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1. Introduction and main results

In a celebrated paper, B.H. Neumann [10] showed that for a group G the property 
that each subgroup H has finite index in a normal subgroup of G (i.e., |HG : H| is finite) 
is equivalent to the fact that G has finite derived subgroup (G is finite-by-abelian).

A class of groups with a dual property was considered in [1]. A group G is said to be 
a cf-group (core-finite) if each subgroup H contains a normal subgroup of G with finite 
index in H (i.e., |H : HG| is finite). As Tarski groups are cf, a complete classification 
of cf-groups seems to be rather difficult. However, in [1] and [12] it has been proved 
that a cf-group G whose periodic quotients are locally finite is abelian-by-finite and, if 
G is periodic, there exists an integer n such that |H : HG| ≤ n for all H ≤ G (say 
that G is bcf, boundedly cf) and that a locally graded bcf-group is abelian-by-finite. 
Furthermore, an easy example of a metabelian (and even hypercentral) group which is
cf but not bcf is given. It seems to be a still open question whether every locally graded
cf-group is abelian-by-finite. Recall that a group is said to be abelian-by-finite if it has 
an abelian subgroup with finite index and that a group is said to be locally finite (locally 
graded, respectively) if each non-trivial finitely generated subgroup is finite (has a proper 
subgroup with finite index, respectively).

With the aim of considering the above properties in a common framework, recall that 
two subgroups H and K of a group G are said to be commensurable if H ∩K has finite 
index in both H and K. This is an equivalence relation and will be denoted by ∼. Clearly, 
if H ∼ K, then (H ∩ L) ∼ (K ∩ L) and HM ∼ KM for each L ≤ G and M � G.

Thus, in the present paper we consider the class of cn-groups, that is, groups in which 
each subgroup is commensurable with a normal subgroup. Into details, for a subgroup H
of a group G define δG(H) to be the minimum index |HN : (H ∩N)| with N �G. Then 
G is a cn-group if and only if δG(H) is finite for all H ≤ G. Clearly, subgroups and 
quotients of cn-groups are also cn-groups.

Note that if a subgroup H of a group G is commensurable with a normal subgroup N , 
then S := (H ∩N)N has finite index in H. Thus the class of cn-groups is contained in 
the class of sbyf-groups, that is, groups in which each subgroup H contains a subnormal 
subgroup S of G such that the index |H : S| is finite (i.e., H is subnormal-by-finite). 
It is known that locally finite sbyf-groups are (locally nilpotent)-by-finite (see [7]) and 
nilpotent-by-Chernikov (see [3]).

The extension of a finite group by a cn-group is easily seen to be a cn-group, see 
Proposition 1.1 below. Moreover, from Proposition 9 in [4] it follows that for an abelian-
by-finite group properties cn and cf are equivalent. However, for each prime p there is 
a nilpotent p-group with the property cn which is neither finite-by-abelian nor abelian-
by-finite, see Proposition 1.2.

Our main result is the following.

Theorem A. Let G be a cn-group such that every periodic image of G is locally finite. 
Then G is finite-by-abelian-by-finite.
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Here by a finite-by-abelian-by-finite group we mean a group which has a finite-by-
abelian subgroup of finite index. The proof of Theorem A will be given in Section 3. The 
strategy of the proof will be to reduce to the case when G is nilpotent and then to apply 
techniques of nilpotent groups theory. To this end, in Section 2, we will study the action 
of a cn-group on its abelian sections.

We will consider also bcn-groups, that is, groups G for which there is n ∈ N such that 
δG(H) ≤ n for all H ≤ G and prove the following theorem.

Theorem B. Let G be a finite-by-abelian-by-finite group.

i) G is cn if and only if it is finite-by-cf.
ii) G is bcn if and only if it is finite-by-bcf.

It follows that if the group G is periodic and finite-by-abelian-by-finite, then G is
bcn if and only if it is cn. Then we consider non-periodic finite-by-abelian-by-finite
bcf-groups in Proposition 3.2.

The more restrictive property bcn remains treatable when we consider the wider class 
of locally graded groups.

Theorem C. A locally graded bcn-group is finite-by-abelian-by-finite.

Preliminaries

Our notation is mostly standard. For undefined terminology and basic facts we refer 
to [11]. If Γ is a group acting on a group G and H ≤ G, we denote HΓ := ∩γ∈ΓH

γ and 
HΓ := 〈Hγ | γ ∈ Γ〉. We say that H is Γ-invariant (or a Γ-subgroup) if HΓ = H.

We first point out a sufficient condition for a group to be cn (or even bcn) and give 
examples of non-trivial cn-groups.

Proposition 1.1. Let G be a group with a normal series G0 ≤ G1 ≤ G, where G0 and 
G/G1 have finite order, m and n respectively.

If H ≤ G, then H is commensurable with H1 := (H ∩ G1)G0 ≤ G1 and δG(H) ≤
mn · δG/G0(H1/G0).

In particular, if each subgroup of G1/G0 is commensurable with a normal subgroup of 
G/G0, then G is a cn-group. �
Proposition 1.2. For each prime p there is a nilpotent p-group with the property bcn, 
which is neither abelian-by-finite nor finite-by-abelian.

Proof. Consider a sequence Pn of isomorphic groups with order p4 defined by Pn :=
〈xn, yn | xp3

n = ypn = 1, xyn
n = x1+p2

n 〉 = 〈xn〉 � 〈yn〉 where clearly P ′
n = 〈xp2

n 〉 has order p. 
Let P := Drn∈N Pn and consider the automorphism γ of P such that xγ

n = x1+p
n and 
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yγn = yn, for each n ∈ N. Clearly, γ has order p2 (2 resp.) if p �= 2 (if p = 2 resp.), it acts 
as the automorphism x 	→ x1+p on P/P ′ (which has exponent p2) and acts trivially on P ′

(which is elementary abelian). Finally let N := 〈xp2

0 xp2

n | n ∈ N〉. Then N is a γ-invariant 
subgroup of P ′ with index p. Thus the p-group G := (P � 〈γ〉)/N is a bcn-group by 
Proposition 1.1 applied to the series P ′/N ≤ P/N ≤ G.

We have that G′ is infinite, since for each n we have xp
n = [xn, γ] ∈ [Pn, γ] > P ′

n. 
Moreover, we have that gN ∈ Z(P/N) if and only if ∀i [g, Pi] ≤ N , and N ∩ Pi = 1. 
Thus Z(P/N) = Z(P )/N where Z(P ) = Drn〈xp

n〉 has infinite index in P .
If, by contradiction, G is abelian-by-finite, then there is an abelian normal sub-

group A/N of P/N with finite index. Then for some m ∈ N we have P = AF , where 
F = Drn<m Pn is a finite normal subgroup of P . Therefore P/N is center-by-finite, 
a contradiction. �
2. Automorphisms of abelian groups

Recall that an automorphism γ of a group A is said to be a power automorphism if 
Hγ = H for each subgroup H ≤ A. It is well-known (see [11]) that, if A is an abelian 
p-group, then there exists a p-adic integer α such that aγ = aα for all a ∈ A. Here aα

stands for an, where n is any integer congruent to α modulo the order of a. On the other 
hand, a power automorphism of a non-periodic abelian group is either the identity or 
the inversion map.

As in [4], if Γ is a group acting on an abelian group A, we consider the following 
properties:

p) ∀H ≤ A H = HΓ;
ap) ∀H ≤ A |H : HΓ| < ∞;
bp) ∀H ≤ A |HΓ : H| < ∞;
cp) ∀H ≤ A ∃K = KΓ ≤ A such that H ∼ K (H, K are commensurable).

Obviously both ap and bp imply cp. Moreover, from Propositions 8 and 9 in [4] it 
follows that these three properties are equivalent, provided A is abelian and Γ is finitely 
generated, while they are in fact different in the general case even when A and Γ are 
elementary abelian p-groups. On the other hand, the properties ap and bp have been 
previously characterized in [6] and [2] respectively, as we are going to recall.

To shorten statements we define a further property:

p̃) Γ has p on the factors of a Γ-series 1 ≤ V ≤ D ≤ A where
i) V is free abelian of finite rank,
ii) D/V is divisible periodic with finite total rank,
iii) A/D is periodic and has finite p-exponent for each prime p ∈ π(D/V ).



52 C. Casolo et al. / Journal of Algebra 496 (2018) 48–60
Theorem 2.1 ([6], [2]). Let Γ be group acting on an abelian group A. Then:

a) Γ has ap on A if and only if there is a Γ-subgroup A1 such that A/A1 is finite and 
Γ has either p or p̃ on A1.

b) Γ has bp on A if and only if there is a Γ-subgroup A0 such that A0 is finite and Γ
has either p or p̃ on A/A0.

In the next statement we give a characterization of the property cp along the same 
lines.

Theorem 2.2. Let Γ be group acting on an abelian group A. Then:

c) Γ has cp on A if and only if there are Γ-subgroups A0 ≤ A1 ≤ A such that A0 and 
A/A1 are finite and Γ has either p or p̃ on A1/A0.

The proof of Theorem 2.2 is at the end of this section. Here we deduce a corollary.

Corollary 2.3. For a group Γ acting on an abelian group A, the following are equivalent:

a) Γ has ap on A/A0 for a finite Γ-subgroup A0 of A,
b) Γ has bp on a finite index Γ-subgroup A1 of A,
c) Γ has cp on A. �

Let us state a couple of elementary basic facts.

Proposition 2.4. Let Γ be group acting on a locally nilpotent periodic group A. Then Γ
has ap, bp, cp on A, respectively, if and only if Γ has ap, bp, cp on finitely many 
primary components of A, respectively, and p on all the other ones.

Proof. This proof uses the same argument as in Proposition 4.1 in [5]. The sufficiency of 
the condition is clear once one notes that for each H ≤ A it follows that H = Drp(H∩Ap), 
where Ap denotes the p-component of A.

Concerning necessity, suppose Γ does not have p on the primary p-component Ap of 
A for infinitely many primes p. Then for each such p there is Hp ≤ Ap which is not 
Γ-invariant. We have that the subgroup generated by the Hp’s is not commensurable to 
any Γ-subgroup. �
Lemma 2.5. Let Γ be a group acting on an abelian group A. If Γ has cp on A, then:

i) Γ has p on the largest periodic divisible subgroup of A;
ii) if A is torsion-free, then each γ ∈ Γ acts on A by either the identity or the inversion 

map.
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Proof. Statement (i) follows from Lemma 4.3 in [5]. Concerning (ii), by Propositions 3.3 
and 3.2 of [5] we have that there are coprime non-zero integers n, m such that am = (aγ)n
for each a ∈ A. Consider H such that 1 �= H := 〈a0〉 ≤ A. Then there is a Γ-invariant 
subgroup K of A which is commensurable with H. Thus there is r ∈ N such that Kr is 
a Γ-invariant nontrivial subgroup of H. This forces mn = ±1. �

Now we prove some lemmas. In the first one we do not require that the group A is 
abelian.

Lemma 2.6. Let Γ be a group acting on an fc-group A. If Γ has cp on A, then Γ has
bp on the subgroup X := { a ∈ A | 〈a〉Γ is finite} of A.

Proof. Notice that X is the set of elements a of finite order of A such that |Γ : CΓ(a)|
is finite, so X is a locally finite Γ-subgroup of A. For any H ≤ X there is K ≤ X such 
that H ∼ K = KΓ ≤ A. Then there is a finite subgroup F ≤ X such that H ≤ KF . 
Thus HΓ ≤ KFΓ and |HΓ : H| ≤ |FΓ| · |HK : H| is finite. �
Lemma 2.7. Let Γ be a group acting on a p-group A which is the direct product of cyclic 
groups. If Γ has cp on A, then the subgroup X := { a ∈ A | 〈a〉Γ is finite} has finite index 
in A.

Proof. Assume by contradiction that A/X is infinite.
Let us see, by elementary facts, that there is a sequence (an) of elements of A such 

that

1) 〈an|n ∈ N〉 = Drn∈N〈an〉,
2) AI/AI ∩X is infinite, for each infinite subset I of N, where AI :=〈an|n ∈ I〉.

In fact, if A/X has finite rank, it has a Prüfer subgroup Q/X. Let Y be a countable 
subgroup of A such that Q = Y X. By Kulikov’s Theorem (see [11]) Y is the direct 
product of cyclic groups, so that we may choose elements an ∈ Y such that 〈an|n ∈
N〉 = Drn∈N〈an〉 ≤ Y and |anX| < |an+1X|. The claim holds. Similarly, if A/X has 
infinite rank, consider a countably infinite subgroup Q/X of the socle of A/X. As above, 
let Y be a countable subgroup of A such that Q = Y X. Then we may choose elements 
an ∈ Y which are independent mod X and generate their direct product as claimed.

We claim now that there are sequences of infinite subsets In, Jn of N and Γ-subgroups 
Kn ≤ A such that for each n ∈ N:

3) In ∩ Jn = ∅ and In+1 ⊆ Jn
4) Kn ∼ AIn

5) (K1 . . .Ki) ∩ (AI1 . . . AIn) ≤ (AI1 . . . AIi), ∀i ≤ n.
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To prove the claim, proceed by induction on n. Choose an infinite subset I1 of N such 
that J1 := N \ I1 is infinite. By the cp-property there exists K1 = KΓ

1 commensurable 
with AI1 .

Suppose we have defined Ij, Jj and Kj for 1 ≤ j ≤ n such that (3–5) hold. Since 
(K1 . . .Kn) ∼ (AI1 . . . AIn), there is m ∈ N such that

6) (K1K2 . . .Kn) ∩AN ≤ (AI1AI2 . . . AIn)〈a1, . . . , am〉.

Let In+1 and Jn+1 be disjoint infinite subsets of Jn \ {1, . . . , m}. By cp-property there 
exists Kn+1 = KΓ

n+1 commensurable with AIn+1 . By the choice of In+1 it follows that

7) (K1 . . .Ki) ∩ (AI1 . . . AIn+1) ≤ (K1 . . .Ki) ∩ (AI1 . . . AIn) ∀i ≤ n

and so (5) holds for n + 1, as required. The claim is now proved.

Note that by (2) and (5) it follows that AIn/AIn ∩X is infinite for each n ∈ N and 
that also the following property holds

8) (K1K2 . . .Kn) ∩ Ā ≤ (AI1AI2 . . . AIn) ∀n, where Ā := Drn∈N AIn .

Now for each n ∈ N, choose an element bn ∈ (AIn ∩ Kn) \ X. Then we have B :=
〈bn | n ∈ N〉 = Drn〈bn〉, where 〈bn〉Γ is infinite and 〈bn〉Γ ≤ Kn ∼ AIn , so that

9) 〈bn〉Γ ∩AIn is infinite for each n.

Since there exists B0 = BΓ
0 ∼ B, we may take

B∗ := (B0 ∩B)Γ = (B∗ ∩B)Γ ≤ BΓ where B∗ ∼ B.

Now B∗/(B∗ ∩ B) and B/(B∗ ∩ B) are both finite and there is n ∈ N such that if 
Bn := 〈b1, . . . , bn〉 we have

(B∗ ∩B)Γ = B∗ ≤ (B∗ ∩B)BΓ
n and

B = (B∗ ∩B)Bn.

Since bn ∈ Kn for each n, we have Bn ≤ K̄n := K1K2 . . .Kn and BΓ = (B∗∩B)ΓBΓ
n ≤

(B∗ ∩ B)BΓ
n ≤ (B∗ ∩ B)K̄n ≤ BK̄n, so that BΓ ∩ Ā ≤ BK̄n ∩ Ā = B(K̄n ∩ Ā) ≤

BAI1AI2 . . . AIn by (8) above.
Thus 〈bn+1〉Γ ∩ AIn+1 ≤ BΓ ∩ AIn+1 ≤ (BAI1AI2 . . . AIn) ∩ AIn+1 = 〈bn+1〉 is finite, 

a contradiction with (9). �
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Lemma 2.8. Let Γ be a group acting on an abelian periodic reduced group A. If Γ has cp 
on A, then there are Γ-subgroups A0 ≤ A1 ≤ A such that A0 and A/A1 are finite and Γ
has p on A1/A0.

Proof. By Proposition 2.4 it is enough to consider the case when A is a p-group. If A is the 
direct product of cyclic groups, by Lemma 2.7 we have that A1 := { a ∈ A | 〈a〉Γ is finite}
has finite index in A. Further, by Lemma 2.6, Γ has bp on A1. Then the statement follows 
from Theorem 2.1.

Let A be any reduced p-group and B∗ be a basic subgroup of A. Then there is 
B = BΓ ∼ B∗. Since A/B∗ is divisible, then the divisible radical of A/B has finite 
index. Thus we may assume that A/B is divisible. By Kulikov’s Theorem (see [11]), also 
B is a direct product of cyclic groups, therefore by the above there are Γ-subgroups 
B0 ≤ B1 ≤ B such that B0 and B/B1 are finite and Γ has p on B1/B0. We may assume 
B0 = 1. Also, since A/B1 is finite-by divisible, it is divisible-by-finite and we may assume 
it is divisible.

Let γ ∈ Γ and α be a p-adic integer such that xγ = xα for all x ∈ B1. Consider the 
endomorphism γ−α of A and note that B1 ≤ ker(γ−α). Thus A/ ker(γ−α) � im(γ−α)
is both divisible and reduced, hence trivial. It follows γ = α on the whole of A. �
Proof of Theorem 2.2. For the sufficiency of the condition note that for any subgroup 
H ≤ A we have H ∼ H ∩A1 and the latter is in turn commensurable with a Γ-subgroup 
since Γ has bp on A1 by Theorem 2.1.

Concerning necessity, we first prove the statement when A is periodic. Let A = D×R1, 
where D is divisible and R1 is reduced. Then there is a subgroup R = RΓ ∼ R1. Thus 
DR and D ∩ R are Γ-subgroups of A with finite index and order respectively. Then we 
can assume A = D × R. Let X := { a ∈ A | 〈a〉Γ is finite}. Clearly D ≤ X, as Γ has p

on D by Lemma 2.5. On the other hand, X ∩R has finite index in R by Lemma 2.8. It 
follows A/X is finite and by Lemma 2.6 and Theorem 2.1 the statement holds.

In the non-periodic case, note that if V0 is a free subgroup of A such that A/V0

is periodic, then there is V1 = V Γ
1 ∼ V0. Let n := |V1/(V0 ∩ V1)|. Thus by applying 

Lemma 2.5 to the Γ-subgroup V := V n
1 we have that there is a free abelian Γ-subgroup 

V such that A/V is periodic and each γ ∈ Γ acts on V by either the identity or the 
inversion map.

Suppose that V has finite rank. Consider now the action of Γ on the periodic group 
A/V and apply the above. Then there is a series V ≤ A0 ≤ A1 ≤ A such that A0/V

and A/A1 are finite and Γ has either p or p̃ on A1/A0. Since A0 has finite torsion 
subgroup T we can factor out T and assume A0 = V . Then Γ has either p or p̃ on A1 as 
straightforward verification shows.

Suppose finally that V has infinite rank. Let V2 ≤ V be such that V/V2 is divisible 
periodic and its p-component has infinite rank for each prime p. We may assume V := V2. 
By the above case when A is periodic, there is a Γ-series V ≤ A0 ≤ A1 ≤ A such that 
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A0/V and A/A1 are finite and Γ has p on A1/A0. We may factor out the torsion subgroup 
of A0, as it is finite, and assume A0 = V .

Again let V2 ≤ V be such that V/V2 is divisible periodic and its p-component has 
infinite rank for each prime p. Let γ ∈ Γ and, for each prime p, let αp be a p-adic integer 
such that xγ = xαp for all x in the p-component of A1/V . Let ε = ±1 be such that 
xγ = xε for all x ∈ V . By Lemma 2.5, γ has p on the maximum divisible subgroup 
Dp/V2 of the p-component of A1/V2. Thus αp = ε on Dp/V2. Therefore xγ = xε for all 
x ∈ V and for all x ∈ A1/V . We claim that aγ = aε for each a ∈ A1. To see this, for any 
a ∈ A1 consider n ∈ N such that an ∈ V . Then there is v ∈ V such that aγ = aεv. Hence 
anε = (an)γ = (aγ)n = (aεv)n = anεvn. Thus vn = 1. Therefore, as V is torsion-free, we 
have v = 1, as required. �
3. Proofs of the theorems

Recall that locally finite cf-groups are abelian-by-finite and bcf (see [1]).

Proof of Theorem B. It follows from Proposition 1.1 and Proposition 3.1 below. �
Proposition 3.1. Let G be an abelian-by-finite group.

i) if G is cn, then G is cf;
ii) if G is bcn, then G is bcf.

Proof. Let A be a normal abelian subgroup with finite index r. Then each H ≤ A

has at most r conjugates in G. If δG(H) ≤ n < ∞ then for each g ∈ G we have 
|H : (H ∩ Hg)| ≤ 2δG(H) ≤ 2n hence |H/HG| ≤ (2n)r. More generally, if H is any 
subgroup of G, then |H/HG| ≤ r(2n)r. �

Let us characterize bcf-groups among abelian-by-finite cf-groups.

Proposition 3.2. Let G be a non-periodic group with an abelian normal subgroup A with 
finite index. Then the following are equivalent:

i) G is a bcf-group;
ii) G is a cf-group and there is B ≤ A such that B has finite exponent, B�G and each 

g ∈ G acts by conjugation on A/B by either the identity or the inversion map.

Proof. Let T be the torsion subgroup of A. By Lemma 2.5, for each g ∈ G there exists 
εg = ±1 such that γ acts on A/T as the automorphism x 	→ xεg . Then the equivalence 
of (i) and (ii) holds with B := 〈Ag−εg | g ∈ G〉, by Theorem 3 of [4]. �

To prove Theorem A, our first step is a reduction to nilpotent groups.
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Lemma 3.3. A soluble p-group G with the property cn is nilpotent-by-finite.

Proof. By Theorem 2.2, one may refine the derived series of G to a finite G-series S such 
that G has p on each infinite factor of S. Recall that a p-group of power automorphisms 
of an abelian p-group is finite (see [11]). Then the stability group S ≤ G of the series S, 
that is, the intersection of the centralizers in G of the factors of the series, has finite 
index in G. On the other hand, by a theorem of Ph. Hall, S is nilpotent. �

We recall now an elementary property of nilpotent groups.

Lemma 3.4. Let G be a nilpotent group with class c. If G′ has finite exponent e, then 
G/Z(G) has finite exponent dividing ec.

Proof. Argue by induction on c, the statement being clear for c = 1. Assume c > 1
and that G/Z has exponent dividing ec−1, where Z/γc(G) := Z(G/γc(G)). Then for all 
g, x ∈ G we have [gec−1

, x] ∈ γc(G) ≤ G′ ∩Z(G). Therefore 1 = [gec−1
, x]e = [gec , x], and 

ge
c ∈ Z(G), as claimed. �
The next lemma follows easily from Lemma 6 in [9].

Lemma 3.5. Let G be a nilpotent p-group and N a normal subgroup such that G/N is 
an infinite elementary abelian group. If H and U are finite subgroup of G such that 
H ∩ U = 1, there exists a subgroup V of G such that U ≤ V , H ∩ V = 1 and V N/N is 
infinite. �

We deduce a technical lemma which is a tool for our purpose.

Lemma 3.6. Let G be a nilpotent p-group and N be a normal subgroup such that G/N is 
an infinite elementary abelian group. If N contains the fc-center of G and G′ is abelian 
with finite exponent, then there are subgroups H, U of G such that H ∩ U = 1, with 
injective maps n 	→ hn ∈ H and (i, n) 	→ ui,n ∈ [G, h−1

i hn] ∩ U , where i, n ∈ N, i < n.

Proof. Let us show that for each n ∈ N there is an (n +1)-uple vn := (hn, u0,n, u1,n, . . . ,
un−1,n) of elements of G such that:

1) {h1, . . . , hn} is linearly independent modulo N ;
2) ui,n ∈ [G, h−1

i hn] ∀i ∈ {0, . . . , n − 1};
3) {uj,h | 0 ≤ j < k ≤ n} is Z-independent in G′;
4) Hn ∩ Un = 1, where Hn := 〈h1, . . . , hn〉 and Un := 〈uj,h | 0 ≤ j < k ≤ n〉.

Then the statement is true for H :=
⋃

Hn and U :=
⋃

Un.

n∈N n∈N
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Let h0 := 1 and choose h1 ∈ G \N . Since N contains the fc-center F of G, we have 
that h1 has an infinite numbers of conjugates in G, hence [G, h1] is infinite and residually 
finite. Thus we may choose u0,1 ∈ [G, h1] such that 〈u0,1〉 ∩ 〈h1〉 = 1.

Assume then that we have defined vi for i ≤ n, that is, we have elements h0, . . . , hn, 
uj,k, with 0 ≤ j < k ≤ n such that conditions (1–4) hold. To define an adequate vn+1, 
note that by Lemma 3.5 we have that there exists Vn ≤ G such that Hn ≤ Vn, Un∩Vn = 1
and VnN/N is infinite. Then choose

i) hn+1 ∈ Vn \NUnHn.

Note that hn+1 /∈ FHn ≤ NHn, so that {h1, . . . , hn+1} is independent mod F . In 
particular ∀i ∈ {0, . . . , n}, h−1

i hn+1 /∈ F , hence also [G, h−1
i hn+1] is infinite. Since G′ is 

residually finite, we may recursively choose u0,n+1, . . . , un,n+1 such that ∀i ∈ {0, . . . , n}

ii) ui,n ∈ [G, h−1
i hn];

iii) 〈ui,n+1〉 ∩ Un〈uh,n+1 | 0 ≤ h < i〉Hn+1 = 1.

Then properties (1–3) hold for vn+1. Finally suppose there are h ∈ Hn, u ∈ Un, 
s, t0, . . . , tn ∈ Z such that

iv) a = hhs
n+1 = uut1

0,n+1 · · ·utn
n,n+1 ∈ Hn+1 ∩ Un+1.

Then from (iii) it follows utn
n,n+1 = . . . = ut1

0,n+1 = 1. Hence a = hhs
n+1 = u ∈ Vn∩Un = 1

and 4 holds. �
Lemma 3.7. Let G be a nilpotent p-group. If G is cn, then G′ has finite exponent.

Proof. If, by contradiction, G′ has infinite exponent, then the same happens to the 
abelian group G′/γ3(G) and there is N such that G′ ≥ N ≥ γ3(G) and G′/N is a Prüfer 
group. We may assume N = 1, that is, G′ itself is a Prüfer group and G′ ≤ Z(G). Let 
us show that for any H ≤ G we have |HG : H| < ∞, hence G′ is finite, a contradiction. 
In fact we have that, by the cn-property, there is K �G such that K ∼ H. Thus H has 
finite index in HK and we can also assume H = HK, that is, H/HG is finite. Thus, we 
can assume HG = 1 and H ∩ G′ = 1, that is, H is finite with order pn and HG′ is an 
abelian Chernikov group. It follows that H is contained in the n-th socle S of HG′ �G, 
where S is finite and normal in G, as required. �
Lemma 3.8. Let G be a nilpotent p-group. If G is cn, then G is finite-by-abelian-by-finite.

Proof. Let G be a counterexample. Then both G′ and G/Z(G) are infinite. However, 
they have finite exponent by Lemmas 3.7 and 3.4. Moreover, by Lemma 2.6, the fc-center 
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F of G is finite-by-abelian. Thus F has infinite index in G. On the other hand, G/F has 
finite exponent, since F ≥ Z(G).

Then N := FGpG′ has infinite index in G, otherwise the abelian group G/FG′ has 
finite rank and finite exponent, hence it is finite. This implies that the nilpotent group 
G/F is finite, a contradiction.

If G′ is abelian we are in a position to apply Lemma 3.6 and obtain infinitely many 
elements and subgroups hn ∈ H, ui,n ∈ U as in that statement. By cn-property there 
is K such that H ∼ K � G. So that the set {hn(H ∩ K) / n ∈ N} is finite. Hence 
there is i ∈ N and an infinite set I ⊆ N \ {1, . . . , i} such that for each n ∈ I we have 
h−1
i hn ∈ H ∩ K and ui,n ∈ U ∩ [G, H ∩ K] ≤ U ∩ K. Therefore U ∩ K is infinite, in 

contradiction with U ∩K ∼ U ∩H = 1.
For the general case, proceed by induction on the nilpotency class c > 1 of G and 

assume that the statement is true for G/Z(G) and even that this is finite-by-abelian. 
Then there is a subgroup L ≤ G such that G/L is abelian and L/Z(G) is finite. Thus L′

is finite and, by the above, G/L′ is finite-by-abelian-by-finite, a contradiction. �
Let us consider now non-periodic cn-groups.

Lemma 3.9. Let G be a cn-group and A = A(G) its subgroup generated by all infinite 
cyclic normal subgroups. Then G/A is periodic, A is abelian and each g ∈ G acts on A
by either the identity or the inversion map. In particular, |G/CG(A)| ≤ 2.

Proof. For any x ∈ G there is N �G which is commensurable with 〈x〉. Then n := |N :
(N ∩ 〈x〉)| is finite. Thus Nn! ≤ 〈x〉 where Nn! � G. Hence G/A is periodic.

It is clear that A is abelian. Let g ∈ G. If 〈a〉 �G and a has infinite order, then there 
is εa = ±1 such that ag = aεa . On the other hand, by Lemma 2.5, there is ε = ±1 such 
that for each a ∈ A there is a periodic element ta ∈ A such that ag = aεta. It follows 
aεa−ε = ta. Therefore εa = ε is independent of a, as required. �
Proof of Theorem A. Recall from the Introduction that all subgroups of G are 
subnormal-by-finite. If G is periodic, then, by the above quoted results in [7] and [3]
respectively, we may assume that G is locally nilpotent and soluble. Then, by Proposi-
tion 2.4, only finitely many primary components are non-abelian. Thus we may assume 
G is a p-group and apply Lemma 3.3 and Lemma 3.8. It follows that G is finite-by-
abelian-by-finite.

To treat the general case, consider A = A(G) using the notation of Lemma 3.9. We 
may assume A is central in G. Let V be a torsion-free subgroup of A such that A/V is 
periodic. Then G/V is locally finite and we may apply the above. Thus there is a series 
V ≤ G0 ≤ G1 ≤ G such that G acts trivially on V , G1/G0 is abelian, while G0/V and 
G/G1 are finite. Then we can assume G = G1 and note that the stabilizer S of the series 
has finite index. Since S is nilpotent (by Ph. Hall Theorem) we can assume that G = S

is nilpotent. If T is the torsion subgroup of G, then V T/T is contained in the center of 
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G/T . Since all factors of the upper central series of G/T are torsion-free we have G/T

is abelian. Thus G′ ≤ T ∩G0 is finite. �
Proof of Theorem C. If the statement is false, by Theorem A we may assume that there 
is a counterexample G that is periodic and not locally finite. Also we may assume G is 
finitely generated and infinite. Let R be the locally finite radical of G. By Theorem A
again, R is finite-by-abelian-by-finite. By Theorem B(i), there is a finite subgroup G0�G

such that R/G0 is abelian-by-finite. We may assume G0 = 1, so that R is abelian-by-
finite.

We claim that Ḡ := G/R has finite exponent at most (n + 1)! where n is such 
that n ≥ δG(H) for each H ≤ G. In fact, for each x ∈ Ḡ, there is N̄ � Ḡ such that 
|N̄ : (N̄ ∩ 〈x〉)| ≤ n. Thus N̄n! ≤ 〈x〉 and N̄n! � G. Hence N̄n! = 1 and xn·n! = 1.

By the positive answer (for all exponents) to the Restricted Burnside Problem, there 
is a positive integer k such that every finite image of Ḡ has order at most k. Since Ḡ
is finitely generated, this means that the finite residual K̄ of Ḡ has finite index and is 
finitely generated as well. Since also Ḡ is locally graded (see [8]), we have K̄ = 1 and Ḡ
is finite. Therefore G is abelian-by-finite, a contradiction. �
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