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1. Introduction

To motivate our work we will quickly recall the main ingredients appearing in the 
definition of Lie algebroids within the “differential” framework. These are

i) A differentiable (real or complex) manifold M .
ii) A vector bundle E over M .
iii) A Lie algebra structure [ , ] on the (real or complex) space Γ(E) of sections of E .
iv) A vector bundle morphism � (called the anchor map) from E to the tangent bundle 

TM of M satisfying

[X, fY ] = f [X,Y ] + �(X)(f)Y (1)

for all X, Y ∈ Γ(E) and f ∈ C∞(M). As usual the elements of TM are thought of as 
vector fields on M , and �(X)(f) is the derivative (with real or complex values) of f along 
the vector field �(X).

We now turn our attention to an a priori completely different set of algebraic objects 
that, as we shall see, bear a striking similarity to Lie algebroids.

Let g be a finite dimensional split simple Lie algebra over a field k of characteristic 0. 
Let R be a ring extension of k, and let L be a Lie algebra over R (hence over k) with 
the property that L ⊗R S � g ⊗k S as S-Lie algebras for some faithfully flat and finitely 
presented extension S/R. The centroid Ctdk(L) of the k-Lie algebra L (see Section 2
for all relevant definitions) can be naturally identified with R. Every derivation δ of the 
k-Lie algebra L induces a derivation ηL(δ) of its centroid, hence of R. This yields a k-Lie 
algebra homorphism ηL : Derk(L) → Derk(R) with the property

[δ1, rδ2] = r[δ1, δ2] + ηL(δ1)(r)δ2 (2)

for all δ1, δ2 ∈ Derk(L) and r ∈ R.
It is inevitable to try to reconcile this last equation with (1). This can all be done 

in a natural way if R is smooth over k. Indeed X = Spec(R) plays the role of M while 
Derk(R) is thought of as the sections of TM . By descent theory the R-module Derk(L)
is projective of finite type,4 and therefore corresponds to the sections of an (algebraic) 
vector bundle E over X. The Lie algebra structure on Γ(E) = Derk(L) is the natural one 
(commutator of derivations).

***
Notation Throughout this work k will denote a field of characteristic 0 and k-alg the 
category of associative commutative and unital k-algebras. If R is an object of k-alg the 
R-module of Kähler differentials of the k-algebra R and its universal derivation will be 
denoted by dR/k : R → ΩR/k.

4 Here is where the smoothness of R/k is crucial.
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We will denote by g a finite dimensional split simple Lie algebra over k. The algebraic 
k-group of automorphisms of g will be denoted by Aut(g).

2. Lie algebras. Centroids and twisted forms

Fix an object R of k-alg. Let L be a Lie algebra over R (hence over k) with the 
property that L ⊗R R′ � g ⊗k R′ as R′-Lie algebras for some faithfully flat and finitely 
presented extension R′/R. Such algebras are called twisted forms of g ⊗k R. To single 
out a particular R′ we speak of twisted forms split by R′. To L corresponds a torsor 
over R under Aut(g), namely the affine R-scheme IsoR-Lie(L, g ⊗k R), and the set of 
isomorphism classes of R-Lie algebras which are twisted forms of g ⊗k R is parametrized 
by the pointed set H1(R, Aut(g)

)
. Details about torsors and non-abelian cohomology 

can be found in [4,8] and [12].5
Recall that the centroid CtdR(L) of the R-Lie algebra L consists of the endomorphisms 

of the R-module L that commute with left and right multiplication by elements of L. 
That is,

CtdR(L) = {χ ∈ EndR(L) : χ[x, y] = [χ(x), y] = [x, χ(y)]∀x, y ∈ L}

for all x, y ∈ L.6 The centroid is a subalgebra of the (associative and unital) R-algebra 
EndR(L). For each r ∈ R the homothety χr : x �→ rx belongs to CtdR(L). This yields 
an R-algebra homomorphism

χL,R : R → CtdR(L). (3)

Recall that L is called central if the map χL,R is an isomorphism, and perfect if L is 
spanned as a k-module (in fact as an abelian group) by the set {[x, y] : x, y ∈ L}.

By restriction of scalars we can view L also as a k-Lie algebra. At the centroid level, 
this yields the natural inclusion

CtdR(L) ⊂ Ctdk(L). (4)

Perfectness, on the other hand, is independent of whether we view L as an algebra over 
R or k.

For convenience we recall the following simple yet useful facts (see [6, lemma 4.6] or, 
more generally, [10, lemma 3.4] for details).

Lemma 2.1. Let L be a twisted form of g ⊗k R. Then

i) L is a projective R-module of finite type (hence finitely presented). Its rank is con-
stant and it equals dimk(g).

5 Strictly speaking these are torsors under the R-group scheme Aut(g)R. The abuse of notation is harm-
less. The relevant non-abelian H1 are to be computed in the fppf topology. Since Aut(g) is smooth the 
fppf topology can be replaced by the étale topology.
6 The last equality is redundant because of the skew-symmetry of the Lie bracket. We kept it in the 

definition to remind the reader of the correct concept of centroid for arbitrary algebras.
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ii) L is perfect, the centroid CtdR(L) is commutative and the inclusion CtdR(L) ⊂
Ctdk(L) is an equality.

iii) L is central. That is, the canonical map χL,R : R → CtdR(L) is an isomorphism of 
k-alg. �

In what follows we will denote CtdR(L) = Ctdk(L) simply by Ctd(L). We will also 
identify R with Ctd(L) via r �→ χr.

It is straightforward to verify that if δ ∈ Derk(L) and χ ∈ Ctd(L), then the commu-
tator [δ, χ] = δ ◦ χ − χ ◦ δ is an element of Ctd(L). This yields a natural k-Lie algebra 
homomorphism ηL : Derk(L) → Derk

(
Ctdk(L)

)
given by

ηL(δ)(χ) = [δ, χ] = δ ◦ χ− χ ◦ δ (5)

for all δ ∈ Derk(L) and χ ∈ Ctdk(L). Under our identification R = Ctd(L) this corre-
sponds to the Lie algebra homomorphism (also denoted ηL)

ηL : Derk(L) → Derk(R) (6)

given by

ηL(δ)(r) = t ⇐⇒ [δ, χr] = χt for all r, t ∈ R. (7)

The derivation rδ is nothing but χr ◦ δ. From (5) and (6) we get the fundamental 
equation

[δ1, rδ2] = r[δ1, δ2] + ηL(δ1)(r)δ2. (8)

Note that the kernel of ηL consists of the derivations that commute with all χr. This 
is to say the elements of DerR(L). The characterization of R-linear derivations of L is 
quite simple.

Lemma 2.2. The adjoint representation adL of L induces an R-Lie algebra isomorphism 
L � DerR(L).

Proof. If x ∈ L then the inner derivation adL(x) is obviously R-linear. Thus IDer(L) ⊂
DerR(L) where IDer(L) denotes the R-module of all inner derivations of L. It is shown 
in [10, Ex. 4.9] that in fact IDer(L) = DerR(L). To show that adL : L → IDer(L) is 
an isomorphism we must prove that L has trivial center. Let R′/R be a faithfully flat 
extension splitting L. If x is in the center of L then x ⊗ 1 is in the center of L ⊗R R′ �
g ⊗kR

′. Since g has trivial center it is easy to see (by using that R′ is free as a k-module) 
that g ⊗k R

′ has trivial center. Thus x ⊗ 1 = 0. Since R′/R is faithfully flat we conclude 
that x = 0 as desired. �
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Our constructions have at their hearts descent theory. It is therefore important to 
have a complete understanding of the “split” case, that is when L = g ⊗k R. This is the 
content of the following.

Example 2.3. The k-Lie algebra homomorphism ηg⊗kR : Derk(g ⊗k R) → Derk(R) has 
a natural section: Indeed for d ∈ Derk(R) it is clear that idg ⊗ d is an element of 
Derk(g ⊗k R) which is mapped to d under ηg⊗kR. As a consequence we have following 
split exact sequence of k-Lie algebras

0 → g⊗k R
adg⊗kR−−−−−→ Derk(g⊗k R)

ηg⊗kR−−−−→ Derk(R) → 0. (9)

3. k-derivations and centroids of twisted forms

As we have seen the structure of the Lie algebra DerR(L) is quite simple: It is iso-
morphic to L via the adjoint representation. By restriction of scalars we can view L as 
a Lie algebra over k and we next look at the much more delicate nature of Derk(L), the 
set derivation of the k-Lie algebra L. It is obvious that Derk(L) has a natural R-module 
structure (see below).

The naive idea is to define an R-functor on Lie algebras that attaches to a given S/R
the Lie algebra Derk(L ⊗R S) of derivations of the k-Lie algebra L ⊗R S. But there is an 
immediate obstacle to this idea because given a morphism of R-algebras f : S → T , there 
is no natural (or even reasonable) map from Derk(L ⊗RS) to Derk(L ⊗RT ) that one can 
attach to f . Remarkably enough, as we will explain below, this functorial construction 
is possible if we limit ourselves to étale extensions of R (in which case our arrow S → T

would out of necessity be an étale morphism, see [11, Exp. I Cor. 4.8]).
In [7] a theory of differentials for Lie algebras is developed that plays the same role 

that Kähler differentials play in commutative algebra. We will recall (without proofs) 
a suitable version of this theory that is sufficient for our present work.

In what follows by an R–L-module we will understand a module of the R-Lie algebra L
(in particular such modules have a natural R-module structure). If M is an L-module 
we will let Derk(L, M) be the set of k-linear derivations of L with values in M . These 
are the k-linear maps d : L → M with the property that d([x, y]) = x.d(y) −y.d(x). Note 
that if M is an R–L-module then Derk(L, M) has a natural R-module structure given 
by (rd)(x) = r · d(x).

The main result of [7] is the construction of an R–L-module ΩR,L/k and a derivation 
(called universal) dR,L,k ∈ Derk(L, ΩR,L/k) with the following property:

If HomR–L(ΩR,L/k, M) denotes the R–L-module homomorphisms from ΩR,L/k to M
(namely the R-linear maps between the two modules that commute with the action of L) 
we have a bijection

HomR–L(ΩR,L/k,M) → Derk(L,M) (10)

given by



6 J. Kuttler et al. / Journal of Algebra 487 (2017) 1–19
α �→ α ◦ dR,L,k. (11)

In particular if L is viewed as an R–L-module via the adjoint representations we have a 
bijection

HomR–L(ΩR,L/k,L) → Derk(L). (12)

Let S/R be an arbitrary morphism of k-alg. Consider the S-Lie algebra L ⊗R S and 
its corresponding universal derivation dS,L⊗RS,k : L ⊗R S → ΩS,L⊗RS,k. The natural 
map L → L ⊗R S followed by dS,L⊗RS,k is an element of Derk(L, ΩS,L⊗RS/k). By (10)
we obtain an R–L-module homomorphism

φ
S/R/k
L : ΩR,L/k → ΩS,L⊗RS/k. (13)

Applying the base change S/R yields an S-(L ⊗R S)-module map

φ
S/R/k
L ⊗ Id : ΩR,L/k ⊗R S → ΩS,L⊗RS/k. (14)

Since L is perfect, lemma 5.3 of [7] states that this last map is an isomorphism whenever 
S/R is étale. Furthermore, by loc. cit. theorem 6.4 and lemma 6.5 the canonical map

HomR–L(ΩR,L/k,L) ⊗R S → HomS,L⊗RS(ΩR,L/k ⊗R S,L ⊗R S) (15)

is an S-module isomorphism. Combining (14) and (15) we obtain an S-module isomor-
phism7

ψ
S/R/k
L : Derk(L) ⊗R S → Derk(L ⊗R S). (16)

This last isomorphism is the Lie algebra counterpart of a classical commutative algebra 
result on Kähler differentials that we now recall for future use.

Let S/R be an extension in k-alg. Assume that R/k is smooth. Then ΩR/k is a projec-
tive R-module of finite type and as a consequence the canonical map HomR(ΩR/k, R) ⊗R

S � HomS(ΩR/k ⊗R S, S) is an isomorphism. If S/R is étale, then the canonical map 
φS/R/k : ΩR/k → ΩS/k induces an S-module isomorphism φS/R/k ⊗ Id : ΩR/k ⊗R S →
ΩS/k. Combining these two we get an S-module isomorphism

ψS/R/k : Derk(R) ⊗R S = HomR(ΩR/k, R) ⊗R S � HomS(ΩS/k, S) = Derk(S). (17)

Proposition 3.1. Let the notation be as above, and suppose R/k is of finite type. Then

7 We will later see that this map is in fact a k-Lie algebra isomorphism.
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i) The map ηL : Derk(L) → Derk(R) gives rise to a split exact sequence of R-modules

0 → L adL−−−→ Derk(L) ηL−−→ Derk(R) → 0. (18)

ii) This sequence is dual to the split exact sequence

0 → ΩR/k ⊗R L → ΩR,L/k → ΩR,L/R → 0 (19)

of R–L-modules established in corollary 6.2 of [7].
iii) If R/k is smooth Derk(L) is a projective R-module of finite type.

Proof. The main assertion is that the first part is the dual of the second, i.e. obtained 
from the second by applying HomR–L( · , L). First observe, that HomR–L(ΩR,L/k, L)
by definition is Derk(L). Similarly, HomR–L(ΩR,L/R, L) is by definition DerR(L) � L. 
This isomorphisms are natural (and functorial in R). Next, HomR–L(ΩR/k ⊗R L, L) �
Derk(R, Ctd(L)), by combining propositions 4.4, 4.6, and 4.8, and theorem 6.1 of [7], 
whenever L is a form of g ⊗k R.8 Indeed, as L is perfect, proposition 4.8 and lemma 4.5 
loc. cit. establish that the bi-module derivations R → Ctd(L) are canonically isomorphic 
to HomR–L(ΩR/k ⊗R L, L). Again, as L is perfect, Ctd(L) is the trivial bi-module (that 
is, the left- and right-actions coincide), so the bi-module derivations are just regular 
derivations, and since in our situation R can be canonically identified with Ctd(L) by 
Lemma 2.1(iii), we have

HomR–L(ΩR/k ⊗R L,L) � Derk(R). (20)

Now recall from loc. cit. theorem 6.1 and its proof that the natural map ΩR/k⊗RL →
ΩR,L/k is defined by dR,kr ⊗ x �→ dR,L,k(rx) − rdR,L,k(x). Let α : ΩR,L/k → L be an 
R–L-homomorphism. Then δ := α ◦ dR,L,k is the corresponding derivation. Note that α
restricted to ΩR/k ⊗R L is the map

dR,kr ⊗ x �→ δ(rx) − rδ(x)).

This is the map dR,kr⊗x �→ ηL(δ)(χr)(x). Under the identification of HomR-L(ΩR/k,L⊗R

L, L) with the derivations of R described in (20) this becomes the map r �→ ηL(δ)(r). In 
other words, the map Derk(L) → Derk(R) obtained from applying HomR–L( · , L) to 
the exact sequence (19) is ηL.

Now as L is a form of a perfect g, (19) splits as a sequence of R–L-modules, by 
theorem 6.4 of [7]. Thus, as R–L-modules, ΩR,L/k � ΩR/k ⊗R L ⊕ ΩR,L/R. It then 
follows that

Derk(L) � Derk(R) ⊕ DerR(L) � Derk(R) ⊕ L

8 The only assumption on g needed for this result is that it be perfect.
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and the projection along this direct sum decomposition is ηL. In particular, ηL is surjec-
tive.

From this it follows that as an R-module Derk(L) is isomorphic to L ⊕ Ω∗
R/k. If R/k

is smooth, then Ω∗
R/k is projective of finite type. So is L. This completes the proof of the 

Proposition. �
Lemma 3.2. Assume S/R is étale. Then the diagram of S-modules

Derk(L) ⊗R S
(ηL⊗Id)

ψ
S/R/k
L

Derk(R) ⊗R S

ψS/R/k

Derk(L ⊗R S)
ηL⊗RS

Derk(S)

(21)

commutes.

Proof. The vertical maps are functorial in S as they are applications of the universal 
property of the modules of differentials together with the base change for étale morphisms 
and the discussion above regarding (15) and (16).

By the previous proposition, the bottom horizontal map is obtained by applying 
HomS-LS

( · , LS) to the first part of (19) (in case R = S and L = LS). By lemmas 6.5 
and 6.6 of [7] applying ⊗RS and taking HomS-LS

( · , LS) to

0 → ΩR/k ⊗R L → ΩR,L/k (22)

is the same as applying HomR–L( · , L) ⊗R S, and the isomorphisms between the two 
sequences are given by ψS/R/k

L and ψS/R/k
L . Moreover, applying the base change S/R to 

(22) and using the isomorphisms φS/R/k
L (13) and φS/R/k results in the natural map

0 → ΩS/k ⊗S LS → ΩS,LS/k.

Thus, the diagram commutes. �
4. X/k-schemes on Lie algebras

Let X be a k-scheme. In what follows Xét will denote the small étale site of X. Recall 
that the objects are étale scheme morphisms Y → X, and that the morphism between 
objects are just scheme morphism over X.9

Definition 4.1. By an X/k-scheme on Lie algebras in the étale sense we will understand 
the following:

9 We remind the reader that any morphism between objects Y and Z of Xét is necessarily an étale 
morphism of schemes.
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i) A scheme L over X.10
ii) A k-Lie algebra structure [−, −]L on L. That is, a k-Lie algebra structure on each of 

the sets L(Y) for Y/X étale.
iii) If f : Y → Z is a morphisms of étale extensions of X, the map L(f) : L(Z) → L(Y)

is a k-Lie algebra homomorphism.

We leave to the reader to generalize this concept at the level of sheaves (i.e., without 
the assumption that L is a scheme), or Grothendieck topologies other than the étale. 
We will make no use of such generalization, nor do we know of any interesting examples. 
Unless specific mention to the contrary in what follows an X/k-scheme of Lie algebras 
will always be assumed to be in the étale sense.

4.1. Relevant examples of X/k-scheme on Lie algebras

All of the examples of X/k-schemes on Lie algebras that are of interest to us are when 
the base scheme X = Spec(R) is affine (we then talk about R/k-schemes on Lie algebras). 
We will henceforth give the relevant proofs in all detail under this assumption. We will 
in Remark 4.9 outline the constructions for X arbitrary. As it is often the case this is 
done by reducing to the affine case (in which the proofs, as mentioned, will be given in 
full detail).

If M is an R-module we will denote by M̃ the corresponding quasicoherent OX-module. 
If Y is a scheme over X, we will denote the inverse image over Y of M̃ by M̃ ⊗OX

OY.
Attached to M we have the corresponding “vector bundle” V(M̃).11 Recall that by 

definition for any ring extension Y/X

V(M̃)(Y) = HomOY
(M̃ ⊗OX

OY,OY). (23)

In what follows we identify V(M̃) with the affine group scheme represented by the sym-
metric R-algebra S(M) of M .

If Y = Spec(S) then

V(M̃)(Y) = HomS(M ⊗R S, S) (24)

viewed as an S-module. By patching these we obtain the OY-module structure on an 
arbitrary V(M̃)(Y).

Vector bundles can be defined in a dual fashion. Let N be an R-module and let Ñ be 
the corresponding quasicoherent OX-module. We have an X-group functor W(Ñ) that 
assigns to Y/X the abelian group of sections of the OY-module Ñ ⊗OX

OY. In symbols

W(Ñ)(Y) = Γ(Y, Ñ ⊗OX
OY). (25)

10 Note that L/X is not assumed to be étale.
11 “Fibration vectorielle définie par M̃” in the terminology of [12].
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If Y = Spec(S) then

W(Ñ)(Y) = N ⊗R S. (26)

It is clear that W(Ñ) is always a sheaf in the fppf sense.
We recall that if N is projective of finite type, then W(Ñ) is an affine scheme iso-

morphic to Spec(S(N∗)) where S(N∗) is the symmetric algebra of the dual R-module 
N∗ of N . In particular if M is projective of finite type, then V(M̃) � W(M̃∗) by means 
of the canonical isomorphism of M with its double dual. We will identify without any 
further reference

V(M̃) = W(M̃∗). (27)

All of the above is based on the fact that

V(M̃)(S) � HomS-mod(M ⊗R S, S) � Hom(M,R) ⊗R S = W(M̃∗)(S).

For this reason we will think of W(M̃∗) as the scheme of sections of the R-scheme 
Y �→ V(M̃)(Y) of section of V(M̃). This will be relevant in our definition of Lie algebroid 
as we try to preserve the analogy with the differential setup outlined in the Introduction.

Remark 4.2. Assume that Y/X is étale. Since V(−) commutes with base change we have

V(ΩX/k)(Y) = V(ΩX/k)Y(Y) = V(ΩY/k)(Y) = HomOY
(ΩY/k,OY).

By considering the universal derivation δY/k : OY → ΩY/k we obtain a natural map

V(ΩX/k)(Y) → Derk(OY).

Evaluating this last at Y and identifying V(ΩX/k) = W(Ω∗
X/k) yields a natural map

W(Ω∗
X/k)(Y) → Derk

(
OY(Y)

)
.

***

Let g and L be as above. We henceforth assume that R/k is smooth (in particular of 
finite type). We will give now a list of X/k-schemes of Lie algebras that are relevant to 
the definition of Lie algebroids.

Proposition 4.3. There exists an of R/k-scheme on Lie algebras Derk(L) in the étale 
sense such that Derk(L)(S) = Derk(L ⊗R S) for all S/R étale.

Proof. From Proposition 3.1 (ii) it follows that the R-functor W(D̃erk(L)) is in fact an 
affine R-scheme (it is represented by the symmetric algebra of the dual Derk(L)∗ of the 
R-module Derk(L)). We will denote this scheme by Derk(L).
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Assume that S/R is étale. Since W(D̃erk(L))(S) � Derk(L ⊗R S) by (16), each of the 

S-modules W(D̃erk(L))(S) has a natural k-Lie algebra structure. We now address the 
functorial k-Lie algebra nature of this construction.

Let f : S → T be a morphism of étale extensions of R. Consider the diagram

Derk(L) ⊗R S
(Id⊗f)

ψ
S/R/k
L

Derk(L) ⊗R T

ψ
S/R/k
L

Derk(L ⊗R S) Derk(L ⊗R T )

(28)

Both vertical maps are isomorphisms, and the top horizontal map is a k-Lie algebra 
homomorphism. All these maps are functorial in nature. The bottom arrow is hence a 
well-defined map of S-modules

Derk(L)(f) : Derk(L ⊗R S) → Derk(L ⊗R T ) (29)

which is functorial.
We recall a particular case of Cor. 5.4 of [7].

Lemma 4.4. Let S ∈ k-alg, and let M be a perfect Lie algebra over S. For any étale 
extension T/S the canonical map

Derk(M⊗S T ) → Derk(M,M⊗S T ) (30)

is an S-module isomorphism. �
Of course in the above M ⊗S T is viewed as an M-S-module via the adjoint repre-

sentation.
Consider now our étale extension f : S → T . Given d ∈ Derk(M) define dT ∈

Derk(M, M ⊗S T ) by dT (x) = d(x) ⊗ 1 for all x ∈ M. By the previous Lemma dT

extends to a unique derivation dT ∈ Derk(M ⊗S T ). Recall that by the meaning of 
“extension”

dT (x⊗ 1) = dT (x) = d(x) ⊗ 1 (31)

This procedure defines an S-linear map D(f) : Derk(M) → Derk(M ⊗S T ) given by 
d �→ dT . We leave it to the reader to verify that D(f) = Derk(L)(f).

It remains to show that each of the maps D(f) is a k-Lie algebra homomorphism. 
This follows from (31). Indeed if d, d′ ∈ Derk(M), then from the definitions one easily 
sees that [d, d′]T and [dT , d′T ] are two elements of Derk(M ⊗S T ) that have the same 
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restriction to M ⊗ 1. By the uniqueness of the extension the two elements coincide.12
This shows that our map d �→ dT is a k-Lie algebra homomorphism. In particular, the 
vertical maps (and consequently the bottom horizontal map) in (28) are k-Lie algebra 
homomorphisms.

The above provide all the ingredients to finish the proof of the R/k scheme on Lie 
algebras structure (in the étale sense) on Derk(L). Indeed given an étale extension 
f : S → T of R, we set M = L ⊗R S and define

D(f) : Derk(L)(S) = Derk(M) → Derk(M⊗S T ) = Derk(L)(T )

with the aid of the canonical isomorphism L ⊗R S ⊗S T � L ⊗R T .
Let now Y be a scheme étale over X, but not necessarily affine. Then Derk(L)(Y)

still carries a natural structure of Lie algebra over k. Indeed, let 
∐

i Spec(Si) → Y

be an open affine cover of Y, and let f, g : Y → Derk(L) be two morphisms. Let 
fi, gi be the respective restrictions to Spec(Si). Then Si/R is étale for all i, and 
by the above [fi, gi] : Spec(Si) → Derk(L) is well-defined. Moreover, if Spec(Sij) ⊂
Spec(Si) ∩ Spec(Sj) is an open affine subset of the intersection, then

[fi, gi]|Spec(Sij) = [fj , gj ]|Spec(Sij)

by (28) and the fact that fi = fj (rest. gi = gj) on Spec(Sij). As Derk(L) defines a 
sheaf on the étale site, there is a unique global morphism [f, g] : Y → Derk(L) restricting 
to [fi, gi] on Spec(Si). That this so defined bracket is a Lie-algebra structure follows by 
similar arguments relying on the fact that the elements of Derk(L)(Y) are determined by 
there restrictions to affine subsets. Finally, by the same token, if f : Y → Z is a morphism 
in the étale site over X, the induced morphism Derk(L)(f) : Derk(L)(Y) → Derk(L)(Z)
is a k-Lie algebra homomorphism, because applying Derk(L) commutes with localizing 
to affine open subsets. �

The associative analogue of the above is:

Proposition 4.5. There exists an R/k-scheme on Lie algebras Derk(R) in the étale sense 
such that Derk(R)(S) = Derk(S) whenever S/R is étale.

Proof. Apply (17) to the projective R-module of finite type ΩR/k. The scheme under 
consideration is Derk(R) = W(Ω̃∗

R/k). �
Proposition 4.6. W(L̃) has a natural structure of R/k-scheme on Lie algebras in the fppf 
sense. If S/R is any ring extension in k-alg, then W(L̃)(S) = L ⊗R S viewed as a Lie 
algebra over k by restriction of scalars.

12 One cannot conclude anything about the original derivations. For example it is possible that [d, d′] �= 0
but [d, d′]T = 0.
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Proof. By Lemma 2.1(i) L is a projective R-module of finite type. The Proposition now 
follows from the definition of W(L̃). �

In all of the above examples the X/k-scheme on Lie algebras have a natural OX-module 
structure in the sense of [12, Exp. I]. The following example does not.13

Example 4.7. Constant X/k-schemes on Lie algebras. Let l be a Lie algebra over k. The 
corresponding constant scheme lX has a natural X/k-scheme on Lie algebra structure 
(for any Grothendieck topology).

Remark 4.8. The concept of morphisms of R/k-schemes on Lie algebras is the obvious 
one. An important example of a morphism of R/k-schemes on Lie algebras is the functor

ηL : Derk(L) → Derk(R)

defined by means of Lemma 3.2.

What is the connection between Derk(L) and W(L̃)? By the very definition, for each 
étale extension S/R,

Derk(L)(S) = Derk(L ⊗R S).

Thus, Derk(L) is the sheaf associated to the pre-sheaf Y �→ Derk(W(L̃)(Y)). Here by 
pre-sheaf we mean a contra-variant functor on the affine members of the étale site. For 
general Y étale over X, we still obtain a map Derk(L̃)(Y) → Derk(W(L̃)(Y)), but this 
need not be an isomorphism.

Remark 4.9. Let X be a scheme over k, locally of finite type, and let L be a quasi-coherent 
sheaf of OX-Lie algebras on X. To be precise, L is a quasi-coherent sheaf of OX modules, 
such that L(U) is a OX(U)-Lie algebra, compatible with restriction maps. So if U ⊂
X is open affine, then L|U � W(L̃) where L is a Lie-algebra over OX(U), and the 
Lie-algebra structure is the one coming from L. Let Homk(L, L) be the sheaf of k-linear 
sheaf-homomorphisms L → L. Then Derk(L) is the subsheaf of Homk(L, L) defined as

Derk(L)(U) = {δ ∈ Homk(L|U ,L|U ) | δ is a derivation}.

Suppose L is perfect, that is, L(U) is a perfect Lie algebra for every U ⊂ X open 
affine.14 Then Derk(L) is quasi-coherent. Indeed, fix some open affine subset U ⊂ X. 
Let D be the sheaf associated to the OX(U)-module Derk(L(U)). To define a mor-
phism D → Homk(L, L)|U is equivalent to defining a OX(U)-linear map Derk(L(U)) →

13 This will not be used in what follows. It is only given for illustrative purposes.
14 If L is a quasi-coherent sheaf of Lie-algebras, one may define [L, L] as the sheaf associated to the presheaf 
U �→ [L(U), L(U)]. The condition then precisely states that L = [L, L].
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Homk(L|U , L|U ). Let δ ∈ Derk(L(U)). Then for every V ⊂ U affine, δ defines a unique 
k-derivation δV : L(V ) → L(V ) by the base-change formula (16). Covering an arbitrary 
open subset V ⊂ U by open affine subsets Vi, the δVi

glue to give a unique derivation 
δV : L(V ) → L(V ) and this does not depend on the choice of Vi (again using (16)). This 
results in a homomorphism of Lie-algebras over k, D → Homk(L, L)|U . By (16), it is 
also clear, that this is injective. It clearly has image contained in Derk(L)|U . If on the 
other hand, V ⊂ U is affine, and δ : L|V → L|V is any derivation, then the fact that 
(16) is an isomorphism shows that for any affine open Z ⊂ V , δZ must be the derivation 
induced by δV according to (16). But that means δ is the image of δV (as an element 
of D(V )) in Homk(L, L)|V . It follows that D and Derk(L) are isomorphic over U , and 
Derk(L) is quasi-coherent.

Finally, suppose X is smooth over k, and that L is a form of a perfect finite dimensional 
Lie algebra g over k (which means there is an étale cover f : Y → X such that L ⊗OX

OY �
g ⊗k OY). Then L is locally free (as a sheaf of OX-modules) of finite type, and so is 
Derk(L). In particular, W(Derk(L)) is a scheme, isomorphic to V(Derk(L)∗).

To establish that the above reasoning results in a scheme on Lie algebras, it remains 
to show that the Lie algebra structure on Derk(L) transfers to the étale site over X. Now 
note that by general principles, Derk(L) ⊗OX

OY is quasi-coherent, locally isomorphic to 
the sheaf associated to a module of the form Derk(L(U)) ⊗SS

′ = Derk(L(U) ⊗SS
′), where 

OX(U) = S and S′ is the coordinate ring of an open affine subset V of f−1(U). Over V , it 
then follows that Derk(L) ⊗OX

OY|V embeds into Derk(LY)|V , where LY = L ⊗OX
OY. 

These embeddings glue (thanks again to (16) and (28)). In other words, Derk(L) ⊗OX

OY � Derk(LY), giving W(Derk(L)) the structure of a scheme on Lie-algebras on the 
étale site of X. By abuse of notation, we denote this scheme again Derk(L). We then 
have Derk(L)(Y) is a sub-Lie algebra of Homk(LY, LY).

5. Lie algebroids

Let R ∈ k-alg and X = Spec(R). We maintain the notation and terminology of the 
previous sections.

Definition 5.1. An R/k Lie algebroid is given by a triple (M, [−, −]
W(M̃∗), α) where

i) M is a projective R-module of finite type.
ii) [−, −]

W(M̃∗) is an R/k-scheme on Lie algebras on the scheme W(M̃∗) of sections of the 

vector bundle V(M̃). Furthermore, the k-vector space structure on each Lie algebra 
W(M̃∗)(Y) is compatible with the way that k acts on this set via its OY(Y )-module 
structure.

iii) α : V(M̃) → V(Ω̃R/k) is a morphism of vector bundles such that the induced mor-
phism on sections α∗ : W(M̃∗) → W(Ω̃∗

R/k) has the property that for each étale 

extension Y/X, sections ξ, η of W(M̃∗)(Y) and element f of OY(Y) we have
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[ξ, fη] = α∗(ξ)(f)η + f [ξ, η],

where α∗(ξ)(f) is the action of α∗(ξ) on f as a derivation of OY(Y) (recall that by 
Remark 4.2 we have a natural map W(Ω̃∗

R/k)(Y) → Derk
(
OY(Y)

)
.

Remark 5.2. Lie algebroids, from an algebraic point of view, were defined in [2]. Their 
definition is quite general and all of our examples fall within their description. That said, 
our definition of R/k-étale scheme on Lie algebras has no analogue in [2], and that of 
Lie algebroids mimic in spirit much closely the differential construction outlined in the 
Introduction. The étale nature of our construction arises naturally and is part of the 
definition.

Our work complements [2] in as much as it gives a very precise description of Lie 
algebroids based (for a lack of a better expression) on a finite dimensional split simple 
Lie algebra g (in [2] the base Lie algebra is general or, in some cases, semisimple). Our 
anchor map could be defined in general, but it will not lead to Lie algebroids with 
Spec(R) as base unless g is central simple. The reason is that the centroid of g ⊗k R

can be identified with R only for g central simple. It would be interesting to see what 
extra information our R/k-scheme on Lie algebras and Lie algebroids arising from simple 
group schemes shed into the formidable D-universe developed by Beilinson and Berstein. 
We intend to do so in future work.

Remark 5.3. We have again focused our attention in the case where the base scheme X
is affine. For an arbitrary base X the definition is analogous but with M̃ replaced by a 
locally free coherent sheaf M of OX-modules, and Ω̃∗

R/k replaced by Ω∗
X/k.

Remark 5.4. Just as in the differential case, the often seen assumption that the anchor 
map be a Lie algebra homomorphism is superfluous. We have by the property of the 
anchor map that

[ξ, [η, fρ]] = [ξ, f [η, ρ]] + [ξ, α∗(η)(f)ρ].

Applying the anchor map property to both summands of the right hand side of this 
equation, and appealing to the Jacobi identity, easily leads to

α∗([ξ, η])(f)ρ =
(
α∗(ξ) ◦ α∗(η) − α∗(η) ◦ α∗(ξ)

)
(f)ρ

for all sections ξ, η, ρ of W(M̃∗)(Y) and any element f of OY(Y). Thus

α∗([ξ, η]) = [α∗(ξ), α∗(η)]

as desired.
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6. Lie algebroids attached to simple group schemes

Let R/k and g be as above. We will assume throughout that X = Spec(R) is smooth 
over k.

Let G be a reductive group scheme over X, in the sense of [12]. We will say that G is 
simple of type g if the Lie algebra Lie(G) of G is a twisted form of g ⊗k R.15

We will describe explicitly how to attach a Lie algebroid to a simple group scheme G
of type g in two different ways. The first one, a differential approach, will make use of 
the Lie algebra of G only. The second approach, a global one, will be based on G itself.

Remark 6.1. If L is a twisted form of g ⊗k R, there always exist a simple group scheme 
G of type g whose Lie algebra is L. Indeed let S/R be a faithfully flat étale extension 
trivializing L. Let u ∈ Aut(g)(S ⊗R S) = Aut(g ⊗k R)(S ⊗R S) be a one cocycle 
defining L. Let G be the simple simply connected split algebraic k-group of type g. 
Since R is a scheme of characteristic 0 the canonical R-group scheme homomorphism 
Aut(G ×k R) = Aut(g ⊗k R) is an isomorphism [12, Exp. XXVI]. By viewing u as a 
cocycle in Aut(G ×k R)(S ⊗R S) we obtain an R-group scheme G such that G ×R S �
GS = (GR)S . Since the computation of Lie algebras of group schemes commutes with 
twisting we have an R-Lie algebra isomorphism Lie(G) � L as desired

Henceforth G will denote a simple reductive group scheme over R of type g, and L its 
Lie algebra.

6.1. Differential construction of the Lie algebroid of G

Recall the R-module morphism

ηL : Derk(L) → Derk(R) = Hom(ΩR/k, R) = Ω∗
R/k.

Let M = Derk(L)∗. By taking duals and identifying M with an R-submodule of its 
symmetric algebra S(M) we obtain

η∗L ∈ HomR-mod(ΩR/k, S(M)) = HomR-alg(S(ΩR/k), S(M)).16

By Yoneda considerations this corresponds to an element

α ∈ HomR-sch(V(M̃),V(Ω̃R/k)).

15 The concept of simple reductive group scheme is not defined in [12]. This is not surprising since, with 
the natural definition of such concept, the property of being simple is not stable under base change. Being 
simple of type g corresponds in [12] to semisimple groups schemes whose type is constant (of type g). This 
concept is stable by base change.
16 Throughout and without reference we canonically identify a projective R-module of finite type with its 
double dual.



J. Kuttler et al. / Journal of Algebra 487 (2017) 1–19 17
It is evident by construction that at the level of sections α induces the scheme mor-
phism ηL of Remark 4.8. In view of 8 and Proposition 3.1 we obtain

Theorem 6.2. Let L be a twisted form of g ⊗kR where g is a finite dimensional split simple 
Lie algebra over k. Assume that R/k is smooth. Let M = Derk(L)∗, and [−, −]

W(M̃∗) be 
the Lie algebra structure on Derk(L).

i) (M, [−, −]
W(M̃∗), ηL) is an R/k-Lie algebroid.

ii) 0 → W(L̃) → Derk(L) → Derk(R) → 0 is an exact sequence of R/k-schemes on 
Lie algebras.

Proof. Here W(M̃∗) = V(M̃) = Derk(L). And ηL : Derk(L) → Derk(R) is a Lie al-
gebra homomorphism. Let Y/X be an étale extension, and ξ, ζ ∈ Derk(L)(Y) and 
f ∈ OY(Y). We may view Derk(L)(Y) as a sub-Lie algebra of Homk(L̃Y, L̃Y). With 
this identification,

[ξ, fζ] = ξχfζ − χfζξ = (ξχf − χfξ)ζ + χf (ξζ − χfζξ).

It follows that [ξ, fζ] = ηL(ξ)(f)ζ + f [ξ, ζ], as needed.
Regarding the second part, all members of the sequence are vector bundles over X, 

and that the sequence is exact as a sequence of vector bundles is the content of Proposi-
tion 3.1. Restricted to the étale site, the maps are Lie-algebra homomorphisms, and the 
claim follows. �
6.2. Global construction of the Lie algebroid attached to G

For any ring extension T/S we let ΩT/S is the S-module of Kähler differentials of a 
given S-algebra T .

By definition of reductive group scheme G is affine and smooth over X. Thus 
G = Spec(A) where A is a smooth Hopf algebra over R (in particular flat and finitely 
presented). The smoothness of A over R implies (see [5] Theo. 20.5.7) that we have a 
split exact sequence of A-modules

0 → A⊗R ΩR/k → ΩA/k → ΩA/R → 0.

Consider the base change ε : A → R attached to the unit of G, and consider the 
corresponding R-modules ωA/R := R ⊗A ΩA/R and ωA/k := R ⊗A ΩA/k. We then have 
the split exact sequence of R-modules

0 → ΩR/k → ωA/k → ωA/R → 0.

From this it follows (see [3, Ch. II §2 no. 1 Prop. 1]) that we have a split exact sequence 
of R-vector bundles
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0 → V(ω̃A/R) → V(ω̃A/k) → V(Ω̃R/k) → 0. (32)

Theorem 6.3. Let G be a simple group scheme over R of type g, and let L = Lie(G) be 
its Lie algebra (which is thus a twisted form of g ⊗k R). Let the notation be as above.

i) There exists a canonical isomorphism W(L̃) � Lie(G) of R/k-schemes on Lie alge-
bras.

ii) As an R-scheme W(ω̃∗
A/k) is isomorphic to Derk(L). There exists a unique Lie 

algebroid (ωA/k, [ , ]W(ω̃∗
A/k), α) that when taking sections on (32) and under the iden-

tifications of (i) leads to the split exact sequence of R/k-scheme on Lie algebras of 
Theorem 6.2.

In particular one can in a canonical fashion attach to G a Lie algebroid of the form 
(ωA/k, [ , ]W(ω̃∗

A/k), α) where the anchor map α corresponds to ηL and its kernel to W(L).

Proof. We have seen that the scheme of sections of V(Ω̃R/k) is W(Ω̃∗
R/k) = Derk(R). 

By [4, II.4, no. 3.4] we have Lie(G) � V(ω̃A/R). In particular Lie(G) = HomR(ωA/R, R). 
Since G is smooth over R the canonical map Lie(G) → W

(
L̃ie(G)

)
is an isomorphism. 

This provides the canonical isomorphism

W
(
L̃ie(G)

)
� W(ω̃∗

A/R) � V(ω̃A/R).

By taking these identifications into considerations, the rest of the proof follows by 
applying Theorem 6.2. �
Remark 6.4. Consider the algebraic k-group Aut(g). By assumption the R-linear Lie 
algebra L := Lie(G) is such that L ⊗R S � g ⊗k S as Lie algebras over S for some 
faithfully flat étale S/R. In other words L is an S/R-form of g ⊗k S, so that there is a 
cocycle u ∈ Aut(g)(S ⊗R S) such that

L = {x ∈ g⊗k S : up1(x) = p2(x)} ,

here pi : S → S ⊗R S (i = 1, 2) are the inclusions p1(x) = x ⊗ 1, p2(x) = 1 ⊗ x. 
It can be shown that u leads to a descent data on the S-module Derk(g ⊗k S), that 
this descent data preserves the k-Lie algebra structure of Derk(g ⊗k S), and that the 
descended R-module is precisely the k-Lie algebra Derk(L).
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