
Journal of Algebra 510 (2018) 259–288
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Subquandles of affine quandles ✩

Přemysl Jedlička a, Agata Pilitowska b, David Stanovský c,∗, 
Anna Zamojska-Dzienio b

a Department of Mathematics, Faculty of Engineering, Czech University of Life 
Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
b Faculty of Mathematics and Information Science, Warsaw University of 
Technology, Koszykowa 75, 00-662 Warsaw, Poland
c Department of Algebra, Faculty of Mathematics and Physics, Charles University, 
Sokolovská 83, 18675 Praha 8, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2017
Available online xxxx
Communicated by Nicolás 
Andruskiewitsch

MSC:
20N02
57M27
08A05
15A78

Keywords:
Quandles
Medial quandles
Affine quandles
Commutator theory
Abelian algebras
Quasi-affine algebras
Quasi-affine modes

A quandle will be called quasi-affine, if it embeds into an 
affine quandle. Our main result is a characterization of 
quasi-affine quandles, by group-theoretic properties of their 
displacement group, by a universal algebraic condition coming 
from the commutator theory, and by an explicit construction 
over abelian groups. As a consequence, we obtain efficient 
algorithms for recognizing affine and quasi-affine quandles, 
and we enumerate small quasi-affine quandles. We also prove 
that the “abelian implies quasi-affine” problem of universal 
algebra has affirmative answer for the class of quandles.

© 2018 Elsevier Inc. All rights reserved.

✩ Our joint research started within the framework of the Czech–Polish cooperation grants 7AMB13PL013 
and 8829/R13/R14. The second and the fourth authors were supported by the statutory grant of the 
Warsaw University of Technology 504/02476/1120. The third author was partly supported by the Czech 
Science Foundation grant 13-01832S.
* Corresponding author.

E-mail addresses: jedlickap@tf.czu.cz (P. Jedlička), apili@mini.pw.edu.pl (A. Pilitowska), 
stanovsk@karlin.mff.cuni.cz (D. Stanovský), A.Zamojska-Dzienio@mini.pw.edu.pl (A. Zamojska-Dzienio).
https://doi.org/10.1016/j.jalgebra.2018.06.001
0021-8693/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2018.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:jedlickap@tf.czu.cz
mailto:apili@mini.pw.edu.pl
mailto:stanovsk@karlin.mff.cuni.cz
mailto:A.Zamojska-Dzienio@mini.pw.edu.pl
https://doi.org/10.1016/j.jalgebra.2018.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2018.06.001&domain=pdf


260 P. Jedlička et al. / Journal of Algebra 510 (2018) 259–288
1. Introduction

Affine quandles (also called Alexander quandles) play a prominent role in quandle 
theory, both from the algebraic perspective [1,9,12–14,16], and in applications in knot 
theory, due to a close connection between affine colorings and the Alexander invariant [2,
5,18]. In the present paper, we look at the structure and abstract properties of quandles 
that embed into affine quandles, that is, that are isomorphic to a subquandle of an affine 
quandle. We will call such quandles quasi-affine. For example, free medial quandles are 
quasi-affine, but not affine [17].

At the moment, our motivation is purely algebraic, with emphasis on computational 
aspects. What is their structure? How many are there? How to recognize them? We 
will present both a structural theorem, and a computationally feasible characteriza-
tion of quasi-affine quandles (Theorem 2.2). The former goal is achieved using a special 
kind of central extension (Definition 4.1). Together with a convenient isomorphism the-
orem (Theorem 8.7), this allows fairly efficient enumeration (Section 9). We also present 
polynomial-time algorithms (subquadratic with respect to the input size) for recognition 
of affine and quasi-affine quandles (Algorithms 7.1 and 7.4). The key property behind 
the results is abelianness and semiregularity of the displacement group.

A secondary motivation for our study comes from universal algebra. One of the major 
projects in universal algebra is to determine abstract conditions under which a general 
algebraic structure embeds into an affine one; formally, when it is a subreduct of a module 
[27,28]. Such algebras are also called quasi-affine. In particular, a longstanding open 
problem asks, whether every idempotent algebraic structure satisfying certain syntactic 
condition called abelianness is quasi-affine [19]. We confirm the conjecture for the class of 
quandles. As far as we know, after [25], this is only the second result when the problem 
is confirmed for a broad class of idempotent algebras failing every non-trivial Mal’tsev 
condition.

Our results are also interesting in the context of the theory of modes [23], which de-
velops its own theory of linear representations (medial quandles are examples of modes).

As a byproduct, we prove several new results for affine quandles, complementing 
existing theory [11,13]. Our main tool, Theorem 2.3, characterizes affine quandles in a way 
similar to Theorem 2.2, and is of independent interest. In particular, our characterization 
of the displacement groups results in an algorithm for recognition of affine quandles which 
is a tremendous improvement over the brute-force method of [21].

Affine quandles are medial, and so are their subquandles. We could therefore build 
upon the structure theory developed in [16], where we represented medial quandles by 
certain heterogeneous affine structure. However, it turned out that our theory was easier 
to develop from scratch, because meshes of quasi-affine quandles are very symmetric and 
thus better viewed as extensions. We will use the results of [16] in the final sections: the 
isomorphism theorem for quasi-affine quandles will be proved by specializing the (more 
general) isomorphism theorem for affine meshes.
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The paper is organized as follows. In Section 2, we recall some of the quandle theory 
needed in the paper, and we formulate our main results, Theorems 2.2 and 2.3. Sec-
tion 3 contains an auxiliary module-theoretic result, called the Hou–Šťovíček extension 
lemma. We see it as the module-theoretic principle behind the structure theory of affine 
quandles. In Section 4, we introduce semiregular extensions, a concept used to represent 
quasi-affine quandles, and prove a few elementary properties. Section 5 relates the uni-
versal algebraic and quandle theoretic principles. In Section 6, we prove Theorems 2.2
and 2.3. In the finite case, the somewhat cumbersome characterization of affine quandles 
can be replaced by a more esthetic condition; this is the subject of Theorem 6.3. We also 
include several interesting examples and counterexamples related to the abstract condi-
tions that appear throughout the paper. Section 7 contains the recognition algorithms 
based on our characterizing theorems, including their complexity analysis. In Section 8, 
we relate semiregular extensions to the affine meshes of [16], and prove the isomorphism 
theorem for semiregular extensions. In the last section, we apply it to enumerate small 
quasi-affine quandles.

The paper is aimed at both quandlists and universal algebraists. The proof of the main 
theorems does not rely on the universal algebraic concepts, and thus Section 5 could be 
safely skipped. Nevertheless, we advise to take this interesting abstraction into account. 
A universal algebraic background can be learnt from [3]. Our approach to quandles is best 
summarized in the introductory parts of [14]. A comprehensive study of affine quandles 
can be found in [12,13], an alternative approach was developed by Holmes in her Master’s 
thesis [11]. The present work was influenced by some of her ideas presented in the thesis.

2. Terminology and main results

2.1. Quandles

All unproved results stated in this section can be found in the introductory part of 
[14] (using the present notation), and most of them also elsewhere (often in a different 
notation).

We will write mappings acting on the left, hence conjugation in groups will be denoted 
by xy = yxy−1, and consequently, the commutator will be defined as [x, y] = yxy−1 =
xyx−1y−1.

A quandle is an algebraic structure Q = (Q, ∗) which is idempotent (it satisfies the 
identity x ∗ x = x), uniquely left divisible (for every x, y, there is a unique z such 
that x ∗ z = y, to be denoted z = x\y), and left distributive (it satisfies the identity 
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)). The mappings Lx : Q → Q, Lx(y) = x ∗ y, will be 
called left translations. It follows from the quandle axioms that all left translations are 
automorphisms of Q. We will often drop the adjective “left”. For universal-algebraic 
purposes, we will regard left division as a basic operation, i.e., it can be used in 
terms.
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Two important permutation groups are associated to every quandle: the (left) multi-
plication group, generated by all (left) translations,

LMlt(Q) = 〈La : a ∈ Q〉 ≤ Aut(Q),

and its subgroup, the displacement group, defined by

Dis(Q) = 〈LaL
−1
b : a, b ∈ Q〉 ≤ LMlt(Q).

Both groups have the same orbits of the natural action on Q, to be called orbits of the 
quandle Q, and denoted

Qe = {α(e) : α ∈ LMlt(Q)} = {α(e) : α ∈ Dis(Q)}.

Orbits are subquandles of Q. They form a block system, to be called the orbit decompo-
sition of Q.

A quandle is called medial (also entropic or abelian elsewhere) if it satisfies the identity 
(x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v). This is equivalent to abelianness of the displacement 
group. Therefore, if Q is medial, α ∈ Dis(Q) and x, y ∈ Q, we have αL−1

y Lx = α, and 
thus

αLx = αLy . (2.1)

Let (A, +) be an abelian group, f its automorphism, and define an operation on the 
set A by

a ∗ b = (1 − f)(a) + f(b).

Then (A, ∗) is a medial quandle, to be denoted Aff(A, f), and called affine over the 
group (A, +). Here 1 refers to the identity mappings, hence g = 1 − f is the mapping 
g(x) = x − f(x). A product of two affine quandles Q = Aff(A, f) and R = Aff(B, g)
is affine since Q × R = Aff(A × B, f × g). Affine quandles with f = 1 will be called 
projection quandles (also trivial quandles elsewhere), since the operation is the right 
projection, a ∗ b = b. The projection quandle of size k (possibly infinite) will be denoted 
by Proj(k).

Following the universal algebraic terminology, quandles embeddable into affine quan-
dles will be called shortly quasi-affine. (Contrary to universal algebra, quandle-theoretic 
definition of affineness is weaker. In universal algebra, an algebraic structure is called 
affine if and only if it is polynomially equivalent to a module; affine quandles are only 
assumed to be reducts of modules.)

We will say that Dis(Q) is tiny if Dis(Q) = {LxL
−1
e : x ∈ Q} for some e ∈ Q. Affine 

quandles have tiny displacement groups (the converse is not true): for Q = Aff(A, f) we 
have
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Dis(Q) = {x �→ a + x : a ∈ Im(1 − f)} = {LxL
−1
0 : x ∈ Q},

since LaL
−1
b (x) = (1 − f)(a − b) + x. Hence Dis(Q) 	 Im(1 − f), and the orbits of Q are 

the cosets of Im(1 − f).

2.2. Multitransversals

Informally, a multiset is a generalization of the notion of a set where elements can 
repeat. Tuples can be turned into multisets, forgetting the indexing. Multisets will be 
denoted by double brackets {{...}}.

A multitransversal for a block system is a multiset which takes from each block the 
same amount of elements, i.e., a multiset T such that |T ∩ B1| = |T ∩ B2| for every 
pair of blocks B1, B2; the size of the intersection will be called the multiplicity of T . If 
G is a group and H its subgroup, then by a (left) multitransversal of G/H we mean a 
multitransversal of the block system {a + H : a ∈ G}.

Lemma 2.1. Let G be a group, ϕ ∈ End(G), and let T be a left transversal of G/Im(ϕ). 
Then ϕ(T ), as a multiset, is a left multitransversal of Im(ϕ)/Im(ϕ2). The multiplicity 
of ϕ(T ) is equal to |Ker(ϕ)/Ker(ϕ) ∩ Im(ϕ)|.

Proof. Let t, s ∈ T . We have ϕ(t)ϕ(s)−1 ∈ Im(ϕ2) if and only if ϕ(ts−1) = ϕ2(a)
for some a ∈ G. Now ϕ(ts−1) = ϕ2(a) if and only if ϕ(ts−1ϕ(a)−1) = 1, that is, if 
and only if ts−1ϕ(a)−1 ∈ Ker(ϕ). Consequently, ϕ(t)ϕ(s)−1 ∈ Im(ϕ2) if and only if 
ts−1 ∈ Ker(ϕ) · Im(ϕ). Each block of G/(Ker(ϕ) · Im(ϕ)) contains the same amount of 
blocks of G/Im(ϕ), and thus the same amount of elements of T . Looking at the block 
Ker(ϕ) · Im(ϕ), we see that the multiplicity is |(Ker(ϕ) · Im(ϕ))/Im(ϕ)|. By the second 
isomorphism theorem, this is equal to |Ker(ϕ)/Ker(ϕ) ∩ Im(ϕ)|. �
2.3. Main results

Now we can formulate the main results, the characterization theorems for affine and 
quasi-affine quandles.

Recall that a permutation group G acting on a set X is called semiregular (the terms 
free or fixpoint-free are also used in literature) if non-trivial permutations from G are 
regular, i.e., have no fixed points. In other words, if g(x) �= x for every 1 �= g ∈ G and 
x ∈ X.

The semiregular extension, Ext(A, f, d̄), will be defined in Section 4. It is a particular 
type of a central extension of a projection quandle over the affine quandle Aff(A, f) (for 
more information on centrality see Remark 4.10).

In condition (4), abelianness refers to a certain syntactic condition, to be explained 
in Section 5. It is a generalization of the idea that a group G is abelian if and only if the 
diagonal of G2 forms a normal subgroup.
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Theorem 2.2. The following statements are equivalent for a quandle Q:

(1) Q is quasi-affine;
(2) Dis(Q) is abelian and semiregular;
(3) Q is isomorphic to Ext(A, f, d̄) for some abelian group A, its automorphism f and 

some tuple d̄ = (di : i ∈ I) of elements of A (the extension can be taken indecom-
posable);

(4) Q is abelian (in the sense of [10]).

Theorem 2.3. The following statements are equivalent for a quandle Q:

(1) Q is affine;
(2) Dis(Q) is abelian, semiregular and the multiset {{LaL

−1
e : a ∈ T}} is balanced for 

every e ∈ Q and every transversal T of the orbit decomposition.
(2′) Dis(Q) is abelian, semiregular and the multiset {{LaL

−1
e : a ∈ T}} is balanced for 

some e ∈ Q and some transversal T of the orbit decomposition.
(3) Q is isomorphic to Ext(A, f, d̄) for some abelian group A, its automorphism f and 

some balanced tuple d̄ = (di : i ∈ I) of elements of A (the extension can be taken 
indecomposable).

A multiset {{LaL
−1
e : a ∈ T}} is called balanced if it is a multitransversal of 

Dis(Q)/[Dis(Q), Le]. A tuple d̄ is called balanced, if it is a multitransversal of A/Im(1 −f). 
As we shall see in Theorem 6.3, if Q is finite, than these two balancedness conditions 
are equivalent to the fact that the multiplication table of Q is balanced in a particularly 
nice way.

Proving the implications (1) ⇒ (2) is fairly straightforward, and the semiregular 
extensions are designed in a way that the implications (2) ⇒ (3) also prove smoothly. 
The real work is proving the implications (3) ⇒ (1). In either case, we are given a 
particular semiregular extension Q, and we need to find an affine representation, that 
is, a concrete group A and its automorphism f such that Q is isomorphic to, resp. 
embeds into, Aff(A, f). This is not as easy as one might expect. One of the difficulties 
is that the group A is not determined uniquely, not even in the affine case. Our method 
relies on the Hou–Šťovíček extension lemma, which provides a suitable group in the 
affine case. Therefore, we first prove Theorem 2.3, and then obtain Theorem 2.2 as a 
corollary.

Our proof of the Hou–Šťovíček extension lemma is not constructive: the abelian group 
is proved to exist, but no concrete description is given. At the moment, we do not know 
an explicit construction of the affine representation. This has an algorithmic consequence: 
we are able to check efficiently whether a given multiplication table defines an affine (or 
quasi-affine) quandle, but we do not know an efficient way to determine the actual group 
and automorphism.
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The universal algebraic perspective also suggests that calculating an explicit affine rep-
resentation might be difficult: it was so for many of the general results. For example, the 
quasi-affine representation proved in [25] for differential modes is also non-constructive, 
using the indirect syntactic method of [27].

3. The Hou–Šťovíček extension lemma

Lemma 3.1 (Hou–Šťovíček extension lemma). Let A be an abelian group and ϕ its endo-
morphism. Then there exist an abelian group E ≥ A and an epimorphism ψ : E → A

such that ψ|A = ϕ and ψ/A : E/A 	 A/Im(ϕ).

Here ψ/A is defined by x + A �→ ψ(x) + Im(ϕ). It is a well defined homomorphism, 
because x − y ∈ A if and only if ψ(x) − ψ(y) ∈ Im(ϕ).

A similar statement was originally proved by Hou [13, Theorem 4.2] under the as-
sumption that A is finite, and used in his enumeration of small affine quandles (or 
Z[t, t−1]-modules, from his perspective). Later, it found use in Holmes’ alternative ap-
proach to affine quandles [11], and in the present paper, it serves as the underlying result 
behind finding the affine representation in the proof of the main theorems.

Šťovíček deserves credit for pointing out that the statement is actually a special case 
of a classical result in homological algebra, a characterization of hereditary rings in terms 
of the Ext2 functor, and that it holds without the finiteness assumption [26]. In fact, the 
statement is true for modules over any hereditary ring, not just for Z-modules. A ring R
is called (left) hereditary if submodules of projective (left) R-modules are projective, or 
equivalently, if Ext2(A, B) = 0 for every pair of (left) R-modules A, B [24, Chapter 8]. 
The ring of integers is hereditary, because subgroups of free abelian groups are free.

Lemma 3.2 (Hou–Šťovíček extension lemma, a general version). Let R be a hereditary 
ring, A an R-module and ϕ its endomorphism. Then there exist an R-module E ≥ A

and an epimorphism ψ : E → A such that ψ|A = ϕ and ψ/A : E/A 	 A/Im(ϕ).

Proof. Consider an arbitrary short exact sequence

0 −−−−→ K −−−−→ E
ϕ−−−−→ I −−−−→ 0.

Applying the Hom(X, −) functor, we obtain an exact sequence

... −−−−→ Ext1(X,E) Hom(X,ϕ)−−−−−−−→ Ext1(X, I) −−−−→ Ext2(X,K) −−−−→ ...

(see [24, Corollary 6.46]). Over a hereditary ring, Ext2(X, K) = 0, and thus Hom(X, ϕ)
is onto.

Applying the general idea to the exact sequence

0 −−−−→ Ker(ϕ) −−−−→ A
ϕ−−−−→ Im(ϕ) −−−−→ 0
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and X = A/Im(ϕ), we obtain that Ext1(A/Im(ϕ), ϕ) maps the group Ext1(A/Im(ϕ), A)
onto the group Ext1(A/Im(ϕ), Im(ϕ)). Considering a preimage of the exact sequence

0 −−−−→ Im(ϕ) −−−−→ A
π−−−−→ A/Im(ϕ) −−−−→ 0,

we obtain a module E and homomorphisms i, ρ, ψ such that

0 −−−−→ A
i−−−−→ E

ρ−−−−→ A/Im(ϕ) −−−−→ 0⏐⏐�ϕ

⏐⏐�ψ

∥∥∥
0 −−−−→ Im(ϕ) ⊆−−−−→ A

π−−−−→ A/Im(ϕ) −−−−→ 0

is a commutative diagram where the left square is a pushout [24, Lemma 7.28]. Since i is 
injective (the sequence is exact), we can assume it is an inclusion. Since ϕ is surjective, 
so is ψ, as in any pushout. From the left square, we see that ψi = ϕ, i.e., ψ|A = ϕ. From 
the right square, we see that ρ(x) = πψ(x) = ψ(x) + Im(ϕ), and since Ker(ρ) = A, we 
obtain that ψ/A : E/A 	 A/Im(ϕ). �
4. Semiregular extensions

Definition 4.1. Let A be an abelian group, f an automorphism of A, I a non-empty set 
and di ∈ A for i ∈ I. Define an operation on the set I ×A by

(i, a) ∗ (j, b) = (j, (1 − f)(a) + f(b) + di − dj).

It is straightforward to check that the resulting structure (I ×A, ∗) is a quandle, with

(i, a)\(j, b) = (j, (1 − f−1)(a) + f−1(b− di + dj)).

The projection π : I × A → I is a quandle homomorphism onto the projection quandle 
over I, and the fibres of π, as subquandles, are all isomorphic to the affine quandle 
Aff(A, f). We will denote the quandle (I × A, ∗) by Ext(A, f, d̄), where d̄ = (di : i ∈ I), 
and call it a semiregular extension over Aff(A, f).

The name is justified by the following lemma.

Lemma 4.2. Let A be an abelian group, f an automorphism of A, d̄ = (di : i ∈ I) a tuple 
of elements from A, and let Q = Ext(A, f, d̄). Then Dis(Q) is an abelian semiregular 
group.

Proof. It is straightforward to calculate that

L(i,a)L
−1 (k, c) = (k, c + (1 − f)(a− b) + di − dj) = (k, c + ti,j,a,b),
(j,b)
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where ti,j,a,b ∈ A is an element of A independent of k, c. We see that all generators of 
Dis(Q) act as translations over the abelian group A, therefore, Dis(Q) is commutative 
and semiregular. �

A converse also holds: every quandle with an abelian and semiregular displacement 
group admits a representation as a semiregular extension. An extension E = Ext(A, f, d̄)
is called indecomposable, if the fibers {i} ×A are the orbits of E.

Lemma 4.3. Let Q be a medial quandle. Let

E = Ext(Dis(Q), f, (LxL
−1
e : x ∈ T )),

where e ∈ Q, T is a transversal of the orbit decomposition of Q, and f is the automor-
phism of Dis(Q) defined by f(α) = αLe . Then E maps homomorphically onto Q, and if 
Dis(Q) is semiregular, then E is indecomposable and isomorphic to Q.

Proof. We have E = T × Dis(Q). Define a mapping

Φ : E → Q, (x, α) �→ α(x).

It is onto Q, because T is a transversal of the action of Dis(Q) on Q. We prove that the 
mapping Φ is a homomorphism:

Φ((x, α) ∗ (y, β)) = Φ(y, (1 − f)(α) + f(β) + dx − dy)

= (α(α−1)Le)βLe(LxL
−1
e )(LyL

−1
e )−1(y)

= α(α−1β)LeLx(y) (2.1)= α(α−1β)LxLx(y)

= α(x ∗ α−1β(y)) = α(x) ∗ β(y) = Φ(x, α) ∗ Φ(y, β).

Now, Φ(x, α) = Φ(y, β), i.e., α(x) = β(y), if and only if β−1α(x) = y, which can only 
happen if x, y are in the same orbit, and since x, y were chosen from a transversal, it can 
only happen if x = y. So, we have α(x) = β(y) if and only if x = y is a fixed point of 
β−1α. Consequently, if Dis(Q) is semiregular, the mapping Φ is one-to-one.

Indecomposability follows from the fact that the orbits in Q are Qx = {α(x) : α ∈
Dis(Q)}, and their preimages under Φ are the fibers of E. �

Note that the two lemmas establish the equivalence (2) ⇔ (3) of Theorem 2.2.

Example 4.4. Consider an affine quandle Q = Aff(A, f). Then

• Q = Ext(A, f, (0)), hence Dis(Q) is abelian and semiregular according to Lemma 4.2.
• Q 	 Ext(Im(1 − f), f, ((1 − f)(a) : a ∈ T )), where T is a transversal of the orbit 

decomposition, as follows from Lemma 4.3 under the isomorphism Im(1 − f) 	
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Dis(Q). This extension is indecomposable, the fiber {a} × Im(1 − f) corresponds to 
the orbit Qa.

Example 4.5. There are three quasi-affine quandles of order four, and all of them are 
affine:

Aff(Z4, 1) 	 Aff(Z2
2, 1) 	 Ext(Z1, 1, (0, 0, 0, 0)),

Aff(Z4,−1) 	 Aff(Z2
2,
( 0 1

1 0

)
) 	 Ext(Z2, 1, (0, 1)),

Aff(Z2
2,
( 1 1

1 0

)
) 	 Ext(Z2

2,
( 1 1

1 0

)
, (0)).

Consider a semiregular extension Ext(A, f, (d1, . . . , dk)) such that |A| · k = 4. If A = Z1, 
we have only one option, Ext(Z1, 1, (0, 0, 0, 0)), which is a projection quandle. If A = Z2, 
we have four options Ext(Z2, 1, (d1, d2)). The cases (0, 0) and (1, 1) result in the pro-
jection quandle, and it is easy to check that both cases (0, 1), (1, 0) are isomorphic to 
Aff(Z4, −1). If A = Z

2
2 or A = Z4, the value of d̄ = (d) is irrelevant, and we obtain one 

of the three affine quandles.

Example 4.6. There are four quasi-affine quandles of order six (see Proposition 9.2):

Aff(Z6, 1) 	Ext(Z1, 1, (0, 0, 0, 0, 0, 0)),

Ext(Z2, 1, (0, 0, 1)),

Ext(Z3, 1, (0, 1)),

Aff(Z6,−1) 	Ext(Z3, 2, (0, 0)).

The second and third quandles are non-isomorphic, because they have different orbit 
sizes. They are not affine, since they violate condition (3) of Theorem 2.3. In the second 
case, Im(1 − f) = {0} and {0} has two representatives in d̄ whereas {1} has only one. 
In the third case, Im(1 − f) = {0} and {2} has no representative in d̄.

Free medial quandles can also be presented using semiregular extensions. This is 
essentially proved in [17, Theorem 3.3].

Example 4.7. Let X be a set, x0 ∈ X and denote X− = X � {x0}. Let A =⊕
x∈X− Z[t, t−1] be the free Z[t, t−1]-module over a free base (ex : x ∈ X−) and put 

ex0 = 0. Then the free medial quandle of rank |X| can be represented as Ext(A, t, ̄e), 
with the free base ((ex, 0) : x ∈ X).

In Theorem 2.3(3), we represent affine quandles using a tuple d̄ which is a 
multitransversal. The following result explains the role of its multiplicity.

Proposition 4.8. Let A be an abelian group, f an automorphism of A, and (di : i ∈ I)
a multitransversal of A/Im(1 − f) of multiplicity k. Let J ⊆ I such that (di : i ∈ J)
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is a transversal of A/Im(1 − f). Then Ext(A, f, (di : i ∈ I)) is isomorphic to the direct 
product

Ext(A, f, (di : i ∈ J)) × Proj(k).

Proof. Let K be a set of size k and let ξ be a bijection J×K → I such that di−dξ(i,u) ∈
Im(1 − f), for every i ∈ J and u ∈ K (this is possible, because each block of Im(1 − f)
contains the same number of representatives in d̄). Choose witnesses ci,u ∈ A such that 
di − dξ(i,u) = (1 − f)(ci,u). Consider the mapping

Φ : Ext(A, f, (di : i ∈ J)) × Proj(k) → Ext(A, f, (di : i ∈ I)),

((i, a), u) �→ (ξ(i, u), a + ci,u).

This is clearly a bijection, and a straightforward calculation shows that it is an isomor-
phism:

Φ((i, a), u)∗Φ((j, b), v) = (ξ(i, u), a + ci,u)) ∗ (ξ(j, v), b + cj,v)

= (ξ(j, v), (1 − f)(a + ci,u) + f(b + cj,v) + dξ(i,u) − dξ(j,v))

= (ξ(j, v), (1 − f)(a) + f(b) + (1 − f)(ci,u) + cj,v − (1 − f)(cj,v)

+ dξ(i,u) − dξ(j,v))

= (ξ(j, v), (1 − f)(a) + f(b) + di − dξ(i,u) + cj,v − dj + dξ(j,v)

+ dξ(i,u) − dξ(j,v))

= (ξ(j, v), (1 − f)(a) + f(b) + di − dj + cj,v)

= Φ((j, (1 − f)(a) + f(b) + di − dj), v) = Φ(((i, a), u) ∗ ((j, b), v)). �
As a consequence, we obtain an interesting decomposition theorem. It is related to 

[16, Theorem 5.5] which states a similar result covering all medial quandles: every medial 
quandle where all orbits are latin, is a direct product of an affine quandle and a projection 
quandle.

Corollary 4.9. Let A be an abelian group and f its automorphism such that 1 −f is onto. 
Then, for any tuple d̄, the extension Ext(A, f, d̄) is isomorphic to the direct product of 
the affine quandle Aff(A, f) and a projection quandle.

Proof. Since Im(1 − f) = A, there is only one coset of Im(1 − f), hence d̄ is a multi-
transversal of A/A, and Proposition 4.8 applies. Clearly, Ext(A, f, (d1)) = Aff(A, f). �
Remark 4.10. The quandle Ext(A, f, (di : i ∈ I)) is a central extension of the projec-
tion quandle (I, ∗) over the affine quandle Aff(A, f), with the cocycle θi,j = di − dj . 
Here we mean central extensions in the sense of [10, Chapter 7]. An ongoing project [4]
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aims at adapting the general theory of abelian and central extensions of [10] to quan-
dles. Other definitions of abelian extensions of quandles exist in literature. For example, 
Ext(A, f, (di : i ∈ I)) is a special kind of abelian extension in the sense of [15], but not 
in the sense of [6,7], where abelian extensions are defined as a special kind of coverings, 
restricting constant cocycles to abelian groups.

5. A universal algebraic characterization

In universal algebra [3], an algebraic structure A is called abelian if for every (k+1)-ary 
term operation t and every a, b, u1, . . . , uk, v1, . . . , vk ∈ A, the following implication holds:

t(a, u1, . . . , uk) = t(a, v1, . . . , vk) ⇒ t(b, u1, . . . , uk) = t(b, v1, . . . , vk)

The condition may look ad hoc, but it has a natural meaning: It is not hard to prove that 
an algebra A is abelian if and only if, in the direct power A2, the diagonal {(a, a) : a ∈ A}
is a block of a congruence [3, Theorem 7.30]. Consequently, a group G is abelian in the 
present sense (i.e., the diagonal is a normal subgroup of G2) if and only if G is abelian 
in the usual sense. A ring is abelian if and only if it is a zero ring (xy = 0 for every 
x, y).

It turns out that this syntactic condition is closely related to representability of gen-
eral algebraic structures by modules (see [27,28] for a detailed account). In one direction, 
consider a module M over a ring R. Every term operation t(x, x1, . . . , xk) can be writ-
ten as rx +

∑k
i=1 rixi for some r, ri ∈ R. Then t(a, u1, . . . , uk) = t(a, v1, . . . , vk) implies 

that 
∑k

i=1 riui =
∑k

i=1 rivi, and thus we have t(b, u1, . . . , uk) = t(b, v1, . . . , vk) for every 
b ∈ M . Hence every module is abelian. The same argument shows that every algebraic 
structure defined by term operations over a module is abelian, too. And indeed, a sub-
algebra of an abelian algebra is also abelian. We just proved that every quasi-affine 
algebraic structure is abelian.

The converse implication is more complicated. It holds in many particular cases [27,
28], but not in general [22]. As the first step towards establishing that abelian quandles 
are quasi-affine, we prove that they satisfy condition (2) of Theorem 2.2.

Lemma 5.1. Let Q be an abelian quandle. Then Dis(Q) is a semiregular abelian group.

Proof. First we show that Q is medial, and thus Dis(Q) is abelian. Let t(x, y, u, v) =
(x ∗ y) ∗ (u ∗ v) and consider any a, b, c, d ∈ Q. Using idempotence and left distributivity,

t(a, a, b, c) = (a ∗ a) ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) = t(a, b, a, c).

Using abelianness, we obtain

(d ∗ a) ∗ (b ∗ c) = t(d, a, b, c) = t(d, b, a, c) = (d ∗ b) ∗ (a ∗ c).
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For semiregularity, consider α = La1L
−1
b1

. . . Lan
L−1
bn

∈ Dis(Q) such that α(c) = c for 
some c ∈ Q. We shall prove that α is the identity mapping. Let t(z, x1, . . . , xn, y1, . . . , yn)
be the term that represents the formal expression Lx1L

−1
y1

. . . Lxn
L−1
yn

(z). Then

t(c, a1, . . . , an, b1, . . . , bn) = α(c) = c = LcL
−1
c . . . LcL

−1
c (c) = t(c, c, . . . , c, c, . . . , c).

Using abelianness, we obtain

α(d) = t(d, a1, . . . , an, b1, . . . , bn) = t(d, c, . . . , c, c, . . . , c) = LcL
−1
c . . . LcL

−1
c (d) = d

for every d ∈ Q. �
Remark 5.2. We just proved that abelian quandles are medial. In the next section, we will 
prove that abelian quandles are quasi-affine. A different but related affine representation 
result was established by Kearnes in [19, Theorem 1.5]: Every medial quandle Q admits 
a strongly abelian congruence θ such that Q/θ is quasi-affine. It is not difficult to prove 
that, in quandles, strongly abelian congruences are precisely those below the kernel of 
the Cayley mapping x �→ Lx (see [4]).

6. Characterization theorems

In the present section, we prove the main results. We start with the characterization 
theorem for affine quandles.

Proof of Theorem 2.3. (1) ⇒ (2). Let Q = Aff(A, f). Recall that

Dis(Q) = {x �→ a + x : a ∈ Im(1 − f)}.

It immediately follows that Dis(Q) is abelian and semiregular. Next we prove that

[Dis(Q), Le] = {x �→ b + x : b ∈ Im((1 − f)2)}.

For α ∈ Dis(Q), α(x) = a + x, we have

[α,Le](x) = a + (1 − f)(e) + f(−a + (1 − f−1)(e) + f−1(x)) = (1 − f)(a) + x.

Indeed, (1 − f)(a) ∈ Im((1 − f)2), and every element of Im((1 − f)2) can be written this 
way.

Now we finish the proof of (2). Fix e ∈ Dis(Q) and a transversal T of the orbit 
decomposition, that is, a transversal of A/Im(1 − f). We shall prove that {{LaL

−1
e : a ∈

T}} is a multitransversal of Dis(Q)/[Dis(Q), Le]. Since LaL
−1
e (x) = (1 − f)(a − e) + x, 

this is equivalent to the fact that {{(1 − f)(a − e) : a ∈ T}} is a multitransversal of 
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Im(1 − f)/Im((1 − f)2). Now apply Lemma 2.1 to G = A, ϕ = 1 − f and the transversal 
{a − e : a ∈ T} of A/Im(1 − f).

(2) ⇒ (2′) is trivial.
(2′) ⇒ (3). Let A = Dis(Q), f(α) = αLe and put dx = LxL

−1
e , x ∈ T . Observe that 

[Dis(Q), Le] = Im(1 − f), because

[α,Le] = αLeα
−1L−1

e = αf(α)−1 = (1 − f)(α).

According to Lemma 4.3, Q is isomorphic to the extension Ext(Dis(Q), f, (LxL
−1
e : x ∈

T )). By assumptions, d̄ is a multitransversal of Dis(Q)/[Dis(Q), Le] = A/Im(1 − f).
(3) ⇒ (1). According to Proposition 4.8, Q is a product of a projection quandle (which 

is affine) and an extension Ext(A, f, ̄e) where ē is a transversal. Since the product of affine 
quandles is affine, it remains to prove that the implication holds assuming that d̄ is a 
transversal.

According to the Hou–Šťovíček Lemma 3.1 for ϕ = 1 −f , there is an abelian group E ≥
A and an epimorphism ψ : E → A such that ψ|A = 1 −f and ψ/A : E/A 	 A/Im(1 −f). 
Let g = 1 − ψ. First we prove that g ∈ Aut(E). Indeed, it is an endomorphism. Given 
y ∈ E, we will find all x ∈ E such that g(x) = (1 − ψ)(x) = y, that is, such that 
ψ(x) = x − y. Since Im(ψ) = A, we must have x − y ∈ A, and thus we can assume that 
x = y + a for some a ∈ A. Now, on one hand, we have

ψ(y + a) = ψ(x) = x− y = y + a− y = a,

and on the other hand, we have

ψ(y + a) = ψ(y) + ψ(a) = ψ(y) + a− f(a),

because ψ|A = 1 − f . Putting together, x = y + a is a solution to the equation g(x) = y

if and only if ψ(y) = f(a), that is, if and only if a = f−1ψ(y). Therefore, the equation 
has a unique solution, and thus g is bijective.

Consider a transversal (ei)i∈I of E/A such that ψ(ei) = di. Define a mapping

Φ : I ×A → E, (i, a) �→ ei + a.

We prove that this is a quandle isomorphism Ext(A, f, d̄) 	 Aff(E, g). It is indeed bijec-
tive: given u ∈ E, there is a unique decomposition u = ei+a where ei is the representative 
of the coset such that u ∈ ei + A, and thus (i, a) is the unique preimage. To show that 
Φ is a homomorphism, we calculate

Φ(i, a) ∗ Φ(j, b) = (ei + a) ∗ (ej + b)

= (1 − g)(ei + a) + g(ej + b)

= (1 − g)(a) + g(b) + (1 − g)(ei) − (1 − g)(ej) + ej
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= (1 − f)(a) + f(b) + ψ(ei) − ψ(ej) + ej

= (1 − f)(a) + f(b) + di − dj + ej

= Φ(j, (1 − f)(a) + f(b) + di − dj)

= Φ((i, a) ∗ (j, b))

for every i, j ∈ I and a, b ∈ A. �
Now, using Theorem 2.3, we can prove the characterization theorem for quasi-affine 

quandles.

Proof of Theorem 2.2. (1) ⇒ (2). Let Q be a subquandle of Aff(A, f) = Ext(A, f, (0)). 
According to Lemma 4.2, G = Dis(Aff(A, f)) is an abelian semiregular permutation 
group. The group Dis(Q) is a subgroup of permutations from G restricted to the subset 
Q ⊆ A, hence it is also abelian and semiregular.

(2) ⇒ (3) was proved in Lemma 4.3.
(3) ⇒ (1). Assume that Q = Ext(A, f, d̄) where d̄ = (di : i ∈ I). Extend the set I and 

the tuple d̄ into a set J ⊇ I and a tuple ē = (ej : j ∈ J) such that ē is a multitransversal 
of A/Im(1 − f) and ei = di for every i ∈ I. Then Q = Ext(A, f, d̄) is a subquandle of 
Ext(A, f, ̄e), which is affine according to Theorem 2.3.

(Extending the tuple d̄ is indeed possible: from each coset x +Im(1 −f), add sufficiently 
many elements so that all cosets have the same number of representatives. Here is a formal 
description. Choose a transversal T of A/Im(1 −f). For x ∈ T , let nx = |d̄∩(x +Im(1 −f))|
and put n = sup{nx : x ∈ T}. Let J = I ∪

⋃
x∈T Jx, where Jx are pairwise disjoint sets, 

disjoint with I, such that |Jx| + nx = n. Define ei = di for every i ∈ I, and for every 
j ∈ Jx, choose ej ∈ x + Im(1 − f) arbitrarily.)

(1) ⇒ (4) holds for all algebraic structures, see Section 5.
(4) ⇒ (2) was proved in Lemma 5.1. �

Corollary 6.1. Let Q be a quasi-affine quandle. Then there exists an abelian group A and 
its automorphism f such that Q embeds into Aff(A, f) and |A| ≤ |Q| · |Dis(Q)| ≤ |Q|2.

Proof. According to Lemma 4.3, Q 	 Ext(D, g, d̄) such that D = Dis(Q) and d̄ is indexed 
by T , a set of orbit representatives. In particular, |Q| = |Dis(Q) × T | = |Dis(Q)| · |T |. 
Using the construction from the proof of Theorem 2.2, (3) ⇒ (1), Q embeds into an affine 
quandle R = Ext(D, g, ̄e) where ē is indexed by a set not larger than |T | ·|D/Im(1 −f)| ≤
|T | · |Dis(Q)| = |Q|. Therefore, |R| ≤ |Dis(Q)| · |Q| ≤ |Q|2. �

For finite quandles, the balancedness conditions of Theorem 2.3 can be formulated 
alternatively, perhaps more esthetically. In any affine quandle, every column of the 
multiplication table contains the same number of occurrences of each entry. For finite 
quasi-affine quandles, the converse holds, too.
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Let mx,y denote the number of occurrences of y in the column of x in the multiplication 
table of Q; formally,

mx,y = |{z ∈ Q : z ∗ x = y}|.

Indeed mx,y = 0 if y /∈ Qx.

Proposition 6.2. If Q is an affine quandle, then mx,y1 = mx,y2 for every x ∈ Q and every 
y1, y2 ∈ Qx.

Proof. Let Q = Aff(A, f). Then mx,y = |{z ∈ Q : (1 − f)(z) = y − f(x)}|. Assuming 
that y ∈ Qx, there is u ∈ A such that y = (1 − f)(u) + x, and thus

mx,y = |{z ∈ Q : (1 − f)(z) = (1 − f)(x + u)}| = |Ker(1 − f)|,

because (1 − f)(a) = (1 − f)(a′) if and only if a − a′ ∈ Ker(1 − f). We see that mx,y is 
independent of y. �
Theorem 6.3. The following statements are equivalent for a finite quasi-affine quandle 
Q:

(1) Q is affine;
(2) for every x ∈ Q and every y1, y2 ∈ Qx, mx,y1 = mx,y2 ;
(3) there exists x ∈ Q such that for every y1, y2 ∈ Qx, mx,y1 = mx,y2 .

Proof. (1) ⇒ (2) is Proposition 6.2 and (2) ⇒ (3) is trivial.
(3) ⇒ (1). Assume that Q = Ext(A, f, d̄) is an indecomposable extension and take 

j ∈ I, b ∈ A such that x = (j, b). Consider y = (j, c) ∈ Qx. We have

m(j,b),(j,c) = |{(i, a) : (i, a) ∗ (j, b) = (j, c)}| = |{(i, a) : (1− f)(a) + f(b) + di − dj = c}|.

Given i, j, b, c, the number of a’s satisfying the equation is precisely |Ker(1 − f)|, hence

m(j,b),(j,c) = |Ker(1 − f)| · |{i : di − dj + f(b) − c ∈ Im(1 − f)}|.

Denoting uc = dj − f(b) + c, we obtain

m(j,b),(j,c) = |Ker(1 − f)| · |{i : di ∈ uc + Im(1 − f)}|.

According to (3), this expression shall be independent of y = (j, c). Running over all 
c ∈ A, the element uc also runs over all elements of A, and thus all cosets of Im(1 −f) must 
contain the same number of di’s. In other terms, d̄ is a multitransversal of A/Im(1 − f). 
According to Theorem 2.3, the quandle Q is affine. �
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We used finiteness only in the last step of the proof (independence of m(j,b),(j,c) on 
(j, c) implies independence of the right factor on (j, c)), and it would have been sufficient 
to assume only that Ker(1 − f) is finite. Therefore, we could have only assumed that 
mx,x is finite for some x. Without this assumption, the implication fails, as witnessed by 
the following example.

Example 6.4. Let Q = Ext(Z, 1, d̄), where d̄ contains every non-zero integer once and 
zero twice. Then d̄ is not a multitransversal of Z/Im(1 − f) = Z/0, and this implies, as 
we shall see in Proposition 8.8, that Q is not affine. But mx,y is infinite countable for 
every x, y, hence Q satisfies condition (2) of Theorem 6.3.

The following example shows that the implication (2) ⇒ (1) of Theorem 6.3 does not 
hold without the assumption that Q is quasi-affine.

Example 6.5. Let Q be the quandle defined by the following multiplication table:

Q 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7 8
3 2 1 3 4 6 5 8 7
4 2 1 3 4 6 5 8 7
5 2 1 4 3 5 6 8 7
6 2 1 4 3 5 6 8 7
7 1 2 4 3 6 5 7 8
8 1 2 4 3 6 5 7 8

.

It satisfies condition (2) of Theorem 6.3 but it is not quasi-affine, since Dis(Q) is not 
semiregular. (The example is a 2-reductive medial quandle and it was constructed using 
the methods of [16, Section 6].)

The following example shows that it is not possible to characterize affine quandles by 
a first-order property of the displacement group.

Example 6.6. Let Q1 = Ext(Z3, 1, (0, 1)) and Q2 = Ext(Z3, 2, (0, 0)) = Aff(Z6, −1). Then 
both Dis(Q1) and Dis(Q2) are isomorphic to Z3, but Q1 is not affine (see Example 4.6).

Affine quandles have tiny displacement groups, but the converse is not true. In fact, the 
conditions “Dis(Q) is tiny” and “Q is quasi-affine” are independent for medial quandles, 
as witnessed by the following example.

Example 6.7.

• The quandle Q = Ext(Z2, 1, (0, 0, 1)) is quasi-affine, Dis(Q) is tiny but Q is not affine.
• The quandle Q = Ext(Z3, 1, (0, 1)) is quasi-affine but Dis(Q) is not tiny.
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• The quandle Q = Aff(Z4, −1)/α, where α is the congruence with blocks {0, 2}, {1}, 
{3}, is not quasi-affine, because Dis(Q) does not act semiregularly (it fixes the block 
{0, 2}), but Dis(Q) is tiny.

In the end, we also find worth mentioning the following characterization which follows 
from the preceding theory.

Corollary 6.8. A quandle is a homomorphic image of a quasi-affine quandle if and only 
if it is medial.

Proof. Mediality is clearly a necessary condition, and the other direction follows imme-
diately from Theorem 2.2 and Lemma 4.3: every medial quandle is a homomorphic image 
of some E = Ext(A, f, d̄). �
7. Algorithms

We will discuss two decision problems. On input, we have a quandle. We are asked to 
decide whether the quandle is affine or quasi-affine, respectively. We will assume that the 
input quandle is in the form of a multiplication table, although one can imagine other 
representations for which the algorithms work efficiently. Both algorithms are based on 
the properties of the displacement group, as described in conditions (2) of Theorems 2.2
and 2.3. Since the input is finite, we will check balancedness using Theorem 6.3. Let us 
start with the affine case.

Algorithm 7.1.
In: a quandle Q

Out: is Q affine?
1. pick e ∈ Q

2. D := {LxL
−1
e : x ∈ Q}

3. for each α ∈ D do
4. if 0 < |Fix(α)| < |Q| then return false
5. for each β ∈ D do
6. if αβ �= βα then return false
7. if αβ /∈ D then return false
8. mx := 0 for each x ∈ Q

9. for each x ∈ Q do mxe := mxe + 1
10. for each x ∈ Q do if mxe �= me then return false
11. return true

In the first part of the algorithm (lines 1–7), it is checked whether Dis(Q) is semireg-
ular, abelian and tiny. All of these are necessary conditions for a quandle to be affine, 
and sufficient to be quasi-affine. If succeeded, the algorithm checks condition (2) of 
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Theorem 6.3, picking the column e. We use an observation that if Dis(Q) is tiny then 
Qe = {xe : x ∈ Q}.

Proposition 7.2. Algorithm 7.1 runs in O(n3 logn) time with respect to n = |Q|.

Proof. All operations performed with permutations on Q (comparison, composition, 
counting fixed points) can be calculated in O(n logn) time. In the first part (lines 1–7), 
we run over n2 pairs of permutations α, β, performing a fixed amount of operations with 
them, resulting in O(n3 log n) time. The remaining part of the algorithm takes essentially 
linear time. �

In the quasi-affine case, we do not have the convenient condition that the displacement 
group is tiny. To avoid a blow-up during calculation of Dis(Q) when the input is not 
quasi-affine, we implement a convenient upper bound on |Dis(Q)| under the assumption 
of semiregularity.

Lemma 7.3. Let Q be a quandle with Dis(Q) acting semiregularly. Then |Dis(Q)| ≤ |Q|.

Proof. For any group, we have |G| = |Ge| · |Orb(e)|. In particular, |Dis(Q)| = |Dis(Q)e| ·
|Qe|. If Dis(Q) acts semiregularly, then |Dis(Q)e| = 1, and thus |Dis(Q)| = |Qe| ≤
|Q|. �
Algorithm 7.4.
In: a quandle Q

Out: is Q quasi-affine?
1. pick e ∈ Q

2. D := {LxL
−1
e : x ∈ Q}

3. for each α ∈ D do
4. if 0 < |Fix(α)| < |Q| then return false
5. for each β ∈ D do
6. if αβ �= βα then return false
7. P := {{α, β} : α, β ∈ D}
8. while P �= ∅ do
9. select {α, β} ∈ P , remove {α, β} from P

10. if αβ /∈ D then
11. if |D| ≥ |Q| then return false
12. if 0 < |Fix(αβ)| < |Q| then return false
13. D := D ∪ {αβ}
14. P := P ∪ {{αβ, δ} : δ ∈ D}
15. return true

In the first part of the algorithm (lines 1–6), we consider the generators of Dis(Q) and 
check whether they commute and have the correct number of fixed points. If succeeded, 
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on lines 7–14, the algorithm generates Dis(Q) in a standard way. (In the expression 
{α, β}, we allow α = β. Then the result is a one-element set that represents the mapping 
α2.) Whenever we find a composition αβ not yet in D, we check whether it has the 
correct number of fixed points, and if so, αβ is added to D and P is expanded accordingly 
(no need to check commutativity, since a group is abelian if and only if its generators 
commute). The algorithm terminates on line 11 if it realizes that |Dis(Q)| > |Q|, thanks 
to Lemma 7.3.

Proposition 7.5. Algorithm 7.4 runs in O(n3 logn) time with respect to n = |Q|.

Proof. As in Proposition 7.2, the first part (lines 1–6) results in O(n3 log n) time. In the 
second part, we start with |P | ≤ n2. The condition on line 10 is satisfied at most n times, 
thanks to Lemma 7.3 employed on line 11. Therefore, during the run of the algorithm, 
at most n2 unordered pairs are added to |P | on line 14, and the loop will finish after 
at most 2n2 steps. Each step only does a fixed amount of operations with permutations 
on Q, hence the loop requires O(n3 log n) time. �

Both algorithms solve the decision problems (the answer is yes/no). To output the 
actual affine representation is a more complex problem. We can indeed retrieve a rep-
resentation in the form of a semiregular extension, as suggested by Lemma 4.3, as all 
information is readily available. Given Q = Ext(A, f, d̄), the proof of Theorem 2.2 ex-
plains how to expand d̄ so that the result is an affine quandle into which Q embeds; 
this expansion can be implemented efficiently. However, given an affine quandle in the 
form of a semiregular extension, it is not clear how to obtain the actual affine repre-
sentation Aff(E, g). In the proof of Theorem 2.3, we used the Hou–Šťovíček lemma to 
find the pair (E, g), but its proof is not constructive and cannot be transformed into an 
algorithm.

Remark 7.6. Universal algebra suggests an alternative approach to checking whether a 
given quandle is quasi-affine. Theorem 2.2 states that a quandle Q is quasi-affine if and 
only if it is abelian (in the universal algebraic sense). Then Q is abelian if and only if 
the diagonal is a block of a congruence in the direct power Q2, that is, if and only if the 
congruence of Q2 generated by the diagonal has the diagonal as its block. Congruences of 
binary algebras can be generated in cubic time with respect to the number of elements, 
see [8] for a fast algorithm. This provides an alternative to Algorithm 7.4, but the time 
complexity seems to be much worse.

8. Affine meshes and the isomorphism theorem

In [16], we developed a representation of medial quandles by certain heterogeneous 
affine structure, called affine meshes. First, we recall essential constructions and results.
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Definition 8.1. An affine mesh over a non-empty set I is a triple

A = ((Ai)i∈I , (ϕi,j)i,j∈I , (ci,j)i,j∈I)

where Ai are abelian groups, ϕi,j : Ai → Aj homomorphisms, and ci,j ∈ Aj constants, 
satisfying the following conditions for every i, j, j′, k ∈ I:

(M1) 1 − ϕi,i is an automorphism of Ai;
(M2) ci,i = 0;
(M3) ϕj,kϕi,j = ϕj′,kϕi,j′ , i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Aj⏐⏐�ϕi,j′

⏐⏐�ϕj,k

Aj′
ϕj′,k−−−−→ Ak

(M4) ϕj,k(ci,j) = ϕk,k(ci,k − cj,k).

The mesh is called indecomposable if for every j ∈ I, the group Aj is generated by the 
set

{ci,j , ϕi,j(a) : i ∈ I, a ∈ Ai}.

If the index set is clear from the context, we shall write briefly A = (Ai, ϕi,j , ci,j).

Definition 8.2. The sum of an affine mesh (Ai, ϕi,j , ci,j) over a set I is an algebraic 
structure defined on the disjoint union of the sets Ai by

a ∗ b = ci,j + ϕi,j(a) + (1 − ϕj,j)(b),

for every a ∈ Ai and b ∈ Aj .

The sum Q of an affine mesh is a medial quandle. The fibers Ai, i ∈ I, form subquan-
dles of Q which are affine, namely, Aff(Ai, 1 −ϕi,i). If the mesh is indecomposable, then 
the fibers are precisely the orbits of Q.

Theorem 8.3. [16, Theorem 3.14] An algebraic structure (Q, ∗) is a medial quandle if and 
only if it is the sum of an indecomposable affine mesh.

A quasi-affine quandle is medial, hence it is the sum of an affine mesh. The structure 
of the mesh is easily derived from the parameters of the semiregular extension.
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Observation 8.4. A semiregular extension Ext(A, f, (di : i ∈ I)) is the sum of an affine 
mesh

((A)i∈I , (1 − f)i,j∈I , (di − dj)i,j∈I).

The mesh (and thus the extension) is indecomposable if and only if the group A is gen-
erated by the set

Im(1 − f) ∪ {di − dj : i, j ∈ I}.

Definition 8.5. Two affine meshes, A = (Ai, ϕi,j , ci,j) over an index set I, and A′ =
(A′

i, ϕ
′
i,j , c

′
i,j) over an index set I ′, are called homologous, if there exist a bijection π :

I → I ′, group isomorphisms ψi : Ai → A′
π(i), and constants ei ∈ A′

π(i), such that, for 
every i, j ∈ I,

(H1) ψjϕi,j = ϕ′
π(i),π(j)ψi, i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Aj⏐⏐�ψi

⏐⏐�ψj

A′
π(i)

ϕ′
π(i),π(j)−−−−−−→ A′

π(j)

(H2) ψj(ci,j) = c′π(i),π(j) + ϕ′
π(i),π(j)(ei) − ϕ′

π(j),π(j)(ej).

Theorem 8.6. [16, Theorem 4.2] Let A = (Ai, ϕi,j , ci,j) and A′ = (A′
i, ϕ

′
i,j , c

′
i,j) be two 

indecomposable affine meshes. The sums of A and A′ are isomorphic quandles if and 
only if the meshes A, A′ are homologous.

Specializing Theorem 8.6, we obtain an isomorphism theorem for indecomposable 
semiregular extensions.

Theorem 8.7. Let Ext(A, f, (di : i ∈ I)) and Ext(A′, f ′, (d′i : i ∈ I ′)) be two indecompos-
able extensions. They are isomorphic if and only if there exist a bijection π : I → I ′, an 
isomorphism ψ : A → A′, and an element a ∈ A′ such that

(E1) ψf = f ′ψ,
(E2) ψ(di) − d′π(i) ∈ a + Im(1 − f ′) for every i ∈ I.

Proof. Combining Observation 8.4 and Theorem 8.6, we see that the two extensions are 
isomorphic if and only if there exist a bijection π : I → I ′, isomorphisms ψi : A → A′, 
and elements ei ∈ A′ such that for every i, j ∈ I
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(H1) ψi(1 − f) = (1 − f ′)ψj ,
(H2) ψj(di − dj) = d′π(i) − d′π(j) + (1 − f ′)(ei) − (1 − f ′)(ej).

(⇒). Consider π, ψi and ei as above. Choose k ∈ I and define ψ = ψk and a =
ψk(dk) −d′π(k) − (1 − f ′)(ek). Then condition (E1) is a special case of (H1) for i = j = k, 
and condition (E2) follows from (H2) with j = k, since ψ(di) = ψ(dk) + d′π(i) − d′π(k) +
(1 −f ′)(ei) −(1 −f ′)(ek) = d′π(i) +(1 −f ′)(ei) +a, and thus ψ(di) −d′π(i) ∈ a +Im(1 −f ′).

(⇐). Consider π, ψ, a as in the statement of the theorem. For every i ∈ I define 
ψi = ψ and select ei such that ψ(di) − d′π(i) = a + (1 − f ′)(ei). Then condition (H1) 
immediately follows from (E1) and the fact that ψi = ψj for every i, j, and condition 
(H2) immediately follows from (E2) applied to both i and j (the two occurrences of a in 
the expression cancel). �

In Theorem 2.3 we claim that affine quandles have at least one balanced extension. 
Actually, all its indecomposable extensions are balanced. (The claim is not true for 
decomposable extensions since, e.g., Ext(Z3, 1, {0}) is affine but not balanced.)

Proposition 8.8. Let Q be affine and isomorphic to an indecomposable extension 
Ext(A, f, d̄), for some A, f, d̄. Then d̄ is balanced.

Proof. By Theorem 2.3, there exists an indecomposable extension Ext(A′, f ′, (d′i : i ∈
I ′)) isomorphic to Q with d̄′ balanced. By Theorem 8.7, there exist a bijection π : I ′ → I, 
a group isomorphism ψ : A′ → A, and an element a ∈ A such that conditions (E1) and 
(E2) hold. Since d̄′ = (d′i : i ∈ I) is a balanced tuple of elements A, then (ψ(d′i) : i ∈ I) is 
balanced, i.e., it is a multitransversal of A/Im(1 −f). This implies that (ψ(d′i) −a : i ∈ I ′)
is also a multitransversal of A/Im(1 − f). Now ψ(d′i) − a − dπ(i) lies in A/Im(1 − f), 
for each i ∈ I ′, and therefore (dj : j ∈ I) is a multitransversal of A/Im(1 − f), hence 
balanced. �

Theorem 8.7 now simplifies a lot when considering affine quandles.

Corollary 8.9. Let Ext(A, f, (di : i ∈ I)) and Ext(A′, f ′, (d′i : i ∈ I ′)) be two indecompos-
able extensions such that d̄ and d̄′ are balanced. The extensions are isomorphic if and 
only if there is an isomorphism ψ : A → A′ such that

(E1) ψf = f ′ψ,
(E2′) the multiplicities of d̄, d̄′ are equal.

Proof. We need to prove that (E2′) holds if and only if there exist π and a satisfying 
(E2).

(⇐) Choose a coset of Im(1 − f) and consider the subset J ⊆ I of all indices j such 
that dj belongs to this coset. Then (E2) implies that all d′ , j ∈ J , belong to the 
π(j)
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same coset of Im(1 − f ′), hence the multiplicity of d̄′ must be greater or equal. A reverse 
argument shows that they are equal.

(⇒) Let a = 0 and take π such that di ∈ u + Im(1 − f) if and only if d′π(i) ∈
ψ(u) +Im(1 −f ′). This is possible since d̄, d̄′ are multitransversals of block systems with 
the same numbers of blocks and the same multiplicity. Now, ψ(di) ∈ ψ(u +Im(1 − f)) =
ψ(u) + Im(1 − f ′), and thus ψ(di) − d′π(i) ∈ Im(1 − f ′). �

As a byproduct, we obtain Hou’s isomorphism theorem for affine quandles.

Corollary 8.10. [12, Theorem 3.1] Two affine quandles Aff(A, f), Aff(B, g) are isomor-
phic if and only if there exists an isomorphism ψ : Im(1 − f) → Im(1 − g) such that 
ψf(u) = gψ(u) for every u ∈ Im(1 − f), and

|Ker(1 − f)/Ker(1 − f) ∩ Im(1 − f)| = |Ker(1 − g)/Ker(1 − g) ∩ Im(1 − g)|.

Proof. According to Example 4.4, Aff(A, f) 	 Ext((1 − f)(A), f, ((1 − f)(t) : t ∈ T ))
where T is a transversal of A/Im(1 −f), and Aff(B, g) 	 Ext((1 −g)(B), g, ((1 −b)(s) : s ∈
S)) where S is a transversal of B/Im(1 − g). Now, Corollary 8.9 applies: the conditions 
on ψ are identical, and according to Lemma 2.1, |Ker(1 − f)/Ker(1 − f) ∩ Im(1 − f)|
equals the multiplicity of {{(1 − f)(t) : t ∈ T}}. �
9. Enumeration

First, we outline an enumeration procedure for quasi-affine quandles of given order n. 
Theorem 8.7 suggests to start with a choice of

• an index set I of order k dividing n (then k will be the number of orbits),
• an abelian group A of order n/k up to isomorphism (then n/k will be the orbit size),
• its automorphism f up to conjugacy (the orbit subquandles will be 	 Aff(A, f)).

The number of quandles of the form Ext(A, f, (d1, . . . , dk)) will be denoted by ε(A, f, k), 
and we will often shortcut εn,k = ε(Zn, 1, k). In some cases, the enumeration is easy to 
do with ad hoc arguments.

Proposition 9.1. There are exactly p − 1 quasi-affine quandles of order p, p prime, up to 
isomorphism. All of them are affine.

Proof. We will follow the procedure outlined above. We can choose k = 1 or k = p. For 
k = 1, we have A = Zp and f(x) = ax for some a ∈ {1, . . . , p − 1}. The extension is 
indecomposable if and only if a �= 1. The choice of d̄ = (d1) is irrelevant and we obtain 
p −2 connected affine quandles. For k = p, we have A = {0} the trivial group, f = 1, and 
there is only one choice d̄ = (0, . . . , 0). We obtain one affine (projection) quandle. �
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Proposition 9.2. Let p, q be distinct primes. Up to isomorphism, there are exactly

(1) 2p2 − 2p − 2 + εp,p quasi-affine quandles of order p2,
(2) pq − p − q + 1 + εp,q + εq,p quasi-affine quandles of order pq.

Proof. We will follow the procedure outlined above.
(1) For k = 1, we have |A| = p2 and we obtain precisely the connected affine quandles 

of order p2. It was determined by Hou [13] that there are 2p2 − 3p − 1 such quandles, up 
to isomorphism.

For k = p, we have A = Zp. Subcase 1: f(x) = ax for a ∈ {2, . . . , p − 1}. Then the 
orbits are latin subquandles, and according to Corollary 4.9, Q = Aff(A, f) × Proj(p); 
this way, we obtain p − 2 affine quandles. Subcase 2: f = 1. This case contributes εp,p
quandles.

For k = p2, we have A = {0} the trivial group, f = 1, and there is only one choice 
d̄ = (0, . . . , 0). We obtain one affine (projection) quandle.

(2) For k = 1, we have A = Zp×Zq and we obtain precisely the products of connected 
affine quandles of orders p and q, that is, (p − 2)(q − 2) quandles.

For k = q, we have A = Zp. The discussion is exactly as in the second case of part 
(1), obtaining p −2 quandles of the form Q = Aff(A, f) ×Proj(q) and εq,p quandles with 
f = 1. The case k = p in analogical, with the role of p and q switched, contributing 
q − 2 + εp,q quandles.

The case k = pq is exactly as the last case of part (1). �

Now, we will address how to calculate the numbers ε(A, f, k). Let Q = Ext(A, f,
(d1, . . . , dk)) and Q′ = Ext(A, f, (d′1, . . . , d′k)) be two indecomposable semiregular ex-
tensions. Theorem 8.7 says that Q 	 Q′ if and only if d̄′ is obtained from d̄ using the 
following four types of transformations:

(T1) the sequence can be permuted;
(T2) any element of the sequence can be replaced by an element from the same coset 

of Im(1 − f);
(T3) all elements of the sequence can be translated (simultaneously) by an element of 

A (i.e., we apply the mapping x �→ x + u on every element of the sequence);
(T4) all elements of the sequence can be mapped (simultaneously) by an automorphism 

of A which commutes with f , i.e., by an element of the centralizer CAut(A)(f).

An application of the following proposition allows to reduce many enumeration prob-
lems to the case f = 1. Observe that, for ψ ∈ CAut(A)(f), the mapping ψ/Im(1 − f)
defined by a + Im(1 − f) �→ ψ(a) + Im(1 − f) is a well defined automorphism of 
A/Im(1 − f).
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Proposition 9.3. For every A, f, k,

ε(A, f, k) ≤ ε(A/Im(1 − f), 1, k).

Moreover, equality holds if

Aut(A/Im(1 − f)) = {ψ/Im(1 − f) : ψ ∈ CAut(A)(f)}.

In particular, it holds for every A cyclic.

Proof. First, consider ε(A, f, k). Choose a transversal T to A/Im(1 − f). Due to (T2), 
we can assume that all di ∈ T . Now (T1) say that we count such tuples d̄ up to the 
order of their entries. By (T3) we count up to translation by an element of A modulo 
Im(1 − f), i.e., applying x �→ x + u, if x + u /∈ T , it is replaced by a representative of 
its coset. And by (T4) we count up to application of an automorphism ψ ∈ CAut(A)(f)
modulo Im(1 − f), i.e., if ψ(x) /∈ T , it is replaced by a representative of its coset.

Next, consider ε(A/Im(1 − f), 1, k). Here (T2) is trivial, and (T1), (T3), (T4) says 
that we count tuples d̄ up to the order of their entries, translation by an element of 
A/Im(1 − f) and application of an automorphism ψ ∈ Aut(A/Im(1 − f)).

Indeed, Aut(A/Im(1 − f)) ⊇ {ψ/Im(1 − f) : ψ ∈ CAut(A)(f)} for any A, f . Since 
bigger groups have less orbits, we obtain the inequality. If the two sets are equal, we 
obtain equality. For cyclic groups, the two sets are always equal: given an automorphism 
ρ of A/Im(1 − f), choose u ∈ A such that ρ(1 + Im(1 − f)) = u + Im(1 − f) and define 
ψ(x) = ux. Indeed, ψ ∈ CAut(A)(f) = Aut(A) and ψ/Im(1 − f) = ρ. �

In particular, if 1 −f is onto, we obtain that ε(A, f, k) = 1. This is in accordance with 
Corollary 4.9 which says that this one quandle is the direct product Aff(A, f) ×Proj(k).

Automorphisms of Aut(A/Im(1 −f)) are not always quotients of automorphisms from 
CAut(A)(f). For example, if

A = Z
3
2 and f =

(
1 0 1
0 1 0
0 0 1

)
,

then Im(1 −f) = 〈(1, 0, 0)〉. Hence |Aut(A/Im(1 −f))| = 6, but the centralizer CAut(A)(f)
is the subgroup of all upper triangular matrices with 1s on the diagonal and |{g/Im(1 −
f) : g ∈ CAut(A)(f)}| = 2.

In the rest of the paper, we will address the case f = 1. The direct approach outlined 
above is good if k is very small.

Proposition 9.4. ε(A, 1, 2) = 1 if A is cyclic, and ε(A, 1, 2) = 0 otherwise.

Proof. Let Q = Ext(A, 1, (d1, d2)). The extension is indecomposable if and only if A =
〈d1 − d2〉. This is not possible unless A is cyclic. Now, due to (T1) and (T3), we can 
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assume that d1 = 0 and d2 = u is a generator of A. But then x �→ ux is an automorphism 
of A, and thus Ext(A, f, (0, u)) 	 Ext(A, f, (0, 1)) by (T4). �

As k grows, an analysis as in the previous proof becomes infeasible (already for εp,3, 
this method would result in a tedious case study). To proceed further, we need a better 
approach.

Let us start calculating ε(A, 1, k). By (T1), the order of d̄ is irrelevant, hence we can 
record only the numbers ca, a ∈ A, of occurrences of elements of A in the tuple d̄. Clearly, 
the sum 

∑
a∈A ca must be equal to k, the length of d̄. Let

C(A, k) = {(ca : a ∈ A) :∑
a∈A

ca = k and the corresponding extension is indecomposable}.

If A is cyclic, the corresponding extension is indecomposable if and only if d̄ is not 
constant, that is, if and only if ca �= k for every a ∈ A. Using a standard combinatorial 
trick [20, Section 3.3], we see that

|C(Zn, k)| =
(
n + k − 1
n− 1

)
− n.

(If A is not cyclic, the condition is more complicated; the discussion is omitted here.)

Lemma 9.5. The number ε(A, 1, k) is equal to the number of orbits of the holomorph 
A �Aut(A) acting on C(A, k) by permuting indices, i.e., under the action (u, ψ)(ca : a ∈
A) = (cu+ψ(a) : a ∈ A).

Proof. The transformation (T2) is trivial if f = 1. The transformation (T3) corresponds 
to the action of the mapping x �→ x + u on the indices of the sequence c̄. The trans-
formation (T4) corresponds to the action of the mapping ψ ∈ Aut(A) = CAut(A)(1) on 
the indices of c̄. Therefore, two sequences d̄, d̄′ yield isomorphic quandles if and only if 
the corresponding sequences c̄, ̄c′ are in the same orbit of the action of the holomorph 
A � Aut(A) on C(A, k). �

To calculate the number of orbits, we can use Burnside’s orbit counting lemma:

ε(A, 1, k) = 1
|A| · |Aut(A)| ·

∑
g∈A�Aut(A)

Fix(g),

where Fix(g) denotes the number of sequences from C(A, k) fixed by g.

Proposition 9.6. For every k, we have

ε2,k =
⌊
k
⌋
,
2
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ε3,k = 1
12

(
k2 + 6k − 4 + ξk

)
, where ξk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 if k ≡ 0 (mod 6),
1 if k ≡ 3 (mod 6),
0 if k ≡ 2, 4 (mod 6),
−3 if k ≡ 1, 5 (mod 6),

ε4,3 = 2, ε5,3 = 2, ε(Z2
2, 1, 3) = 1.

Proof. For ε2,k, we consider pairs (c0, c1) such that c0 + c1 = k, ci �= k. The holomorph 
acts on indices as the permutation group 〈(0 1)〉, hence the orbits can be uniquely 
represented by the pairs with c0 ≤ c1, and thus there are �k

2 � orbits.
For ε3,k, we have C(Z3, k) = {(c0, c1, c2) : c0+c1+c2 = k, ci �= k}, and the holomorph 

acts on indices as the group G = 〈(0 1 2), (0 1)〉 = S3, the symmetric group on three 
elements. Applying Burnside’s formula, we obtain

ε3,k = 1
6 ·

((
k + 2

2

)
− 3 + 2 · ζk + 3 ·

⌊
k

2

⌋)
,

where ζk counts the number of triples fixed by a 3-cycle, that is, ζk = 1 if k ≡ 0 (mod 3), 
and ζk = 0 otherwise. The last term, �k

2 �, is the number of triples fixed by a 2-cycle: 
such triples must have two entries equal to a number ≤ k/2. Replacing �k

2 � by k2 plus 0 
or −1

2 , depending on parity of k, we obtain the expression stated above.
For ε4,k, we have C(Z4, k) = {(c0, c1, c2, c3) : c0+c1+c2+c3 = k, c0+c2 �= k, c1+c3 �=

k} (here, the indecomposability condition requires that the differences di − dj contain 
1 or 3). The holomorph acts as the group 〈(0 1 2 3), (1 3)〉 = D8, the dihedral group 
on 8 elements. For k = 3, the only admissible quadruples contain 2,1,0,0 or 1,1,1,0 (in 
an arbitrary order), and thus the Burnside’s formula gives (12 + 2 · 2)/8 = 2, where 
the first term comes from g = 1, the identity, and the second term comes from the two 
transpositions.

For ε5,k, we have C(Z5, k) = {(c0, ..., c4) :
∑

ci = k, ci �= k} and the holomorph acts 
as the group 〈(0 1 2 3 4), (1 4)(2 3)〉. For k = 3, the only admissible quadruples contain 
2,1,0,0,0 or 1,1,1,0,0, and thus the Burnside’s formula gives (30 + 5 · 2)/20 = 2, where 
the first term comes from g = 1 and the second one from the five permutations with two 
2-cycles.

For ε(Z2
2, 1, 3), the set C(Z2

2, 3) contains only four quadruples consisting of 1,1,1,0, 
and the holomorph acts as the symmetric group on four elements, hence the Burnside’s 
formula gives (4 +6 · 2 +8 · 1)/24 = 1, where the first term comes from g = 1, the second 
from transpositions and the third from 3-cycles. �
Corollary 9.7. There are, up to isomorphism, (3p − 1)/2 quasi-affine quandles of order 
2p, for a prime p > 2.

In Table 1, we display the number of quasi-affine, affine, and affine latin quandles 
of orders up to 15 (note that connected medial quandles are affine, and if finite then 
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Table 1
The number of quasi-affine, affine, and affine latin quandles of order n, up to isomorphism.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
quasi-affine 1 1 2 3 4 4 6 9 12 7 10 17 12 10 14
affine 1 1 2 3 4 2 6 7 11 4 10 6 12 6 8
affine latin 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3

also latin, see [14, Section 7]). For prime orders, see Proposition 9.1. For orders 2p we 
use Corollary 9.7. For orders 4, 9, 15, combine Propositions 9.2 and 9.6. To complete 
orders 8 and 12, we need a more detailed analysis in the case when 1 − f is neither an 
automorphism, nor zero, see Examples 9.8 and 9.9. The numbers of affine quandles come 
from [13].

Example 9.8. We will calculate the number of quasi-affine quandles of order 8 up to 
isomorphism, following the procedure outlined at the beginning of this section. For k = 1, 
we have |A| = 8 and we obtain precisely the connected affine quandles of order 8. It is 
well known (cf. [13]) that there are two of them. For k = 2, we have A = Z4 or A = Z

2
2. 

Let {1, f, g} be representatives of conjugacy classes of Aut(Z2
2), with f of order 2 and g

of order 3. The contribution is

ε(Z4, 1, 2)+ε(Z4,−1, 2)+ε(Z2
2, 1, 2)+ε(Z2

2, f, 2)+ε(Z2
2, g, 2) = 1+ε2,2 +0+ε2,2 +1 = 4,

using Propositions 9.4, 9.3, 9.4, 9.3, and 4.9, respectively. For k = 4, we have A = Z2

and the contribution is ε2,4 = 2. For k = 8, we obtain one projection quandle of order 8. 
The total is 2 + 4 + 2 + 1 = 9 quasi-affine quandles of order 8 up to isomorphism.

Example 9.9. We will calculate the number of quasi-affine quandles of order 12 up to 
isomorphism, following the procedure outlined at the beginning of this section. For k = 1, 
we obtain precisely the connected affine quandles of order 12, which decompose to a direct 
product of one of order 4 and one of order 3. There is precisely one such pair. For k = 2, 
we have A = Z6, contributing ε(Z6, 1, 2) + ε(Z6, −1, 2) = ε6,2 + ε2,2 = 2 quandles, using 
Propositions 9.4 and 9.3, respectively. For k = 3, we have A = Z4 or A = Z

2
2. Let {1, f, g}

be representatives of conjugacy classes of Aut(Z2
2), with f of order 2 and g of order 3. 

The contribution is

ε(Z4, 1, 3)+ε(Z4,−1, 3)+ε(Z2
2, 1, 3)+ε(Z2

2, f, 3)+ε(Z2
2, g, 3) = ε4,3+ε2,2+1+ε2,3+1 = 6,

using Propositions 9.6, 9.3, 9.6, 9.3, and 4.9, respectively. For k = 4, we have A = Z3, 
and the contribution is ε(Z3, 1, 4) + ε(Z3, −1, 4) = 3 +1 = 4. For k = 6, we have A = Z2, 
and the contribution is ε2,6 = 3. For k = 12, we obtain one projection quandle of order 
12. The total is 1 + 2 + 6 + 4 + 3 + 1 = 17 quasi-affine quandles of order 12 up to 
isomorphism.
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