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1. Introduction

Let (A, m) be a Noetherian local ring with the maximal ideal m and let R be a Noethe-
rian standard N"-graded ring with Rg = A, i.e., R is generated in degrees eq, ..., e, over
A with R, # (0) for alli =1,...,r. Let M be a finitely generated Z"-graded R-module
and let N be a graded R-submodule of M. In this article, we study the asymptotic van-
ishing property of homogeneous components [M/N],, of the quotient M /N. Particularly,
we give a condition on the vanishing.
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Our main motivation comes from the following facts on the normality of monomial
ideals. Let S = k[X7, ..., X4] be a polynomial ring over a field k and let I be a monomial
ideal in S. In 2003, Reid, Roberts and Vitulli [14] proved that if I,12,...,I%"! are
integrally closed, then all the powers of I are integrally closed, i.e., I is a normal ideal.
In 2007, Singla improved this result. Let £ = A(I) be the analytic spread of I. Then
Singla [16] proved that I is a normal ideal if I,12,... I*~! are integrally closed. Note
that the inequality ¢ < d always holds true. On the other hand, more recently, Sarkar
and Verma [15] gave the other generalization of the original result of Reid, Roberts and
Vitulli [14]. Let Iy,...,I. be (Xi,...,X4)-primary monomial ideals in S. They proved
that if I™ = I --- I is integrally closed for any n € N” with 1 < |n| < d — 1, where
|n| = ni+- -+ n, denotes the sum of all entries of a vector n = (ny,...,n,) € N", then
all the power products I are integrally closed. Thus, the original result of Reid, Roberts
and Vitulli [14] was partially generalized to finitely many monomial ideals. The approach
in [15] is different from the ones in [14,16]. In [15], the authors used the local cohomology
modules of the multi-Rees algebra R(I) of ideals I, ..., I, and its normalization R(I)
instead of convex geometry as in [14,16].

The purpose of this article is to extend and improve all of the above results with a
more general approach inspired by [15]. In order to state our results, let us recall some
notations associated to multigraded modules.

For a Noetherian standard N"-graded ring R with Rg = A, let Ry, = ReR be the
irrelevant ideal of R where e = e;+---+e, = (1,...,1) € N".Let Ry = (Rey,. ., Re, )R-
Note that Ry = Ry when r = 1. Let 91 = mR 4+ R4 be the homogeneous maximal
ideal of R. For a finitely generated R-module M, we set

Supp,, (M) ={P € SpecR | Mp # (0), P is graded and R,y ¢ P}.
Then the spread s(M) of M introduced by Kirby and Rees [10] is defined to be
s(M) = dim Supp , (M/mM) + 1.

Here we set dim{) = —1. Note that for an ideal I in A, the spread s(R(I)) of the Rees
algebra of I is just the analytic spread A(I) of the ideal I. For any i = 1,...,r, let

a'(M) = sup{k € Z | [HS™ M (M))],, # (0) for some n € Z" with n; = k},

where H},(M) is the ith local cohomology module of M with respect to 90 in the
category of Z"-graded R-modules. Then the a-invariant vector is defined to be

a(M) = (a*(M),...,a"(M)) € Z".

Then our main result can be stated as follows.
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Theorem 1.1. Let R be a Noetherian standard N"-graded ring such that Ry = A is a
local ring. Let M be a finitely generated Z"-graded R-module and let N be a graded
R-submodule of M. Suppose that M is a Cohen—Macaulay graded R-module. Let ¢ >
la(M)| + s(M) 4+ r —1 and assume that

[M/N]yn = (0) for allm > a(M) + e with |n| = ¢.
Then we have that
[M/N]p = (0) for alln > a(M) + e with |n| > £.

The most interesting case is the case where R is the multi-Rees algebra of ideals in A
and M is its normalization. Let Iy, ..., I be ideals in A. We set

R(I) = A[Iltla LERE I’r‘tr]
the multi-Rees algebra of the ideals I, ..., I, and

R(I =) 1"

neN”

the multi-Rees algebra of its integral closure filtration, where ¢y, ...,t¢, are indetermi-
nates. By applying Theorem 1.1 to this special case, we have the following.

Theorem 5.6. Let (A, m) be a Noetherian local ring of dim A =d > 0. Let I,...,I. be
ideals in A such that dim R(I) = d + r. Suppose that R(I) C R(I) is module-finite and
R(I) is Cohen—Macaulay. Let £ > \(I1---1I,) — 1 and assume that

I™ is integrally closed for all n € N" with |n| = £.
Then we have that
I™ is integrally closed for all n € N" with |n| > £.
In particular, if
I™ is integrally closed for any n € N with 0 < |n| < X(I[y--- 1) — 1,
then all the power products I™ of I, ..., I, are integrally closed.
This is related to the classic Zariski’s theory on integrally closed ideals in a regular
local ring of dimension two. Let I and J be integrally closed ideals in a two-dimensional

regular local ring A. Then Zariski proved in [18, Appendix 5] that the product I.J is
also integrally closed. Lipman and Teissier [11] proved that the reduction number of
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integrally closed ideals is always at most one. Huneke and Sally [7] proved that the Rees
algebra of integrally closed ideals is always Cohen—Macaulay. In this sense, Theorem 5.6
can be viewed as an analogue of the classic theorem of Zariski in higher dimensional
regular local rings.

Let Iy,...,I, be monomial ideals in a polynomial ring S = k[X7,..., X4 over a
field k. We consider the multi-Rees algebra R = R(I) of the ideals Iy,...,I. and its
normalization R = R(I). Then the ring extension R C R is module-finite because R
is a finitely generated algebra over a field and an integral domain. Also, R is a normal
semigroup ring so that it is Cohen—Macaulay by Hochster’s Theorem. Thus, by localizing
at the homogeneous maximal ideal (X7,..., X ) in S, we have the following as a direct
consequence of Theorem 5.6.

Corollary 5.8. Let S = k[X1, ..., X4] be a polynomial ring over a field k and let I, ..., I,
be arbitrary monomial ideals in S. Suppose that

I™ is integrally closed for any n € N” with 0 < |n| < X(Iy---I,) — 1.
Then all the power products I of I, ..., I, are integrally closed.

This can be viewed as a common generalization of the original result of Reid, Roberts
and Vitulli [14] and the results of Singla [16], Sarkar and Verma [15]. Indeed, if we take
r =1, then we can readily get the results in [14,16]. The result [15] is a special case of
Corollary 5.8 where Iy, ..., I, are (Xq,..., Xg)-primary monomial ideals.

Let me explain the construction of this article. Sections 2 and 3 are preliminaries.
In section 2, we will recall the notion of filter-regular sequences of multigraded modules
and its basic properties, in particular, a connection with the vanishing of homogeneous
components of the local cohomology modules. In section 3, we will recall some notion
associated to multigraded modules; in particular, the spread, complete and joint reduc-
tions. We will prove the key result, Theorem 3.7, on the existence of certain complete and
joint reductions. This can be viewed as a common generalization to both of the results
[10] about the existence of complete and joint reductions and [17] about the existence
of filter-regular sequences. Our proof yields considerable simplifications of the original
one in [10,13]. In section 4, we will prove Theorem 1.1. In fact, we will prove a more
general result, Theorem 4.1, and obtain Theorem 1.1 as a direct consequence. In section
5, we will give some applications of Theorems 1.1 and 4.1. We will apply our results to
multi-Rees algebras of ideals. Theorem 5.6 and Corollary 5.8 stated above will be proved
in this section. To do this, we will give some fundamental results on the spread and the
a-invariant vector of multi-Rees algebras of ideals.

Throughout this article, » > 0 is a fixed positive integer. Let N be the set of nat-
ural numbers with zero. For a finite set o, fo denotes the number of elements of o.
Vectors in Z" will be written by bold-faced letters, e.g., a,b,n,m,---. For a vector
n=(ni,...,n,) € Z", we set |n| = ny +---+n, the sum of all entries of n. We will use
the partial order on Z" as follows:
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an(gni >m; foralli=1,...,r
Let 0 = (0,...,0) be the zero vector and n > 0 means that each entry n; of n is large

3

enough, i.e.,n; > Oforalli=1,...,7. Let e; = (0,...,1,...,0) be the ith standard base
of Z" and set e = e;+---+e, = (1,...,1). Forideals I, ..., I,,, we write I"™ = I{"* - - - I/*
for short. Similarly, we write t™ = ¢7* - - - ¢7'* for indeterminates t1, ..., .

2. Filter-regular sequences and local cohomology

Let R be a Noetherian standard N"-graded ring with Rg = A and let M be a finitely
generated Z"-graded R-module. We will recall the notion of M-filter-regular sequences
and collect some basic properties. All of the results in this section are well-known. We
will give a proof of some of them for the reader’s convenience. See [1,5,9,15,17] for more
details.

Definition 2.1.
(1) A homogeneous element a € R is called M-filter-regular (with respect to Ry ), if

a ¢ P for any P € Assp(M)\ V(R14)

where V(R, ) is the set of prime ideals of R which contains R .
(2) A sequence aj,...,as € R of homogeneous elements is called an M-filter-regular
sequence (with respect to Ry ), if

a; is (M/(ay,...,a;—1)M)-filter-regular for all i = 1,...,s,
where we set (a1, ...,a;—1)M = (0) when ¢ = 1.

Note that we do not require the set Assp(M)\V(R44) # 0 for a homogeneous element
a € R to be M-filter-regular. Thus, when Assp(M)\ V(R,y) = 0, any homogeneous
element of R is M-filter-regular by definition.

M-filter-regular sequences behave well as M-sequences.

Lemma 2.2. Letaq,...,as € R be an M -filter-regular sequence. Then for anyi=1,...,s,
the equality

[(al, ey a,-_l)M ‘M ai]n = [(al, ey ai_l)M}n
holds true for all n > 0.
Proof. It is enough to show that for an M-filter-regular element a € R,

[0 :ps aln, = (0) for all n > 0,
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because
[0 281/ (ar,arynr @i, = (@1, s ai )M iy ailn/[(a, - ai 1) My,
forany i =1,...,s. Let a € R be an M-filter-regular element. Then
Assg(0:p a) CV(Ryq).

Indeed, the case Asspr(M) \ V(R;4) = 0 is clear. Suppose Assp(M) \ V(Riy) # 0.
Then a ¢ P for all P € Assg(M) \ V(R4+y). Hence, (0 :pr a)p = (0)

Assp(M)\ V(R44). Thus, Assg(0 :ps @) € V(R44). Hence, v/Anng(0 :p7 a
that

U
=

+

+
©n
o

R0 ) = (0
for all n >> 0. Since [0 :ps a] is finitely generated, we get [0 :ps a]n, = (0) foralln > 0. O

Remark 2.3.
(1) If @ € R is M-filter-regular, then [0 :ps a] is R4 -torsion.
(2) The converse of Lemma 2.2 also holds true. That is, the equalities

[(a1,...,a;—1)M :pr @il = [(a1,...,ai—1)M], for all n >0

and any ¢ = 1,...,s imply that the sequence ay,...,as is an M-filter-regular se-
quence.

Lemma 2.2 implies the following useful exact sequence of multigraded local cohomol-
ogy modules with respect to the irrelevant ideal R, ..

Lemma 2.4. Let a € R,, be an M-filter-regular element of degree m € N". Then for any
1> 0 and any n € Z", there exists the following exact sequence of A-modules:

Proof. Let a € R, be an M-filter regular element. Consider the exact sequence

0—=1[0:pal > M— M/[0:pra)l =0

of graded R-modules. Since [0 :ps a] is R4 -torsion, H%H (0:pr a) =(0) for all s > 1 by
[1, Corollary 2.1.7]. Hence,

Hp,  (M)= Hp  (M/[0:a a)) forall i > 1

as graded R-modules. On the other hand, the short exact sequence
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0— (M/[0:a a]) (—m) 3 M — M/aM — 0
of graded R-modules implies the following exact sequence
Hyy, (M) = Hyy,  (M/aM) — Hi " (M/[0 247 a])(~m)
for any i > 0. By taking degree n part, we get the desired exact sequence. O
By using the exact sequence in Lemma 2.4, we have the following.

Proposition 2.5. Let ay,...,as € R be an M-filter-reqular sequence with a; € Ry, for
1=1,...,5. Let b€ Z" and assume that

[Hp,  (M)]n = (0)
foralli >0 and all m > b. Then we have that
[Hp, . (M/(ay,...,as)M)]n = (0)
foralli>0and allm >b+mq + -+ my.

Proof. We use induction on s. By Lemma 2.4, for any ¢ > 0 and any n € Z", there exists
the exact sequence

[Hy,  (M)]n = [Hy,, (M/axM)]n = [HE (M)]n—m,.

Ryy

By assumption,

[H%H_ (M)]n = [HHl (M)ln—m, = (0)

Ryt

for all ¢ > 0 and all n > b+ m. Hence,
[Hy, , (M/a1M)]n = (0)

for all ¢ > 0 and all n > b + m;. Thus, we get the case s = 1. Suppose s > 2.
Then [H}§++(M/a1M)]n = (0) for all i > 0 and all n > b+ m;. Since ag,...,as is an
(M /a1 M)-filter-regular sequence,

(Hh, (M[(ar,a5,..;a)M)| = [Hy, (M/arM)/(as, ..., a,)(M/a1 M)

=(0)

n n

for all i > 0 and all n > (b+ my) + my + - - - + m by induction hypothesis. Thus, we
get the desired vanishing. O
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Let ¢ : Z" — Z4 be a group homomorphism satisfying ¢(N") C N?. We set
=P | D &
meN? \ p(n)=m
For any Z"-graded module L, we set
r-@ @
mezZi \p(n)=m

Then R¥ is an N%-graded ring and L¥ is a Z?-graded R¥-module. The local cohomology
modules are compatible with a change of grading.

Lemma 2.6. [5, Lemma 1.1] Let ¢ : Z" — 7% be a group homomorphism satisfying
»(N") C N4. Then we have that for any i,

(Hin(M))” = Hino (M)
where M = mR + Ry is the homogeneous mazximal ideal of R.

We need one more property on the local cohomology modules. Let I, J be subsets of
{1,...,r} such that J # () and T N J = 0. Then we set

SﬁLJ =

() ReR

icl

N|> Re,R

jeJ

Note that My
following, which can be viewed as a multigraded version of [9, Lemma 2.3], by using the
method of [3, Theorem 3.2.6].

r—1},{r} = R44. With this notation, Sarkar and Verma proved the

Proposition 2.7. [15, Proposition 3.2] Let a = (a1, ...,a,) € Z". Suppose that
[Hy (M)]n, = (0)

for alli >0 and all n € Z" with ng > ag for some k =1,...,r. Then for any subsets
I,JC{1,...,r} such that J # 0 and I N J =0, we have that

[Han, ,(M)]n = (0)

foralli >0 and all n > a + e.
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This can be proved by induction on the number #I of the set I and by using the
Mayer—Vietoris sequence of local cohomology modules. As is noted above, if we take
I'={1,...,r—1} and J = {r}, then My ,_1} (r} = Ry. Here is the special case of
Proposition 2.7 which we will use later.

Proposition 2.8. Let a = (a1,...,a,) € Z". Suppose that
[Hay(M)]n = (0)

for all i >0 and all n € 7" with ng, > ay, for some k =1,...,r. Then we have that
[Hp, . (M)]n = (0)

foralli >0 and allm > a+e.

3. Complete and joint reductions

In this section, we will prove the key result in this article which plays an important
role in our proof of Theorem 1.1. Recall that for a finitely generated Z"-graded R-module
M, the homogeneous support of M is defined to be the set

Supp, (M) ={P € SpecR | Mp # (0), P is graded and R4 ¢ P}.

In particular, we set Proj"(R) := Supp, , (R).
We begin with the following which is the special case of [4, Lemma 2.2].

Lemma 3.1. The following are equivalent.
(1) Supp (M) =10

(2) My, = (0) forallmn >0

(3) Supp,; (M/mM) =0

Proof. Note that

Supp, (M) =0 Ry € /Anng(M)
& R, C Anng(M) for all n >0
& RY M = (0) for all n. > 0.

Since M is finitely generated, the last condition is equivalent to
M, = (0) for all n>> 0.

Hence, we have (1) < (2). Therefore,
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Supp,  (M/mM) =0 < M,/mM, = (0) for all n>> 0.

This is equivalent to M, = (0) for all n >> 0 by Nakayama’s lemma. Hence, we have
(2)<= (3). DO

The spread s(M) of M, which was first introduced by Kirby and Rees [10], is defined
to be one more than the dimension of the homogeneous support of M/mM, i.e.,

s(M) = dim Supp_ , (M/mM) + 1.

Here we set dim () = —1. Thus, the spread is an invariant associated to a multigraded
module with a non-negative integer and, by Lemma 3.1, it is zero if and only if its
homogeneous support is empty. The spread can be described as the Krull dimension of
a certain Z-graded module associated to M. We set

RA = @ Rye
neN
and call it the diagonal subalgebra of R. Similarly, we set

M2 = @Mne
nez

and call it the diagonal submodule of M. Then R* is a Noetherian standard N-graded
ring with (R®)g = A and M* is a finitely generated Z-graded R“-module. With this
notation, we have the following which can be found in the proof of [10, Lemma 1.7].

Lemma 3.2. The map

ol SUPP-H-(M) — Supp_H_(MA)
defined by ¢(P) = PN R? is well-defined and bijective.

Proof. Note that Supp, , (M) =0 < Supp, , (M*) = 0 by Lemma 3.1. So, the assertion
is clear in this case. Suppose that Supp, (M) # 0. Let P € Supp, (M) and set
p:=¢(P)=PNRA.

We first show that p € Supp, , (M*). It is clear that p is a graded prime ideal of R,
Suppose that (M#), = (0). Then there exists a € R® \ p such that aM® = (0). Let
x € M be a homogeneous element. Then there exists

b€ R\ P such that bz € M4

because P 2 Ry, so that P 2 R, for all i = 1,...,r. Therefore, ab € R\ P and
(ab)z = a(bz) = 0. This contradicts to the fact that Mp # (0). Hence, (M*2), # (0).
Suppose that p O (R2),. Then
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POpRD(R?){R=R.R=R,,

which is a contradiction. Hence, p 2 (R®)4. Thus, p € Supp,  (M*).

We next show that ¢ is injective. Let P, P’ € Supp,, | (M) such that PNR® = P'NRA.
It is enough to show that P C P’. Take any a € P. Since P is graded, we may assume
that a is homogeneous. Then there exists

be R\ P’ such that ab € R®
because P’ 2 Ry so that P’ 2 Re, for all i =1,...,r. Hence,

abe PNR® =P NRA>CP.
Therefore, a € P’, and, hence, P C P’.

We finally show that ¢ is surjective. Take any p € Supp, , (M A) and set

P = {a ER|a= Z a; where a; is homogeneous and a; R N R” C p} .

K3

Then P is a graded ideal of R. If P D R, |, then R, C p so that ReR”® = (R®), C p.
This is a contradiction. Hence, P 2 Ry ;. Let a,b € R be homogeneous elements such
that ab € P. Suppose that

a¢ Pandbé¢ P.
Then
aRNR® ¢ pand bRNR™ ¢ p
so that there exist elements
fe(@RNRA\pand g € (BRNRA)\ p.
Then
fg€abRNR™ Cp

since ab € P. This is a contradiction. Therefore, a € P or b € P, and, hence, P is a prime
ideal of R. It is clear that Mp # (0) since (M2), # (0). Thus, P € Supp, ,(M). It is
also clear that P N R® = p. Consequently, ¢ is surjective. This completes the proof. O

Corollary 3.3. [10, Lemma 1.7] The equalities
s(M) = s(M*) = dim(M* /mM*)

hold true.
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Proof. The first equality is clear because (M/mM)» = M* /mM?* and the map
¢ : Supp,  (M/mM) — Supp_H_(MA/mMA)

defined by ¢(P) = P N (R/mR)® is bijective by Lemma 3.2. To show the sec-
ond equality, we may assume that r = 1. Moreover, since s(M) = s(M/mM) and
s(M) = s(R/ Anngr(M)), it is enough to show that

s(R) =dimR

for a Noetherian standard N-graded ring R such that Rg is a field. Then dim R =
htgp Ry =dimProjR+1=s(R). O

Remark 3.4. Let Iy,...,I. be ideals in A and let R = R(Iy,...,I.) be the multi-Rees
algebra of the ideals Iy,...,I., which is a subalgebra A[I1t1,...,It,] of a polynomial
ring A[ty,...,t;]. Then the diagonal subalgebra of R

R =R(I;---1,)
is the ordinary Rees algebra of the ideal I; - - - I,.. Therefore, the spread of R
s(R) = dim(R®/mR>) = \(I; - - - I,,)
is the analytic spread of the ideal I - - - ..

Here is the definition of complete and joint reductions of multigraded modules which
was introduced by Kirby and Rees [10].

Definition 3.5. Let £ > 0 and q = (q1,...,q,) € N".
(1) A set of homogeneous elements
{aij €ERe, |i=1,....7, j=1,....0}
is called a complete reduction of length ¢ with respect to M, if the equality
My = [(arja2; - arj | j=1,...,0)M]y,

holds true for all n > 0.
(2) A set of homogeneous elements

{aijERei 7;:17"'37'; .7:1’7(]1}

is called a joint reduction of type g with respect to M, if the equality
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Mn:[(aij |Z':].7...7T', ]:1,,(]2)M]n
holds true for all n > 0.

We define the empty set to be a complete reduction of length 0 and a joint reduction of
type 0 with respect to M.

Remark 3.6. Let g € N” such that |g| = ¢. Then, as Kirby and Rees noted in [10], joint
reductions of type g with respect to M can be constructed from a complete reduction of
length ¢ with respect to M. Indeed, let

I:= {aij € Re,

i=1,...,r,j=1,...,0}

be a complete reduction of length ¢ with respect to M. Let o1,...,0, be any partition
of {1,...,¢} into r-sets such that fo; = ¢;, i.e.,

o I---o, ={1,...,¢}.
Let o; = {Si1,-- -, Sig; - Then the set

J = {ais;; € Re,

i=1,...,r, j=1,...,¢;,} CZT
is a joint reduction of type g with respect to M because
M, =[(a1ja25---arj | j=1,...,0) M], C[TIM]n C M,
for all n > 0.
Here is our key result which plays an important role in our proof of Theorem 1.1.

Theorem 3.7. Assume that the residue field A/m is infinite and let s = s(M). Then there
exists a complete reduction of length s with respect to M

{a;jj €ERe, |t =1,...,r, j=1,...,s}
such that for any iq,...,is € {1,...,r},
Qiy1s Big2, - - -, Qiys 15 an M-filter-reqular sequence.

In particular, for any q € N" such that |q| = s, there exists a joint reduction of type
q with respect to M

{aijERei |i=1,...,7‘, j=1,...,qi}
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such that
11,12, -, Glgy, Q215+ -« ,02gss - - - 5 Qrg, 15 an M-filter-reqular sequence.
Before the proof of Theorem 3.7, we need the following lemma.
Lemma 3.8. Let 0 <t < s and consider a set
{aij ERe, |i=1,...,r, j=1,...,t}
such that
bi,...,b is a subsystem of parameters for MA/mMA

where bj := ayjaz; - - arj € Re for j =1,...,t. Then for any finite subset X C Proj" (R)
which allows the empty set, there exists a set

{ait+1€Rei |i=1,...,r}

such that

o i1 ¢ Q for any Q € X,
o bii1 = Q141G0¢41 - Qrer1 05 a parameter for M2/ (mMA 4 (by, ..., b)) M*2).

Proof. Let Asshpa(M2/(mM?2 + (by,...,b)M?)) = {p1,...,pu}. Then (R®). & p;
for all i = 1,...,u. Indeed, if (R®), C p; for some i = 1,...,u, then

0 = dim(R®/(mR* + (R%)4))
> dim(R® /p;)
= dim(M2/(mM* + (by, ..., b)) M™)).

This contradicts to
dim(M2/(mMA + (by,..., b)) M) = dim(M> /mM*>) —t = s —t > 0.
Hence,
Asshpa (M2 /(M2 + (by,...,b))M?)) C Supp,, (M2 (by, ..., b)) M*>).
Note that M?2/(by,...,b))M> = (M/(b1,...,b))M)? since by,...,b; € Re. By
Lemma 3.2, for each p; there exists the unique P; € Supp,, (M/(b1,...,b;)M) such

that p; = P; N R®. Then each P; 2 Re, for any k= 1,...,r because P, 2 R, . On the
other hand, if we let
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X:{Qla"w@v}

which allows the empty set, then each Q; 2 Re, for any k =1,...,r because Q; 2 Ry.
Therefore, we have that for any k=1,...,r,anyi=1,...,uand j=1,...,0,

PN Re, C Re,

=

Qi N Re, C Re,.

=

Therefore,

([P, N Re,] + mRe, )/mRe, C Re, /MR, ,

=

Ui :
V; = ([Q; N Re,] + mRe, ) /mRe, C Re, /mRe,

=

by Nakayama’s Lemma. Since the residue field A/m is infinite,

u

v

i=1

Ul JVi| € Reo/mRe,.

j=1

W .=

Hence, there exists agiy1 € Re, such that @51 € (Re,/mRe, ) \ W. Thus,

u

Ur.

i=1

ALt41 ¢

ullJesil-
j=1

Then it is clear that axtr1 ¢ Q for any @ € X and by := @1¢+102¢41 - Are41 € Re 18
a parameter for M2 /(mM? + (by,...,b;)M*) because

bis1 ¢ U pi.
i=1

This completes the proof. O

Proof of Theorem 3.7. The assertion is clear when s = 0. Suppose s > 1 and let 0 <t <
s. Assume that there exists a set of homogeneous elements

{aij € Re, |i=1,...,7, j=1,...,t}
such that

* Qi1,--.,0a4¢ is an M-filter-regular sequence for any iy,...,4 € {1,...,7},
e by,...,b; is a subsystem of parameters for MA/mZ\lA
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where b; = ayja25 - -ar; € Re for j =1,...,t. Then by applying Lemma 3.8 for the set

X = U Assp(M/(as,1,. .. a:,:)M)\ V(Ryy)
i1yemit€{1,..,}

which allows the empty set, we have a set of homogeneous elements

{ait_H ERei |i=1,...,’l‘}

such that
© i1y, 04ty A1 Is an M-filter-regular sequence for any 41, ...,4,1 € {1,...,7},
e bi,...,bs,byyq is a subsystem of parameters for M* /mM%
where biy1 = a1p4102¢41 - arer1 € Re. Thus, by repeating this procedure, we can

construct a set of homogeneous elements

{aij €Re, |i=1,...,r, j=1,...,5}

such that
® Qi 1,...,0;,5 is an M-filter-regular sequence for any 41,...,is € {1,...,7},
e by,...,b, is a system of parameters for M2 /mM*
where b; = aijas;---a,; € Re for j =1,...,s. Since by,...,b, is a system of parameters

for M2 /mM? | we have that

0 = dim(M2/(mM2 + (by, ..., by) M)
= S(MA/(blv AR bs)MA)
= s(M/(br,...,bs)M).

Hence, Supp, . (M/(b1,...,bs)M) = 0. By Lemma 3.1, [M/(by,...,bs)M],, = (0) for all
n > 0 so that

M, = [(b1,...,bs)M]y, for all n.>> 0.
Therefore, the set
{aij ERei |l.:1,...,’l“7 jZl,...,S}

is a complete reduction of length s with respect to M. Then the last assertion on the
existence of a joint reduction follows immediately from Remark 3.6. O
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Remark 3.9. Suppose that the residue field A/m is infinite and let £ > s(M).

(1) One can construct a complete reduction of length ¢ with respect to M with the same
property in Theorem 3.7.

(2) Kirby and Rees proved the existence of a complete reduction of length £ with respect
to M ([10, Theorem 1.6]). Theorem 3.7 improves their result. Moreover, our proof
yields considerable simplification of the one in [10] and also the original one in [13].

(3) Sarkar and Verma proved the last assertion in Theorem 3.7 under the assump-
tion that A is an Artinian local ring and M has positive mixed multiplicities and
dim M2 > 1 ([15, Theorem 2.3]). Theorem 3.7 generalizes and improves their result.

(4) Let g € N" with |g| = s(M). Then Trung proved the existence of M-filter-regular
sequence of type g in bigraded cases ([17, Lemma 2.3]). Thus, Theorem 3.7 can be
viewed as a common generalization of [10,17].

4. Proof of Theorem 1.1

In this section, we will give a proof of Theorem 1.1. In fact, we prove the following
general result.

Theorem 4.1. Let R be a Noetherian standard N"-graded ring such that Rog = A is a
local ring. Let M be a finitely generated Z"-graded R-module and let N be a graded
R-submodule of M. Let b € Z" and € > |b| + s(M) — 1. Assume that

- [H

#y (M) = (0) for alli >0 and all n > b.
o [M /]n

= (0) for allm > b with |n| = ¢.
Then we have that
[M/N]yn = (0) for all n > b with |n| > ¢.
Proof. By passing to the faithfully flat R-algebra R’ := R®@4 A, where A’ := A[T|marm
is the localization of a polynomial ring A[T] at the prime ideal mA[T], we may assume
that the residue field of Ro = A is infinite. We set s = s(M). Let n > b with |n| > £.
We use induction on |n|. The case |n| = £ is clear. Suppose |n| > ¢+ 1 and assume that
[M/N]p = (0) for all m > b with |m| = |n|— 1.

Note that n —b > 0 and |n — b| > s since n > b and |[n| > ¢+ 1 > |b| + s. Then one
can find g € N” such that n — b > q and |g| = s. By Theorem 3.7, there exists a joint

reduction of type q with respect to M

jlz{aijERei |i=1,...,7“, j=1,...,qi}
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such that
11,012, -+, 01qgy, 021, - -, A2gys - - - , Grg, is an M-filter-regular sequence.
By Proposition 2.5, the assumption
[Hp,  (M)]e = (0) for all i > 0 and all £>b
implies that
[H§++(M/(a11, ey lpg)M)]e = (0) for all > 0 and all £ > b+ q. (1)

Note that, since the set J is a joint reduction with respect to M, M/(ai1,...,arq, )M
is Ry -torsion. Hence, by (1), we have that

M/ (@1, s arg, )M, = [y, (M (a1, arg, )M)| | = (0)

for all £ > b+ q. Therefore, since the vector n satisfies n > b + q,

Mn = [(an, e ,aqu)M]n

r di
= § E aijMnfei

i=1 \j=1
Here, we note that if s = 0, then M,, = (0) so that the assertion is clear. Suppose s > 0.

Claim. For any 7 = 1,...,r, the equality

qi qi
E aijMnfei = E aianfei
Jj=1 Jj=1

holds true.

Fixany i =1,...,7r and set m :=n —e;. f m 2 b, then m; = n; — 1 < b; < n;.
Hence, n; = b; so that g¢; = 0. Thus, the desired equality is clear. Suppose m > b. Then
|m| = |n — e;| = |n| — 1. By our induction hypothesis, M, = N, so that the desired
equality holds true.

Consequently, we have that

T qi
Mn = E aijMn,ei
i 1

=1 Jj=
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s qi

§ az'an—ei
3 1

=1 Jj=

N
F

Hence, M,, = N,,. This completes the proof. 0O
Let me give a proof of Theorem 1.1.

Proof of Theorem 1.1. We set s = s(M) and let a(M) = (a'(M),...,a"(M)) € Z" be
the a-invariant vector of M. Suppose that M is a Cohen-Macaulay graded R-module.
Let £ > |a(M)| 4+ s+ r — 1 and assume that

[M/N],, = (0) for all n > a(M) + e with |n| = ¢.
Since M is Cohen-Macaulay, Hiy (M) = (0) for all i # dimg M. Hence,

[Han (M)]n = (0)

for all i > 0 and all n € Z" with nj > a¥(M) for some k = 1,...,r. Then, by Proposi-
tion 2.8, we have that

[Hg,, (M)]n = (0)

for all i > 0 and all n > a(M) + e. Note that |[a(M)|+s+r—1=|a(M)+e|+s—1.
By taking b = a(M) + e and applying Theorem 4.1, we get that

[M/N],, = (0) for all n > a(M) + e with |n| > ¢.
This completes the proof. O

Remark 4.2. Suppose s(M) = 0. Then M is R4 -torsion by the proof of Lemma 3.1 so
that H}%++ (M) = M. Hence, the assumption

[Hp,  (M)]n = (0) foralli >0 and all n > b

in Theorem 4.1 implies that M,, = (0) for all n > b. In particular, if M is Cohen—
Macaulay with s(M) = 0, then

[Hp,  (M)]n = (0) for all i > 0 and all n > a(M) + e

by Proposition 2.8, and, hence, M,, = (0) for all n > a(M) + e.
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5. Applications

In this section, we will apply Theorems 1.1 and 4.1 to multi-Rees algebras of filtrations
of ideals. Let I,..., I, be ideals in a Noetherian local ring A. Let R(I) = R(I1,...,I,)
be the multi-Rees algebra of I, ..., I, which is a subalgebra

R(I) = Allity, ..., Lit,] = Y I"t"
neN”

of a polynomial ring Alty,...,t.]. Let

F = {F(n)}nen

be a filtration of ideals in A, i.e., each F(n) is an ideal in A such that

e« Fm)DF(m)ifn<m
e F(n)F(m)C F(n+m).
A filtration F is said to be I-filtration if the following one more condition is satisfied.

o I" C F(n) for all n € N".

Typical examples of I-filtrations are an I-adic filtration {I"™ },,en- and its integral closure
filtration {I"™},enr. For an I-filtration F, we set

R(F)= > Fn)t®

neN”

and call it the multi-Rees algebra of the filtration F. R(F) is a subalgebra of A[t1, ..., t,]
which contains the ordinary multi-Rees algebra R(I) as an A-subalgebra. The multi-Rees
algebra of the I-adic filtration {I"™},cns will be denoted by R(I) for short. Also, the
multi-Rees algebra of the integral closure filtration {Iin}neNr will be denoted by

R(I) =) 1Tt
neNr
which coincides with the integral closure of R(I) in Alty, ..., t,] ([8, Proposition 5.2.1]).
Then our main application can be stated as follows.

Theorem 5.1. Let (A, m) be a Noetherian local ring of dim A =d > 0. Let Iy,..., I, be
ideals in A and let F be an I-filtration such that dim R(F) = d + r. Suppose that

o R(I) CR(F) is module-finite,
R(F) is Cohen—Macaulay.



F. Hayasaka / Journal of Algebra 513 (2018) 1-26 21

Let £ > X1 ---1.) — 1 and assume that
I™ = F(n) for any n € N" with |n| = (.
Then we have that
I"™ = F(n) for any n € N” with |n| > (.
In particular, if
I =F(n) foranyn € N with 0 < |n| < AX(Iy---I,) — 1,
then I™ = F(n) for any n € N", i.e., R(I) = R(F).
In order to prove Theorem 5.1, we begin with the following.

Proposition 5.2. Let R C S be a Noetherian N"-graded ring extension such that

e Ro = So = A is a local ring,
e R is a standard N"-graded ring, and
e R C S is module-finite.

Then s(R) = s(5).
Proof. By Corollary 3.3, we may assume that » = 1 and it is enough to show that
dim R/mR = dim S/mS.

By passing to the ring A[T]y, ;) where T' is an indeterminate, we can assume that the
residue field A/m is infinite. Let ¢ := s(S) = dim S/mS. Since S is a finitely generated
R-module, there exists ay, ...,ap € Ry such that ay,...,as is a complete reduction of S,
that is,

Sp = [(a1,...,ap)S], for all n.>> 0.

Let T := Alaq, ..., as] be the subalgebra of R. Then T' C S is module-finite, and, hence,
the natural map T/mT — S/mS is also finite. Therefore, dim T /mT > dim S/mS = /.
Consider the exact sequence

0—- K — (A/m)[Xy,...,X¢ = T/mT =0,

where (A/m)[X1, ..., X] is a polynomial ring. Then, by comparing the Krull dimensions,
we have K = (0), and, hence, (A/m)[Xq,...,X,] & T/mT. Thus, the natural map
T/mT — S/mS is injective. Therefore, the natural map T/mT — R/mR is also injective
and finite. Hence, dim R/mR = dim7T/mT = ¢ = dim S/mS. O
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As a corollary, we immediately get the following.

Corollary 5.3. Let I,...,1. be ideals in A and let F be an I-filtration of ideals in A
such that R(I) C R(F) is module-finite. Then we have s(R(F)) = A(Iy---1,).

Next we recall the following general fact on the a-invariant.

Lemma 5.4. Let B be a Noetherian N"-graded ring such that Bg = A is a local ring.
Let H = {H(m)}men be a filtration of graded ideals in B. Let w := mB + By be the
homogeneous maximal ideal of B and set

Rp(H) =Y _ H(m)t™

meN

the Rees algebra of H. Let M :=nRp(H) + Rp(H)+ be the homogeneous mazximal ideal
of Re(H). Consider Rg(H) as an N-graded B-algebra and set

a(Rp(H)) = sup{k € Z | [Hy" "2 P (Rp(H))k # (0)}.
Assume that Rg(H) is Noetherian and dim Rg(H) = dim B + 1. Then we have
a(Rp(H)) = —1.

Proof. By passing to the ring By, we may assume that (B,n) is a local ring. Then the
assertion is well-known (see [2,5] for instance). O

Let (A, m) be a Noetherian local ring of dim A = d > 0. Let
F ={F(n,m)}(nm)enr+1
be a filtration of ideals in A. We set
G ={G(n)}nen = {F(n,0)}nen-.

Consider the multi-Rees algebra of F and G

R(F)= Y. Fln,mt™t™ C Afty,... 1, t],
(n,m)eNr+1
R(G) =D Gm)t" = > F(n,0)t™ C Alty, ... t,].
neN” neN”

Let ¢ : Z"™ — Z be a group homomorphism defined by ¢(n,m) = m. Then

R(F)¥ = Z ( Z F(n,m)t") "

meN \neN"
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is the ring R(F) as an N-graded ring with the homogeneous component of degree m

H(m) := Z F(n,m)t".

neN”

We set
H = {H(m)}men.
Then H is a filtration of graded ideals in B := R(G) and
R(F)? =Rp(H)

as N-graded B-algebras. Let 9t = mR(F) + R(F)+ be the homogeneous maximal ideal
of R(F) as an N"*lgraded ring. Assume that Rp(H) is Noetherian and dim Rp(H) =
dim B + 1. Then, by Lemma 5.4,

a(R(F)?) = a(Rp(H)) = —1.
On the other hand, by Lemma 2.6,
dim R(F ® dim R(F
(3 " POR))” = By F O R(F)?)
as Z-graded modules. Hence, for any k € Z, we have
dim R(F ®
= [(H" P ®)

= @ [H" "R

nezr

[ PO R

If we set

a™ M (R(F)) == sup {k A [H;;m R(F) (R(]-'))} £ (0) for some n € ZT} ,

(n,k)
then
a" T (R(F)) = a(R(F)?) = 1.
This observation implies the following.

Corollary 5.5. Let (A,m) be a Noetherian local ring of dimA = d > 0. Let F =
{F(n)}nenr be a filtration of ideals in A. Suppose that

o R(F) =2 nen F(n)t™ is Noetherian
o dmR(F)=d+r.
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Then we have
a(R(F))=-e=(-1,-1,...,-1).

Proof. When r = 1, it is well-known ([2]). Suppose r > 2. Fix ¢ = 1,...,r and let
B = R(G) be the N"~1-graded Rees algebra defined by the filtration

G = {G(n)}neres

where G(n) = F(nq,... ,0,... ,ny). Let @; : Z" — 7Z be a group homomorphism defined
by ¢(n) = n;. Then R(F)¥: is the Rees algebra of the filtration of ideals in B and
dim B = d + r — 1. Therefore, a'(R(F)) = a(R(F)¥!) = —1 so that a(R(F)) = —e. O

Theorem 5.1 is now a direct consequence of Theorem 1.1.
Proof of Theorem 5.1. Let R = R(I) and let M = R(F). By the assumptions, M
is a finitely generated Cohen—Macaulay graded R-module with dim M = d + r. Then
s(M) = A(I ---I,.) by Corollary 5.3 and a(M) = —e by Corollary 5.5. Hence, |a(M)|+
s(M)+r—1=AIy---I) — 1. Therefore, we get the assertion by Theorem 4.1. O
The following is the special case of Theorem 5.1.
Theorem 5.6. Let (A, m) be a Noetherian local ring of dim A = d > 0. Let I,..., I, be

ideals in A such that dim R(I) = d + r. Suppose that R(I) C R(I) is module-finite and
R(I) is Cohen—Macaulay. Let £ > X(Iy---I,) — 1 and assume that

I™ is integrally closed for all n € N" with |n| = £.
Then we have that
I™ is integrally closed for all n € N" with |n| > £.
In particular, if
I™ is integrally closed for any n € N” with 0 < |n| < A(Iy--- 1) — 1,
then all the power products I™ of I, ..., I, are integrally closed.
In Theorem 5.6, if we assume that A is an analytically unramified Noetherian local

ring, then the multi-Rees algebra R(I) has finite integral closure ([12]). As a direct
consequence of Theorem 5.6, we have the following.
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Corollary 5.7. Let A be an analytically unramified Noetherian local ring of dim A = d > 0.
Let I, ..., I, be ideals in A such that dim R(I) = d+r. Assume that the integral closure
R(I) of R(I) is Cohen—Macaulay. Suppose that

I™ is integrally closed for anym € N” with 0 < |n| < X(Iy---I,) — 1.
Then I™ is integrally closed for all n € N".

Let Iy, ..., I, be monomial ideals in a polynomial ring S = k[X71, ..., X,] over a field .
Then, the multi-Rees algebra R(I) has finite integral closure since R(I) is a finitely
generated algebra over a field and an integral domain. Moreover, the integral closure
R(I) of R(I) is a normal semigroup ring so that it is Cohen—Macaulay by Hochster’s
Theorem ([6]). Thus, by localizing at (X1,...,X4), we have the following.

Corollary 5.8. Let S = k[ X1, ..., X4] be a polynomial ring over a field k and let I, ..., I,
be arbitrary monomial ideals in S. Suppose that

I™ is integrally closed for any m € N™ with 0 < |n| < XN(Iy---I.) — 1.
Then all the power products I™ of I, ..., I, are integrally closed.

It would be interesting to know whether or not the assumption in Corollary 5.7 that
the normalization of the multi-Rees algebra is Cohen—Macaulay is needed if A is a regular
local ring. In dimension two, it is known as Zariski’s theorem on the product of integrally
closed ideals that we do not need the assumption. How about in higher dimensions? In
particular, it would be interesting to know whether the following Question holds true or

not.

Question 5.9. Let A be a ring satisfying that either

e A is a polynomial ring over a field, or
e A is a regular local ring.

Let I, ..., I, be ideals in A. Suppose that

I™ is integrally closed for any m € N™ with 0 < |n| < XN(Iy---I.) — 1.
Then are all the power products I™ integrally closed?
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