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1. Introduction

Kirillov–Reshetikhin (KR) modules are a family of finite-dimensional representations 
of an affine quantum group without derivation U ′

q(g) that are characterized by their 
Drinfel’d polynomials. They have been the subject of intense study, with numerous ap-
plications and properties, some of which are still conjectural to various extents. For 
example, see [5–10,13,27,30,34–37,39,46,49,55] and the references therein. One of the 
most important conjectural properties [14,15] is that KR modules admit crystal bases
in the sense of Kashiwara [20–22]. These crystals are called Kirillov–Reshetikhin (KR) 
crystals and are denoted Br,s, where r is an index of the classical Dynkin diagram of 
g and s ∈ Z>0. KR crystals have been shown to exist in all nonexceptional types by 
Okado and Schilling [46], in types G(1)

2 and D(3)
4 by Naoi [40], for certain r in excep-

tional types [3,18,41], and for r = 1 in all types by Kashiwara [24].
KR crystals and their tensor products are known to be connected with Demazure 

crystals of affine highest weight representations. A precise description is known for a 
tensor product of KR crystals in nonexceptional types such that they are all perfect
of the same level [11,26,55]; namely, this tensor product is isomorphic, up to certain 
0-arrows, to a specified Demazure crystal. When the (nonexceptional type) KR crystals 
in the tensor product are perfect of mixed levels, Naoi showed that one obtains a direct 
sum of Demazure crystals [39]. In addition, this relationship was given for Br,1 in all 
types [25] and can be extended to tensor products by the techniques of [39] (see also [38]
for an alternative proof). Further connections of KR crystals, viewed as classical crystals, 
were described in [7,8].

One important unsolved problem involving KR crystals Br,s (and their tensor prod-
ucts) is constructing a uniform model in all types. For Br,1 and their tensor products, 
such a model, based on projected level-zero Lakshmibai–Seshadri (LS) paths, was given by 
Naito and Sagaki [42,43]. In untwisted types, an explicit description of these piecewise-
linear paths was given as quantum Lakshmibai–Seshadri (LS) paths in [35]; the alternative 
quantum alcove model was given in the same paper (see also [31,32]), while the quantum 
LS paths for type A(2)

2n were developed in [44]. A partially uniform model for Br,1 us-
ing Nakajima monomials was given by Hernandez and Nakajima [16]. A uniform model 
for the classical crystal structure of Br,s was given in terms of rigged configurations
in [28,47,53,54]. However, the affine crystal structure on rigged configurations has cur-
rently only been explicitly constructed for type A(1)

n [56], D(1)
n [48], and A(2)

2n−1, B
(1)
n [54]. 

Also in the nonexceptional case, a type-specific construction, based on virtual crystals 
and tableaux, is found in [9].

One goal of this paper is to construct the perfect KR crystals Br,s of nonexceptional 
type, as well as their tensor products of a fixed level, up to certain 0-arrows called 
non-level � Demazure arrows, respectively non-level � dual Demazure arrows. This con-
struction is done by identifying them with specific subcrystals of certain tensor products 
of single-column KR crystals Br,1. Then, for the latter, we can use the uniform models 
mentioned above, i.e., quantum LS paths and the quantum alcove model. We focus on 
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the latter, as it is purely combinatorial and easier to use. Furthermore, we are currently 
working on a very explicit combinatorial description of the mentioned subcrystals.

The paper also achieves several other goals as follows. First, we derive as our main tool 
a generalization of Naoi’s result mentioned above [39] to the nonperfect case. Secondly, 
our reduction theorem used to construct Br,s in terms of Br,1 is proved in much larger 
generality, as an identification between two tensor products of KR crystals of mixed 
levels (again, of nonexceptional type, and possibly nonperfect). Thirdly, another special 
case of this relationship is shown to realize combinatorially a part of the Q-system 
relations, which are satisfied by the classical characters of KR crystals [13]; we are led 
to a conjecture about a combinatorial realization of the entire Q-system relations.

We conjecture that our results extend to the exceptional types. In particular, this 
would immediately lead to a uniform model for all (level � dual Demazure portions of) 
tensor products of perfect KR crystals with a fixed level. Other problems are stated as 
well.

Let us describe our results in more detail. For a tensor product of KR crystals B, 
there exists a unique (classical) weight λ, called the maximal weight, and a unique 
element of weight w0(λ), called the minimal element; here w0 is the longest element of the 
corresponding finite Weyl group. We say that a 0-arrow is a non-level � Demazure arrow 
if it is one of the first � 0-arrows in its 0-string. Given two tensor products of KR crystals 
B and B′ with the same maximal weight λ and of level bounded by �, our main theorem 
states that, after removing all non-level � Demazure arrows, the connected components 
containing the corresponding minimal elements are isomorphic. A contragredient dual 
version of this result also holds.

The main tool in proving our construction is showing for a tensor product of KR 
crystals B that B ⊗ u�Λ0 (this tensor product is equivalent to removing all the non-
level � Demazure arrows) is isomorphic to a direct sum of Demazure crystals; this is 
the mentioned generalization of Naoi’s result. As a consequence, we show that all tensor 
products of KR crystals are isomorphic to some direct sum of Demazure crystals. We 
note that our results do not imply that Br,s, when perfect of level �, is isomorphic to 
a single Demazure crystal; however, this does follow as a consequence when the two 
crystals have the same classical characters, like in the cases discussed in [7].

This paper is organized as follows. In Section 2, we provide the necessary background. 
In Section 3, we prove our main results. In Section 4 we describe the reduction to single-
column KR crystals and explain the way in which the quantum alcove model applies 
to higher level KR crystals. In Section 5, we refer to the Q-system relations and the 
mentioned conjecture involving them.
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2. Background

Let g be an affine Kac–Moody Lie algebra with index set I, Cartan matrix (Aij)i,j∈I , 
simple roots (αi)i∈I , fundamental weights (Λi)i∈I , weight lattice P , simple coroots 
(α∨

i )i∈I , and canonical pairing 〈 , 〉 : P∨×P → Z given by 〈α∨
i , αj〉 = Aij . We write i ∼ j

if Aij �= 0 and i �= j. Let Uq(g) denote the corresponding (Drinfel’d–Jimbo) quantum 
group. Define c∨i := max(a∨i /ai, 1), where ai and a∨i are the Kac and dual Kac labels, 
respectively [19, Table Aff1-3]. Let P+ and P− denote the positive and negative weight 
lattices, respectively. We denote by P+

� the dominant weights of level �. Let Q be the 
root lattice, with Q+ and Q− being the positive and negative root lattices, respectively. 
Let W be the Weyl group corresponding to g. The (strong) Bruhat order on W has 
covers w � wsα with �(wsα) = �(w) + 1, where �( · ) denotes the length function.

The extended affine Weyl group is W̃ := W � Π ∼= W0 � P0, where Π is the set of 
length 0 elements (in W̃ ) and corresponds to automorphisms of the Dynkin diagram of 
g. Let tμ ∈ W̃ be the translation by μ ∈ P0. See, e.g., [1,4,19] for more information on 
the extended affine Weyl group.

Let U ′
q(g) := Uq([g, g]). Note that the corresponding weight lattice is P ′ := P/Zδ, 

where δ =
∑

i∈I ciαi is the null root; in particular, the simple roots in P ′ are linearly 
dependent. We will sometimes abuse notation and write P instead of P ′ when there is 
no danger of confusion.

Let g0 denote the canonical simple Lie algebra given by the index set I0 = I \{0}, and 
Uq(g0) the corresponding quantum group. Let cl : P → P0 denote the natural classical 
projection onto the weight lattice P0 of g0. Let ωi := cl(Λi) be the classical projection 
of the fundamental weight Λi. Let Q0 and W0 be the root lattice and Weyl group of g0, 
respectively. As usual, we denote by w0 the longest element of W0.

The quantum Bruhat graph [12] is the directed graph on W0 with edges labeled by 
positive roots of g0

w
α−−−−→ wsα for w � wsα or �(wsα) = �(w) − 2〈ρ, α∨〉 + 1 ; (2.1)

here ρ denotes, as usual, half the sum of the positive roots of g0.

2.1. Crystals

An abstract Uq(g)-crystal is a set B endowed with crystal operators ei, fi : B → B 	
{0}, for i ∈ I, and weight function wt: B → P that satisfy the following conditions:

(1) ϕi(b) = εi(b) + 〈α∨
i ,wt(b)〉, for all b ∈ B and i ∈ I,
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(2) fib = b′ if and only if b = eib
′, for b, b′ ∈ B and i ∈ I,

(3) wt(fib) = wt(b) − αi if fib �= 0;

where the statistics εi, ϕi : B → Z≥0 are defined by

εi(b) := max{k | eki b �= 0} , ϕi(b) := max{k | fk
i b �= 0} .

Remark 2.1. The definition of an abstract crystal given in this paper is sometimes called 
a regular or seminormal abstract crystal in the literature.

Let emax
i b := e

εi(b)
i b and fmax

i b := f
ϕi(b)
i b. From the axioms, we identify B with an 

I-edge colored weighted directed graph, where there is an i-colored edge b → b′ in the 
graph if and only if fib = b′. Thus an entire i-string through an element b ∈ B is given 
diagrammatically by

emax
i b

i−−−→ · · · i−−−→ e2
i b

i−−−→ eib
i−−−→ b

i−−−→ fib
i−−−→ f2

i b
i−−−→ · · · i−−−→ fmax

i b.

An element b ∈ B is highest (resp. lowest) weight if eib = 0 (resp. fib = 0) for all i ∈ I. 
We say that b ∈ B is classically highest (resp. lowest) weight if eib = 0 (resp. fib = 0) 
for all i ∈ I0.

We define the tensor product of abstract Uq(g)-crystals B1 and B2 as the crystal 
B2 ⊗B1 that is the Cartesian product B2 ×B1 with the following crystal structure:

ei(b2 ⊗ b1) :=
{
eib2 ⊗ b1 if εi(b2) > ϕi(b1) ,
b2 ⊗ eib1 if εi(b2) ≤ ϕi(b1) ,

fi(b2 ⊗ b1) :=
{
fib2 ⊗ b1 if εi(b2) ≥ ϕi(b1) ,
b2 ⊗ fib1 if εi(b2) < ϕi(b1) ,

εi(b2 ⊗ b1) := max(εi(b1), εi(b2) − 〈α∨
i ,wt(b1)〉) ,

ϕi(b2 ⊗ b1) := max(ϕi(b2), ϕi(b1) + 〈α∨
i ,wt(b2)〉) ,

wt(b2 ⊗ b1) := wt(b2) + wt(b1) .

Remark 2.2. Our tensor product convention follows [2], which is opposite to that of 
Kashiwara [21].

For abstract Uq(g)-crystals B1, . . . , BL, the action of the crystal operators on the 
tensor product B := BL ⊗ · · · ⊗ B2 ⊗ B1 can be computed by the signature rule. Let 
b := bL ⊗ · · · ⊗ b2 ⊗ b1 ∈ B, and for i ∈ I, we write

− · · ·−︸ ︷︷ ︸ + · · ·+︸ ︷︷ ︸ · · · − · · · −︸ ︷︷ ︸ + · · ·+︸ ︷︷ ︸ .
ϕi(bL) εi(bL) ϕi(b1) εi(b1)
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Then by successively deleting consecutive +−-pairs (in that order) in the above sequence, 
we obtain a sequence

sgni(b) := − · · ·−︸ ︷︷ ︸
ϕi(b)

+ · · ·+︸ ︷︷ ︸
εi(b)

,

called the reduced signature. Suppose 1 ≤ j− ≤ j+ ≤ L are such that bj− contributes the 
rightmost − in sgni(b) and bj+ contributes the leftmost + in sgni(b). Then, we have

eib := bL ⊗ · · · ⊗ bj++1 ⊗ eibj+ ⊗ bj+−1 ⊗ · · · ⊗ b1 ,

fib := bL ⊗ · · · ⊗ bj−+1 ⊗ fibj− ⊗ bj−−1 ⊗ · · · ⊗ b1 .

Let B1 and B2 be two abstract Uq(g)-crystals. A crystal morphism ψ : B1 → B2 is a 
map B1 	 {0} → B2 	 {0} with ψ(0) = 0, such that the following properties hold for all 
b ∈ B1 and i ∈ I:

(1) if ψ(b) ∈ B2, then wt
(
ψ(b)

)
= wt(b), εi

(
ψ(b)

)
= εi(b), and ϕi

(
ψ(b)

)
= ϕi(b) ;

(2) we have ψ(eib) = eiψ(b) if ψ(eib) �= 0 and eiψ(b) �= 0 ;
(3) we have ψ(fib) = fiψ(b) if ψ(fib) �= 0 and fiψ(b) �= 0 .

An embedding (resp. isomorphism) is a crystal morphism such that the induced map 
B1 	{0} → B2 	{0} is an embedding (resp. bijection). A crystal morphism is strict if it 
commutes with all crystal operators. Note that for a strict crystal embedding ψ : B → B′

and connected components C ⊆ B and C ′ ⊆ B′ such that ψ(c) ∈ C ′ for any c ∈ C, the 
restriction ψ̂ : C → C ′ is an isomorphism, i.e., connected components go to connected 
components under ψ.

A similarity map [23] is an embedding of crystals σ = σm : B → B̂, with m ∈ Z>0, 
which satisfies

ei 
→ emi , fi 
→ fm
i , εi

(
σ(b)

)
= mεi(b), ϕi

(
σ(b)

)
= mϕi(b), wt(σ(b)) = mwt(b).

(2.2)
An abstract crystal B is a Uq(g)-crystal if B is the crystal basis of some Uq(g)-module. 

Kashiwara [21] has shown that the irreducible highest (resp. lowest) weight module V (λ), 
for λ ∈ P+ (resp. λ ∈ P−), admits a crystal basis, denoted B(λ); this has a unique highest 
(resp. lowest) weight element uλ such that wt(uλ) = λ. The elements uwλ := wuλ, for 
w ∈ W , are called extremal; here we used the W -action on the crystal, which was defined 
by Kashiwara [22] as follows:

sib :=
{
f
〈α∨

i ,wt(b)〉
i b if 〈α∨

i ,wt(b)〉 > 0 ,
e
−〈α∨

i ,wt(b)〉
b if 〈α∨,wt(b)〉 ≤ 0 .
i i
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2.2. Demazure crystals

Let λ ∈ P+. A Demazure module is a U+
q (g)-module generated by an extremal weight 

vector of weight wλ ∈ V (λ). Kashiwara showed that the Demazure module has a crystal 
basis that is compatible with the crystal basis B(λ) of the corresponding highest weight 
module V (λ).

Hence, we can construct the crystal of a Demazure module as a subcrystal of B(λ). 
Fix a reduced expression w = si1si2 · · · si� . A Demazure crystal of the highest weight 
crystal B(λ) is the full subcrystal given by

Bw(λ) := {b ∈ B(λ) | emax
i1 emax

i2 · · · emax
i�

b = uλ} . (2.3)

Theorem 2.3 (Combinatorial excellent filtration [17,33]). For all λ, μ ∈ P+, the crystal 
Bw(μ) ⊗ uλ is a direct sum of Demazure crystals.

We also require the following fact, which follows from the definition of the Bruhat 
order on the Weyl group W .

Proposition 2.4. Let λ ∈ P+. We have v ≤ w if and only if Bv(λ) ⊆ Bw(λ).

2.3. Kirillov–Reshetikhin crystals

Let Br,s denote the Kirillov–Reshetikhin (KR) crystal, where r ∈ I0 and s ∈ Z>0. 
We refer to Section 1 for a review of the cases when the existence of KR crystals was 
proved, as well as of the related combinatorial models.

KR crystals have a number of conjectural properties. A KR crystal Br,s is conjec-
tured [27] to be perfect1 of level s/cr if and only if s/cr ∈ Z. This has been shown for 
all nonexceptional types in [10], and in some special cases for other types [29,57]. KR 
crystals are known to be well-behaved under similarity maps in nonexceptional types, as 
stated below.

Theorem 2.5 ([45]). Let g be of nonexceptional affine type. There exists a (unique) sim-
ilarity map σm : Br,s → Br,ms.

There exists a unique classical component B(sωr) ⊆ Br,s, and for any other classical 
component B(λ) ⊆ Br,s, we have sωr − λ ∈ Q+

0 . We remark that Br,s ∼= B(sωr) as 
Uq(g0)-crystals whenever r is the image of 0 for some Dynkin diagram automorphism. 
Let umax(Br,s) := urωs

∈ B(sωr) ⊆ Br,s denote the maximal element. For general 
B :=

⊗N
j=1 B

rj ,sj , the maximal element is defined as umax(B) := umax(Br1,s1) ⊗ · · · ⊗
umax(BrN ,sN ), and note that it is the unique element of classical weight 

∑N
j=1 sjωrj . 

1 The property of being perfect is a technical condition related to KR crystals, which is used to construct 
the Kyoto path model [27]; see also [2].
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Similarly, let umin(B) denote the minimal element of B, which is the unique element of 
classical weight w0

(∑N
j=1 sjωrj

)
.

The key property we need is a relationship between tensor products of KR crystals 
and Demazure crystals of an affine highest weight crystal.

Theorem 2.6 ([11,26,55]). Let g be of nonexceptional type. Let B :=
⊗N

j=1 B
rj ,sj such 

that there exists � ∈ Z with sj/crj = � for all j. Let ω := −(cr1ωr∗1 + · · · + crNωr∗N ), 
where ωr∗ = −w0(ωr). Then, there exists a crystal isomorphism

ψ : B(�Λτ(0)) → B ⊗B(�Λ0)

given by u�Λτ(0) 
→ ug ⊗ u�Λ0 , where ug = u1 ⊗ · · · ⊗ uN is the ground state element, 
the unique element of B such that uN = umax(BrN ,sN ) and εi(uj) = ϕi(uj+1) for all 
1 ≤ j < N and i ∈ I. Moreover, we have

Bv(�Λτ(0)) ∼= B ⊗ u�Λ0 ,

where vτ = tω with v ∈ W and τ ∈ Π.

Theorem 2.6 is conjectured to hold for all affine types [14,15,7] under the assumption 
that sj/crj ∈ Z implies that Brj ,sj is perfect (cf. the perfectness conjecture). We say 
that the above tensor product B :=

⊗N
j=1 B

rj ,sj is of level bounded by � if � is such that 
�sj/crj� ≤ � for all j. Theorem 2.6 was generalized in [39, Prop. 5.16] in the following 
way: when B (still of nonexceptional type) is a tensor product of level bounded by �, 
and sj/crj ∈ Z, then B ⊗ u�Λ0 is isomorphic to a direct sum of Demazure crystals.

We need the following fact from [55, Prop. 8.1] (which was essentially proved in [26]). 
The claim holds for all affine types since [55, Lemma 7.3] holds, by using the general 
definition of energy [26,14,15]; see [39, Lemma 6.4] as well. We also note that there is no 
assumption of perfectness.

Proposition 2.7 ([55, Prop. 8.1],[26]). Consider a tensor product of KR crystals B of 
level bounded by �. Then there exists a sequence (Λ(k) ∈ P+

� )Nk=1 such that

B ⊗B(�Λ0) ∼=
N⊕

k=1

B
(
Λ(k)

)
.

3. Main results

For the remainder of this paper, we will consider KR crystals of nonexceptional type. 
It is known that, for any J � I, under the Levi branching to the canonical subalgebra 
gJ with index set J (i.e., we remove all i-edges for i ∈ J \ I), Br,s is a direct sum of 
highest weight Uq(gJ)-crystals.

In this section we prove our main results.
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Remark 3.1. There are contragredient dual versions of all our results. All the proofs hold 
for the contragredient dual by interchanging ei ↔ fi.

We start with our main tool, namely the generalization of Naoi’s result [39, Prop. 5.16]
(which, in turn, is a generalization of Theorem 2.6, as discussed in Section 2.3). Our 
generalization holds without the perfectness assumption.

Theorem 3.2. Let B be a tensor product of KR crystals of level bounded by �, having the 
decomposition in Proposition 2.7. Then there exists a sequence (λ(k) ∈ P−

0 )Nk=1 such that

B ⊗ u�Λ0 =
N⊕

k=1

Bλ(k) ∼=
N⊕

k=1

Bw(k)

(
Λ(k)

)
; (3.1)

here the following hold:

• there exists a unique element b(k)
min ⊗ u�Λ0 ∈ Bλ(k) satisfying wt

(
b
(k)
min

)
= λ(k) and

wt(b) − wt
(
b
(k)
min

)
∈ Q+

0 \ {0} for all b⊗ u�Λ0 ∈ Bλ(k) \ {b(k)
min ⊗ u�Λ0} ,

• w(k)(Λ(k)) = λ(k) + �Λ0, for w(k) ∈ W of minimal length.

Roughly speaking, our proof follows the proofs of [39, Prop. 5.16] or [11, Thm. 4.7], 
by reducing the statement to the case when B = Br,s. Then we use the similarity map 
from Theorem 2.5. In order to complete our proof, we use [39, Lemma 4.8] and another 
elementary fact stated below.

Lemma 3.3 ([39, Lemma 4.8]). Let Λ ∈ P+ and w ∈ W̃ , and assume that 〈α∨
i , wΛ〉 ≤ 0

for all i ∈ I0. Then for any b ∈ Bw(Λ), we have b = uwΛ or

cl
(
wt(b)

)
∈ cl(wΛ) + (Q+

0 \ {0}) .

Lemma 3.4. Let σm : B(Λ) → B(mΛ) be a similarity map. For any w ∈ W , this induces a 
similarity map σD

m : Bw(Λ) → Bw(mΛ). The image of this map consists of those vertices 
b in Bw(mΛ) for which each eij in (2.3) is applied a multiple of m number of times.

Proof. This follows immediately from the definition of a similarity map (2.2) and of a 
Demazure crystal (2.3). �
Proof of Theorem 3.2. It is sufficient to restrict to B = Br,s, by the reduction argu-
ment in the proof of [39, Prop. 5.16] (this is essentially the induction described in [11, 
Thm. 4.7]). Furthermore, it is sufficient to consider Br,s ⊗ u�Λ0 , where � = �s/cr�, by a 
similar argument to the one used in the proof of [39, Prop. 5.16]. When s/cr ∈ Z, the 
claim holds by Theorem 2.6. Therefore, assume s/cr /∈ Z.
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By Theorem 2.6, we have

Br,crs ⊗ usΛτ(0)
∼= Bv(sΛτ(0)) ,

where t−crωr∗ = vτ . Therefore, we have

Br,crs ⊗ ucr�Λτ(0)
∼= Br,crs ⊗ usΛτ(0) ⊗ u(cr�−s)Λτ(0) (3.2)

∼= Bv(sΛτ(0)) ⊗ u(cr�−s)Λτ(0)
∼=

⊕
(w,Λ)

Bw(Λ) ,

where the last isomorphism is by the combinatorial excellent filtration in Theorem 2.3. 
Now consider the similarity map σcr : Br,s → Br,crs from Theorem 2.5. This gives a 
similarity map

σD
cr : Br,s ⊗ u�Λτ(0) → Br,crs ⊗ ucr�Λτ(0) .

Composing the latter map with the crystal isomorphisms in (3.2), we want to identify 
the image Im σD

cr of Br,s ⊗ u�Λτ(0) inside the direct sum of Demazure crystals in (3.2).
Now assume that ImσD

cr intersects some Demazure crystal Bw(Λ). Pick some vertex in 
the intersection, and a sequence of eij to uΛ as in (2.3). By the definition of a similarity 
map (2.2), each eij is applied a multiple of k number of times, and the upper endpoints 
of the various strings belong to ImσD

cr ∩ Bw(Λ). In particular, so does uΛ. We can now 
see that Im σD

cr ∩Bw(Λ) is characterized by the condition in Lemma 3.4.
As wt

(
σD
cr(b)

)
= cr wt(b) for all b ∈ Br,s ⊗ u�Λτ(0) , by (2.2), we have Λ/cr ∈ P+. 

Combining the above facts with Lemma 3.4, we deduce that

Im σD
cr ∩Bw(Λ) ∼= Bw(Λ/cr) .

Thus, we proved the decomposition (3.1).
Note that the multiset of weights Λ(k) in (3.1) coincides with the one in Proposi-

tion 2.7. Indeed, by the signature rule, all highest weight vertices in B ⊗ B(�Λ0) are of 
the form b ⊗u�Λ0 with b ∈ B, so they are highest weight vertices in B⊗u�Λ0 ; the reverse 
inclusion is obvious.

Finally, the existence of the vertices b(k)
min with the desired properties follows from 

Lemma 3.3. Indeed, let us verify the hypothesis of this Lemma. Take an affine De-
mazure crystal Bw(k)

(
Λ(k)) in (3.1). It has a decomposition into classically highest weight 

crystals, because B has such a decomposition, and tensoring with u�Λ0 does not af-
fect the classical crystal structure. In the mentioned decomposition of Bw(k)

(
Λ(k)), the 

unique element of weight w(k)(Λ(k)) has to be a classically lowest weight element, so 
w(k)(Λ(k))− �Λ0 is a finite antidominant weight. �
Remarks 3.5. (1) We could have proved Theorem 3.2 by applying the similarity map and 
then by directly appealing to [39, Prop. 5.16]. However, we found it more illuminating 
to show the role of the similarity map in a very explicit way: in the single factor case.
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(2) Theorem 3.2 does not imply that B⊗u�Λ0 is a single Demazure crystal. However, 
it has been shown in [7] that B = Br,s is isomorphic as an Uq(g0)-crystal to a single 
Demazure crystal for a number of special r ∈ I0 in exceptional types. If we combine this 
with Theorem 3.2, we obtain Theorem 2.6 for these cases.

Following [55], we define a level � Demazure edge as being an i-edge b′ → b in the 
crystal graph such that either i ∈ I0 or ε0(b) > �. In other words, an edge is not a level 
� Demazure edge if it is in the length � head of a 0-string. A level � dual Demazure edge
is defined similarly, using the length � tail of a 0-string. Let D̃�(B) and D̃D�(B) denote 
the subcrystals of B obtained by removing all edges that are not level � Demazure edges 
in B, respectively dual Demazure edges.

The following lemma is well-known to experts. It follows immediately from the tensor 
product rule, and motivates the terminology of Demazure edge.

Lemma 3.6. Let B be a tensor product of KR crystals of level bounded by �. The map

ρ� : D̃�(B) → B ⊗ u�Λ0

given by ρ�(b) = b ⊗ u�Λ0 is a crystal isomorphism (up to a weight shift).

Remark 3.7. Let ψ :
⊕N

k=1 Bλ(k) → B⊗u�Λ0 be the isomorphism given by Theorem 2.6. 
By [55, Lemma 7.3] and [39, Lemma 6.4], then there exist constants (Ck)Nk=1 such that 
for all b ∈ Bλ(k) , if wt(b) = μ +Dδ and ψ(b) = b′⊗u�Λ0 (note we are considering this as a 
Uq(g)-crystal and have to implicitly branch to U ′

q(g), which simply changes the weight), 
then we have D = E(b′) + Ck, where E(b) is the energy statistic of [26,14,15]. These 
constants were explicitly specified when B was a tensor product of perfect crystals in 
nonexceptional type in [39, Thm. 7.1].

Let D�(B) denote the connected component of D̃�(B) that contains umin(B), and 
DD�(B) denote the connected component of D̃D�(B) that contains umax(B). We now 
present our main theorem.

Theorem 3.8. Let B :=
⊗N

j=1 B
rj ,sj and B′ :=

⊗N ′

j=1 B
r′j ,s

′
j be of levels bounded by � and

N∑
j=1

sjωrj =
N ′∑
j=1

s′jωr′j
. (3.3)

Then we have

D�(B) ∼= D�(B′) , DD�(B) ∼= DD�(B′) .

Proof. Let λ be the weight given by (3.3), and let Λ := w0(λ) + �Λ0. Note that 
wt

(
umin(B)

)
= w0(λ). Since we have wt(b) ∈ w0(λ) +(Q+

0 \{0}) for all b ∈ B\{umin(B)}, 
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we deduce that D�(B) ∼= Bw(μ) for some μ ∈ P+
� and w ∈ W , by Theorem 3.2 and 

Lemma 3.6; here w and μ are uniquely determined by the condition w(μ) = Λ and the 
fact that w is of minimum length. Similarly, we have D�(B′) ∼= Bw(μ). Hence, we have 
D�(B) ∼= D�(B′). The proof of the contragredient dual version is completely similar, cf. 
Remark 3.1. �

We conjecture that Theorems 3.2 and 3.8 also hold in the exceptional types. As 
evidence, we note that Theorem 2.6 is known to hold as Uq(g0)-crystals in certain cases 
by [7], which hence implies Uq(g0)-crystal versions of Theorems 3.2 and 3.8. Furthermore, 
Theorem 3.2 is known to hold for � = 1 in all types [25,8,38].

4. Uniform models

4.1. Reduction to single-column KR crystals

The following corollary of Theorem 3.8 allows us to reduce tensor products of arbitrary 
KR crystals to tensor products of single-column ones.

Corollary 4.1. Let B :=
⊗N

j=1 B
rj ,sj and B′ :=

⊗N
j=1(Brj ,1)⊗sj be such that there exists 

� ∈ Z with sj/crj = � for all j. Then we have

D̃�(B) ∼= D�(B′) , D̃D�(B) ∼= DD�(B′) .

Proof. Since sj/crj = � ∈ Z, all Brj ,sj are perfect crystals of level �. This property 
implies that D̃�(B) is connected, so D̃�(B) = D�(B), and similarly for the contragredient 
dual case. Now apply Theorem 3.8. �
Remarks 4.2.

(1) The isomorphism in Corollary 4.1 realizes the level � Demazure and dual Demazure 
portions of B in terms of single-column KR crystals.

(2) We conjecture a similar realization in the exceptional types, assuming the perfectness 
conjecture. We expect the proof to be completely similar, based on the generalizations 
of Theorems 3.2 and 3.8 that were conjectured in Section 3. We have verified this 
conjecture for Br,s for s = 2, 3, 4 in types D(3)

4 (which is perfect for all s) and 
G

(1)
2 . (These cases could follow by a similar proof of Theorem 3.2 using a diagram 

folding of D(1)
4 and the corresponding conjectural virtual crystal construction; see, 

e.g., [47,50,54].)

The following natural question arises.
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Problem 4.3. How is the isomorphism in Corollary 4.1 expressed concretely when the 
corresponding tensor products of KR crystals are realized based on the tableau model [9]
and the rigged configuration model [54]?

One particular approach to Problem 4.3 could be through the use of the so-called 
Kirillov–Reshetikhin (KR) tableaux of [48,54]. These arise from the bijection Φ with 
rigged configurations, which use column splitting to construct classical crystal embed-
dings as a core part of the bijection Φ. Considering the fact that rigged configurations 
and the Demazure constructions are combinatorial R-matrix invariant, as well as the 
relationship with energy and the affine grading from [11,27,55] (see also Remark 3.7), it 
is likely that Φ, and hence KR tableaux, could be a consequence of Theorem 3.8.

Example 4.4. In type C(1)
2 , we have two connected components for D̃1(B1,1 ⊗ B1,1), 

and a single connected component for D̃1(B1,2); see Fig. 1, where the crystal vertices 
are labeled by the corresponding Kashiwara–Nakashima tableaux, see [2]. Note that the 
leftmost connected component of the former crystal is D1(B1,1 ⊗ B1,1), and this is 
isomorphic to D1(B1,2) = D̃1(B1,2). The latter is thus realized in terms of single-column 
KR crystals.

Note that the corresponding element of ∅ ∈ D̃1(B1,2) corresponds to 1 ⊗ 1 ∈
D̃1(B1,1 ⊗ B1,1), which is the splitting of the corresponding KR tableaux in B1,2 (the 
other elements are also Kashiwara–Nakashima tableaux).

4.2. The quantum alcove model

We now recall the quantum alcove model and the main results related to it. For more 
details, including examples, we refer to the relevant papers [31,35,32]. The setup is that 
of a finite root system Φ0 of rank r and its Weyl group W0, but it also includes the 
associated alcove picture. We denote by θ the highest root in Φ0, and let α0 := −θ. Also, 
let [m] := {1, 2, . . . , m} and hR := R ⊗ P .

Consider the affine hyperplanes Hβ,k := {λ ∈ hR | 〈λ, β∨〉 = k}. Recall an alcove is a 

connected component of hR \
(⋃

β∈Φ0

⋃
k∈ZHβ,k

)
, and the fundamental alcove is

A◦ := {λ ∈ hR | 0 < 〈λ, α∨
i 〉 < 1 for all i ∈ I0}.

We say that two alcoves are adjacent if they are distinct and have a common wall. Given 

a pair of adjacent alcoves A and B, we write A 
β−→ B if the common wall is contained in 

the affine hyperplane Hβ,k, for some k ∈ Z, and the root β ∈ Φ points in the direction 
from A to B.

An alcove path is a sequence of alcoves (A0, A1, . . . , Am) such that Aj−1 and Aj are 
adjacent, for j = 1, . . . , m. We say that an alcove path is reduced if it has minimal length 
among all alcove paths from A0 to Am. Let Aλ = A◦ + λ be the translation of the 
fundamental alcove A◦ by the weight λ.
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Fig. 1. The crystals D̃1(B1,1 ⊗ B1,1) (left) and D̃1(B1,2) (right) in Example 4.4.

The sequence of roots (β1, β2, . . . , βm) is called a λ-chain if

A0 = A◦
−β1−−−−→ A1

−β2−−−−→ · · · −βm−−−−→ Am = A−λ

is a reduced alcove path.
We now fix a dominant weight λ and an alcove path Π = (A0, . . . , Am) from A0 = A◦

to Am = A−λ. Note that Π is determined by the corresponding λ-chain Γ := (β1, . . . , βm), 
which consists of positive roots. We let ri := sβi

, and let r̂i be the affine reflection in 
the hyperplane containing the common face of Ai−1 and Ai, for i = 1, . . . , m; in other 
words, r̂i := sβi,−li , where li := |{j < i | βj = βi}|. We define l̃i := 〈λ, β∨

i 〉 − li =
|{j ≥ i | βj = βi}|.

Let J = {j1 < j2 < · · · < js} be a subset of [m]. The elements of J are called folding 
positions. We fold Π in the hyperplanes corresponding to these positions and obtain a 
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folded path. Like Π, the folded path can be recorded by a sequence of roots, namely 
Γ(J) = (γ1, γ2, . . . , γm), where

γk := rj1rj2 · · · rjp(βk) , (4.1)

with jp the largest folding position less than k. We define γ∞ := rj1rj2 · · · rjs(ρ). Upon 
folding, the hyperplane separating the alcoves Ak−1 and Ak in Π is mapped to

H|γk|,−lJk
= r̂j1 r̂j2 · · · r̂jp(Hβk,−lk) , (4.2)

for some lJk , which is defined by this relation.
Given i ∈ J , we say that i is a positive folding position if γi > 0, and a negative folding 

position if γi < 0. We denote the positive folding positions by J+, and the negative ones 
by J−. We call wt(J) := −r̂j1 r̂j2 · · · r̂js(−λ) the weight of J .

A subset J = {j1 < j2 < · · · < js} ⊆ [m] (possibly empty) is an admissible subset if 
we have the following path in the quantum Bruhat graph on W0:

1
βj1−−−−→ rj1

βj2−−−−→ rj1rj2
βj3−−−−→ · · · βjs−−−−→ rj1rj2 · · · rjs =: φ(J) . (4.3)

We call Γ(J) an admissible folding and φ(J) its final direction. We let A(Γ) be the 
collection of admissible subsets.

Remark 4.5. Positive and negative folding positions correspond to up and down steps 
(in Bruhat order) in the chain (4.3), respectively.

We now define the crystal operators on A(Γ). Given J ⊆ [m] and α ∈ Φ, we will use 
the following notation:

Iα = Iα(J) := {i ∈ [m] | γi = ±α} , Îα = Îα(J) := Iα ∪ {∞} ,

and l∞α := 〈wt(J), sgn(α)α∨〉. The following graphical representation of the heights lJi
for i ∈ Iα and l∞α is useful for defining the crystal operators. Let

Îα = {i1 < i2 < · · · < in < in+1 = ∞} and εi :=
{

1 if i /∈ J ,

−1 if i ∈ J .

If α > 0, we define the continuous piecewise linear function gα :
[
0, n + 1

2
]
→ R by

gα(0) = −1
2 , g′α(x) =

⎧⎪⎪⎨⎪⎪⎩
sgn(γik) if x ∈ (k − 1, k − 1

2 ), k = 1, . . . , n,
εik sgn(γik) if x ∈ (k − 1

2 , k), k = 1, . . . , n,
sgn(〈γ , α∨〉) if x ∈ (n, n + 1 ).

(4.4)
∞ 2
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If α < 0, we define gα to be the graph obtained by reflecting g−α in the x-axis. For any 
α we have

sgn(α)lJik = gα

(
k − 1

2

)
, k = 1, . . . , n, and sgn(α)l∞α := 〈wt(J), α∨〉 = gα

(
n + 1

2

)
.

(4.5)
Let J be an admissible subset. Let δi,j be the Kronecker delta function. Fix p in 

{0, . . . , r}, so αp is a simple root if p > 0, or −θ if p = 0. Let M be the maximum of gαp
, 

which is known to be a nonnegative integer. Let m := min{i ∈ Îαp
| sgn(αp)lJi = M}. 

It turns out that, if M ≥ δp,0, then we have either m ∈ J or m = ∞; furthermore, if 
M > δp,0, then m has a predecessor k in Îαp

and k /∈ J . We define

fp(J) :=
{

(J \ {m}) ∪ {k} if M > δp,0 ,

0 otherwise .
(4.6)

Now we define ep. Assuming that M >
〈
wt(J), α∨

p

〉
, let k := max{i ∈ Iαp

| sgn(αp)lJi =
M}, and let m be the successor of k in Îαp

. Assuming also that M ≥ δp,0, it turns out 
that we have k ∈ J and either m /∈ J or m = ∞. Define

ep(J) :=
{

(J \ {k}) ∪ {m} if M >
〈
wt(J), α∨

p

〉
and M ≥ δp,0

0 otherwise .
(4.7)

In the above definitions, we use the convention that J \ {∞} = J ∪ {∞} = J .
We recall one of the main results in [35], cf. also [34,32]. In the setup of untwisted 

affine root systems, consider the tensor product of KR crystals B =
⊗N

j=1 B
pj ,1. Let 

λ = ωp1 + · · · + ωpN
, and let Γ be any λ-chain.

Theorem 4.6 ([35,32]). The (abstract) crystal A(Γ) is isomorphic to D̃D1(B) via a spe-
cific weight-preserving bijection Ψ.

Based on the above discussion and notation, we give a modified crystal structure on 
A(Γ) such that the result is isomorphic to D̃D�(B). Let A�(Γ) be the set A(Γ) with 
crystal operators defined by

fp(J) :=
{

(J \ {m}) ∪ {k} if M > �δp,0 ,

0 otherwise ,
(4.8a)

ep(J) :=
{

(J \ {k}) ∪ {m} if M >
〈
wt(J), α∨

p

〉
and M ≥ �δp,0 ,

0 otherwise .
(4.8b)

In particular, we have A1(Γ) = A(Γ).
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Proposition 4.7. The map Ψ from Theorem 4.6 restricts to a crystal isomorphism 
Ψ� : A�(Γ) → D̃D�(B).

Proof. It is clear that Ψ� is a bijection since, as sets, A�(Γ) = A(Γ) and D̃D�(B) =
D̃D1(B). Thus, it remains to show Ψ� commutes with the crystal operators.

Assuming � ≥ 2, we have D̃D�(B) = D̃Dl−1(D̃D1(B)), i.e., the crystal D̃D�(B) is 
obtained from D̃D1(B) by removing the last � − 1 edges in a 0-string. Let ϕ0 be the 
crystal ϕ-function for D̃D1(B), see Section 2.1. By [31, Theorem 3.9], we have

ϕ0(J) = max(M − 1, 0) .

In A(Γ) we have to redefine as 0 every f0(J) �= 0 with ϕ0(J) ≤ � − 1, but this condition 
is equivalent to M ≤ �. Similarly, we have to redefine as 0 every e0(J) �= 0 with ϕ0(J) ≤
� − 2, but this condition is equivalent to M < �. The fact that the crystal operators fp
and ep in A�(Γ) commute with Ψ� now follows from (4.6) and (4.7), respectively. �
Remarks 4.8.

(1) Using the setup of Corollary 4.1, let λ =
∑N

j=1 sjωrj , and let Γ be any λ-chain. 
By the mentioned corollary and the above discussion, we can realize D̃D�(B) as the 
connected component of the admissible subset J = ∅ in A�(Γ).

(2) In Remark 4.2, we conjectured that Corollary 4.1 extends to the exceptional types. 
As the quantum alcove model applies to single-column KR crystals of any untwisted 
affine type, we would obtain a uniform model for all (level � dual Demazure por-
tions of) tensor products of perfect KR crystals with a fixed level (in the mentioned 
types).

The following natural question arises.

Problem 4.9. How are the non-level � dual Demazure arrows realized in the quantum 
alcove model?

In the quantum alcove model for tensor products of single column KR crystals, it is 
expected that the extra 0-arrows will be slightly more involved. In particular, we see 
that the p-arrows currently given by (4.6) and (4.7) change only one element in the 
admissible subsets. It was observed that the extra 0-arrows change more than one entry, 
but there is no precise conjecture currently. On the other hand, for single columns all the 
0-arrows are described in the closely related quantum LS path model, which has been 
bijected to the quantum alcove model [35]. So it would be interesting to see which of 
the two models would be better suited for describing the non-level � (dual) Demazure 
arrows.
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5. Conjectures for Q-systems

Recall the Q-system relations (we refer the reader to [30] and references therein):

(
Q(a)

m

)2
= Q

(a)
m+1Q

(a)
m−1 +

∏
b∼a

−Aab−1∏
k=0

Q
(b)⌊
mAba−k

Aab

⌋ , (5.1a)

(
Q(a)

m

)2
= Q

(a)
m+1Q

(a)
m−1 +

∏
b∼a

(Q(b)
m )−Aba , (5.1b)

where (5.1a) is for the untwisted Q-system and (5.1b) is for the twisted Q-system.

Conjecture 5.1. Fix some a ∈ I0, and let c = min{cb | Aba �= 0}. Let � ≥ �m/c�, then we 
have

D̃�

(
(Ba,m−1)⊗2) ∼= D̃�(Ba,m ⊗Ba,m−2) ⊕ D̃�

(⊗
b∼a

−Aab−1⊗
k=0

Bb,L(k)−1

)
, (5.2a)

D̃�

(
(Ba,m−1)⊗2) ∼= D̃�(Ba,m ⊗Ba,m−2) ⊕ D̃�

(⊗
b∼a

(Bb,m−1)⊗−Aba

)
, (5.2b)

where (5.2a) is for the untwisted types, (5.2b) is for the twisted types, and L(k) =⌊
mAba−k

Aab

⌋
.

Note that it is sufficient to prove the case when � ≥ �m/c�.
Conjecture 5.1 is a crystal theoretic interpretation of (5.1) (with renormalized indices). 

We note that if we branch to Uq(g0)-crystals (or if we took � � 1), then Conjecture 5.1
becomes precisely the statement that classical characters of KR crystals satisfy the Q-
system [13]. Thus, Conjecture 5.1 is a strengthening of [13].

Theorem 3.2 says that the crystals in Conjecture 5.1 are isomorphic to a disjoint union 
of Demazure crystals. Theorem 3.8 implies that the components containing the maxi-
mal/minimal elements are isomorphic. However, one would need to precisely enumerate 
all connected components and check their maximal and minimal weights in order to show 
Conjecture 5.1. We have verified Conjecture 5.1 on a number of examples in different 
types by using SageMath [51].
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