converse inequality. It suffices to show that if m ∈ AssR/I(G)n, 

then n � υ(G) − ε0(G) − k + 1.
By Equation (5) we deduce that m ∈ Pn. Thus, m = (Rn, Bn, V ) where V is a 

minimal subset of V (G) such that Rn ∪ Bn ∪ V is a vertex cover of G. In particular, 
V (G) = Rn ∪Bn ∪ V .

Claim 1. V = ∅. Indeed, if V contains no leaves of G, then every leaf of G is in either 
Rn or Bn, and so Rn ∪Bn = V (G) by Remark 2.1. This forces V = ∅.
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Suppose V contains a leaf, say i. Let j be the unique neighbor of i in G. Then, 
j ∈ V (G) = Rn ∪ Bn ∪ V . Therefore, Rn ∪ Bn ∪ (V \ {i}) is also a vertex cover of G. 
This contradicts the minimality of V . Hence, V = ∅, as claimed.

Claim 2. |Bn| � ε0(G). Indeed, assume on the contrary that |Bn| > |ε0(G)|, so that Bn

contains a non-leaf of G, say i. Let p be a simple path connecting C and a leaf that passes 
through i. Let j be a vertex of p after i. Then, by Remark 2.1 and the construction of Rn

and Bn we deduce that j /∈ Rn ∪ Bn, so j /∈ V (G) by Claim 1, a contradiction. Hence, 
|Bn| � ε0(G)|, as claimed.

We now prove the lemma. Since |Rk| = 2k − 1 and |Rn| � |Rk| + (n − k), together 
with Claim 2 we obtain υ(G) = |Rn| + |Bn| � |Rk| +(n −k) +ε0(G) = n +k−1 +ε0(G), 
so n � υ(G) − ε0(G) − k + 1, as required. �
Lemma 2.3. Let G be a unicyclic nonbipartite graph. Assume that the unique odd cycle 
of G is of length 2k − 1. Let n := υ(G) − ε0(G) − k + 1. Then, there is a monomial f of 
R such that deg f = 2n − 1 and fxi ∈ I(G)n for all i = 1, . . . , r.

Proof. By Lemma 2.2 and Equation (5) we have m ∈ Pn. Thus, m = (Rn, Bn, V ) where 
V is a minimal subset of V (G) such that Rn∪Bn∪V is a vertex cover of G. In particular, 
V (G) = Rn∪Bn∪V . By the same way as in the proof of Claim 1 in Lemma 2.2 we have 
V = ∅. Hence, Rn ∪Bn = {1, . . . , r}.

Let f := dn. Together with [4, Lemma 3.2] we imply that deg(f) = 2n − 1 and 
fxi ∈ I(G)n for all i = 1, . . . , r, as required. �

Let G be a connected nonbipartite graph and let 2l − 1 be the minimum length of 
odd cycles of G. Then dstab(G) � υ(G) − ε0(G) − l + 1 by [4, Corollaries 3.4 and 4.3]. 
The following result improves this bound a little bit.

Proposition 2.4. Let G be a connected nonbipartite graph. Let 2k − 1 be the maximum 
length of odd cycles of G. Then, dstab(I(G)) � υ(G) − ε0(G) − k + 1.

Proof. Let C be an odd cycle of G of length 2k − 1. If C ′ is another cycle of G, then 
C ′ has an edge e not lying on the cycle C. Delete this edge from G, thereby obtaining 
a connected subgraph G′ of G with V (G′) = V (G) and C is a cycle of G′. This process 
continues until we obtain a connected subgraph H of G such that V (G) = V (H) and H
has only one cycle, that is C. Let n := υ(H) − ε0(H) − k + 1. By Lemma 2.3, there is 
a monomial f ∈ R such that deg f = 2n − 1 and xif ∈ I(H)n for all i = 1, . . . , r. Since 
I(H) ⊆ I(G), we have

xif ∈ I(G)n for all i = 1, . . . , r. (6)
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As I(G) is generated by quadratic monomials and deg f = 2n −1, so f /∈ I(G)n. Together 
with Equation (6) one has I(G)n : f = m. Hence, depthR/I(G)n = 0, which implies 
dstab(I(G)) � n by Lemma 1.1. Since υ(G) = υ(H) and ε0(G) � ε0(H),

dstab(I(G)) � n � υ(G) − ε0(G) − k + 1,

as required. �
3. Depths of powers of edge ideals of connected bipartite graphs

Let G be a biparite graph with bipartition (X, Y ). Clearly, X and Y are then facets 
of Δ(G). Assume further that G is connected. By Lemma 1.3, one has dstab(I(G)) is the 
smallest integer n such that depthR/I(G)n = 1. For such graphs we can find dstab(I(G))
via integer linear programming.

Lemma 3.1. Let G be a connected bipartite graph with bipartition (X, Y ) and n a positive 
integer. Then, depthR/I(G)n = 1 if and only if Δα(I(G)n) = 〈X, Y 〉 for some α =
(α1, . . . , αr) ∈ N

r. Moreover, if n = dstab(I(G)), then such α must satisfy∑
i/∈X

αi =
∑
i/∈Y

αi = n− 1.

Proof. Since G is bipartite, by Lemma 1.2 one has I(G)n = I(G)(n). Hence,

depthR/I(G)n = depthR/I(G)(n) � 1,

and hence depthR/I(G)n = 1 if and only if H1
m(R/I(G)n) �= 0. By [17, Corollary 

1.2] this is equivalent to the condition Δα(I(G)n) being disconnected for some α =
(α1, . . . , αr) ∈ N

r.
Therefore, in order to prove the lemma it suffices to show that if Δα(I(G)n) is discon-

nected, then Δα(I(G)n) = 〈X, Y 〉. Indeed, since Δα(I(G)n) is disconnected, there are 
two facets F and H of it such that F ∩H = ∅. Hence, (V (G) \F ) ∪ (V (G) \H) = V (G). 
Together with the fact that X ∩ Y = ∅ and X ∪ Y = V (G) we get∑

i/∈X

αi +
∑
i/∈Y

αi =
∑

i∈V (G)

αi �
∑
i/∈F

αi +
∑
i/∈H

αi.

Since F and H are members of F(Δα(I(G)n)), by Lemma 1.5 we have∑
i/∈F

αi � n− 1, and
∑
i/∈H

αi � n− 1.

Therefore, ∑
αi +

∑
αi � 2(n− 1),
i/∈X i/∈Y
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which yields ∑
i/∈X

αi � n− 1 or
∑
i/∈Y

αi � n− 1.

Thus we may assume that ∑
i/∈X

αi � n− 1,

and thus X ∈ Δα(I(G)n) by Lemma 1.5. As Δα(I(G)n) is disconnected, there is a facet 
L of Δα(I(G)n) such that X∩L = ∅. We then have L ⊆ V (G) \X = Y . The maximality 
of L forces L = Y , hence Y ∈ Δα(I(G)n). If Δα(I(G)n) has another facet, say T , that 
is different from X and Y , then neither X nor Y contains T , and then T meets both X
and Y . This is impossible since Δα(I(G)n) is disconnected. Hence, Δα(I(G)n) = 〈X, Y 〉, 
as claimed.

Finally, assume that n = dstab(I(G)). Then, by Lemma 1.3, n is the smallest positive 
integer such that depthR/I(G)n = 1.

Assume that 
∑

i/∈X αi < n − 1 and 
∑

i/∈Y αi < n − 1. Then, n − 1 � 1 and∑
i/∈X

αi � (n− 1) − 1 and
∑
i/∈Y

αi � (n− 1) − 1.

If F is a facet of Δ(G) that is different from X and Y , then F /∈ F(Δα(I(G))), 
and then 

∑
i/∈F αi � n > n − 1 according to Lemma 1.5. From these equations and 

Lemma 1.5, we get Δα(I(G)n−1) = 〈X, Y 〉. In particular, Δα(I(G)n−1) is disconnected, 
so depthR/I(G)n−1 = 1. This contradicts to the minimality of n. Thus, we may assume 
that 

∑
i/∈Y αi = n − 1.

Assume now that 
∑

i/∈X αi < n − 1. Since∑
i∈X

αi =
∑
i/∈Y

αi = n− 1 � 1,

αi � 1 for some i ∈ X. We may assume that i = 1. Let β = (α1 − 1, α2, . . . , αr), 
so that β ∈ N

r as α1 � 1. By the same way as in the previous paragraph we get 
Δβ(I(G)n−1) = 〈X, Y 〉, which yields depthR/I(G)n−1 = 1. This also contradicts to the 
minimality of n. Hence, ∑

i/∈X

αi =
∑
i/∈Y

αi = n− 1,

as required. �
We now give an explicit solution of the equation Δα(I(G)n) = 〈X, Y 〉. This solution 

turns out to be optimal for studying dstab(I(G)).
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Definition 3.2. Let G be a graph. We define:

(1) For each i ∈ V (G), denote μG(i) to be the number of non-leaf edges of G that are 
incident with i,

(2) μ(G) := (μG(1), . . . , μG(r)) ∈ N
r.

Lemma 3.3. Let G be a connected bipartite graph with bipartition (X, Y ). Let α := μ(G)
and n := ε(G) − ε0(G) + 1. Then,

Δα(I(G)n) = 〈X,Y 〉, and
∑
i/∈X

αi =
∑
i/∈Y

αi = ε(G) − ε0(G).

Proof. Clearly, X and Y are facets of Δ(G). If υ(G) = 2, i.e., G is exactly an edge 
{1, 2}, then n = 1 and α = (0, 0). We may assume that X = {1} and Y = {2}. Then, 
Δα(I(G)n) = Δ(I(G)) = Δ(G) = 〈{1}, {2}〉, so the lemma holds for this case.

Assume that υ(G) � 3. Let S := {i ∈ X | deg i = 1} and T := {j ∈ Y | deg j = 1}, 
so that

|S| + |T | = ε0(G). (7)

From [1, Theorem 1.1 and Exercise 1.1.9] we have

∑
i∈X

deg i =
∑
j∈Y

deg j = ε(G). (8)

Note that the unique neighbor of each leaf of G in X is a non-leaf of G in Y . Together 
with Formulas (7)–(8), this fact gives

∑
i∈X

μG(i) =
∑
i∈X

deg i− |S| − |T | = ε(G) − ε0(G) = n− 1.

Similarly,

∑
j∈Y

μG(j) =
∑
j∈Y

deg j − |S| − |T | = ε(G) − ε0(G) = n− 1.

Hence, X, Y ∈ F(Δα(I(G)n)) by Lemma 1.5. So in order to prove the lemma it remains 
to prove that Δα(I(G)n) = 〈X, Y 〉, or equivalently, if F ∈ F(Δ(G)) \ {X, Y } then 
F /∈ F (Δα(I(G)n)).

Indeed, by the maximality of F , we can partition F into F = U ∪ V , where U and V
are nonempty proper subsets of X and Y , respectively, such that every vertex in X \ U
(resp. in Y \ V ) is adjacent to at least one vertex in V (resp. in U), and no vertex in U
is adjacent to a vertex in V . Then, we have
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∑
i∈X\U

μG(i) =
∑

i∈X\U
deg i− |S ∩ (X \ U)| − |T ∩ V |,

∑
j∈Y \V

μG(j) =
∑

j∈Y \V
deg j − |T ∩ (Y \ V )| − |S ∩ U |,

and ∑
j∈Y \V

deg j =
∑
i∈U

deg i +
∑

j∈Y \V
|NG(j) ∩ (X \ U)|.

Combining these Equations with Formulas (7)–(8) we obtain∑
u/∈F

μG(u) =
∑

i∈X\U
μG(i) +

∑
j∈Y \V

μG(j)

=
∑

i∈X\U
deg i− |S ∩ (X \ U)| − |T ∩ V | +

∑
j∈Y \V

deg j − |T ∩ (Y \ V )| − |S ∩ U |

=
∑

i∈X\U
deg i +

∑
j∈Y \V

deg j − (|S ∩ U | + |S ∩ (X \ U)| + |T ∩ V | + |T ∩ (Y \ V )|)

=
∑

i∈X\U
deg i +

∑
j∈Y \V

deg j − (|S| + |T |)

=
∑

i∈X\U
deg i +

∑
i∈U

deg i +
∑

j∈Y \V
|NG(j) ∩ (X \ U)| − ε0(G)

=
∑
i∈X

deg i− ε0(G) +
∑

j∈Y \V
|NG(j) ∩ (X \ U)|

= ε(G) − ε0(G) +
∑

j∈Y \V
|NG(j) ∩ (X \ U)|,

or equivalently, ∑
u/∈F

μG(u) = ε(G) − ε0(G) + |P | = n− 1 + |P |,

where P = {(a, b) | a ∈ X \ U, b ∈ Y \ V and ab ∈ E(G)}. Therefore, by Lemma 1.5 we 
have F /∈ Δα(I(G)n) whenever |P | � 1, i.e., P �= ∅.

In order to prove P �= ∅, let � := min{dG(i, j) | i ∈ U and j ∈ V }. Then, � is finite 
because G is connected. Let a ∈ U and b ∈ V such that there is a path of length �
connects a and b. Suppose

a = a1, b1, a2, b2, . . . , as, bs = b

is such a path, where a1, . . . , as ∈ X and b1, . . . , bs ∈ Y . Then, b1 ∈ Y \ V because 
a1 = a ∈ U . Now if a2 ∈ U , then we would have the path a2, b2, . . . , as, bs = b that 
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connects a2 ∈ U and b ∈ V of length � −2. This contradicts to the minimality of �. Thus, 
a2 ∈ X \ U . This implies (a2, b1) ∈ P , so P �= ∅, as required. �

Let G be a graph and C be a cycle of G. For any vertex v of G, we define the distance 
from v to C to be:

dG(v, C) = {dG(v, u) | u ∈ V (C)}.

Proposition 3.4. Let G be a connected bipartite graph and let 2k be the maximum length 
of cycle of G (k := 1 if G is a tree). Then, dstab(I(G)) � υ(G) − ε0(G) − k + 1.

Proof. Let (X, Y ) be a bipartition of G.
If G is a tree, then ε(G) = υ(G) − 1 by [1, Theorem 4.3]. Let α := μ(G) and n :=

ε(G) − ε0(G) + 1. Then, Δα(I(G)n) = 〈X, Y 〉 by Lemma 3.3. Hence, by Lemma 3.1, we 
have

dstab(I(G)) � n = ε(G) − ε0(G) + 1 = υ(G) − ε0(G),

and the proposition follows.
Assume that G has a cycle, say C2k, of length 2k where k � 2. If C is another 

cycle of G, then C has an edge e not lying in the cycle C2k. Delete this edge from G, 
thereby obtaining a connected subgraph G′ of G with V (G′) = V (G) and C2k is a cycle 
of G′. This process continues until we obtain a connected subgraph H of G such that 
V (G) = V (H) and H has only one cycle, that is C2k. Note that H is also a bipartite 
graph with bipartition (X, Y ). Assume that the cycle C2k is:

1, 2, . . . , 2k − 1, 2k, 1.

Let n := υ(H) − ε0(H) − k + 1 and define α = (α1, . . . , αr) ∈ N
r by

αj :=
{

μH(j) − 1 if 1 � j � 2k + 2,
μH(j) otherwise.

Claim 1.

Δα(I(H)n) = 〈X,Y 〉 and
∑
i/∈X

αi =
∑
i/∈Y

αi = n− 1.

Proof. We will prove this claim by induction on υ(H). If υ(H) = 2k, then H = C2k, r =
2k and n = k+1. We may assume also that X = {1, 3, . . . , 2k−1} and Y = {2, 4, . . . , 2k}. 
By noticing that α = (1, 1, . . . , 1) ∈ N

r, we have∑
αi =

∑
αi = k = n− 1,
i/∈X i/∈Y
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and therefore X and Y are facets of Δα(I(H)n). Hence, it remains to show that 
Δα(I(H)n) = 〈X, Y 〉. Let F be a facet of Δ(H) that is different from X and Y . Since all 
facets of Δ(C2k) have at most k elements; and only X and Y have exactly k elements, 
we must have |F | < k. Hence, ∑

i/∈F

αi � k + 1 = n,

and hence F /∈ Δα(I(H)n). Therefore, Δα(I(H)n) = 〈X, Y 〉, and the claim follows.
Assume that υ(H) > 2k. Clearly, r is not in C2k, so we may assume that dG(r, C2k) �

dG(v, C2v) for any vertex v of G. Then, r is a leaf by Remark 2.1. Let t be the unique 
neighbor of r in G.

Let T := H \ {r}. Then, T is also a connected bipartite graph with only cycle C2k
and υ(T ) = υ(H) − 1. We may assume that r ∈ X, so that (X \ {r}, Y ) is a bipartition 
of T . Let s := υ(T ) − ε0(T ) − k + 1 and define β = (β1, . . . , βr−1) ∈ N

r−1 by

βj :=
{

μT (j) − 1 if 1 � j � 2k,
μT (j) otherwise.

We now distinguish two cases:

Case 1. dG(r, C2k) = 1. In this case V (G) \ V (C2k) is the set of all leaves of G. Thus, 
β = (α1, . . . , αr−1) and ε0(T ) = ε0(H) − 1, and thus s = n.

Since υ(T ) = υ(H) −1 and αr = 0, by the induction hypothesis we have Δβ(I(T )n) =
〈X \ {r}, Y 〉, and∑

i/∈X

αi =
∑

i/∈X\{r}
βi = n− 1, and

∑
i/∈Y

αi =
∑
i/∈Y

βi + αr = n− 1. (9)

In particular, X ∈ Δα(I(H)n) and Y ∈ Δα(I(H)n). Thus it remains to show that 
Δα(I(H)n) = 〈X, Y 〉. Let F be any facet of Δ(H) that is different from X and Y .

Assume that t ∈ F . Then, F is also a facet of Δ(T ) that is different from X \ {r}
and Y . Therefore, ∑

i/∈F

αi =
∑
i/∈F

βi + αr =
∑
i/∈F

βi � n.

Therefore, F /∈ Δα(I(H)n).
Assume that t /∈ F . Then, r ∈ F and F \ {r} is a subset of neither X \ {r} nor Y . 

Since F \ {r} ∈ Δ(T ), there is a facet F ′ of Δ(T ) containing F and being different from 
X \ {r} and Y . Therefore, ∑

i/∈F

αi =
∑

i/∈F\{r}
βi �

∑
i/∈F ′

βi � n.

Which implies F /∈ Δα(I(H)n). The claim holds for this case.
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Case 2. dG(r, C2k) � 2. By Remark 2.1 we can assume that NG(t) = {t − 1, t + 1, . . . , r}
where t − 1 is a non-leaf and t + 1, . . . , r are leaves. We now distinguish two subcases:

Case 2a. t + 1 = r. Then, ε0(T ) = ε0(H) and s = n − 1. Since υ(T ) = υ(H) − 1, αr = 0
and

βj =
{

αj − 1 if j = t− 1 or j = t,

αj otherwise,

by the induction hypothesis we have Δβ(I(T )n−1) = 〈X \ {r}, Y 〉, and

∑
i/∈X

αi =
∑

i/∈X\{r}
βi + 1 = n− 1, and

∑
i/∈Y

αi =
∑
i/∈Y

βi + αr + 1 = n− 1. (10)

In particular, X ∈ Δα(I(H)n) and Y ∈ Δα(I(H)n). Thus it remains to show that 
Δα(I(H)n) = 〈X, Y 〉. Let F be any facet of Δ(H) that is different from X and Y .

Assume that t ∈ F . Then, F is also a facet of Δ(T ) that is different from X \ {r}
and Y . Since t − 1 /∈ F and αt−1 = βt−1 + 1, we have

∑
i/∈F

αi =
∑
i/∈F

βi + 1 + αr =
∑
i/∈F

βi + 1 � s + 1 = n.

Therefore, F /∈ Δα(I(H)n).
Assume that t /∈ F . Then, r ∈ F . If t − 1 ∈ F , then F \ {r} is a subset of neither 

X \ {r} nor Y . Hence, there is a facet F ′ of Δ(T ) containing F and being different from 
X \ {r} and Y . Therefore,

∑
i/∈F

αi �
∑
i/∈F

βi + 1 �
∑
i/∈F ′

βi + 1 � s + 1 = n.

Which implies F /∈ Δα(I(H)n).
If t − 1 /∈ F , then (F ∪ {t}) \ {r} is a facet of Δ(T ). Noticing that αt−1 = βt−1 + 1

and αt = 1, we get∑
i/∈F

αi =
∑

i/∈(F∪{t})\{r}
βi + 1 + αt � (s− 1) + 2 = n.

Which again implies F /∈ Δα(I(H)n).

Case 2. t + 1 < r. Thus β = (α1, . . . , αr−1), and thus s = n. Now we can proceed as in 
Case 1. This completes the proof of Claim 1.

Claim 2. Δα(I(G)n) = 〈X, Y 〉.
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Proof. by Claim 1 and Lemma 1.5, X and Y are facets of Δα(I(G)n). It remains to 
show that for any facet F of Δ(G) being different from X and Y , then F /∈ Δα(I(G)n). 
Since F is a face of H, we have F ⊆ F ′ for some facet F ′ of Δ(H). Then, F ′ is different 
from X and Y , and then F ′ /∈ Δα(I(H)n). Thus, by Lemma 1.5 we have

∑
i/∈F

αi �
∑
i/∈F ′

αi � n

and thus F /∈ Δα(I(G)n), as claimed.
Now we return to the proof of the proposition. Claim 2 and Lemma 3.1 give 

dstab(I(G)) � n, or equivalently

dstab(I(G)) � ε(H) − ε0(H) − k + 1.

Let e be an edge of the cycle C2k. Then, H \ e is a tree. Hence, by [1, Theorem 4.3]
we have ε(H) = ε(H\e) + 1 = (υ(H\e) − 1) + 1 = υ(H\e) = υ(H) = υ(G). Clearly, 
ε0(G) � ε0(H). Therefore,

dstab(I(G)) � ε(H) − ε0(H) − k + 1 � υ(G) − ε0(G) − k + 1,

as required. �
4. Depths of powers of edge ideals

In this section we study the stability of depthR/I(G)n for any graph G. First we need 
some basic facts of homological modules of simplicial complexes.

A tool which will be of much use is the Mayer–Vietoris sequence, see [21, Theorem 
25.1] or [23, in Page 21]. For two simplicial complexes Δ1 and Δ2, we have the long exact 
sequence of reduced homology modules

· · · → H̃i(Δ1) ⊕ H̃i(Δ2) → H̃i(Δ) → H̃i−1(Δ1 ∩ Δ2) → H̃i−1(Δ1) ⊕ H̃i−1(Δ2) → · · ·

where Δ = Δ1 ∪ Δ2.
A simplicial complex Δ is a cone if there is a vertex v such that {v} ∪F ∈ Δ for every 

F ∈ Δ. If Δ is a cone, then it is acyclic (see [21, Theorem 8.2]), i.e.,

H̃i(Δ;K) = 0 for every i ∈ Z.

Finally, for two simplicial complexes Δ and Γ over two disjoint vertex sets, the join 
of Δ and Γ, denoted by Δ ∗ Γ, is defined by

Δ ∗ Γ := {F ∪G | F ∈ Δ and G ∈ Γ}.
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Lemma 4.1. Let G be a bipartite graph with connected components G1, . . . , Gs and let 
n :=

∑s
i=1 dstab(I(Gi)) − s + 1. Then there is α = (α1, . . . , αr) ∈ N

r such that∑
i/∈F

αi = n− 1 for all F ∈ F(Δα(I(G)n)) and H̃s−1(Δα(I(G)n);K) �= 0.

Proof. For each i, let (Xi, Yi) be a bipartition of Gi and ni := dstab(I(Gi)), so that

n =
s∑

i=1
ns − s + 1.

Since the vertex sets of G1, . . . , Gs are mutually disjoint, by Lemma 3.1 there is 
α = (α1, . . . , αr) ∈ N

r such that∑
j∈V (Gi)\Xi

αj =
∑

j∈V (Gi)\Yi

αj = ni − 1, (11)

and ∑
j∈V (Gi)\Fi

αj � ni for all Fi ∈ F(Δ(Gi)) \ {Xi, Yi}. (12)

For any F ∈ F(Δ(G)), we can partition F into F =
⋃s

i=1 Fi where Fi ∈ F(Δ(Gi)) for 
i = 1, . . . , s. By Equation (11) and Inequality (12) we get

∑
j /∈F

αj =
s∑

i=1

∑
j∈V (Gi)\Fi

αj �
s∑

i=1
(ni − 1) = n− 1

and the equality occurs if and only if∑
j∈V (Gi)\Fi

αj = ni − 1 for all i = 1, . . . , s,

or equivalently, either Fi = Xi or Fi = Yi for all i = 1, . . . , s. Together with Lemma 1.5
we have ∑

j /∈F

αj = n− 1 for all F ∈ F(Δα(I(G)n)),

and

Δα(I(G)n) = 〈X1, Y1〉 ∗ · · · ∗ 〈Xs, Ys〉.

So it remains to prove that H̃s−1(〈X1, Y1〉 ∗ · · · ∗ 〈Xs, Ys〉; K) �= 0. In order to prove this, 
let Δi := 〈X1, Y1〉 ∗ · · · ∗ 〈Xi, Yi〉 for i = 1, . . . , s and Δ0 := {∅}. Then, for all i = 1, . . . , s
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we have

Δi = 〈Xi〉 ∗ Δi−1 ∪ 〈Yi〉 ∗ Δi−1 and Δi−1 = 〈Xi〉 ∗ Δi−1 ∩ 〈Yi〉 ∗ Δi−1.

Since 〈Xi〉 ∗ Δi−1 and 〈Xi〉 ∗ Δi−1 are cones, by using Mayer–Vietoris sequence, we 
get an exact sequence 0 → H̃s−1(Δs; K) → H̃s−2(Δs−1; K) → 0. Thus,

H̃s−1(Δs;K) ∼= H̃s−2(Δs−1;K).

By repeating this way we obtain

H̃s−1(Δs;K) ∼= H̃s−2(Δs−1;K) ∼= · · · ∼= H̃−1(Δ0;K) ∼= K,

and so H̃s−1(Δs; K) �= 0, as required. �
The next lemma gives the limit of the sequence depthR/I(G)n.

Lemma 4.2. Let G be a graph. Assume that G1, . . . , Gs are all connected bipartite com-
ponents of G and Gs+1, . . . , Gs+t are all connected nonbipartite components of G. Then

depthR/I(G)n = s for all n �
s+t∑
i=1

dstab(I(Gi)) − (s + t) + 1.

Proof. Let ni := dstab(I(Gi)) for i = 1, . . . , s + t. We divide the proof into three cases:

Case 1. s = 0, i.e., every component of G is nonbipartite. This case follows from 
Lemma 1.1.

Case 2. t = 0, i.e., G is bipartite. Let m :=
∑s

i=1 ni − s + 1. By Lemmas 1.4 and 4.1, 
there is α ∈ N

r such that

dimK Hs
m(R/I(G)m)α = dimK H̃s−1(Δα(I(G)m);K) �= 0.

Hence, Hs
m(R/I(G)m) �= 0, which yields depthR/I(G)m � s. On the other hand, by 

Lemma 1.3 we have depthR/I(G)m � s. Thus, depthR/I(G)m = s. The lemma now 
follows from Lemma 1.3.

Case 3. s �= 0 and t �= 0. Let G′ and G′′ be induced subgraphs of G defined by

G′ :=
s⋃

i=1
Gi and G′′ :=

t⋃
i=1

Gs+i.

We may assume that V (G′) = [p] and V (G′′) = {p + 1, . . . , p + q}, where p + q = r. For 
simplicity, we set y1 := xp+1, . . . , yq := xp+q. Then R = K[x1, . . . , xp, y1, . . . , yq]. Let 
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R′ := K[x1, . . . , xp], R′′ := K[y1, . . . , yq], m :=
∑s

i=1 ni − s + 1 and n0 := n − m + 1. 
Note that n0 �

∑t
i=1 ns+i − t + 1, so (y1, . . . , yq) ∈ Ass(R′′/I(G′′)n0) by Lemma 1.1. 

Accordingly, there exists β = (β1, . . . , βq) ∈ N
q such that (y1, . . . , yq) = I(G′′)n0 : yβ. 

This implies

yβ ∈ I(G′′)n0−1, yβ /∈ I(G′′)n0 and yβ ∈ I(G′′)n0
F whenever ∅ �= F ∈ Δ(G′′). (13)

Next, by Lemma 4.1 there is α = (α1, . . . αp) ∈ N
p such that

H̃s−1(Δα(I(G′)m);K) �= 0, and
∑
i/∈V

αi = m− 1 for all V ∈ F(Δα(I(G′)m)). (14)

Let γ := (α1, . . . , αp, β1, . . . , βq) ∈ N
r. Note that xγ = xαyβ ∈ R. We claim that

Δγ(I(G)n) = Δα(I(G′)m). (15)

Indeed, for all H ∈ Δγ(I(G)n) we can partition H into H = H1 ∪H2 where H1 ∈ Δ(G′)
and H2 ∈ Δ(G′′). By Equation (1) we have

xγ = xαyβ /∈ I(G)nH = (I(G′)H1 + I(G′′)H2)n =
n∑

i=0
I(G′)iH1

I(G′′)n−i
H2

. (16)

Now, if H2 �= ∅, then by Formula (13) we would have yβ ∈ I(G′′)n0
H2

. Then, For-
mula (16) forces xα /∈ I(G′)n−n0

H1
= I(G′)m−1

H1
, thus H1 ∈ Δα(I(G′)m−1). In particular, 

Δα(I(G′)m−1) �= ∅. Let us take arbitrary facet V of Δα(I(G′)m−1). By Lemma 1.5 we 
then have 

∑
i/∈V αi � m − 2. By Lemma 1.5 again, V is a facet of Δα(I(G′)m), which 

contradicts (14). Thus, H2 = ∅ and H = H1. Formula (16) now becomes

xγ = xαyβ /∈ (I(G′)H + I(G′′))n =
n∑

i=0
I(G′)iHI(G′′)n−i.

Together with Formula (13), this fact implies xα /∈ I(G′)n−n0+1
H = I(G′)mH , or equiva-

lently, H ∈ Δα(I(G′)m), so Δγ(I(G)n) ⊆ Δα(I(G′)m).
In order to prove the reverse inclusion, suppose that H ∈ Δα(I(G′)m). Then, xα /∈

I(G′)mH by Equation (1). If xγ ∈ I(G)nH , then

xγ = xαyβ ∈ I(G)nH = (I(G′)H + I(G′′))n =
n∑

i=0
I(G′)iHI(G′′)n−i.

Hence, xαyβ ∈ I(G′)νHI(G′′)n−ν for some nonnegative integer ν. Since V (G′) ∩
V (G′′) = ∅, it yields xα ∈ I(G′)νH and yβ ∈ I(G′′)n−ν . By Formula (13) we deduce 
that n − ν � n0 − 1, and so ν � n −n0 +1 = m. But then xα ∈ I(G′)mH , a contradiction. 
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Hence, xγ /∈ I(G)nH , i.e., H ∈ Δγ(I(G)n), and hence Δα(I(G′)m) ⊆ Δγ(I(G)n), as 
claimed.

Combining Formulas (14) and (15) with Lemma 1.4, we get

dimK Hs
m(R/I(G)n)γ = dimK H̃s−1(Δγ(I(G)n);K)

= dimK H̃s−1(Δα(I(G′)m);K) �= 0.

Therefore, Hs
m(R/I(G)n) �= 0, so

depthR/I(G)n � s. (17)

On the other hand, since G′ is bipartite, by Lemmas 1.3 and 1.6 we get

depthR/I(G)n = depthR/(I(G′) + I(G′′))n � min
ν�1

depthR′/I(G′)ν = s.

Together with Inequality (17), we obtain depthR/I(G)n = s, as required. �
Corollary 4.3. For all graphs G we have limn→∞ depthR/I(G)n = dimR− �(I(G)).

Proof. Let s be the number of bipartite components of G. Then s = dimR − �(I(G))
(see [25, Page 50]), so the corollary immediately follows from Lemma 4.2. �

We are now ready to prove the first main result of the paper.

Theorem 4.4. Let G be a graph with p connected components G1, . . . , Gp. Let s be the 
number of connected bipartite components of G. Then

(1) min{depthR/I(G)n | n � 1} = s.
(2) dstab(I(G)) = min{n � 1 | depthR/I(G)n = s}.
(3) dstab(I(G)) =

∑p
i=1 dstab(I(Gi)) − p + 1.

Proof. We may assume that G1, . . . , Gs are bipartite.
(1) If s = 0 (resp. s = p), then the first statement follows from Lemma 1.1 (resp. 

Lemma 1.3). Assume that 1 � s < p. Let G′ be the induced subgraph of G consisting 
of G1, . . . , Gs and G′′ the induced subgraph of G consisting of Gs+1, . . . , Gp. Then, 
I(G) = I(G′) + I(G′′). Let R′ := K[xi | i ∈ V (G′)]. For all n � 1, since G′ is bipartite, 
by Lemmas 1.3 and 1.6 we have

depthR/I(G)n � min{depthR′/I(G′)m | m � 1} = s.

Together with Lemma 4.2 we conclude that

min{depthR/I(G)n | n � 1} = s,

and (1) follows.
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We next prove (2) and (3) simultaneously by induction on p. If p = 1, then the theorem 
follows from Lemmas 1.1 and 1.3.

Assume that p � 2. If s = 0, our claim follows from Lemma 1.1. So we may assume 
that s � 1. Let H be the induced subgraph of G consisting of components G2, . . . , Gp. 
Then, H has p − 1 connected components and s − 1 connected bipartite components. By 
Lemma 4.2 we have

depthR/I(G)n = s for all n �
p∑

i=1
dstab(I(Gi)) − p + 1.

Hence, in order to prove the theorem it suffices to show that if

depthR/I(G)n = s (18)

for a given positive integer n, then n �
∑p

i=1 dstab(I(Gi)) − p + 1.
In order to prove this assertion let A := K[xj | j ∈ V (G1)] and B := K[xj | j ∈

V (H)]. Then, we have dimA � 2 and dimB � s. For simplicity, we set I := I(G1) and 
J := I(H). We now claim that

depthR/IiJn−i � s + 1 for i = 0, . . . , n. (19)

Indeed, if i = n, since depthA/In � 1 and dimB � s, we have

depthR/InJ0 = depthR/In = depthA/In + dimB � 1 + s.

Since depthB/Jn � s − 1 by Part 1, a similar proof also holds for i = 0. For all i =
1, . . . , n −1, by [11, Lemma 2.2] we have depthR/IiJn−i = depthA/Ii+depthB/Jn−i+
1. Hence, depthR/IiJn−i � 1 + (s − 1) + 1 = s + 1, as claimed.

Let n1 := dstab(G1) and n2 := dstab(H). We will prove that n � n1 +n2−1. Assume 
on the contrary that n � n1 + n2 − 2. For each i = 0, . . . , n, we put

Wi := IiJn−i + · · · + InJ0,

where I0 = J0 = R. We next claim that

depthR/Wi � s + 1 for all i = 0, . . . , n. (20)

Indeed, we prove this by induction on i. If i = n, then by Inequality (19) we have

depthR/Wn = depthR/In � s + 1.

Assume that depthR/Wi+1 � s + 1 for some 0 � i < n. By Equations (2) and (3), we 
have IiJn−i ∩Wi+1 = Ii+1Jn−i. Since Wi = IiJn−i +Wi+1, we have an exact sequence

0 −→ R/Ii+1Jn−i −→ R/IiJn−i ⊕R/Wi+1 −→ R/Wi −→ 0.
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By Depth Lemma, we have

depthR/Wi � min{depthR/Ii+1Jn−i − 1, depthR/IiJn−i, depthR/Wi+1}.

Together with Inequality (19) and the induction hypothesis, this fact yields

depthR/Wi � min{depthR/Ii+1Jn−i − 1, s + 1}.

Therefore, the inequality (20) will follows if depthR/Ii+1Jn−i � s +2. In order to prove 
this inequality, note that (i +1) +(n − i) = n +1 � n1 +n2 − 1. Hence, either i +1 < n1

or n − i < n2. Note that n − i � 1.
If i +1 < n1, by Part 1 we get depthA/Ii+1 � 2 and depthB/Jn−i � s − 1. Together 

with [11, Lemma 2.2] we obtain

depthR/Ii+1Jn−i = depthA/Ii+1 + depthB/Jn−i + 1 � 2 + (s− 1) + 1 = s + 2,

as claimed.
If n − i < n2, the proof is similar. Thus, the claim (20) is proved.
Notice that W0 = (I + J)n = (I(G1) + I(H))n = I(G)n. By (20) we have 

depthR/I(G)n � s +1. This contradicts (18). Therefore, we must have n � n1 +n2 − 1.
Finally, by the induction hypothesis we have

n2 = dstab(I(H)) =
p∑

i=2
dstab(I(Gi)) − (p− 1) + 1.

Together with n1 = dstab(I(G1)), we have

n � n1 + n2 − 1 =
p∑

i=1
dstab(Gi) − p + 1,

as required. �
Remark 4.5. From Theorem 4.4 and Lemmas 1.1 and 3.1 we see that dstab(I(G)) is 
independent from the characteristic of the base field K, so it depends purely on the 
structure of G.

We next combine Theorem 4.4 and Propositions 2.4 and 3.4 to get the second main 
result of the paper, which sets up an upper bound for dstab(I(G)).

Theorem 4.6. Let G be a graph. Let G1, . . . , Gs be all connected bipartite components of 
G and let Gs+1, . . . , Gs+t be all connected nonbipartite components of G. Let 2ki be the 
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maximum length of cycles of Gi (ki := 1 if Gi is a tree) for all i = 1, . . . , s; and let 
2ki − 1 be the maximum length of odd cycles of Gi for every i = s + 1, . . . , s + t. Then

dstab(I(G)) � υ(G) − ε0(G) −
s+t∑
i=1

ki + 1.

Proof. Since

υ(G) − ε0(G) −
s+t∑
i=1

ki + 1 =
s+t∑
i=1

(υ(Gi) − ε0(Gi) − ki + 1) − (s + t) + 1,

by Propositions 2.4 and 3.4 we get

υ(G) − ε0(G) −
s+t∑
i=1

ki + 1 �
s+t∑
i=1

dstab(I(Gi)) − (s + t) + 1.

Together with Theorem 4.4 we obtain

dstab(I(G)) =
s+t∑
i=1

dstab(I(Gi)) − (s + t) + 1 � υ(G) − ε0(G) −
s+t∑
i=1

ki + 1,

as required. �
5. The index of depth stability of trees and unicyclic graphs

The aim of this section is to prove that the upper bound of dstab(I(G)) given in 
Theorem 4.6 is always achieved if G has no cycles of length 4 and every component of 
G is either a tree or a unicyclic graph. Recall that a connected graph G is a tree if it 
contains no cycles; and G is a unicyclic graph if it contains exactly one cycle.

If G is a unicyclic graph and C is the unique cycle of G, then for every vertex v of 
G not lying in C, there is a unique simple path of minimal distance from v to a vertex 
in C.

Theorem 5.1. Let G be a graph with p connected components G1, . . . , Gp such that each 
Gi is either a tree or a unicyclic graph. For each i, if Gi is bipartite, let 2ki be the length 
of its unique cycle (ki := 1 if Gi is a tree); and if Gi is nonbipartite, let 2ki − 1 be the 
length of its unique cycle. If G has no cycles of length 4, then

dstab(I(G)) = υ(G) − ε0(G) −
p∑

i=1
ki + 1.
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By Theorem 4.6, it suffices to show that dstab(Gi) = υ(Gi) − ε0(Gi) − ki + 1 for each 
i = 1, . . . , p. If Gi is nonbipartite, the equality follows from Lemma 2.2. Thus, it remains 
to prove this equality for the case Gi is bipartite.

We divide the proof into two lemmas. The first lemma deals with unicyclic bipartite 
graphs and the second one deals with trees.

For a vertex x of G, we denote LG(x) to be the set of leaves of G that are adjacent 
to x. We start with the following observation.

Lemma 5.2. Let G be a graph with r = υ(G). Let p be a leaf of G and q the unique 
neighbor of p in G. Let α = (α1, . . . , αr) ∈ N

r and we define β = (β1, . . . , βr) by

βi :=
{

αi + 1 if i = p or i = q,

αi otherwise.

Then Δα(I(G)n) = Δβ(I(G)n+1) for all n � 1.

Proof. Let F be a facet of Δ(G). By the maximality of F , it must contain either p or q
but not both, so ∑

i/∈F

βi =
∑
i/∈F

αi + 1.

Thus, by Lemma 1.5 we get Δα(I(G)n) = Δβ(I(G)n+1) for all n � 1. �
Lemma 5.3. Let G be a unicyclic bipartite graph. Assume that the unique cycle of G is 
C2k of length 2k with k � 3. Then, dstab(I(G)) = υ(G) − ε0(G) − k + 1.

Proof. Let n := dstab(I(G)). By Theorem 4.6 we have n � υ(G) − ε0(G) − k + 1. Thus, 
in order to prove the theorem it suffices to show n � υ(G) − ε0(G) − k + 1.

Let (X, Y ) be a bipartition of G. Then, by Lemma 3.1 there is α = (α1, . . . , αr) ∈ N
r

such that

Δα(I(G)n) = 〈X,Y 〉 and
∑
j∈X

αj =
∑
j∈Y

αj = n− 1. (21)

Observe that for any face F of Δ(G) with F ∩X �= ∅ and F ∩ Y �= ∅, we have∑
i/∈F

αi � n. (22)

Indeed, let L be a facet of Δ(G) which contains F , so that L meets both X and Y . Since 
Δα(I(G)n) = 〈X, Y 〉, L /∈ Δα(I(G)n). By Lemma 1.5 we get∑

i/∈F

αi �
∑
i/∈L

αi � n,

and the formula (22) follows.
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We now prove n � υ(G) − ε0(G) − k + 1 by induction on υ(G).
If υ(G) = 2k, i.e., G = C2k, then υ(G) − ε0(G) − k + 1 = k + 1. For each i ∈ X, let 

NG(i) = {ui, vi} and Fi := {i} ∪(Y \{ui, vi}). Then, Fi ∈ Δ(G). Since |X| = |Y | = k � 3, 
Fi ∩X �= ∅ and Fi ∩ Y �= ∅. Together with Formulas (21) and (22), this fact gives

n �
∑
j /∈Fi

αj =
∑
j∈X

αj + αui
+ αvi − αi = n− 1 + αui

+ αvi − αi,

whence αi + 1 � αui
+ αvi . Hence,∑

i∈X

αi + k =
∑
i∈X

(αi + 1) �
∑
i∈X

(αui
+ αvi) = 2

∑
j∈Y

αj .

Together with Formula (21), this gives (n − 1) + k � 2(n − 1). Thus, n � k+1, and thus 
the lemma holds for this case.

Assume that υ(G) > 2k. We distinguish two cases:

Case 1. G \V (C2k) is totally disconnected. For any vertex u lying in C2k with LG(u) �= ∅, 
we claim that

αu � 1, and αi = 0 for every i ∈ LG(u). (23)

Indeed, without loss of generality we may assume that u ∈ Y , so that LG(u) ⊆ X. 
Let F := (Y \ {u}) ∪ LG(u). Then, F ∈ Δ(G). Since the length of C2k is at least 6, we 
have F ∩ Y �= ∅. Notice that ∅ �= LG(u) ⊆ F ∩X. Therefore, F ∩X �= ∅ and F ∩ Y �= ∅. 
By Formula (22) we have∑

i∈X

αi + αu −
∑

i∈LG(u)

αi =
∑
i/∈F

αi � n.

By (21), this gives

n− 1 + αu −
∑

i∈LG(u)

αi � n,

so

αu �
∑

i∈LG(u)

αi + 1 � 1.

Hence, it remains to prove that αi = 0 for all i ∈ LG(u). Assume that αi � 1 for some 
i ∈ LG(u). Define β = (β1, . . . , βr) by

βj :=
{

αj − 1 if j = u or j = i,

αj otherwise.
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Then, β ∈ N
r. Since u ∈ Y and αu � 1, by (21) we have

n− 1 =
∑
j∈Y

αj � αu � 1.

By Lemma 5.2 we have Δβ(I(G)n−1) = Δα(I(G)n). Consequently, Δβ(I(G)n−1) =
〈X, Y 〉, which implies depthR/I(G)n−1 = 1 by Lemma 3.1, and so dstab(I(G)) � n − 1
by Theorem 4.4. This contradicts to n = dstab(I(G)). Thus, αi = 0, as claimed.

We may assume that V (H) = {1, . . . , 2k}. Let β := (α1, . . . , α2k) ∈ N
2k, X0 :=

X ∩ V (C2k) and Y0 := Y ∩ V (C2k). Then, (X0, Y0) is a bipartition of C2k. Clearly,

X = X0 ∪
⋃
i∈Y0

LG(i) and Y = Y0
⋃

i∈X0

LG(i).

Together with Claim (23) we have∑
i/∈X0

βi =
∑
i/∈X

αi = n− 1.

Similarly, 
∑

i/∈Y0
βi = n − 1. Therefore, X0, Y0 ∈ Δβ(I(C2k)n).

For any facet F of Δ(C2k) which is different from X0 and Y0, let

F ′ := F ∪
⋃

i∈V (C)\F
LG(i).

Then, F ′ is a facet of Δ(G) which is different from X and Y . Together Claim (23) with 
Lemma 1.5, we have ∑

i/∈F

βi =
∑
i/∈F ′

αi � n

so that F /∈ Δβ(I(C2k)n). Thus, Δβ(I(C2k)n) = 〈X0, Y0〉.
This gives depthS/I(C2k)n = 1 where S = K[x1, . . . , x2k]. From the case υ(G) = 2k

above, we imply that

n � k + 1 = υ(G) − ε0(G) − k + 1,

and the lemma holds in this case.

Case 2. G \V (C2k) is not totally disconnected. Let v be a leaf of G such that dG(v, C2k)
is maximal. By Remark 2.1, we deduce that NG(v) has only one non-leaf, say u, and 
NG(u) also has only one non-leaf, say w. Note that LG(u) �= ∅ since v ∈ LG(u). We may 
assume that u ∈ Y , so that v ∈ X. We first claim that

αu � 1, and αi = 0 for every i ∈ LG(u). (24)
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Indeed, let F := (Y \{u}) ∪LG(u). Then, F ∈ Δ(G). Since |NG(w)| � 2 and NG(w) ⊆ Y , 
we have ∅ �= NG(w) \{u} ⊆ Y \{u} ⊆ F ∩Y . Notice that ∅ �= LG(u) ⊆ F ∩X. Therefore, 
F ∩X �= ∅ and F ∩Y �= ∅. The proof of claim now carries out the same as in Claim (23).

We next claim that

αw � 1. (25)

Indeed, assume on the contrary that αw = 0. Note that w ∈ X and NG(u) = LG(u) ∪{w}. 
Let F := (X∪{u}) \NG(u). Then, F ∈ Δ(G) and u ∈ F∩Y . Since NG(u) �= X, F∩X �= ∅. 
By Formulas (21)–(24) and the assumption αw = 0, these facts give

n �
∑
i/∈F

αi =
∑
i∈Y

αi − αu + αw +
∑

i∈LG(u)

αi = n− 1 − αu,

and so αu < 0, a contradiction. Thus, αw � 1, as claimed.
Let H := G \ LG(u). Clearly, H is a connected bipartite graph with biparti-

tion (X \ LG(u), Y ). Moreover, H has only cycle C2k as well. We may assume that 
V (H) = {1, . . . , s}. Then s � 2k and LG(u) = {s + 1, . . . , r}. Let θ = (θ1, . . . , θs) :=
(α1, . . . , αs) ∈ N

s. We now prove that

Δθ(I(H)n) = 〈X \ LG(u), Y 〉. (26)

Indeed, by (24) we get 
∑

αi∈LG(u) αi = 0. Together with Formula (21), this fact gives

∑
i∈V (H),i/∈Y

θi =
∑

i∈V (H),i/∈Y

αi =
∑

i∈X\LG(u)

αi +
∑

i∈LG(u)

αi =
∑
i∈X

αi = n− 1.

Hence, by Lemma 1.5, Y ∈ Δθ(I(H)n). Similarly, X \ LG(u) ∈ Δθ(I(H)n). Now let F ′

be any facet of Δ(H) which is different from X \ LG(u) and Y .
If u ∈ F ′ then F ′ is also a facet of Δ(G). By noticing that F ′ is different from X and 

Y and 
∑

i∈LG(u) αi = 0, so by (22) we have

∑
i∈V (H),i/∈F ′

θi =
∑

i∈V (H),i/∈F ′

αi +
∑

i∈LG(u)

αi =
∑
i/∈F ′

αi � n,

and so F ′ /∈ Δθ(I(H)n).
If u /∈ F ′, then w ∈ F ′ since u is a leaf of H, hence F ′ ∪ LG(u) is a facet of Δ(G). 

Similarly, we have F ′ /∈ Δθ(I(H)n), and the formula (26) follows.
Define γ = (γ1, . . . , γs) ∈ Z

s by

γj :=
{

θj − 1 if j = u or j = w,

θj otherwise.
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From Inequalities (24) and (25), we have γu = θu − 1 = αu − 1 � 0 and γw = θw − 1 =
αw − 1 � 0, so γ ∈ N

s. Note that

n− 1 =
∑
i∈X

αi � αu � 1.

Therefore, by Lemma 5.2 we have Δγ(I(H)n−1) = Δθ(I(H)n). Together with (26) we 
get

Δγ(I(H)n−1) = 〈X \ LG(1), Y 〉.

Hence, by Lemma 3.1 we have depthS/I(H)n−1 = 1, where S = K[x1, . . . , xs]. By 
Theorem 4.4 we have dstab(I(H)) � n − 1. On the other hand, since υ(H) = υ(G) −
|LG(u)| < υ(G), by the induction hypothesis we have dstab(H) � υ(H) − ε0(H) −k+1. 
As {w, u} is not a leaf edge of G and recall that H = G \ LG(u), we conclude that 
ε0(G) = ε0(H) + |LG(u)| − 1. Thus,

υ(G)−ε0(G)−k+1 = υ(H)+ |LG(u)|−(ε0(H)+ |LG(u)|−1)−k+1 = υ(H)−ε0(H)−k.

Hence, n − 1 � dstab(I(H)) � υ(G) − ε0(G) − k, and hence n � υ(G) − ε0(G) − k + 1. 
Thus, the proof now is complete. �

Finally, we compute dstab(I(G)) for trees G. If a tree G has a vertex x being adjacent 
to every other vertex, then G is called a star with a center x. Note that G is a star if 
and only if diam(G) � 2 where diam(G) stands for the diameter of G. If diam(G) = d, 
then there is a path x1x2 . . . xdxd+1 of length d in G. Such a path will be referred to as 
a path realizing the diameter of G.

Lemma 5.4. dstab(I(G)) = υ(G) − ε0(G) for all trees G.

Proof. Let n := dstab(I(G)). By Theorem 4.6 we have n � υ(G) − ε0(G). So it remains 
to show n � υ(G) − ε0(G).

If G is a star, then ε0(G) = ε(G) = υ(G) − 1, and then υ(G) − ε0(G) = 1 � n. Thus, 
the lemma holds for this case.

We will prove by induction on υ(G) = r. If υ(G) = 2, then G is one edge, and then it 
is a star. This case is already proved.

If υ(G) � 3. We may assume that G is not a star so that diamG � 3. Since 
depthR/I(G)n = 1, there is α = (α1, . . . , αr) ∈ N

r such that Δα(I(G)n) = 〈X, Y 〉
where (X, Y ) is a bipartition of G.

Let vuw . . . z be a path realizing the diameter of G. Then v is a leaf, u and w both 
are not leaves. By [20, Lemma 3.3] we have NG(u) = {w} ∪ LG(u). And now we prove 
n � υ(G) − ε0(G) by the same way as in Case 2 in the proof of Lemma 5.3. Thus we 
only sketch the proof here:
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First, we show that αu � 1, αw � 1 and αi = 0 for every i ∈ LG(u). Then, let 
T := G \ LG(u). Note that T is also a tree and υ(G) − ε0(G) = υ(T ) − ε0(T ) + 1. 
We may assume that u ∈ Y , w = s − 1, u = s and LG(u) = {s + 1, . . . , r}. Let 
θ := (α1, . . . , αs−2, αs−1 − 1, αs − 1) ∈ N

s. Then, we show that

Δθ(I(T )n−1) = 〈X \ LG(u), Y 〉 .

This gives depthS/I(T )n−1 = 1 where S = K[x1, . . . , xs]. By the induction hypothesis 
we have n − 1 � υ(T ) − ε0(T ). From that we obtain n � υ(G) − ε0(G). �
Remark 5.5. Let G be a unicyclic bipartite graph. If the unique circle of G is C4 of length 
4, by the same argument as in the proof of Lemma 5.3 we have the following situations:

(1) If G = C4, then dstab(I(G)) = 1.
(2) If G �= C4 and C4 has at least two adjacent vertices of degree 2 in G, then 

dstab(I(G)) = υ(G) − ε0(G) − 2.
(3) In the remaining cases, dstab(I(G)) = υ(G) − ε0(G) − 1.

Thus if every connected component of G is either a tree or a unicyclic graph, then we 
can compute dstab(I(G)) by using Theorem 4.4, Lemmas 2.2, 5.3, 5.4 and Remark 5.5.
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