
Journal of Algebra 501 (2018) 303–327
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the completion of the mapping class group of 
genus two

Tatsunari Watanabe
Department of Mathematics, Purdue University, West Lafayette, IN, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 January 2017
Available online 11 January 2018
Communicated by Vera Serganova

Keywords:
Moduli space of curves
Moduli space of principally polarized 
abelian varieties
Mapping class groups
Unipotent completion
Hodge Lie algebra
Presentation of nilpotent Lie 
algebras
Classical modular forms
Special values of L-functions

In this paper, we will study the Lie algebra of the prounipotent 
radical of the relative completion of the mapping class group of 
genus two. In particular, we will partially determine a minimal 
presentation of the Lie algebra by determining the generators 
and bounding the degree of the relations of it.
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1. Introduction

Let X be a complex smooth algebraic variety. Fix a point x in X. The Lie algebra 
g of the unipotent (Malcev) completion over Q of π1(X, x) carries a natural Q-MHS. 
A minimal presentation of GrW• g was studied by Morgan in [14]. It is generated in 
weight −1 and −2 by H1(X, Q) and has relations in weight −2, −3, and −4 coming from 
H2(X, Q). Denote by Mg the moduli stack of smooth projective curves of genus g over C. 
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Assume that g ≥ 2. It will be considered as an orbifold in this paper. It is a natural 
problem to look for a presentation of the Lie algebra of the unipotent completion of the 
orbifold fundamental group πorb

1 (Mg, x) of Mg, since Mg is smooth and has a finite 
cover by a smooth algebraic variety. The issue is that the rational homology H1(Mg, Q)
vanishes and hence the unipotent completion is trivial. Instead, we will consider the 
relative completion of a discrete group due to Deligne, which generalizes the unipotent 
completion of a group. Associated to the universal family f : Cg → Mg, there is a natural 
monodromy representation in the orbifold sense

ρx : πorb
1 (Mg, x) → Sp(H1(C,Q)),

where C is the fiber of f over x. The orbifold fundamental group πorb
1 (Mg, x) is nat-

urally isomorphic to the mapping class group Γg. It is the group of isotopy classes of 
orientation-preserving diffeomorphisms of a compact oriented surface Sg of genus g. The 
relative completion Gg of Γg with respect to ρx is the inverse limit of all algebraic group 
G over Q that is an extension of Spg by a unipotent group over Q and such that there 
is a Zariski-dense representation φG : Γg → G(Q) making the diagram

Γg

ρx
φG

G(Q) Sp(H1(C,Q))
∼= Spg(Q)

commute, where the isomorphism Sp(H1(C, Q)) ∼= Spg(Q) is given by fixing a symplectic 
basis for H1(C, Q). The completion Gg is a proalgebraic group over Q that is an extension 
of Spg with a prounipotent group Ug over Q. In [8], Hain further developed the theory 
of relative completion and constructed a canonical MHS on the Lie algebra ug of Ug. In 
this paper, we will study the associated graded Lie algebra GrW• ug for g = 2.

Hain proved in [6,9] that for g ≥ 4, the Lie algebra ug is generated in weight −1 and 
quadratically presented and that for g = 3, it is generated in weight −1 and admits 
quadratic and cubic relations. Furthermore, Hain used this result to prove that the Lie 
algebra tg of the unipotent completion of the Torelli group Tg for g ≥ 3 is finitely 
presented with quadratic and possible cubic relations. This gave an important insight 
on the open problem of the finite presentation of Tg for g ≥ 3. It is known that Tg is 
finitely generated for g ≥ 3, but for any g ≥ 3, it remains open whether or not Tg is 
finitely presented. For the case when g = 2, Mess showed in [13] that T2 is countably 
generated free group. Therefore, the Lie algebra t2 is simply the inverse limit of all 
nilpotent quotients of the free Lie algebra generated by H1(T2, Q). However, our main 
result suggests that the Lie algebras t2 and u2 are essentially different, while for g ≥ 3, 
tg is the central extension of ug by Ga (see [5]).

Hain used the Johnson’s fundamental work [3] to determine the generators and Ka-
banov’s theorem [11] on H2(Mg, V), where V is a symplectic local system, to bound 
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the degree of relations, which then allowed him to determine explicitly the relations by 
producing certain commuting two elements in the Torelli group. In this paper, we will 
partially extend Hain’s work to the case when g = 2. More precisely, we will determine 
the generators of the graded Lie algebra GrW• u2 and bound the degree of its relations.

Let Va+b denote the irreducible rational representation of Sp2 corresponding to the 
partition n = a + b with a ≥ b of a nonnegative integer n. Then we have the local system 
Va+b over M2 that comes from the representation Va+b. We can consider Va+b as a 
variation of Hodge structure of weight a + b. Fix a point x = [C] in M2. Then the fiber 
of Va+b over x is a Hodge structure of weight a + b and as an Sp2 representation, it is 
isomorphic to Va+b. We simply denote the fiber by Va+b. Let Va+b(m) denote the Tate 
twist of Va+b by Q(m). It is a Hodge structure of weight a + b − 2m. For the chosen 
point x in M2, we have the Lie algebra u2 viewed as a mixed Hodge structure. Our main 
result is the following.

Theorem 1. There is a Hodge weight preserving isomorphism of graded Lie algebras

L(V2+2(3))/R ∼= GrW• u2

in the category of Sp2-representations. The Lie ideal R is generated by a subrepresenta-
tion of

⊕
a+b

Va+b(a + 2)

where the sum is taken over the partitions a + b of 2, 4, 6, 10 with a > b. In particular, 
GrW• u2 is finitely presented with possibly the relations of cubic to septic degree.

In Section 9, a table of the multiplicity in L(V2+2(3)) of each Va+b(a + 2) appearing 
in the sum 

⊕
a+b Va+b(a + 2) from Theorem 1 is given.

We can also consider the relative completion Gg,n of the mapping class group of type 
(g, n), denoted by Γg,n. For a fixed x = [C] in Mg,n, denote the Lie algebra of Ug,n by 
ug,n. Let πg,n denote the fundamental group of the configuration space of n points on C
and pg,n be the Lie algebra of the unipotent completion of πg,n. The Lie algebras pg,n, 
ug,n, and ug admit canonical mixed Hodge structures and for g ≥ 2, there is an exact 
sequence of graded Lie algebras

0 → GrW• pg,n → GrW• ug,n → GrW• ug → 0.

Since GrW• pg,n is finitely generated and presented, we have

Corollary 2. For n ≥ 0, the graded Lie algebra GrW• u2,n is finitely generated and pre-
sented.
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Theorem 1 will follow immediately from Corollary 6.5 and Corollary 7.4. Our ap-
proach is fundamentally different from the higher genus case by Hain. Our main result is 
largely due to Petersen’s work [17] on the cohomology of symplectic local systems on A2. 
Together with Petersen’s nonvanishing theorem [18, Thm. 5.1] and an extension of it, 
we are able to determine the generators and bound the degree of the relations. While 
the computations for g ≥ 3 are topological in nature, our approach is arithmetic. This 
is because, M2 being the complement of the locus D1,1 of the products of two elliptic 
curves in A2, the cohomology of M2 is determined by that of D1,1 and A2 by the Gysin 
sequence.

In Sections 2, 3, and 4, we will review briefly the mapping class groups, the moduli 
stacks of smooth projective curves and principally polarized abelian varieties, and set 
notations for our basic objects for the case g = 2. In Section 5, we will review the 
theory of relative completion along its Hodge theory aspect developed by Hain and then 
discuss a minimal presentation of GrW• ug for g ≥ 3. In Section 6, we will determine the 
generators of GrW• u2 and in Section 7, we will prove a nonvanishing theorem for the 
Gysin sequence for the cohomology groups of M2, A2, and D1,1 to bound the degree of 
the relations of GrW• u2. In Section 8, we will prove Corollary 2 and also describe the 
generators of GrW• u2,n.

Acknowledgments: I am very grateful to Dan Petersen for taking an interest in this 
work, answering many questions, and sharing his unpublished notes on the cohomology 
of the mapping class group of genus two. I am also very grateful to Richard Hain who 
introduced to me the study of the mapping class groups and moduli of curves. I also 
would like to thank Kevin Kordek for numerous meaningful discussions on this work.

2. Mapping class groups and Torelli groups

Let Sg be a compact oriented surface of genus g. Let P be a subset of Sg consisting 
of n distinct points on Sg. The group of the orientation-preserving diffeomorphisms of 
Sg fixing P pointwise will be denoted by Diff+(Sg, P ), which is given open-compact 
topology. The mapping class group of type (g, n), denoted by Γg,n, is defined to be the 
group of path-connected components of Diff+(Sg, P ):

Γg,n = π0(Diff+(Sg, P )).

We easily see that the group Γg,n is independent of the choice of the reference surface 
Sg and P . In this paper, we will always assume that 2g − 2 + n > 0. When n = 0, Γg,0

will be denoted by Γg.
The first integral cohomology group H1(Sg, Z) is equipped with the cup product 

pairing

〈 , 〉 : H1(Sg,Z) ⊗H1(Sg,Z) → H2(Sg,Z) ∼= Z,
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that is a nondegenerate, skew symmetric bilinear paring. The mapping class group Γg,n

acts on the first homology group H1(Sg, Z) and hence on H1(Sg, Z), preserving the 
pairing 〈 , 〉. Therefore, there is a natural homomorphism

ρ : Γg,n → Aut(H1(Sg,Z), 〈 , 〉) = Sp(H1(Sg,Z)) = Sp(H1(Sg,Z)).

It is well-known that if g ≥ 1, then the homomorphism ρ is surjective. The kernel of ρ
is called the Torelli group, denoted by Tg,n. The group T1 is trivial, Mess showed in [13]
that T2 is an infinitely generated free group, and Johnson proved in [4] that Tg is finitely 
generated for g ≥ 3. It is not known whether Tg is finitely presented or not for g ≥ 3. 
Hain showed in [9] that the Lie algebra tg of the Malcev completion of Tg is finitely 
presented.

3. Moduli stacks Mg,n and Ag

By a compact complex curve C of genus g, we mean a compact Riemann surface 
of genus g, and a marking is an orientation-preserving diffeomorphism f : S → C to 
a compact complex curve. The Teichmüller space of marked n-pointed compact curves 
of genus g will be denoted by Xg,n. As a set, it consists of the isotopy classes of the 
markings. The mapping class group Γg,n acts on Xg,n by [φ] : [f ] �→ [f ◦ φ−1]. The fact 
that this action is properly discontinuous and virtually free imply that the quotient

Mg,n = Xg,n/Γg,n

is a complex orbifold and that it is covered by smooth complex varieties.
Let hg be the Siegel upper half-space. It consists of the complex g × g symmetric 

matrices Z such that Im(Z) is positive definite. It is the moduli space of principally 
polarized abelian varieties equipped with a choice of a symplectic basis and comes with 
an Spg(Z)-action:

α · Z =
[
A B

C D

]
· Z = (AZ + B)(CZ + D)−1.

The moduli stack Ag of principally polarized abelian varieties is the quotient

Ag = hg/Spg(Z).

It is considered as a complex orbifold. In Section 7, we will also view it as a locally sym-
metric space for Spg(R) and consider its Baily–Borel compactification and the boundary 
cohomology at the zero-dimensional stratum.

The Torelli map Mg → Ag as stacks are a 2-to-1 map ramified along the hyperelliptic 
locus, Hg, for g ≥ 3 and it is an open immersion for g = 2. For g = 1, the Torelli map 
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M1,1 → A1 is an isomorphism of stacks. In this paper, we especially pay our attention 
to the case g = 2. Via the Torelli map i : M2 → A2, we may consider M2 as an open 
substack of A2. The complement in A2 of M2 is a smooth divisor consisting of the 
unordered products of two elliptic curves, which we will denote by D1,1.

4. Local systems over M2, A2, and D1,1

Let π : Y → A2 be the universal family over A2. Let V be the sheaf R1π∗Q over A2. 
That the morphism π is smooth and proper implies that V is a polarized variation 
of Hodge structure of weight 1. Let x be in A2 and A be the fiber of π over x. The 
monodromy action of πorb

1 (A2, x) on H1(A, Q) corresponds to the inclusion

ρx : πorb
1 (A2, x) = Sp2(Z) → Sp2(Q).

A finite dimensional Sp2(Q)-representation M defines a local system M over A2 via the 
homomorphism ρx. In fact, the local system M underlies a variation of Hodge structure 
over A2.

We will briefly review the Sp2-representation theory. We consider Sp2 as a linear 
algebraic group over Q. The maximal torus T of Sp2 consists of the diagonal matrices 
t of the form diag(t1, t2, t−1

1 , t−1
2 ) and the fundamental dominant weights λj(t) : T → R

are given by

λ1(t) = t1 and λ2(t) = t1t2.

Then there is a bijection between the positive integral linear combinations α = n1λ1 +
n2λ2 and the set of isomorphism classes of irreducible Sp2-representations M[n1,n2] with 
highest weight α.

We may also produce irreducible representations by Weyl’s construction (see [2]). 
Let V be a 4-dimensional vector space over Q equipped with a nondegenerate, skew 
symmetric bilinear form V ⊗ V → Q. For a partition λ : n = a + b of an nonnegative 
integer n with a ≥ b ≥ 0, there is an irreducible representation of Sp2, which we denote by 
Va+b. The representation Va+b can be realized as a summand in V ⊗n which is specified by 
contraction maps and the Schur functor corresponding to the partition λ. The irreducible 
representation Va+b corresponds to M[a−b,b]. In this paper, we will use the partition 
notation.

Note that there is an isomorphism of local systems V ∼= V1. Moreover, we obtain 
the local system Va+b corresponding to the irreducible representation Va+b. As V is a 
variation of Hodge structure of weight 1 over A2, Weyl’s construction implies that Va+b

carries a variation of Hodge structure of weight n = a + b. By pulling back, we also 
obtain variations of Hodge structures over M2 and D1,1, which we will also denote by 
Va+b. Therefore, the cohomology H•(X, Va+b) with X ∈ {M2, A2, D1,1} carry natural 
Mixed Hodge structures, and so do the compactly supported cohomology H•

c (X, Va+b). 
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We will abbreviate Hodge structure, Mixed Hodge structure, and variations of them by 
HS, MHS, VHS, and VMHS, respectively.

We will need to understand the restrictions of Va+b to D1,1. As an orbifold, D1,1 is 
the quotient

D1,1 = h1 × h1/(SL2(Z) × SL2(Z) � S2),

where S2 interchanges the components of SL2 × SL2. The space h1 × h1 is considered to 
be the subspace of h2:

h1 × h1 =
{[

z1 0
0 z2

]
|Im(zi) > 0, i = 1, 2

}
.

The wreath product SL2(Z) ×SL2(Z) �S2 embeds into Sp2(Z), consisting of the matrices
⎡
⎢⎣
a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

⎤
⎥⎦ ,

⎡
⎢⎣

0 a1 0 b1
a2 0 b2 0
0 c1 0 d1
c2 0 d2 0

⎤
⎥⎦ ,

[
ai bi
ci di

]
∈ SL2(Z).

Thus the restriction of the local system Va+b to D1,1 corresponds to the restriction of 
the Sp2-representation Va+b to the subgroup SL2(Z) ×SL2(Z) �S2 of Sp2. So we need to 
know how Va+b decomposes as the sum of the irreducible SL2×SL2�S2-representations. 
Petersen gives a branching formula in [16, Prop.3.4] for this inclusion.

Denote the standard representation of SL2 by H. The symmetric tensor power SymmH

will be denoted by Hm. These are the irreducible representations of SL2. The irreducible 
representations of SL2 × SL2 � S2 are given by the following three types:

(i) Ua,b = Ha ⊗Hb ⊕Hb ⊗Ha, σ : u ⊗ v + v′ ⊗ u′ �→ u′ ⊗ v′ + v ⊗ u, with a �= b,
(ii) U+

a = Ha ⊗Ha, σ : u ⊗ v �→ v ⊗ u,
(iii) U−

a = Ha ⊗Ha, σ : u ⊗ v �→ −v ⊗ u,

where S2 = 〈σ〉. Petersen’s branching formula explicitly describes the restriction 
ResSp2

SL2×SL2�S2
Va+b as the sum of the irreducible representations of the above three 

types.

Example 4.1. The key representations that we will consider are V2l+2l with l ≥ 1 and 
Va+b with a + b even and a > b. The restriction ResSp2

SL2×SL2�S2
V2l+2l contains a single 

copy of the trivial representation U+
0 as a summand and ResSp2

SL2×SL2�S2
Va+b contains a 

single copy of Ua−b,0. The corresponding local systems Ua,b, U+
a , and U−

a over D1,1 also 
carry VHSs, and in order to be consistent with Hodge weights, we need to apply Tate 
twists. That is, U+

0 is twisted by −2l, i.e., U+
0 (−2l) and Ua−b,0 by −b, Ua−b,0(−b).

As an orbifold, the moduli stack M1,1 is the quotient M1,1 = h1/SL2(Z) with 
πorb

1 (M1,1) = SL2(Z). Each representation Hm defines a local system Hm over M1,1
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underlying a VHS of weight m. Recall that the Torelli map M1,1 → A1 is an isomor-
phism of stacks. The cohomology of the local systems over D1,1 can be computed by 
pulling back them along the map A1 ×A1 → D1,1.

Remark 4.2. There are isomorphisms

(i) H•(D1,1, Ua,b) ∼= H•(M1,1, Ha) ⊗H•(M1,1, Hb),
(ii) H•(D1,1, U+

a ) ∼= Sym2H•(M1,1, Ha), and
(iii) H•(D1,1, U−

a ) ∼= Λ2H•(M1,1, Ha).

5. Review of relative completion of Γg,n and a minimal presentation of the Lie algebra 
GrW• ug

A detailed treatment of the theory of relative completion can be found in [8] and 
[10]. Here, we will summarize and state the properties of the theory needed for our main 
result.

Assume that F is a field of characteristic zero. By an algebraic group over F , we 
mean an affine group scheme G of finite type over F . A proalgebraic group over F is the 
projective limit of algebraic groups over F . The set of F -rational points of G is denoted 
by G(F ).

Consider the following data

(i) R is a reductive group over F , and
(ii) Γ is a discrete group with a Zariski-dense homomorphism ρ : Γ → R(F ).

The relative completion of Γ with respect to ρ is a pair (G, ρ̃) of a proalgebraic group G
over F that is an extension of R by a prounipotent group U over F and a natural map 
ρ̃ : Γ → G(F ), satisfying the universal property: If G is a proalgebraic group over F that 
is also an extension of R by a prounipotent group U over F such that ρ factors through 
G(F ) → R(F ) with Zariski-dense image in G(F ), then there exists a unique morphism 
φ : G → G of proalgebraic groups over F such that the diagram

Γ
ρ̃

G(F )
φ

G(F ) R(F )

commutes. One of the key properties of relative completion we will need is the following. 
Denote the Lie algebra of U by u. For our purpose, we take R = Spg and F = Q, and the 
cohomology we use here is the continuous cohomology of a discrete group and pro-Lie 
algebras.
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Proposition 5.1. For each partition λ, let Vλ be the corresponding irreducible representa-
tion of Spg. Then

(i) there is a natural Spg-invariant isomorphism

H1(u) ∼=
⊕
λ

H1(Γ, Vλ) ⊗ V ∗
λ ,

and
(ii) there is a natural Spg-invariant injection

H2(u) →
⊕
λ

H2(Γ, Vλ) ⊗ V ∗
λ .

We take the relative completion of Γg,n with respect to the homomorphism ρ : Γg,n →
Sp(H1(Sg, Q)). Since the image of ρ is Sp(H1(Sg, Z)), ρ has a Zariski-dense image. 
Denote the completion of Γg,n by Gg,n and its prounipotent radical by Ug,n. The Lie 
algebras of Gg,n and Ug,n will be denoted by gg,n and ug,n.

For each x in Mg,n, there is a monodromy representation

ρx : πorb
1 (Mg,n, x) → Sp(H1(C,Q)),

where C is the fiber of the universal family over the point x. The natural isomorphism 
Γg,n

∼= πorb
1 (Mg,n, x) identifies this monodromy action with the homomorphism ρ. De-

note the completion of ρx by Gg,n(x) and its prounipotent radical by Ug,n(x). Their 
Lie algebras are denoted by gg,n(x) and ug,n(x), respectively. The following result in [8]
implies that for each choice of x, the Lie algebras gg,n(x) and ug,n(x) carry canonical 
R-MHSs.

Theorem 5.2 (Hain). Suppose that X is a smooth complex variety and that V is a polar-
ized variation of Q-HS over X of geometric origin. If the monodromy action

ρx : π1(X,x) → Aut(Vx, 〈 , 〉)

has a Zariski-dense image, then the Lie algebra g of the completion of π1(X, x) and the 
pronilpotent Lie algebra u of the prounipotent radical of the completion admit natural 
Q-MHSs, where brackets are morphisms of MHSs.

Remark 5.3. The original statement is stated over R. However, if the Zariski-closure of 
the image of ρx is defined over Q, the R-structure canonically lifts to a Q-structure. For 
a concrete explanation, see [7, 4.3].
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Fix a base point x in Mg,n. We will omit the reference to the base point x from now 
on. Now, we review the presentations of the pronilpotent Lie algebras ug for g ≥ 3. We 
will need the following fact (cf. [9, Prop. 5.6], [10, Prop. 3.1]).

Proposition 5.4. Let n be a negatively graded Lie algebra. Let f be the free Lie algebra 
generated by H1(n), i.e., f = L(H1(n)). Then there is an injection of graded vector spaces 
γ : H2(n) → [f, f] such that n admits a presentation

n ∼= f/〈imγ〉,

where 〈imγ〉 is the Lie ideal of f generated by the image of γ. �
The Lie algebra ug is pronilpotent and hence graded by bracket. It is also graded by the 

weight filtration. For g ≥ 3, it follows from the Johnson’s work [3] that H1(ug) is a Q-HS 
of weight −1, which together with the strictness of morphisms of MHSs implies that the 
weight filtration agrees with its lower central series (for a proof, see [9, Lem. 4.7]). The 
induced weight filtration on L(H1(ug)) is also the lower central series. The associated 
graded Lie algebra GrW• ug has a minimal presentation

GrW• ug
∼= L(H1(ug))/〈GrW• H2(ug)〉

as a graded Lie algebra in the category of the Spg-representations. The key points for 
determining this presentation are the Johnson’s work on the abelianization of the Torelli 
group Tg,1 for determining H1(ug) and Kabanov’s purity theorem [11] for bounding 
H2(ug):

Theorem 5.5 (Kabanov). Let Vλ be an irreducible rational representation of Spg and Vλ

be the corresponding VHS on Mg. Then the weights of the MHS H2(Mg, Vλ) lie in 
{2 + |λ|, 3 + |λ|} for 3 ≤ g < 6 and the weight is equal to 2 + |λ| for g ≥ 6, where |λ|
denotes the weight of Vλ.

In Proposition 7.1, we will extend Kabanov’s result to the case when g = 2. The 
relation between the MHSs H•(ug) and H•(Mg, V) for low degrees are given by

Proposition 5.6 ([9, Prop.7.1 & 7.3]). Suppose that g ≥ 1. If V is the VHS over Mg,n

corresponding to an irreducible rational Spg-representation V , then for each k, there is 
a morphism of MHSs

HomSpg
(Hk(ug,n), V ) → Hk(Mg,n,V),

which is an isomorphism for k = 0, 1 and an injection for k = 2.

Remark 5.7. In [9, Prop. 7.3], the result is stated for the case when g ≥ 3, but since the 
canonical R-MHS on ug,n lifts to a Q-MHS, the result can be stated for g ≥ 1 as well.
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From this, it follows that GrW• ug has possibly quadratic and cubic relations for 3 ≤
g < 6, and only quadratic relations for g ≥ 6. In [9], Hain determined all quadratic 
relations for g ≥ 4, and in [6] showed that for g ≥ 4, GrW• ug is quadratically presented 
and determined the quadratic and cubic relations for g = 3. Hain used the fact that 
GrW• u3 is not quadratically presented to show that Γ3 does not arise as a fundamental 
group of a compact Kähler manifold.

Theorem 5.8 (Hain).

(i) If g ≥ 3, then

H1(ug) ∼= V1+1+1.

(ii) There are isomorphisms

GrW−2 H2(ug) ∼=
{

V0 g = 3
the Spg-complement of V2+2 in L2(V1+1+1) g ≥ 4,

and

GrW−3 H2(ug) ∼=
{

the Spg-complement of V3+1+1 in L3(V1+1+1) g = 3
0 g ≥ 4,

where Lk(V ) denotes the kth component of the free Lie algebra L(V ).

Note that Tate twists are omitted from the right-hand terms.

6. Generators of the Lie algebra u2

By Proposition 5.1, the generators of u2 are determined by the cohomology groups 
H1(M2, Va+b), which we will determine in this section.

Recall that the Torelli map i : M2 → A2 is an open immersion and the complement 
of the image is a divisor, denoted by D1,1, whose generic point is a product of two 
unordered elliptic curves. The product A1×A1 is a two-sheeted cover of D1,1, where the 
symmetric group S2 simply interchanges the two elliptic components. Each irreducible 
rational representation Va+b of Sp2 defines a variation of Hodge structure Va+b of weight 
a + b on A2. The involution acts on Va+b by (−1)a+b id, while it acts trivially on the 
cohomology, and hence the cohomology of Va+b vanishes when a + b = odd. Thus we 
will only need to consider the case when a + b even. The restriction of Va+b to M2 and 
D1,1 are also denoted by Va+b. Associated to the open immersion i : M2 → A2, there is 
a Gysin sequence

H1(A2,Va+b) → H1(M2,Va+b) → H0(D1,1,Va+b(−1)) → H2(A2,Va+b).
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The first key fact to remark is that the first term vanishes for a + b > 0. This follows 
from Raghunathan’s vanishing theorem [20]:

Theorem 6.1. Let V be a nontrivial irreducible rational representation of Spg and Γ be 
a finite index subgroup of Spg(Z). If d < g, then Hd(Γ, V ) = 0.

The cohomology group H1(A2, Va+b) ∼= H1(Sp2(Z), Va+b) vanishes for a + b > 0
by Theorem 6.1. Thus H1(M2, Va+b) ∼= H1(Γ2, Va+b) is the kernel of the Gysin map 
H0(D1,1, Va+b(−1)) → H2(A2, Va+b). It follows immediately from [17, Thm. 2.1] that 
H2(A2, Va+b) vanishes except when a = b even and the dimension of the cusp forms for 
SL2(Z) of weight a +b +4 is positive, and that when a = b = 2l and l ≥ 2, H2(A2, V2l+2l)
is the direct sum of copies of Tate HS Q(−2l−1), having dimension at least one. Firstly, 
we note that the branching formula [16, Prop. 3.4] implies that H0(D1,1, Va+b) = 0
unless a = b even. Therefore, we will only need to consider the case when a = b = 2l. 
In this case, the restriction of V2l+2l to D1,1 contains a single copy of the trivial local 
system U+

0 (−2l) as a summand and thus H0(D1,1, V2l+2l)(−1) = Q(−2l − 1). Secondly, 
we observe that for l = 1, H2(A2, V2+2) = 0, since there is no cusp form of weight 8, and 
hence H1(Γ2, V2+2) = Q(−3). For l ≥ 2, we need the following nonvanishing theorem by 
Petersen.

Theorem 6.2 ([18, Thm. 5.1]). For l ≥ 2, the Gysin map

H0(D1,1,V2l+2l)(−1) → H2(A2,V2l+2l)

is nontrivial.

Remark 6.3. We will adopt Petersen’s proof of this theorem to bound H2(u2). The strat-
egy and more details will be given in section 7.

Therefore, we have

Corollary 6.4. There is an isomorphism of Q-HSs

H1(M2,Va+b) ∼=
{

Q(−3) if a = b = 2
0 otherwise.

�

Proposition 5.1 gives us

Corollary 6.5. There is an isomorphism of Q-HSs

H1(u2) ∼= V2+2(3).

That H1(u2) is pure of weight −2 and that the bracket is a morphism of MHSs give
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Corollary 6.6. For m ≥ 1, we have

W−2m+1u2 = W−2mu2 = Lmu2,

where L•n denotes the lower central series of n. �
7. Bounds for the degree of the relations of the Lie algebra u2

In this section, we will bound the cohomology H2(u2) by partially computing 
H2(M2, Va+b). This will be done by considering the natural inclusion

HomSp(H2(u2), Va+b) ∼= (H2(u2) ⊗ Va+b)Sp → H2(M2,Va+b)

that is a morphism of MHS. We will consider the part of the Gysin sequence

H0(D1,1,Va+b(−1)) → H2(A2,Va+b) → H2(M2,Va+b)

→ H1(D1,1,Va+b(−1)) → H3(A2,Va+b).

The following result is a key to bound H2(u2) and follows easily from Petersen’s 
work [17].

Proposition 7.1. Assume that a + b is even.

(i) H2(M2, Va+b) = 0 if a = b odd.
(ii) The possible weights of H2(M2, Va+b) are given by

{
2a + 2 if a = b even
a + b + 3, 2a + 4 = a + b + a− b + 4 if a > b.

Proof. For (i), first we note that the cohomology group H2(A2, Va+a) vanishes [17, 
Thm. 2.1] and that Petersen’s branching formula implies that H1(D1,1, Va+a) vanishes. 
Thus the result follows.

For (ii), first assume that a = b even. Then similarly, we have H1(D1,1, Va+a) = 0. 
Thus the restriction map H2(A2, Va+a) → H2(M2, Va+a) is surjective. By [17, Thm. 2.1], 
H2(A2, Va+a) is pure of weight 2a + 2 and hence the claim. Next, assume that a > b. 
The branching formula [16, Prop. 3.4] by Petersen shows that the restriction of Va+b

to D1,1 contains a single copy of the local system Ua−b,0(−b) as a summand and that 
it is the only term contributing to cohomology, i.e., we have H1(D1,1, Va+b(−1)) =
H1(D1,1, Ua−b,0)(−b − 1). From Remark 4.2 We have isomorphisms

H1(D1,1,Ua−b,0) = H1(A1,Ha−b) ⊗H0(A1,Q) ∼= H1(SL2(Z), Ha−b).

The weight filtration on H1(SL2(Z), Ha−b) splits ([1]) and hence we have
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H1(D1,1,Ua−b,0)(−b− 1) = (Wa−b+1H
1(SL2(Z), Ha−b))(−b− 1) ⊕Q(−a− 2).

The first summand is a Q-HS of weight a + b + 3 and the second a Tate HS of weight 
2a + 4. Since H2(A2, Va+b) = 0 in this case, our claim follows. �
Corollary 7.2. The only possible weights of H2(u2) are given by −(a − b) − 4 for a + b

even and a > b ≥ 0.

Proof. From Proposition 7.1 and Proposition 5.1 (ii), it follows that the possible weights 
of H2(u2) are 2, 3, and a − b + 4, and thus those of H2(u2) are −2, −3, and −(a −
b) − 4 with a > b. By Corollary 6.5, H1(u2) is pure of weight -2, and hence the free 
Lie algebra L(H1(u2)) has only even weights. By Proposition 5.4, there is an injection 
of graded vector spaces γ : H2(u2) → [L(H1(u2)), L(H1(u2))] ⊂ L(H1(u2)) such that 
we have a presentation GrW• u2 ∼= L(H1(u2))/〈im γ〉. Since the image of γ is contained 
in [L(H1(u2)), L(H1(u2))], it follows that H2(u2) can have only even weights −2m with 
m ≥ 2. Therefore, we can exclude the weights −2 and −3, and thus the only possible 
weights of H2(u2) are given by −(a − b) − 4 with a > b. �

Consequently, we will only need to consider the HS Q(−a −2) appearing as a summand 
in H1(D1,1, Va+b(−1)) with a > b. In order to determine whether the Tate term Q(−a −2)
appears in H2(M2, Va+b), we will consider the Gysin map

δ : H1(D1,1,Va+b(−1)) → H3(A2,Va+b).

We note from [17, Thm. 2.1] that H3(A2, Va+b) contains the direct sum of sa+b+4 copies 
of Q(−a − 2) as a summand, where sm denotes the dimension of the cusp forms for 
SL2(Z) of weight m. Petersen kindly shared with me his unpublished note [19] in which 
he conjectures that whenever sa+b+4 > 0, the Gysin map is injective. We will prove the 
following partial analogue of Theorem 6.2 by adopting Petersen’s approach.

Theorem 7.3. Assume that a + b is even and a > b. If sa+b+4 > 0, the restriction of 
the Gysin map δ : H1(D1,1, Va+b(−1)) → H3(A2, Va+b) to the Q-sub HS Q(−a − 2) of 
H1(D1,1, Va+b(−1)) is nontrivial.

Corollary 7.4. If sa+b+4 > 0, then (H2(u2) ⊗ Va+b)Sp2 = 0. Furthermore, H2(u2) is an 
Sp2-subrepresentation of the finite direct sum 

⊕
a+b Va+b(a + 2), where the sum is taken 

over the partitions a + b of 2, 4, 6, 10 with a > b.

Remark 7.5. The weights of H2(u2) are given by −a + b − 4 for a > b, and so we see that 
there are no quadratic relations in GrW• u2. The range of the degrees of the relations on 
GrW• u2 is from the cubic to the septic. Thus GrW• u2 is finitely presented. However, the 
author is not able to determine H2(u2) explicitly at this time. Since T2 is free, Hain’s 
approach does not seem to extend to the case when g = 2.
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7.1. An overview of Petersen’s approach on the nonvanishing of Gysin maps

We will briefly go over Petersen’s approach on the nonvanishing theorem [18, §5, 
Thm. 5.1]. Petersen’s idea is that since the cohomology classes of one’s interest are rep-
resented by Eisenstein series, one should be able to reduce the problem to computations 
at the boundary. Denote the Baily–Borel compactification of Ag by Ag. Let j : A2 → A2
and j̃ : A1 ×A1 → A1 ×A1 be the inclusions into their Baily–Borel compactifications. 
We will consider the Gysin map between the stalks of the pushforwards (Rj̃∗Va+b)S2

and Rj∗Va+b. Let i0 : A0 → A2 and ĩ0 : A0 × A0 → A1 × A1 be the inclusions of 
their zero-dimensional strata into the respective Baily–Borel compactifications. There is 
a commutative diagram:

Hk−2(D1,1,Va+b(−1)) (̃i∗0Rk−2j̃∗Va+b(−1))S2

Hk(A2,Va+b) i∗0Rkj∗Va+b

The nonvanishing of the left-hand Gysin map will be shown if the right-hand Gysin map 
at stalks maps the class of the Eisenstein series of our interest to a nonzero class in 
i∗0Rkj∗Va+b.

The first key point is that the stalks on the right are expressed as the cohomology 
groups of reductive groups with the Lie algebra cohomology of nilpotent Lie algebras 
as coefficient groups. Petersen calls this as Harder’s formula (see [12] for more details). 
Furthermore, these stalks carry natural MHS. This fact does not play a role for k = 2, but 
we will need this for k = 3. The zero-dimensional strata of A1×A1 and A2 correspond to 
the parabolic subgroup P = B×B of SL2(Q) ×SL2(Q) and the Siegel parabolic subgroup 
Q of Sp2(Q), respectively, where B is the Borel subgroup of SL2(Q). The natural map 
A1×A1 → A2 corresponds to an inclusion SL2×SL2 → Sp2, so we may consider SL2×SL2
as a subgroup of Sp2. Then P is the intersection Q ∩SL2×SL2 in Sp2. Let MP and MQ be 
the reductive quotients of P and Q by the unipotent radicals NP and NQ, respectively. 
Denote the Lie algebras of NP and NQ by nP and nQ, respectively. The idea behind the 
Harder’s formula is that the cohomology of the sufficiently small enough open punctured 
neighborhoods of the cusps i0 and ĩ0 with the coefficient local system Va+b can be 
computed by identifying the neighborhoods as the fibrations over the locally symmetric 
spaces associated to MP and MQ whose fibers are the nilmanifolds associated to NP

and NQ, respectively. The Leray spectral sequences of the fibrations degenerate, and 
hence the local cohomology we are after are given by H•(M∗(Z), H•(n∗, Va+b)), where 
∗ ∈ {P, Q}. The Gysin maps on the stalks are obtained by considering the Leray spectral 
sequences associated to the two fibrations and the Gysin sequence for the embedding of 
the neighborhood of ĩ0 into that of i0. This is nicely explained in [18, §5.3].

The second important point of Petersen’s method is that the nonvanishing of the Gysin 
maps on the stalks is related to the nontriviality of the modular symbols associated to 
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eigen cusp forms. It comes down to compute the restriction map H1
c (A1, Hm ⊗ C) →

H1
c (R>0, Hm ⊗ C) = Hm ⊗ C, which is induced by the inclusion of symmetric spaces 

R>0 → h. The Gm action decomposes Hm ⊗ C into m + 1 one-dimensional eigenspaces 
Hm ⊗ C =

⊕m
l=0 Em−2l. For a cusp form f of weight m + 2, we have a class [f ] in 

H1
c (A1, Hm ⊗ C) and we are interested in the image of [f ] in 

⊕m
l=0 Em−2l. For k = 2, 

the nonvanishing of the Gysin map at the stalks is equivalent to the nontriviality of 
the image [f ] in the eigenspace E0, which is in fact related to the central value of the 
L-function attached to f , where f here is a normalized Hecke eigenform. For k = 3, we 
will consider the image of [f ] in E−a+b−2, and the nontriviality will follow from the fact 
that L(f, n + 1) is nontrivial for n ≥ a+b+4

2 , which is a basic fact about the convergence 
of the corresponding Euler product.

7.2. Proof of Theorem 7.3

As stated above, we will follow Petersen’s approach with some modification to our 
case. We will use the same notation as above. The natural map A1×A1 → A2 corresponds 
to the inclusion SL2 × SL2 → Sp2 given by

[
a b
c d

]
×

[
a′ b′

c′ d′

]
�→

⎡
⎢⎣
a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

⎤
⎥⎦ .

The Siegel parabolic subgroup Q of Sp2 consists of the matrices whose lower left quadrant 
is all zero. The parabolic subgroup P of SL2×SL2 is the intersection of Q with SL2×SL2

in Sp2. The reductive quotients MP and MQ of P and Q, respectively, consist of matrices 
of the form

⎡
⎢⎣
a 0 0 0
0 a′ 0 0
0 0 a−1 0
0 0 0 a′ −1

⎤
⎥⎦ ,

[
A 0
0 A−T

]
,

respectively, where A in GL2. Therefore, we have MQ
∼= GL2. Let B be the standard 

Borel subgroup of SL2 consisting of upper triangular matrices, and MB the reductive 
quotient of B by the unipotent radical NB, whose elements are of the form

[
1 a
0 1

]
.

Let T be the maximal Q-split torus of SL2. The isomorphism Gm
∼= T is given by

t �→
[
t 0
0 t−1

]
.
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Thus the action of T on NB has the weight t2. Denote the Lie algebra of NB by nB. 
Then Mp = MB ×MB

∼= Gm × Gm and nP = nB × nB . The group Gm(Z) is cyclic of 
order 2, which we denote by 〈σ〉.

Assume that a + b is even and a > b. The restriction of Va+b to D1,1 contains a 
single copy of Ua−b,0(−b) as a summand, and we have seen that H1(D1,1, Va+b) =
H1(D1,1, Ua−b,0(−b)). Thus, we will consider the following commutative diagram

H1(D1,1,Ua−b,0(−b− 1)) ĩ∗0R1j̃∗Ua−b,0(−b− 1)

H3(A2,Va+b) i∗0R3j∗Va+b

We have seen that H1(D1,1, Ua−b,0(−b − 1)) = Wa+b+3 ⊕ Q(−a − 2). Harder’s formula 
and a Künneth formula give the isomorphisms

ĩ∗0R1j̃∗Ua−b,0 ∼=
1⊕

l=0

H l(MP (Z), H1−l(nP , Ua−b,0))

∼= H0(〈σ〉 × 〈σ〉, H1(nP , Ua−b,0))
∼= H0(〈σ〉 × 〈σ〉, H•(nB , Ha−b) ⊗H•(nB ,Q))
∼= (H1(nB, Ha−b) ⊗H0(nB,Q)) ⊕ (H0(nB , Ha−b) ⊗H1(nB ,Q)).

Note that the action of σ on the Lie algebra cohomology of nB is trivial when a + b

is even. We will consider Hm ⊗K as a K-vector space of homogeneous polynomials of 
degree m in two variable X and Y . In this paper, K is either Q or C. The action of 
SL2(K) on Hm ⊗K = K[X, Y ]m is given by

α · P (X,Y ) =
[
a b
c d

]
P (X,Y ) = P (aX + cY, bX + dY ).

Under this action of SL2(Q) on Hm, we have

H0(nB , Hm) ∼= QXm and H1(nB , Hm) ∼= QY m ⊗ η,

where the element η is the dual of the generator of nB. Note that T acts on η by t−2. 
Thus there is an isomorphism of MHSs

ĩ∗0R1j̃∗Ua−b,0 ∼= QY a−b ⊗ η ⊕QXa−b ⊗ η,

where the left-hand term is pure of weight 2(a − b) + 2 and the right-hand term pure of 
weight 2.
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Proposition 7.6. The generator of the term Q(−(a − b) − 1)) in H1(D1,1, Ua−b,0) maps 
nontrivially into the term QY a−b ⊗ η.

Proof. Let m = a − b. Let Δ : A1 → A1 × A1 and Δ : A1 → A1 × A1 be the diagonal 
maps. Consider the following commutative diagram:

H1(A1,Hm) r
H1(∂A1,Hm)

H1(A1 ×A1,Um,0)

Δ∗

ĩ∗0R1j̃∗Um,0

Δ∗

where H1(∂A1, Hm) is the boundary cohomology of A1 with the local coefficient system 
Hm and the upper horizontal map r is the restriction map. It is well-known that the map 
r takes the generator of Q(−m − 1) ⊂ H1(A1, Hm) to the generator of H1(∂A1, Hm) ∼=
QY m ⊗ η. Thus the image of the term Q(−m − 1) in the stalk ĩ∗0R1j̃∗Um,0 is nontrivial. 
Furthermore, the weight of the term QYm ⊗ η is given by m + m + 2 = 2m + 2, which 
implies that the image of Q(−m − 1) in ĩ∗0R1j̃∗Um,0 is equal to QY m ⊗ η. �

Now, we will consider the Gysin map between the stalks. Harder’s formula applied to 
the stalk i∗0R3j∗Va+b gives an isomorphism

i∗0R3j∗Va+b
∼=

3⊕
l=0

H l(MQ(Z), H3−l(nQ, Va+b)).

The coefficient group H•(nQ, Va+b) are MQ
∼= GL2 representations, and Kostants 

theorem [21, Table 2.3.4] gives us the corresponding MQ representations. As in the case 
k = 2 (Petersen’s proof), we will only need to consider them as the representations of 
the derived subgroup of MQ, which is isomorphic to SL2. These are

H l(nQ, Va+b) ∼=
{

Ha−b for l = 0, 3
Ha+b+2 for l = 1, 2.

Note that H•(GL2(Z), Hm) ∼= H•(SL2(Z), Hm)〈σ〉, and hence the stalk above is isomor-
phic to H1(SL2(Z), Ha+b+2)〈σ〉 ∼= H1(A1, Ha+b+2)〈σ〉.

The Gysin map ĩ∗0R1j̃∗Ua−b,0 → i∗0R3j∗Va+b can be obtained by considering the 
embedding of the sufficiently small open neighborhood WP of ̃i0 in A1×A1 into that WQ

of i in A2. Let ∗ ∈ {P, Q}. The open neighborhood W∗ can be identified as a fibration 
over the locally symmetric space associated to M∗ with the fiber N∗(Z)\N∗(R). The 
embedding yields the commutative diagram:
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NP (Z)\NP (R) NQ(Z)\NQ(R)

WP WQ

MP (Z)\MP (R)/KMP
MQ(Z)\MQ(R)/KMQ

.

The fact that symmetric spaces M∗(R)/KM∗ are contractible implies that the coho-
mology of M∗(Z)\M∗(R)/KM∗ agrees with the cohomology of M∗(Z). The van Est 
isomorphism describes the cohomology of N∗(Z)\N∗(R) as that of the Lie algebra n∗. 
Then the corresponding map between the cohomology groups H•(M∗(Z), H•(n∗, V))
with ∗ ∈ {P, Q} arises as part of the Gysin map induced between the Leray spectral 
sequences associated to these fibrations. Thus we obtain the commutative diagram

ĩ∗0R1j̃∗Ua−b,0

∼=

i∗0R3j∗Va+b

∼=

H0(MP (Z), H1(nP , Ua−b,0))
g

H1(MQ(Z), H2(nQ, Va+b))

Since the Hodge weights play no role for the rest of the proof, we will omit Tate twists.
We are led to understand the bottom horizontal map g. Petersen’s idea is that this 

map is induced by the restriction of a local system over A1 along the inclusion of the 
locally symmetric space R>0 × B〈σ〉 of Gm into A1 of SL2, where B〈σ〉 is the classi-
fying space for the group 〈σ〉, and that it can be considered as the evaluations of the 
modular symbols associated to normalized eigenforms of a certain weight. Consider the 
commutative diagram of groups

1 Gm MP

detP
Gm 1

1 SL2 MQ

detQ
Gm 1,

where the map detP associates aa′ to a matrix diag(a, a′, a−1, a′ −1) in MP and the 
map detQ det(A) to an matrix A in MQ, and the left-hand vertical map is induced by 
the middle inclusion. Assigning to each group in the diagram the corresponding locally 
symmetric space, we obtain an inclusion of fibrations. It then follows from the Leray 
spectral sequences of the two fibrations that there are isomorphisms

H0(MP (Z), H1(nP , Ua−b,0)) ∼= H0(R>0,QY a−b ⊗ η ⊕QXa−b ⊗ η)〈σ〉
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and

H1(MQ(Z), H2(nQ, Va+b)) ∼= H1(A1,Ha+b+2)〈σ〉.

For a rational representation V of MQ, there is the restriction

H•
c (MQ(Z)\MQ(R)/KMQ

,V) → H•
c (MP (Z)\MP (R)/KMP

,V),

where V is the local system corresponding to V . Then for V = H1(nQ, Va+b), we observe 
that the dual of the restriction contains the map g. Thus there is the commutative 
diagram

H0(MP (Z), H1(nP , Ua−b,0))
∼=

g

H0(R>0,QY a−b ⊗ η ⊕QXa−b ⊗ η)〈σ〉

H1(MQ(Z), H2(nQ, Va+b))
∼=

H1(A1,Ha+b+2)〈σ〉.

We also denote by g the right-hand vertical map of the diagram. The map g is the 
restriction to the 〈σ〉- invariants of the map

g̃ : H0(R>0,QY a−b ⊗ η ⊕QXa−b ⊗ η) → H1(A1,Ha+b+2),

which is induced by the inclusion Gm → SL2. We have seen that

H0(R>0,QY a−b ⊗ η ⊕QXa−b ⊗ η)〈σ〉 ∼= QY a−b ⊗ η ⊕QXa−b ⊗ η,

and so g̃ factors as

QY a−b ⊗ η ⊕QXa−b ⊗ η → H1(A1,Ha+b+2)〈σ〉 → H1(A1,Ha+b+2).

Recall that sa+b+4 denotes the dimension of the space of the cusp forms of weight a +b +4
for SL2(Z).

Proposition 7.7. If sa+b+4 > 0, then the generator Y a−b ⊗ η maps nontrivially into 
H1(A1, Ha+b+2).

Before getting to the proof of this claim, we will briefly review the periods and modular 
symbols of a cusp form, and the L-function attached to a Heck eigenform. Let f be a 
cusp form of weight m + 2. The nth period of f is defined to be

rn(f) =
i∞∫

f(z)zn dz
0
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for 0 ≤ n ≤ m. By identifying Hm⊗C = C[X, Y ]m, the period polynomial r(f) ∈ Hm⊗C

of f is defined to be

r(f)(X,Y ) =
i∞∫
0

f(z)(zX + Y )m dz =
m∑

n=0

(
m

n

)
rn(f)XnY m−n.

The differential form f(z)(zX+Y )mdz defines a class [f ] in H1
c (A1, Hm) and integrating 

along the imaginary axis corresponds to the restriction map

H1
c (A1,Hm ⊗ C) → H1

c (R>0,Hm ⊗ C) = Hm ⊗ C,

where R>0 is embedded into h by a �→ ia. Thus the class [f ] maps to the period polyno-
mial r(f)(X, Y ). The Gm-action decomposes Hm into m +1 one-dimensional eigenspaces

Hm =
m⊕

n=0
E−m+2n.

We may identify XnY m−n as a generator of E−m+2n, and so E−m+2n = QXnY m−n. 
Composing the restriction map with the projection

pn : H1
c (R>0,Hm ⊗ C) → H1

c (R>0, E−m+2n ⊗ C) = CXnY m−n = C

gives an evaluation, called a modular symbol, associating the value 
(
m
n

)
rn(f) to a cusp 

form f .
Let q = e2πiz for z ∈ h. Let f(q) =

∑
a(n)qn be the expansion of f on the q-disk. If f

is a Hecke eigenform and normalized, i.e., a(1) = 1, then the L-function of f is defined 
to be the Dirichlet series

L(f, s) =
∑
n>0

a(n)n−s,

which is known to be convergent for Re(s) > m
2 + 2.

Furthermore, as f is a normalized eigenform, the L-function has an Euler product 
expansion

L(f, s) =
∏
p

(1 − a(p)p−s + pk−1−2s)−1.

In our case, this is a key point and for s = n + 1 with 2n > m + 2, the Euler product 
converges and hence L(f, n +1) is nontrivial. A key relation between the L-function and 
the period of a normalized eigenform f is given by the Mellin transform

L(f, s) = (2π)s

Γ(s)

i∞∫
(−iz)sf(z)dz

z
.

0
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For s = n + 1, we have

rn(f) = n!(−2πi)−n−1L(f, n + 1).

Another key property of the L-function L(f, s) is that there is a functional equation 
relating L(f, s) and L(f, m + 2 − s). Now, we will prove Proposition 7.7.

Proof. We note that the map H0(R>0, QY a−b⊗η) → H1(A1, Ha+b+2) is the dual of the 
restriction map

H1
c (A1,Ha+b+2) → H1

c (R>0,QY a−b ⊗ η).

Here we are identifying Hm
∼= H∗

m induced by the polarization, and moreover there is 
an isomorphism QY a−b ⊗ η ∼= E−(a−b)−2 as Gm-representations. Let f be a normalized 
eigenform of weight a + b + 4. Let [f ] be the class in H1

c (A1, Ha+b+2 ⊗C) corresponding 
to the 1-form f(z)(zX + Y )a+b+2dz. Then the image of the class [f ] in

H1
c (R>0,CY

a−b ⊗ η) ∼= E−(a−b)−2 ⊗ C ∼= CXbY a+2

is given by 
(
a+b+2

b

)
rb(f)XbY a+2. Thus we consider the value L(f, b +1). By the functional 

equation mentioned above, the value L(f, b + 1) is nontrivial if and only if L(f, a + 3). 
The assumption that a > b implies that 2(a +2) > a +b +4, and hence the Euler product 
for L(f, a + 3) converges and so L(f, a + 3) is nontrivial. �

This completes the proof of Theorem 7.3.

8. The pointed case u2,n

In this section, we extend our main result to the Lie algebra u2,n. Suppose that S is a 
compact oriented surface of genus g. The configuration space Fn(S) of n ≥ 1 points on 
S is defined to be

Fn(S) = Sn − Δ,

where Δ = ∪i,jΔij and Δij = {(. . . , xi, . . . , xj , . . .) ∈ Sn|xi = xj}. Fix a point x = [C]
in Mg. Then for a fixed base point p in Fn(C), we denote the fundamental group of 
Fn(C) by πg,n. Suppose that g ≥ 2 and n ≥ 1. We have the following exact sequence

1 → πg,n → Γg,n → Γg → 1

coming from the projection Mg,n → Mg that forgets the n-marked points. Denote the 
unipotent completion of πg,n over Q by πun

g,n. Then the naturality and right exactness of 
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relative completion [10, Prop. 3.6 & 3.7] imply that the sequence of proalgebraic groups 
over Q

πun
g,n → Gg,n → Gg → 1

is exact. In fact, the sequence is exact at left as well. Denote the Lie algebra of πun
g,n by 

pg,n. By universal property of relative completion, the conjugation action of Γg,n on πg,n

induces a representation Gg,n → Aut pg,n by [9, Lemma 3.8].

Proposition 8.1. If g ≥ 2 and n ≥ 1, then the sequences

1 → πun
g,n → Gg,n → Gg → 1

and

1 → πun
g,n → Ug,n → Ug → 1

of proalgebraic groups over Q are exact.

Proof. We note that the composition map πun
g,n → Gg,n → Aut pg,n is the adjoint action 

of πun
g,n on pg,n. Since the center of πun

g,n is trivial (cf. [15]), it follows that the adjoint 
action πun

g,n → Aut pg,n is injective, and so is the map πun
g,n → Gg,n. Since Gg,n is an 

extension of Spg by Ug,n and the image of πun
g,n in Gg,n is contained in Ug,n, it follows 

that the sequence 1 → πun
g,n → Ug,n → Ug → 1 is exact. �

Consequently, we have the exact sequence of MHSs

0 → pg,n → ug,n → ug → 0

and the exactness of the functor GrW• on the category of MHS implies that the sequence 
of graded Lie algebras

0 → GrW• pg,n → GrW• ug,n → GrW• ug → 0

is exact. The Lie algebra pg,n is finitely generated and finitely presented by Morgan’s 
theorem [14] (see [9, Thm. 1.3] for an explicit presentation), and therefore, we obtain 
Corollary 2. Furthermore, we can easily determine the generators of u2,n by a basic 
spectral sequence argument applied to the exact sequence 1 → πg,n → Γg,n → Γg → 1.

Proposition 8.2. Suppose n ≥ 0. Then we have

GrWk H1(u2,n) =

⎧⎪⎨
⎪⎩

V1+0(1)⊕n for k = −1
V2+2(3) for k = −2
0 otherwise.
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Proof. Let V be a finite dimensional rational Sp2 representation. Then π2,n acts trivially 
on V via the representation Γ2,n → Sp2 and hence there is the exact sequence

0 → H1(Γ2, V ) → H1(Γ2,n, V ) → HomSp2(H1(π2,n), V ) → H2(Γ2, V ).

The group Γ2 acts on H1(π2,n) = ⊕n
i=1H1(C)i diagonally via Sp2. For V = V1+0, 

we have Hk(Γ2, V1+0) = 0 for k = 1, 2, and hence there is an isomorphism of MHS 
H1(Γ2,n, V1+0) ∼= Q(−1)⊕n. For V = V2+2, the third term is trivial, and hence 
H1(Γ2,n, V2+2) = Q(−3). For V �= V1+0 or V2+2, the first and third terms are trivial, 
and hence H1(Γ2,n, V ) = 0. Then the result follows from Proposition 5.1. �
9. Appendix: A table of multiplicities of Va+b in Theorem 1

In this Appendix, we give a table of the multiplicities in L(V2+2(3)) of the irreducible 
Sp2 representations Va+b appearing in the sum 

⊕
a+b Va+b(a +2) from Theorem 1, using 

the computer program LiE developed in the University of Amsterdam.
Denote the component of bracket length k of L(V2+2(3)) by Lk. The Hodge weight 

−(a − b) − 4 of Va+b(a + 2) determines the value k such that Va+b(a + 2) ⊂ Lk. Since 
the free Lie algebra is generated by V2+2(3) that is of weight −2, we have the relation 
k = −(a−b)−4

−2 . Denote Va+b by [a + b]. We have the following list of the multiplicities:

k,weight\a + b 2 4 6 10
3,−6 1 × [2 + 0] 1 × [3 + 1] 2 × [4 + 2] 1 × [6 + 4]
4,−8 4 × [4 + 0] 5 × [5 + 1] 2 × [7 + 3]
5,−10 22 × [6 + 0] 18 × [8 + 2]
6,−12 85 × [9 + 1]
7,−14 420 × [10 + 0]

Since each Va+b appears at least once in Lk for an appropriate k, we cannot exclude 
any of the Va+b’s from the possible generating representations for R in Theorem 1.
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