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A CATEGORIFICATION OF BICLOSED SETS OF STRINGS

ALEXANDER GARVER, THOMAS MCCONVILLE, AND KAVEH MOUSAVAND

ABSTRACT. We consider a closure space known as biclosed sets of strings of
a gentle algebra of finite representation type. Palu, Pilaud, and Plamondon
proved that the collection of all biclosed sets of strings forms a lattice, and
moreover, that this lattice is congruence-uniform. Many interesting examples
of finite congruence-uniform lattices may be represented as the lattice of torsion
classes of an associative algebra. We introduce a generalization, the lattice of
torsion shadows, and we prove that the lattice of biclosed sets of strings is
isomorphic to a lattice of torsion shadows when every indecomposable module
over the gentle algebra is a brick.

Finite congruence-uniform lattices admit an alternate partial order known
as the core label order. In many cases, the core label order of a congruence-
uniform lattice is isomorphic to a lattice of wide subcategories of an associative
algebra. Analogous to torsion shadows, we introduce wide shadows, and prove
that the core label order of the lattice of biclosed sets is isomorphic to a lattice
of wide shadows.

1. INTRODUCTION

Let A be a finite dimensional associative algebra over a field k, and let mod(A)
be the category of finitely generated left modules over A. A torsion class is a full,
additive subcategory of mod(A) that is closed under quotients and extensions. We
consider the collection tors(A) of all torsion classes of A as a poset ordered by
inclusion. The poset tors(A) is a complete lattice [16, Proposition 2.3]. Moreover,
the lattice of torsion classes is known to be semidistributive [12] and completely
congruence-uniform [8]. This additional lattice structure is interesting from an
algebraic point of view since it encodes homological information of A as order-
theoretic information.

The purpose of this article is to introduce the notion of a torsion shadow, which
is defined as the intersection of a torsion class with some fixed subcategory M of
mod(A). One of the goals of this paper is to study such torsion shadows when A
is a bound quiver algebra obtained by “doubling” a gentle quiver; see Section 3.1
for background on gentle algebras and Section 6 on the doubling construction. In
this setting, the fixed subcategory M is additively generated by a certain collection
of string modules, also specified in Section 6. Before stating our main results, we
summarize our motivation as follows.

To study the lattice structure of tors(A) for a certain family of Jacobian algebras,
tors(A) was realized in [12] as a quotient of a lattice of biclosed sets. We say a subset
X of a closure space is a biclosed set if both X and its complement are closed.
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2 GARVER, MCCONVILLE, AND MOUSAVAND

The archetypal family of biclosed sets are the inversion sets of permutations of n,
which corresponds to a certain closure space on the 2-element subsets of {1,...,n}.
Bjorner and Wachs [4] introduced a surjective function from permutations of n
to binary trees with n nodes in the context of poset topology, which has since
found significance in combinatorial Hopf algebras [17], constructions of generalized
associahedra [14], cluster algebras [22], and many other areas. From [25], we may
interpret their map as a lattice quotient map from biclosed sets to tors(k@) where
@ is the path quiver with n — 1 vertices. Similar maps from biclosed sets to torsion
classes were presented in [12] and [21].

In [12], a categorification of biclosed sets as biclosed subcategories is given, which
we recall in Section 5. However, while the poset Bic(A) of biclosed subcategories
of mod(A) is a graded, congruence-uniform lattice for the algebras A appearing
in that paper, it is not even a lattice for a general algebra A. Furthermore, the
lattice structure of biclosed subcategories in [12] does not have a clear homological
interpretation. The main motivation for this article is to correct these deficiencies
by interpreting biclosed subcategories as the torsion shadows of another algebra.

We now describe our main results. Let (Q,I) be a gentle bound quiver and
A = kQ/I a gentle algebra all of whose indecomposable modules are bricks (i.e.,
modules whose endomorphism ring is a division algebra). We let II(A) = kQ/T
be the algebra for the “doubled” quiver, as defined in Section 6. Let M be the
subcategory of mod(IT(A)) whose objects are direct sums of string modules whose
strings are reorientations of strings of A. We let torshad x(II(A4)) be the collection
of subcategories of mod(II(A)) of the form 7 N M for some T € tors(II(A)).

Theorem 1.1 There is an isomorphism of lattices Bic(A) ~ torshad x(II(A)).

There is a canonical surjective homomorphism II(A) — A inducing a lattice map
on torsion classes tors(II(A)) — tors(A4). This lattice map factors as

tors(ITI(A)) — torshad aq(TI(A)) — tors(A).

Using Theorem 1.1, one obtains a lattice homomorphism Bic(A4) — tors(A4). In-
stances of the latter homomorphism have been studied previously in [11] and [21].

In analogy with the notion of a torsion shadow, we introduce the notion of a
wide shadow in Section 7, which is the intersection of a wide subcategory of mod(A)
with a distinguished subcategory M. The collection of all wide subcategories of
mod(A) forms a lattice under inclusion. Indeed, for any family of wide subcategories
{Wi}ier, one has that A,_; W; := (,c; Wi is a wide subcategory. The join of two
wide subcategories W; and Ws, denoted Wy V W, is the intersection of all wide
subcategories containing W; and Ws.

For the algebra II(A) and the choice of subcategory M C mod(II(A4)) defined
above, the collection of all wide shadows, denoted widshad(II(A)), also becomes a
lattice under inclusion by a routine argument that uses the lattice structure on the
wide subcategories of mod(A). In addition, we exhibit a correspondence between
wide shadows and torsion shadows that mimics the usual correspondence between
wide subcategories and torsion classes given in [15] and [18].

Theorem 1.2 There is a bijection between widshad(TI(A)) and torshad(TI(A)).

We construct the bijection in Theorem 1.2 in two ways — first by using maps that
resemble the ones defined in [18], and secondly by identifying widshad(II(A4)) with
the core label order of the (finite) congruence-uniform lattice torshad(II(A)). We
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remark that the core label order was previously referred to as the lattice-theoretic
shard intersection order in [11, 7]. The term core label order was introduced by
Miihle in [20] to distinguish this partial order from the geometrically-defined shard
intersection order in the sense of Reading [23].

From the second description, we immediately conclude that the core label order
of torshad(II(A)) is a lattice. We therefore obtain a large family of congruence-
uniform lattices whose core label orders are also lattices, which is not true for
general congruence-uniform lattices; see [20] and [13, Problem 9.5]. The core label
orders we consider in this work include those studied in [7] where the lattice property
was also proved.

The rest of the paper is organized as follows. Background on lattices and repre-
sentations of gentle algebras is given in Sections 2,3, and 4. The lattice structure
of biclosed sets of strings is examined in Section 5. Torsion shadows are introduced
in Section 6 and Theorem 1.1 is proved. Wide shadows are introduced in Section 7.
The canonical join complex and core label order of the lattice of biclosed sets is
determined in Sections 8 and 9, culminating in a proof of Theorem 1.2.

2. LATTICE THEORY PRELIMINARIES

We recall some background on lattices. Proofs of claims made in this section
may be found in [10] and [11, Section 2].

Let (L, <) be a finite lattice. That (L,<) is a lattice means any two elements
x,y € L have a join (i.e., a least upper bound) zVy € L and a meet (i.e., a greatest
lower bound) x Ay € L. For simplicity, we will write L rather (L, <) when the
order relation on L is understood. For x,y € L, if + < y and there does not exist
z € L such that x < z < y, we write z < y. Let Cov(L) := {(z,y) € L? | x <y} be
the set of covering relations of L. We let 0,1 € L denote the unique minimal and
unique maximal elements of L, respectively.

We say that an element j € L is join-irreducible if j # 0 and whenever j = zVy,
one has that j = x or j = y. Meet-irreducible elements m € L are defined dually.
We denote the subset of join-irreducible (resp., meet-irreducible) elements by JI(L)
(resp., MI(L)). For j € JI(L) (resp., m € MI(L)), we let j, (resp., m*) denote the
unique element of L such that j. < j (resp., m < m*).

For A C L, the expression \/ A :=\/ ., a is irredundant if there does not exist
a proper subset A’ C A such that \/ A’ =\/ A. Given A, B C JI(L) such that \/ A
and \/ B are irredundant and \/ A = \/ B, we set A < B if for each a € A there
exists b € B with @ < b. In this situation, we say that \/ A is a refinement of \/ B.
If € Land A C JI(L) such that = \/ A is irredundant, we say \/ A is a canonical
join representation of x if A < B for any other irrendundant join representation
x =\ B, B CJI(L). Dually, one defines canonical meet representations.

Now we assume that L is a semidistributive lattice. This means that for any
three elements x,y, z € L, the following properties hold:

e ifx Az=yAz then (x Vy)Az=21zAz and

eifxrVz=yVz then (xAy)Vz=2aVz.
It is known that a lattice L is semidistributive if and only if each element of L has
a canonical join representation and a canonical meet representation [10, Theorem
2.24]. Let A®7(L) be the collection of subsets A C JI(L) such that \/ A is canonical
join representation of an element of L. There is a canonical bijection I — A7 (L)
sending x — A where \/ A is the canonical join representation of .
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Lemma 2.1 [3, Theorem 1.1] If L is a semidistributive lattice, then A°7(L) is
the set of faces of an abstract simplicial complex, called the canonical join complex.
Furthermore, this complex is flag, meaning that {j1,...,jm} C JI(L) is a face if
and only if {ja, Jv} is a face for all a # .

Any map of sets A : Cov(L) — P where P is a poset is called an edge labeling.

Definition 2.2 Let P be a poset. An edge labeling A\ : Cov(L) — P is a

CN-labeling if L and its dual L* satisfy the following: given z,y,z € L with

(z,2),(z,y) € Cov(L) and maximal chains C; and Cs in [z,z V y] with z € C;

and y € Co,

(CN1) the elements 2’ € C1,y’ € Cy such that (¢/,2 Vy), v,z Vy) € Cov(L)
satisfy

)\(.T/,JT \ y) = )‘(Zay)? )\(y’,x \v y) = A(va)v

(CN2) if (u,v) € Cov(Cy) with z < u <v < zVy, then A\(z,2) <p A(u,v) and
Az, y) <p Au,v);
(CN3) the labels on Cov(Cy) are pairwise distinct.
We say that \ is a C'U-labeling if, in addition, it satisfies
(CUL) A(Js, ) # (gL, ") for 3,5 € JI(L), j # 5, and
(CU2) A(m,m*) # X(m/,m'*) for m,m’ € MI(L), m # m/.

If L admits a CU-labeling, it is said to be congruence-uniform.

Remark 2.3 For completeness, we include the more standard definition of a
congruence-uniform lattice.

Recall that an equivalence relation © on the elements of L is called a lattice
congruence of L if © satisfies the following:

e ifr=gy, thenzVi=gyVtand z ANt =g y At for each z,y,t € L.

Let Con(L) denote the set of all lattice congruences of L. The set Con(L) turns
out to be a distributive lattice when its elements are ordered by refinement.

Given (z,y) € Cov(L), we let con(z, y) denote the most refined lattice congruence
for which x = y. Such congruences are join-irreducible elements of the lattice
Con(L). When L is a finite lattice, the join-irreducibles (resp., meet-irreducibles)
of Con(L) are the congruences of the form con(j., j) (resp., con(m,m*)). We thus
obtain surjections

JI(L) — JI(Con(L)) MI(L) — MI(Con(L))
j = con(fu,j) m +— con(m,m*).
If these maps are bijections, we say that L is congruence-uniform. It is known that

this definition and the one given in Definition 2.2 are equivalent (for instance, see
[11, Proposition 2.5]).

We conclude this section by mentioning some general properties of CU-labelings
and the definition of the core label order of L. Given an edge labeling A : Cov(L) —
P, one defines

M(@) = {\y,z) | y<z}, MN(2):={\z,2)| <2z}
Lemma 2.4 [11, Lemma 2.6] Let L be a congruence-uniform lattice with CU-

labeling X : Cov(L) — P. For any s € A(Cov(L)), there is a unique join-irreducible
j € JIL) (resp., meet-irreducible m € MI(L)) such that A(j., j) = s (resp.,
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A(m,m*) = s). Moreover, this join-irreducible j (resp., meet-irreducible m) is
the minimal (resp., mazximal) element of L such that s € A\ (j) (resp., s € AT(m)).

We will use Lemma 2.4 to characterize join- and meet-irreducible elements of
Bic(A), the lattice of biclosed sets of strings defined in Section 5.

One also uses CU-labelings to determine canonical join representations and
canonical meet representations of elements of a congruence-uniform lattice. We
state this precisely as follows.

Lemma 2.5 [11, Proposition 2.9] Let L be a congruence-uniform lattice with CU-
labeling X. For any x € L, the canonical join representation of x is \| D, where
D ={j€JUL)| AjxJ) € A\ (x)}. Dually, for any x € L, the canonical meet
representation of x is \ U, where U = {m € MI(L) | A(m,m*) € \T(x)}.

Definition 2.6 Let L be a finite congruence-uniform lattice with CU-labeling
A: Cov(L) — P. Let © € L, and let {y1,...,yr} denote the set of elements of L
that are covered by x. Define the core label order of L, denoted ¥(L), to be the
collection of sets of the form

() = {AMw, 2) | Ny Sw < 2 < 2}

partially ordered by inclusion.

3. REPRESENTATION THEORY PRELIMINARIES

Notations and Conventions. Throughout, k denotes a field, A a finite dimen-
sional k-algebra, and mod(A) the category of all finitely generated left A-modules.
For a subcategory C of mod(A), we always assume C is full and closed under isomor-
phisms. We let ind(A) denote the set of all isomorphism classes of indecomposable
modules in mod(A). For every M in mod(A), we denote the Auslander-Reiten
translation of M by 7o M.

A quiver Q = (Qo, @1, s,t) is a directed graph, which consists of two sets Qo and
@1 and two functions s,t : Q1 — Qo. Elements of )y and @ are called vertices
and arrows of @, respectively. For v € Q, the vertex s(7) is its source and t(v) is
its target. We will assume that @) is finite and connected. We typically use lower
case Greek letters «, 3, v, ... for arrows of Q.

A path of length d > 1 in @ is a finite sequence of arrows 74 - - - 271 such that
5(vj4+1) = t(v;), for every 1 < j < d — 1. We also associate to each vertex i € Qo
a path of length 0, denoted e;, called the lazy path. Each lazy path e; satisfies
s(e;) = t(e;) = 4. The path algebra of @, denoted kQ, is generated by the set of
all such paths and all of the lazy paths as a k-vector space. Its multiplication is
induced by concatenation of paths and extended to kQ by linearity. Let Rg C kQ
denote the two-sided ideal generated by all arrows of Q. A two-sided ideal I C kQ
is called admissible if Rg cJIC R2Q7 for some m > 2. If I is an admissible ideal of
kQ, we say that the pair (@, I) is a bound quiver and kQ/I is bound quiver algebra.

More details on the representation theory of associative algebras that appears in
this paper may be found in [1].

3.1. Gentle Algebras. In this subsection, we recall some basic notions about
gentle algebras, which are used in the remainder of the paper. For further details
we refer the reader to [6].

A finite dimensional algebra A = kQ/I, where I is an admissible ideal generated
by a set of paths, is called a string algebra if the following conditions hold:
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(S1) At every vertex v € @, there are at most two incoming and two outgoing
arrows.

(S2) For every arrow « € D1, there is at most one arrow 3 and one arrow v such
that af ¢ I and ya & I.

Moreover, A = kQ/I is called gentle, if it also satisfies the following:

(G1) There is a set of paths of length two that generate I.
(G2) For each arrow v € @1, there is at most one 5 and one v such that 0 # af € I
and 0 # vya € I.

Unless otherwise stated, given a finite dimensional algebra A, we assume it is
expressed as A = kQ/I for some quiver ) and some admissible ideal I that is
generated by a set of paths.

Strings and Band Modules. Let A = kQ/I and Q; * be the set of formal inverses
of arrows of (). Elements of Ql_l are denoted by y~!, where v € @1, such that
s(y71) == t(y) and t(y71') = s(y). A string in A of length d > 1 is a word
w =5 -7;" in the alphabet Q1 U Q7" with ¢; € {£1}, for all i € {1,2,--- ,d},
which satisfies the following conditions:

(P1) s(vit') = t(y") and v # v, forall i € {1,--- ,d — 1};
(P2) w and also w™! := 47" -+ 47 do not contain a subpath in 1.

If w=~5"---71" and we know that ¢; = 1 for some i, we write ~; rather than
vt We say w starts at s(w) = s(y{') and terminates at t(w) = t(v5"). We also
associate a zero-length string to every vertex i € (9. We denote this string by e;.
We let Str(A) denote the set of strings in A where a string w is identified with w1
for reasons that will become clear later.

Let w = ~5*---77" be in Str(A). Then, w is called direct if ¢, = 1 for all
i € {1,---,d}, while inverse strings are defined dually. We say that a string w of
positive length is a cyclic string if s(w) = t(w). If w is a cyclic string, it is called
a band if w™ is a string for each m € Z>; and w is not a power of a string of a
strictly smaller length.

Let w = ~5*---97" be an element of Str(A). We can express the walk on @

determined by the string w as the sequence 5, 7, 7t ", where

Z1,...,Tq41 are the vertices of Q) visited by w, a priori multiple times. Each arrow
~; has an orientation that we suppress in this notation, but the orientation of these
arrows appears in the definition of the string module defined by w. The string
module defined by w is the quiver representation M(w) = ((V;)icq,: (¥a)acq:)
with vector spaces given by

@kmj : ifi=x; for some j € {1,...,d+ 1}
‘/i = Jixj=1
0 . otherwise

for each 7 € Qg and with linear transformations given by

Tp—1 : fa=m,_1and ¢ =—1
Yalzr) = Trr1 : fa=v;and ¢ =1
0 :  otherwise

for each @ € Qo. Observe that dimy(V;) = |{j € {1,...,d+ 1} | z; = i}| for any
i € Qo. Observe that for any string w we have that M (w) ~ M (w~!) as A-modules.
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As shown in [26], all of the indecomposable modules over a string algebra are
given by string modules and another class called band modules. As band modules
will not be relevant in this work, we do not define them, instead we refer the
interested reader to [6].

The diagram of w is a pictorial presentation of M (w) that consists of a sequence
of southeast and southwest arrows, that describe the action of A on M(w). In
particular, starting from vertex s(w), for every direct arrow we put a southwest
arrow outgoing from the current vertex, whereas for each inverse arrow we put
a southeast arrow ending at the current vertex. These notions, as well as the
construction of a string module, are illustrated in the following example.

Example 3.1 Let (Q,I) denote the bound quiver where @ appears in Figure 1
and I = (Ba). Since R‘é = 0, the zero ideal is admissible. Furthermore, the ideal
I generated by the quadratic relation S« is also an admissible ideal, for which the
quotient algebra A = kQ/I is gentle.

FIGURE 1. A bound quiver (@, I) with I = (Ba) where A = kQ/I
is gentle.

Observe that w = a~ledy 13 is a string in Str(A). The diagram of w and the
string module M (w) appear in Figure 2.

3.2. Torsion theories. Following the seminal work of Dickson [9], a subcategory
of mod(A) is called a torsion class if it is closed under quotients and extensions.
We say a torsion class T is functorially finite if T = gen(M), for some A-module
M, where gen(M) denotes the subcategory of mod(A) generated by M (i.e., the
subcategory consisting of all quotients of direct sums of M).

Dually, a torsion-free class is defined as a subcategory of mod(A) that is closed
under submodules and extensions. Furthermore, for a subcategory C of mod(A), if
we define

C*t :={X €mod(A)| Hom,(C,X) =0, VC € C},
then it is easy check that F := T is a torsion-free class, provided that 7 is a
torsion class. In such a case, (T,F) is called a torsion pair or torsion theory in
mod(A).

Let tors(A) and torf(A), respectively, denote the set of all torsion classes and
torsion-free classes in mod(A), ordered by inclusion. It is straightforward to show
these are complete lattices where the meet of a family of torsion classes {7;}icr €
tors(A) (resp., {Fi}ier € torf(A)) is given by A,o; Ti = ;s Ti (vesp., N\jey Fi =
(Micr Fi)- Moreover, these lattices are closely related via an anti-isomorphism of
lattices by sending 7 to 7+ (and F to ~F in the opposite direction), where

+C:= {X € mod(A) | Homy (X,C) =0, VC € C}
for each subcategory C of mod(A).
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AN

FIGURE 2. In (a), we show the diagram of w = a~tedy~!3, and,
in (b), we show the string module M (w).

The following proposition will be useful in the following sections, as it describes
the smallest torsion class in mod(A) containing a given set of modules. Later
we use a refinement of this proposition for a combinatorial description of torsion
classes over gentle algebras. Recall that for a subcategory C of mod(A), the smallest
extension-closed subcategory of mod(A) that contains C consists of all modules in
mod(A) which have a filtration by the objects in C. We denote this category by
filt(C).

Proposition 3.2 For a collection of A-modules X1, ..., X,, the smallest torsion
class in tors(A) that contains {X1, ..., X, } is given by T* = filt(gen(P._, X;)). In
particular, each M in T* has a filtration 0 = My C My C--- C My 1 CMy=M
such that for every 1 < i < d, there exists an epimorphism ; : X;, — M;/M;_4
for some 1 < j; <r.

Proof. We prove that 7* is a torsion class and is contained in any 7 € tors(A)
which contains the modules X1, ..., X,.

To show the inclusion, suppose 7 € tors(A) and Xi,..., X, belong to 7. If
M € T*, by definition it has a filtration

0=MyC M C--C My, CMy=M

such that for each 1 < ¢ < d, there exists an epimorphism ; : X, — M;/M;_, for
some 1 < j; < r. Note that M; € 7. Now, via an inductive argument and the fact
that 7T is extension-closed, for any 1 <i < d, the short exact sequence

0— Mi—l — M,L' — Mi/Mi—l — 0
implies M; € T. In particular, M € T so T* C T.
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To show that 7™ is a torsion class, consider M, N € T*, respectively, with the
following filtrations

O0=MyCM, C---C My 1CM,=M

and
0=NgCN C---CNy_1 CNy=N
such that the module epimorphisms o; : X, = M;/M;_1 and By : Xy, = Ny /Ny_q
are defined as before, for every 1 <i < a and 1 <34’ <b.
Suppose we have the following short exact sequence in mod(A):

0>NLz% M0
Consider the following filtration of Z with the desired quotient property:
0=f(No) S+ CfF(No) =g~ (Mo) - C g~ (Ma) = Z.

Using the maps «a; and B given above, it is straightforward to show that each
quotient of two consecutive terms in this filtration of Z is a quotient of X, for some
1 < k < r. This proves that 7 is extension-closed.

To see that 7* is quotient-closed, suppose f: M — N is an epimorphism and

O=MyCM; C---C My 1 CMy=M
a filtration of M as in the assertion. Now consider the filtration
0=f(Moy) C f(Mq)C---C f(Mg-1) C f(Mg) =N

in which some of the middle terms might be the same. Each map v; from the original
filtration gives rise to an epimorphism o; : X;, — f(M;)/f(M;—1). Therefore T* is
a torsion class of mod(A), and we are done. O

4. BRICK GENTLE ALGEBRAS

Recall that a module X over a k-algebra A is called a brick if Endy(X) is a
division ring. We say that A is a brick algebra if every indecomposable A-module
is a brick. It is well-known that X is a brick if and only if Enda (X) ~ k, provided
that k is algebraically closed. It follows from [5, Remark, Lemma 4 in Section 3]
that any brick algebra is of finite representation type.

In this section, we classify the gentle algebras that are brick algebras. For the
remainder of the paper, we will refer to such algebras as brick gentle algebras. We
show that all strings in such bound quivers are self-avoiding, meaning that no string
revisits a vertex. In particular, over brick gentle algebras, the sets of string modules,
bricks, and indecomposable 7-rigid modules coincide.

Recall that a A-module M is called rigid (resp., T-rigid) if Ext} (M, M) = 0
(resp., Hom(M,7M) = 0). Here 7 denotes the Auslander—Reiten translation. From
the functorial isomorphism Ext} (Y, X) ~ DHomy (X, 74Y), known as Auslander—
Reiten duality, it is follows that every 7-rigid module is rigid.

To avoid repetition, we fix some notation that will be used throughout this
section. Let A denote a gentle algebra with fixed bound quiver (Q,I). Let w =
Yot 521t be in Str(A), with v; € Q1 and ¢; € {£1}, for every 1 < i < d. We
say that v;7; and 7;17;1 is a relation, if v;7; is a path of length two in ) which
belongs to I.

The next lemma gives a simple criterion for showing that the string modules
defined by certain cyclic strings are not bricks. In particular, it shows that if a
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bound quiver of an algebra A contains a cyclic string of odd length, then there
exists an indecomposable A-module that is not a brick.

Lemma 4.1 Let w =3 ---v5*71" be a cyclic string. If there exists 1 <i <d—1
such that €; = €;41 or €5 = €1, then M(w) is not a brick.

Proof. Assume that 5 = €1, and let j := t(w) = s(w). Consider f € End (M (w)),
given by f = fa o f1, where f1 : M(w) — M(e;) (resp., fo : M(e;) — M(w))
is the epimorphism onto (resp., monomorphism from) the simple module M (e;).
Obviously, f is nonzero and not invertible, which implies that M (w) is not a brick.
The proof for the other case is similar. O

We define a walk in a quiver @ of length d > 1 to be a word w = 73" --- 77" in
the alphabet Q; UQ " with ¢; € {#1}, for all i € {1,2,--- ,d}, and which satisfies
condition (P1) in the definition of a string in A. When working with walks in a
quiver, we use notation and terminology that is analogous to that which is used for
strings.

Proposition 4.2 For a gentle algebra A = kQ/I, the following are equivalent:

(1) A is a brick algebra;
(2) Every cyclic walk w = <t in @ contains at least two relations.

Therefore any string w € Str(A ) where A is any brick gentle algebra is self-avoiding.

Proof. If there exists a cyclic walk w in the bound quiver (@, I) that contains no
relations, then there exists a band in A. This contradicts that A is representation
finite. If there exists a cyclic walk w in the bound quiver (Q,I) that contains
a single relation, then by Lemma 4.1 this contradicts that every indecomposable
A-module is a brick. We obtain that (2) is a consequence of (1).

Conversely, (2) implies that each string w € Str(A) never revisits a vertex. Thus
End(M(w)) ~ k for any string w € Str(A). O

Example 4.3 One family of examples of brick gentle algebras is given by the tiling
algebras studied in [11]. Another family is given by the gentle algebras associated
with grid-Tamari orders [19]. These algebras are defined by grid quivers as in [21,
Section 2.1.2].

5. BICLOSED SETS AND BICLOSED SUBCATEGORIES

In this section, we recall the definition of the lattices of biclosed sets and biclosed
subcategories, we construct a CU-labeling for these lattices, and we classify the
join-irreducible biclosed sets.

A subcategory C of mod(A) is called weakly extension-closed provided that for
every triple of indecomposables X,Y and Z in mod(A) in a short exact sequence
0—-X—=>Y—Z7Z—0,if Xand Z in C, then Y € C. Moreover, C is biclosed if both
C and C¢ are weakly extension-closed, where C¢ := {X € mod(4) | add(X)NC = 0}.

In [12], the first and second authors studied the poset of biclosed sets of strings
which is the combinatorial incarnation of biclosed subcategories. Before defining
this poset, we define a concatenation of two strings u,v € Str(A) to be a string in
Str(A) of the form vyu or vy~ 1u, provided there exists such an arrow v € Q. At
times, we will denote a concatenation of two strings « and v by vy*'u when we do

not wish to specify whether we are considering vyu or vy~ tu.
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Now, a subset B of Str(A) is called closed if u,v € B implies that vy*!u is also
in B, provided that vy*1u € Str(A) for some v € Q;. Moreover, B is called biclosed
if B and B¢ := Str(A)\B are closed. In order to distinguish the combinatorially
defined biclosed sets from the homologically defined biclosed subcategories, we re-
spectively denote these by Bic(A) and Bic(A). Subsequently, B and B, respectively,
will denote a biclosed set and a biclosed subcategory.

Both sets Bic(A) and Bic(A) are partially ordered by inclusion. We leave it to
the reader to verify that the map

B~ add (@M(w)m € B)
defines a poset isomorphism between Bic(A) and Bic(A).
Example 5.1 Consider the brick gentle algebra

[e3

A=k(1___"2)/{ap,Ba).

-

B
In Figure 3, we show the poset Bic(A).

Str(A)

1,182,159 218 21%9

NG N

,1d2 1,1%2 21892 21152

NSNS
~,

0

FIGURE 3. A poset of biclosed sets of strings.

The following theorem describes the lattice structure of Bic(A), and equivalently,
of Bic(A).

Theorem 5.2 [21, Theorem 3.26] If A is a representation finite gentle algebra,
the poset Bic(A) is a congruence-uniform lattice.

Remark 5.3 The lattice Bic(A), where A is a representation finite gentle algebra,
is a self-dual lattice in the sense that this lattice has an anti-automorphism

(=)¢ : Bic(A) — Bic(A).
With regards to proving lattice properties of Bic(A), this fact often simplifies such
verifications. For example, see the proof of Corollary 5.9.
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e} Meal Bley  Blea)

(e1)g (e2)g

F1GURE 4. The poset S from Example 5.4.

For the remainder of the section, we assume that A is a brick gentle algebra.
It follows from [21, Theorem 3.20 (ii)] that for any biclosed sets By, By € Bic(A),
one has that By V By = By U By where for any X C Str(A) the set X denotes the
smallest closed subset of Str(A4) that contains X. The proof of [21, Theorem 3.26]
shows that if BU{v}, BU{w} € Bic(A), then

(Bu{v}) Vv (Bu{w}) =BU{v,w}.

We now construct a CU-labeling for the lattice Bic(A). Let w = 5 -7 €
Str(A). We say that a pair {wi, w2} is a break of w if w = ww;ng for some

j€{1,...,d}. We refer to the strings w; and ws in a break of w as splits of w.
Define a poset S whose elements are of the form (w, {w!,...,w?}) € Str(A) x
25t1(4) where

e each w' is a split of w, and
e for any i # j, splits w* and w? do not appear in the same break of w

up to the equivalence relation where we say that (w, {w?, ..., w?}) is equivalent to
(w= L {(wh) 7L, ... (w?)71}). We refer to elements of S as labels, and, for brevity,
we denote (w, {w!,..., w?}) € S by wp with D = {w?, ... w}.

We now define a partial order on elements of S. If u,w € Str(A), we say
that u is a proper substring of w if there exist u',u? € Str(A) at most one of
which is the empty string such that w = u'uu?. The partial order is as follows:
GIVeN Wiyt s Uyl ucy € S, We SAY Uyl ue} <8 Wiy, wa} if u is a proper
substring of w or ug,1 . ey is equivalent to w1, ypay-

Example 5.4 In Figure 4, we show the poset S defined by the algebra

[e3

A=k(1__"2)/{aB, Ba).

S

B

Remark 5.5 A version of this poset of labels S has already been introduced in
[7]. There the notion of segments plays the role of strings. Many of the proofs [7]
are applicable to the current work, and so we will frequently cite [7] in the sequel.
We leave it to the reader to translate the relevant statements in terms of segments
from [7] into statements in terms of strings in the current work.

In the proof of Theorem 5.2, it is shown that any covering relation in the lattice
of biclosed sets is of the form (B, B U {w}) € Cov(Bic(A)) where w ¢ B is a string
such that B contains exactly one split from each break of w. The following lemma
shows that any cover of a biclosed set B is obtained by adding a single string to B.
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Lemma 5.6 For any string w € Str(A), we have that {w} = {w}. Thus, any
covering relation in Bic(A) is of the form (B, B U {w}) where w € B is a string
such that B contains exactly one split from each break of w.

Proof. Since A is a brick gentle algebra, by Proposition 4.2 every string in A is
self-avoiding. In particular, for each o € Q1, the expression wa*!w cannot appear
in any string v € Str(A4). This implies that {w} = {w}.

The second assertion follows from the first. O

Definition 5.7 Define amap A : Cov(Bic(A)) — S by M(B, BU{w}) = Wiy . wi}
where w', ..., w? are the splits of w which are contained in B. It is clear that \ is

an edge labeling of Bic(A).
Proposition 5.8 The edge labeling A : Cov(Bic(A)) — S is a CU-labeling.

Proof. Let By = BU{u}, B, = BU{w} € Bic(A) and consider the interval [B, By V
Bs). Recall that B1V By = BU{u,w}. As A is a brick gentle algebra, Proposition 4.2
implies that {u,w} C {u,w,ua™w,ws* u} for some a,3 € Q; assuming both
wotlw and wBT u are strings of A.

If neither ua*!w nor wB*'u is a string, then [B, By V By] is the interval shown
on the left in Figure 5. Now suppose only one of ua®™ w and wf*!u is a string.
Without loss of generality, assume that ua®'w is a string. Then [B, By V Bo] is
shown on the right in Figure 5. Lastly, suppose that both ua®™w and wp*u are
strings. Then [B, By V Bs] is shown on the bottom in Figure 5. Using these figures,
one deduces axioms (CN1), (CN2), and (CN3).

We now verify axiom (CU2), and axiom (CU1) is an immediate consequence of
(CU2).

(CU2): Consider two meet-irreducibles My, My € MI(Bic(A)) which are cov-
ered by M; and Mj, respectively. Assume for the sake of contradiction that
MMy, M) = XN(May, M), and denote this label by wp. Thus My = M; U {w}
and Mj = My U {w}. Note that w € M; V My so there exists u', ..., u* € M; UM,
and aq,...,ar_1 € @1 such that w = ulozlilu2 . ~ue_1aillue.

If there exists i € {1,...,/ — 1} such that u’,u’t! € M; (resp., u’,u’*! € My),

then uiaiﬂu”l € M, (resp., uia?ﬂu”l € Ms). Therefore, we can assume that the

expression u'ai u? - - u’~'aF! u’ has the property that for any i € {1,...,¢— 1}
if ut € My (resp., u' € My), then u't! € My (resp., u't! € M;). We can further
assume, without loss of generality, that u' € M;.

Next, since A(My, M{) = A(Ma, M3), sets My and Ms both contain the same
split of w from a given break. We know that u' is a split of w so u' € M; N My.
Since u? € My, we know u'ai'u? € My. Now uaf'u? is a split of w so it follows
that ulozlj[lu2 € My N Ms. By continuing this argument, we obtain that w € My, a
contradiction. |

As an application of the proof of Proposition 5.8, we can say exactly which
lattices of biclosed sets of strings are polygonal. A finite lattice L is a polygon if it
consists of exactly two maximal chains and those chains agree only at the maximal
and minimal elements of L. By definition, a finite lattice L is polygonal if for all
x € L the following properties hold:

e if y,z € L are distinct elements covering x, then [z,y V 2] is a polygon, and
e if y,z € L are distinct elements covered by x, then [y A z, z] is a polygon.
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B1V B
Bi1VEB
/'.'\ B U {ua®tw} Bo U {ua™ w}
’ waQ ‘ ’ UDl ‘
B, < > B, ua® wDu{u} ua® wDu{w}
’ UDl ‘ ’ waQ ‘ Bl B
N
B
B
B1V By
’LUB UD’'{u} ‘ UOé wDI_J{u} ' ( UJB UD’{w} ‘ ’U,O( wDu{w}
UOé wDI_J{u} ’LUB UD’'{u} ’U,O( wDu{w} UD’u{w}

FIGURE 5. The three forms of the interval [B, By V Bs] of Bic(A).
The labels on the covering relations as defined by the labeling
A : Cov(Bic(A)) — S appear in boxes on top of the corrresponding
covering relation. The set D! (resp., D?) consists of all splits of u
(resp., w) belonging to B. Similarly, the set D (resp., D’) consists
of all splits of uat'w (resp., wB* u) that belong to B. In the bot-
tom figure, we have omitted several of the elements of the interval
[B, By V Bsy]. However, the omitted elements of [B, By V Bs| are
completely determined by the labels on the covering relations of
[B, By V By).

Corollary 5.9 Let A = kQ/I be a brick gentle algebra. The lattice Bic(A) is
polygonal if and only if there are no oriented 2-cycles in Q.
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Proof. Since Bic(A) is self-dual by Remark 5.3, it is polygonal if and only if every
interval [B, By V Bs] is a polygon where By and By are two distinct biclosed sets
covering a biclosed set B. In the proof of Proposition 5.8, we classified all intervals
[B, By V By] where By and Bs are two distinct biclosed sets covering a biclosed
set B; these are exactly the intervals appearing in Figure 5. All such intervals are
polygons if and only if there are no oriented 2-cycles in Q. O

We conclude this section by classifying the join-irreducbile biclosed sets. Given
wp € S, define

J(wp) = {w}uDU | J S(u)
ueD
where S(u) = S(u, D) C Str(A) is defined to be the set of all splits v of u satisfying
the following:
i) string v is not a split of w, and
ii) string v cannot be concatenated with any string in D.

Observe that any element of J(wp)\ ({w} UD LU, cp S(u)) is not a substring of
w.

Example 5.10 Let A = kQ/{ad,d7) where @ is the quiver shown in Figure 6.
Observe that J(oflﬂfy{_ell . a_l}) ={er,eq, a7t 6,0t By

F1GURE 6. The quiver from Example 5.10.

Lemma 5.11 The set J(wp) is biclosed and D is exactly the set of splits of w
contained in J(wp). Additionally, for any element of {w} DU S(u) exactly
one element from each of its breaks belongs to J(wp).

ueD

Proof. By definition, the set J(wp) is closed so we show that J(wp) is coclosed. The
proof of [7, Lemma 3.6] implies that the set {w} UDUU,ep S(u) is coclosed. Thus,

to complete the proof, we show that for any w’ € J(wp)\ ({w}UDU,cp S(u ))
at least one element of each break of w’ belongs to J(wp). To do so, suppose

wrafw? - wh e wh € J(wp) where w', ... wF € {w}UDU Uuep S(u) and
ai,..., -1 € Q1. Now assume w'ailw? .- k 104?1110’“ = v/a*’ for some
strings u’, v’ € Str(A) and some « € Q1. Either

o = wlaFlw? . wilaF e
and

o = witla Zi+11w 2 lgE gk
for some ¢ € {1,...,k—1} or
1+, i—1, 41 i

v =w'aj ew' T o U
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and
. _,Uza:i:lw ok 1alj€:11wk
for some i € {1,...,k} where u’ and v* are nonempty strings satisfying uzﬂiﬂvi =

w' for some B; € Q1.

It is enough to assume we are in the latter case. Since {w}I_IDUUueD S(u) is co-
closed, given w" for some ¢, one has that u* € J(wp) or v* € J(wp). Suppose with-
out loss of generality that u’ € J(wp). As wlaf'w? - w2atwi=' € J(wp), we
know v/ = w'ailw? - wilat u’ € J(wp). We obtain that .J(wp) is coclosed.

To prove that any spht of w belonging to J(wp) belongs to D, suppose w =

w'ai'w? where w!, w? € J (wp) and o € Q1 Wlthout loss of generality, assume
w? ¢ D. This 1mphes that w? = ulﬁil 2. yk-1pEL _1u with & > 2 for some
strings u',...,u* € {w} UDUJ,cp S(u) and some arrows fi,...,0Bk—1 € Q1.
Moreover u’ 6 Uuep ( ) for each i € {1,...,k — 1} and u* € D. However, this
implies that ©*~! and u* may be concatenated, which contradicts that u*~! € S(u)
for some u € D.

The final assertion is clear. (]

We use the sets J(wp) to classify the join-irreducible biclosed sets in the following
proposition.

Proposition 5.12 The biclosed set J(wp) satisfies A\ (J(wp)) = {wp}. More-
over, any biclosed set B with wp € A (B) satisfies J(wp) < B, and the re-
verse inclusion holds if and only if A\ (B) = {wp}. Consequently, the set map
J(=):8 = JI(Bic(A)) is a bijection.

Proof. Since D is exactly the set of splits of w contained in J(wp), w is not ex-
pressible as a concatenation of elements of J(wp). This implies that J(wp)\{w}
is biclosed. Moreover, wp € Ay (J(wp)).

Now assume that wp € A (B) for some biclosed set B € Bic(A). It follows that
{wuDUJ,ep S(u) € B. The set B is closed so we conclude that J(wp) < B.
We have shown that J(wp) is the minimal biclosed set satisfying wp € A (J(wp)).
Therefore, by Lemma 2.4, we obtain the remaining assertions. (I

We conclude this section with a useful way to construct join-irreducible biclosed
sets contained in a given biclosed set.

Lemma 5.13 Let wp € S, let v € {w}UDUJ,cp S(u), and let D(v) := {w' €
J(wp) | w' is a split of v}. Then J(vp(y) € JI(Bic(A)) and J(vp(yy) < J(wp).

Proof. By Lemma 5.11, given v € {w} UD UJ,cp S(u) and a break {w', w?} of
v exactly one of these bphtb belongs to {w} UD UJ,cp S(u). This implies that
Upw) € S. By Proposition 5.12, J(vp(.)) is a join-irreducible biclosed set.

Next, we show that J(vp(.,)) < J(wp). It follows from the proof of [7, Lemma
4.3] that {v}UD(v)UU,ep(y) S(v') is contained in {w}UDU,ep S(u). Therefore
the former is contained in J(wp). Since J(wp) is closed, we obtain that J(vp(.)) <
J(’U}D) O

Remark 5.14 Lemma 5.13 is false if u € J(wp)\ ({w} LU DU UueD S(u)). This
is because such a string u must have a break {u!,u?} where u',u? € {w} UDU
Uuep S(u). Therefore, the expression up(,) is not an element of S .
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6. TORSION SHADOWS

In this section, we show that the data of a biclosed subcategory of the module
category of a brick gentle algebra A is equivalent to a certain subcategory of the
module category of an algebra analogous to a preprojective algebra. This algebra
will be denoted by II(A), and we refer to the relevant subcategories of mod(II(A))
as torsion shadows.

Recall that in the gentle bound quiver of A = kQ/I, every generator of I is given
by a pair of arrows a and § such that Sa is a path of length two in Q. Let Q be the
doubled quiver of Q (i.e., Qy = Qo and Q; := Q1 UQ7} where Q* := {a* | a € Q1})
and I := (Ba, a*B*|Ba € I) the two-sided ideal in kQ determined by the relations
generating I and their duals. Define IT1(A4) := kQ/I.

We now give the general definition of torsion shadows, the main examples of
which will be the above mentioned subcategories of mod(II(A)). We also present a
general lemma about torsion shadows.

Definition 6.1 Let M be a full subcategory of mod(A). For every 7 € tors(A),
the M-torsion shadow (or simply torsion shadow) of T is Ty := T N M. We
let torshadaq(A) denote the poset of all M-torsion shadows in mod(A) ordered by
inclusion.

Provided there is no confusion, we often suppress M and simply use T for the
M-torsion shadow of T.

Lemma 6.2 If A is an arbitrary algebra (not necessarily finite dimensional) and
M a full subcategory of mod(A), then torshada(A) forms a complete lattice and
the map (—) N M : tors(A) — torshada((A) is a surjective lattice map.

Let A and A’ be arbitrary algebras. If ¢ : A — A is an algebra epimorphism
and M contains mod(A'), then the map (—) Nmod(A’) : torshad((A) — tors(A’)
is a surjective lattice map. Additionally, the surjective lattice map (—) Nmod(A’) :
tors(A) — tors(A’) factors through torshad g (A).

Proof. Given a family of torsion shadows {¥;};c;r C torshada(A), there exist tor-
sion classes {7;}ier such that T, = 7; N M for all i € I. By defining A,.;T; :=
Nic; Ti and the fact that (., 7; € tors(A), it is clear that torshada(A) is a
complete meet-semilattice. Now define

\/Ti = ﬂ T NM.

i€l TNMetorshad aq(A)
TiCT viel

Since mod(A) N M € torshadaq(A) is the unique maximal element of torshad q(A),
we obtain that torshad g (A) is a complete join-semilattice. Thus, torshada(A) is
a complete lattice.

It is straightforward to show that the maps (—) N M : tors(A) — torshadaq(A)
and (—)Nmod(A’) : torshad y((A) — tors(A’) are surjective meet-semilattice maps.
We show that (—) N mod(A’) : torshada(A) — tors(A’) is a join-semilattice map.
The proof that (—) N M : tors(A) — torshada(A) is a join-semilattice map is
similar so we omit it.
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Let {7; " M};cr C torshadag(A) be a family of torsion shadows. We have

(\/ 7N M) Nmod(A’) = N TNM | Nmod(A)
i€l TNMetorshad aq(A)
T:CT Viel

= ﬂ TNM [ Nnmod(A)
T etors(A)
T:CT Viel

= () TNmod(A)
T etors(A)
T:CT Viel

(using that mod(A’) € M)
= N T Nmod(A’)

T etors(A)
TiNmod(A)CT Vil

= \/ i Nmod(A).

iel

This shows that (—) Nmod(A’) : torshadaq(A) — tors(A’) is a join-semilattice map.
It is clear that the map (—) N mod(A’) : tors(A) — tors(A’) factors through
torshad y((A). O

We now focus on brick gentle algebras A and the associated algebras II(A). For
the remainder of the section A denotes a brick gentle algebra. We write an arbitrary
arrow of II(A) as 7 where 7 = v or 7 = ~* for some v € Q1. Let évtr(A) denote
the set of strings w = 7’ - - - 75°77" € Str(II(A)) where w specializes to a string of
A (i.e., the sequence of arrows of ) and formal inverses of arrows of @ obtained by
replacing every 7/ in w by %_—1 and every (7)™ with v; is a string in Str(A)). We
set

M := add (@M(@M W e s”tr(A)>

and for the remainder of the paper, unless specified otherwise, for every brick gentle
algebra A we let M denote this subcategory of mod(II(A)).

Given any string in Str(A), we can lift it to a string in Str(A). First, choose
whether to represent the given string w as

J— €4 €2 €1
W= YN

or as
wh =y ey

Then, replace every v+ with v*, and let w denote the resulting string in évtr(A)
By Proposition 4.2, every string @w € Str(II(A)) constructed in this way is self-
avoiding. For any T € tors(II(A)), we let T := 7 N M denote the corresponding
torsion shadow, and T := add(€@) M (w) | M (@) € %).

We can now state one of the main theorems of this section, for which Theorem 1.1
is an immediate consequence.

1
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Theorem 6.3 There is a poset isomorphism Bic(A) ~ torshad(II(A)) and
Bic(A) = {T| T € torshad(I1(A4))}.

The proof of the theorem is a consequence of the lemmas and proposition that
we now prove. To state these results, we define two maps

T(—) : Bic(4) — torshad(II(A))  and  B(—) : torshad(II(A)) — Bic(A).

We first define the map T(—) by connecting the CU-labeling of Bic(A) with the
strings in STr(A) Each label wp = w1, . iy € S with w = 5" ---y{" gives rise
to a string str(wp) = g - - -1 € STr(A) Define 3;% := ~; (resp., 7 = ¥
if w = uyw? (vesp., if w = wy; 'w’) for some j € {1,...,d} and some (possibly
empty) string u € Str(A4). Similarly, define Fii = vt (resp., Fii = (y)~1) if
w = wiy; tu (resp., w = wiy;u) for some j € {1,...,d} and some (possibly empty)
string u € Str(A). Recall that, by the definition of w1 . e}, N0 two strings
wl,wi’ e {wh, ..., wl} satisfy w = wiytlwd’ for any v € Q1. Therefore, the map
str(—) : S — Str(A) is well-defined.

The following lemma is easily verified.

Lemma 6.4 The map str(—) : S — EEH(A) sending a label to the corresponding
string in TI(A) is a bijection.

We also state the following lemma which shows that every string module defined
by a string in Str(A) is brick.

Lemma 6.5 Given any label wp, the string module M (str(wp)) € M is a brick
as a II(A)-module.

Proof. Let ¢ = (¢i);eq, € Endpa)(M(str(wp))) be an endomorphism of the

quiver representation M (str(wp)). As the string str(wp) visits a vertex of @ at
most once, each linear map ¢; is a scalar transformation. One checks that there
exists A € k such that ¢, = Aidy, for all vertices ¢ appearing in str(wp). We obtain
that Endpy(ay (M (str(wp))) = k. O

Combining Lemma 6.4 and Proposition 5.12, one has a correspondence between
the join-irreducible elements of Bic(A) with the elements of Str(A). This corre-
spondence is strengthened by the following lemma.

Lemma 6.6 Let wp € S. If M(u) is a quotient string module of M (str(wp)),
then u specializes to a string in J(wp).

Now, given B € Bic(A), define T(B) := T* N M where T* is the minimal
torsion class in mod(II(A)) that contains gen (6P M (str(wp)) | wp € A (B)). By
definition, T(B) is a torsion shadow of A. Moreover, we have the following explicit
description of T(B).

Lemma 6.7 For any B € Bic(A), the following hold:
(a) T(B) = filt(gen( M (str(wp)) | wp € A(B))) N M;
(b) the indecomposable objects of T(B) are exactly the string modules belonging

to M all of whose indecomposable quotients are of the form M(u) € M
where w specializes to u € B;
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FiGure 7. The diagram of M(str(a’lﬁfy{el,e47a})) from Example 6.8.

(c) for anyu € B, there exists a string module M (%) € T(B) where U specializes
to u.

Example 6.8 Let Q be the quiver appearing in Figure 6, and let J(a‘lﬁv{ehe‘ha})
be the join-irreducible biclosed set from Example 5.10. Here we have that

‘E(J(a_157{el,e4,a})) = add(@ M(w) | w e {61,64,a_1,57 5*704_1(5*)_1’Y*}).

Here Str(a_167{617647a}) = a }(B*)"1y*. The diagram of M(str(a_lﬂﬁy{el,e47a}))
appears in Figure 7.

Proof of Lemma 6.7. Throughout the proof, we write A (B) = {wéy}fil Equiva-
lently, B = \/I\, J(wk,).

(a) Assume Z € ﬁl‘c(gen(EBij\L1 M (str(wk,)))) N M. Using the same argument
as that which appears in the second paragraph of the proof of Proposition 3.2, we
obtain that Z € T(B).

On the other hand, assume that Z € %(B) Since any object of %(B) belongs
to M, any object of T(B) is a finite dimensional II(A)-module. Assuming that we
have shown that any module Z’ € T(B) that satisfies dim(Z’) < dim(Z) belongs
to ﬁlt(gen(@f\il M (str(wy)))) N M, we will show that the module Z belongs to
filt(gen(PY | M (str(wi,)))) N M.

We may also assume that 7 ¢ gen(G}f\]:1 M (str(wi,;))), otherwise we are done.
This implies that there exists a non-split short exact sequence

0sNLZz% M0

where N, M € filt(gen(@) , M(str(wi,)))) N M. This implies that dim(N) <
dim(Z) and dim(M) < dim(Z). By induction, there exist filtrations

0=MyCM C---C M1 CM,=M

and

0=NoCNC--C N1 CSNy=N
and epimorphisms «; : M(str(w%ji)) — M;/M;_; and B; : M(str(w%’,;i/)) —»
Ny /Niy_q, for every 1 < i < aand 1 < i <b. Now, as in the proof of Proposi-
tion 3.2, the filtration

0=f(No) C--- C f(Ny) =g " (Mo) €+ Cg ' (Ma) = Z
shows that Z € ﬁl‘c(gen(G}l]-V:1 M (str(wiy,)))) N M.
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(b) Let M(?) be an indecomposable object of T(B). Using induction on the
dimension of M (v), we prove that the string v specializes to an element of B. Since
T(B) is quotient-closed, the induction hypothesis implies that whenever M (i) is
an indecomposable quotient of M (v), the string u specializes to an element of B.

To prove the inductive step, we first assume M (v) ¢ gen(@i.vzl M (str(wi,))).
Then it must admit a nontrivial filtration

0=MyCM C---C My €M, =M(@)

such that M;/M;_; is in gen(@fil M (str(wk,))) for all i. We focus on the exact
sequence

(6.1) 0= M,y - M@®) = My/Mys—1 — 0.

Since M (v) is in M, the submodule M,_; and the quotient module M,/M,_;
both lie in M. The modules M,y and M,/M,_; thus decompose into string
modules in M whose strings concatenate to v. By the inductive hypothesis, the
strings in each indecomposable summand of M,_; and M,/M,_; specialize to
elements of B. As B is closed under concatenation, it follows that v specializes
to an element of B.

We next consider the case that M (?) is an object in gen(@i]\il M (str(wi,))).
This means that there exist modules My, ..., M, € {M(str(wi,))}L; such that

there is an epimorphism
‘

@ M; — M ().

i=1
We prove that v specializes to an element of B by induction on ¢. If ¢ = 1, then v
specializes to an element of J(wk,), where M; = M (str(wk,,)). So we may assume
£ > 2. Let Ny be the image of M; in M (v) via the epimorphism. If Ny = 0, then
the restriction of the map to @f:z M; remains surjective, and the desired result
follows by induction on £. If Ny = M (v), then we obtain the desired result by
the previous case. So we may assume that N7 is a nontrivial proper submodule of
M (v). We observe that the dimensions of Ny of M (v)/N; are strictly less than that
of M(v). Both Ny and M (v)/N; are quotients of @le M;, so they are in T(B).
Applying our argument from the case involving the short exact sequence (6.1) to
the short exact sequence

0— Ny — M(@®) — M(@®)/N1s — 0,

we again conclude that v specializes to an element of B.

Conversely, suppose that M (v) € M has the property that each of its indecom-
posable quotients is a string module in M whose string specializes to an element
of B. Since M (v) is an indecomposable quotient of M (v), we know v specializes to
string v € B.

First, assume that v specializes to a string v such that v € {w’}UD'UlJ, .1 S(u)
for some i and that v cannot be expressed as a concatenation of at least two
strings in B. Every proper indecomposable quotient of M () is a string module
whose string specializes to an element of D LI Uuep: S(u), as otherwise, v would be
expressible as a concatenation of at least two strings in B. By the definition of the
map str(—), we conclude that ¥ = str(vpi(,)). Therefore, M (str(wi,)) — M (), so
M (%) is in T(B).
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Next, let M(v) € M be any indecomposable where each of its indecomposable
quotients is a string module in M whose string specializes to an element of B.
Notice that there exists an equation

D= u '7 ~—¢€1 12 L Eir—ITCT—IﬂiT
r—1
for some arrows v;,,...,v,_, € Q1 where 4% specializes to string u% € J(wgij)
for all j € {1,...,r}. We further require that the above expression for v is chosen

so that 7 is as large as possible. This requirement implies that u% € {w%} U D% LI
Uuepis S(u) for all j € {1,...,7}.

By the maximality of r, none of the strings @*,...,u'" can be expressed as
a concatenation of at least two elements of B. Thus, we can apply our earlier
argument to each string u,...,u'; we obtain that M (u%) € %(B) for all j €
{1,...,7}. From the above expression for v, we know that M (?) is in the extension
closure of {M(a")};_,. Therefore, M(v) € 3(B).

(¢) Let v € B be a string where v € {w"} UD% UJ,pi, S(u) for some j €
{L....,r}. Consider the string str(vpy, () in II(A), and notice that there is an
epimorphism M(str(wgij )) = M(str(vpi; (). Thus M(str(vpi;(,)) € T(B) and
str(vpi, () specializes to v.

Now, let v be an arbitrary string in B. We may write

— €1 12 .. 1 1 €6r—1 1
v=u"jlu T i, U
for some arrows v;,,...,%v,_ , € @1 and some string u"',...,u’" € B. As in the

proof of (b), we may choose 7 to be large enough so that u% € {w%} L D% U
Upepis S(u) for all j € {1,...,r}. By the previous paragraph, each string u* may
be lifted to a string @ where M (@) € T(B).

Consider the following string in II(A):

)

U= anﬁérdw . ﬂ“'*lﬁ r—1gytr

Here the only requirement placed on dy,...,d,—1 € {£1} is that they are chosen

so that v is valid string in II(A). Clearly, M (v) is in the extension closure of
{M(@')}7_, so M(v) € T(B). It is also easy to see that v specializes to v. O

Next, let T € torshad(II(A)) be given. By Lemma 6.4, we have that for any

indecomposable object M € T there is a unique label wp €~S such that M =~
M (str(wp)). We define B(T) := {w € Str(A) | M(str(wp)) € T}.

Lemma 6.9 For any T € torshad(II(A4)), the set of strings B(T) is a biclosed set.

Proof. Let T be a torsion shadow with T = T N.M, for some T € tors(II(A)). Sup-
pose w,w’ € B(%), and let M (str(wp)) and M (str(wp,)) be two indecomposables

in T witnessing that w,w’ € B(%).

Assuming that wyw’ € Str(A) where v is some arrow of @), we show that wyw’ €
B(T). The proof is very similar when the concatenation is of the form wy~'w’, so
we omit it. By assumption, if wyw’ € Str(A), then u = str(wp)ystr(wp,) € Str(A).
Observe that there is an extension

0 — M(str(wp)) — M (u) — M(str(wp,)) — 0
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in mod(II(A)). Since T is extension-closed, we have that M (u) € 7. We obtain
that wyw" = u € B(T). Therefore, B(T) is closed.
Next, we prove that B(¥) is coclosed. Assume w € B(T) and that w = vy’

for some strings v and v’ in Str(A) and some arrow v € Q1. The proof is very

similar when we assume that w = vy~ 10’ so we omit it. Let M(w) € < denote
a string module that specializes to w. We know that @ = str(vp)y=tstr(vh,) or
w = str(vp)(y*)Fstr(vh, ). Without loss of generality, there is an epimorphism
M (@) — M(str(v}y,)). Since T is a quotient-closed, we have that M (str(v,)) € <.

By the definition of B(¥), we know that v’ € B(¥). Therefore, B(¥) is coclosed. O

Proposition 6.10 We have the following identities:
(i) T = T(B(X)) for all T € torshad(II(A));

(ii) B = B(Z(B)) for all B € Bic(A).
Proof. To prove (i), first, assume M (@) € ind(T). Since T is quotient-closed, we
know that every indecomposable quotient of M (@) belongs to T. By the defini-
tion of B(—), we see that ¥ specializes to a string u € B(T) where M (%) is any
indecomposable quotient of M (@). By Lemma 6.7, M(w) € ind(T(B(%))).

Next, write T(B(T)) = T* N M and T = T** N M where T* is the smallest
torsion class in mod(II(A)) that contains gen(€) M (str(wiy,)) | wh: € AL(B(T)))
and T** is the smallest torsion class in mod(II(A)) that contains T.

Assume M (@) € T(B (%))~ and that any module of strictly smaller dimension

than M (@) that belongs to T(B(T)) also belongs to T. By Lemma 6.7 (a), there
exists a filtration

0=MyCM C---CMy_y CM,=M(w)
where M;/M;_y € gen(@ M (str(wi,,)) | wh, € )\i(B(g))) forall j € {1,...,a}.
Now, consider the short exact sequence

0— M,y — Mw)— M(w)/Mg—1 — 0.

Clearly, M,_; and M (@)/M,_; belong to T(B(T)) and are of smaller dimension
than M (w). By induction, we obtain that Mq_1, M(w)/M,—1 € T. Since M (w) €

M, the above short exact sequence shows that M (w) € T. This completes the proof
of ().

We now prove (ii). Assume w € B. By Lemma 6.7, there exists M (@) € T(B)
where the string w specializes to w. By the definition of B(—), we know w €
B(%(B)).

To prove the opposite inclusion, assume w € B(T(B)). By the definition of

B(—), there exists D such that M (str(wp)) € T(B). Now Lemma 6.7 implies that
w e B. (]

Proof of Theorem 6.3. Tt follows from Proposition 6.10 that the maps B(—) and
%(—) are bijections. To complete the proof of the first assertion, we must show that
these maps are order-preserving. If By, By € Bic(A) and By C Bs, then Lemma 6.7
implies that T(B;) C T(B,). By definition, B(—) is an order-preserving map.

For the second part, recall that there is a bijection from Bic(A) to Bic(A) which
sends each biclosed set B to the biclosed subcategory B := add(p M (w)|w € B)
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FIGURE 8. A lattice of torsion shadows.

in mod(A). Furthermore, for every T € torshad(II(A)), we previously defined
T :=add( M(w) | M(w) € T). This gives the desired identity. O

Example 6.11 Let A denote the following brick gentle algebra from Example 5.1,
and let TI(A) denote its associated overalgebra.

A=K(1272)/(aB,Ba) T(A) = k(1 2)/(af, Ba, f*a*,a* 5"
B 458*_>

In Figure 8, we show the lattice of torsion shadows of A. Here we describe each
torsion shadow T simply by showing the strings defining the string modules in T.

7. WIDE SHADOWS

Recall that a subcategory W of mod(A) is said to be wide if it is exact abelian
and closed under extensions. Let wide(A) denote the set of all wide subcategories
of mod(A), ordered by inclusion. Recall that a subcategory C of mod(A) is functo-
rially finite if each module M in mod(A) admits right and left C-approximations.
For details on approximation theory, see [2]. Let f-wide(A) (resp., f-tors(A)) be
the subposet of wide(A) (resp., tors(A)) consisting of all functorially finite wide
subcategories (resp., torsion classes).

For an acyclic quiver @, Ingalls and Thomas in [15] establish several bijections
between various families of representation theoretic objects associated with kQ.
Among these is a bijection between f-tors(kQ) and f-wide(kQ). More recently, in
[18], Marks and Sfovicek consider the question of when f-tors(A) and f-wide(A) are
in bijection for an arbitrary finite dimensional algebra A. In particular, they show
that these categories are in bijection if every torsion class of A is functorially finite.
In this case, the bijective maps between f-tors(A) and f-wide(A) are the same as
those discovered by Ingalls and Thomas.
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If A is a representation finite algebra, then every torsion class is functorially
finite. Therefore, there is a bijection between tors(A) and wide(A). In this section,
given a brick gentle algebra A, we consider the question of whether there is a family
of subcategories of mod(II(A)) that behave like wide subcategories and that are in
bijection with the elements of torshad(II(A)) via maps that are analogous to those
of Ingalls and Thomas and of Marks and Stoviéek. It turns out that such a family
of subcategories exist; we will refer to these subcategories as wide shadows.

Definition 7.1 Let M be an arbitrary full subcategory of mod(A). For every
W € wide(A), the M-wide shadow (or simply wide shadow) of W is defined as
W := WNM. Let widshad pq(A) denote the poset of all M-wide shadows ordered

by inclusion.

Observe that the poset wide(A) is closed under arbitrary intersections of wide
subcategories. Consequently, given a wide shadow 20, there is a well-defined
smallest wide subcategory of mod(A) that contains 20 ,¢. Therefore, when consid-
ering a particular wide shadow 20 x4, we will tacitly assume that it is expressed as
W = WNM where W is the smallest wide subcategory of mod(A) containing it.

The following lemma for wide shadows is the counterpart of Lemma 6.2 for
torsion shadows.

Lemma 7.2 Let ¢ : B — A be an algebra epimorphism where A and B and
not necessarily finite dimensional. Let M be a full subcategory of mod(B) which
contains mod(A). Then

(1) the poset widshada((B) is a complete lattice, and
(2) the maps

(—) N M : wide(B) — widshad(B)
and
(—) Nmod(A) : widshad p((B) — wide(A)

are meet-semilattice epimorphisms.

Proof. (1) Given a family of wide shadows {20;};c; C widshad g (B), there exist
wide subcategories {W; }ic; € wide(B) such that 20; = W, " M for all i € I. By
defining A, ; W; := (,c; W; and the fact that (;.; Wi € wide(B), it is clear that
widshad y((B) is a complete meet-semilattice. Now define

\ W, = N WM.
i€l WNMewidshad o (B)
WiCW Viel

Since mod(B)N.M is the unique maximal element of widshad a(B), we obtain that
widshadaq(B) is a complete lattice.

(2) The surjective map wide(B) — widshad(B) is a poset epimorphism by
definition. Furthermore, if W, W' € wide(B), the image of W A W’ is given by
WnNW')N M, which is clearly 20 A0’ € widshady(B), where 20 = WN M and
W =W nM.

The assertion about (—) Nmod(A) : widshad((B) — wide(A), is proved in a
similar way. (]
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Remark 7.3 The maps (—) N M : wide(B) — widshada(B) and (—) Nmod(A) :
widshad y((B) — wide(A) usually fail to be join-semilattice maps. To see this, let

B = k(1 2)/{af, Ba)

-~

B

and
A:k(l-?Q),

and let ¢ : B — A be the algebra epimorphism defined by

(&) 'i> €1
€y +FH— €9
g — B
a — 0

Note that add(M (e1)),add(M («)) € wide(B).
The map ¢ induces an order-preserving map ® : wide(B) — wide(A) sending

add(M(er)) = add(M(e1))
add(M(a)) +— 0
mod(B) +—  mod(A)

where 0 denotes the zero subcategory. Observe that
d(add(M(e1)) V add(M(a))) = ®(mod(B)) = mod(A)
and
®(add(M(er))) V ®(add(M(«))) = add(M(e1)) V0 = add(M (e1))
so ® is not a join-semilattice map. When M = mod(A), the map & agrees with
(=)NM : wide(B) — widshad pq(B). When M = mod(B), the map ® agrees with
(=) Nmod(A) : widshadq(B) — wide(A).

For the remainder of this section, we let A = kQ/I be a brick gentle algebra,
and we let M be the subcategory of mod(II(A)) defined in Section 6. Hence, for
W € wide(TI(A)), the associated wide shadow is denoted by 20 := W N M and
widshad(II(A)) is the collection of all such subcategories of mod(II(A)) ordered by
inclusion.

Before we state the main theorem of this subsection, let us summarize what we
have obtained so far in the following diagram, as the main motivation for what
follows.

Bic(A)
(=)nNM [2 (=) N'mod(A)
tors(II(A)) ————» torshad(II(A)) ———— tors(A)

A

7 ? T W
wide(II(A)) ———» widshad(II(A)) ——» wide(A)
(=)ynM (=) Nmod(A)

The rightmost vertical maps are the bijections established in [18]. Further-
more, the horizontal maps are the surjective poset maps described in Lemmas 6.2
and 7.2. Finally, in Theorem 6.3 we proved the isomorphism between Bic(A) and
torshad(TI(A)).
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FIGURE 9. A lattice of wide shadows.

We have the following theorem which says that torsion shadows and wide shad-
ows are in bijection. We will prove this theorem by showing that wide shadows
are closely linked to the lattice theory of torsion shadows. More specifically, we
will show that widshad(II(A)) is isomorphic to the core label order of Bic(A) in
Section 9.

Theorem 7.4 There is a bijection between torshad(II(A)) and widshad(II(A)).

We conclude this section with an example of the lattice of wide shadows associ-
ated with a brick gentle algebra.

Example 7.5 Assume that A and TI(A4) are the algebras from Example 6.11. In
Figure 9, we show the lattice of wide shadows of A. Here we describe each wide

shadow 20 by showing the strings defining the string modules in 2.

8. CANONICAL JOIN COMPLEX FOR Bic(A)

Our next goal is to completely describe the canonical join complex of the lattice
of biclosed sets Bic(A) where A is brick gentle algebra. Our classification of the
faces of the canonical join complex will help us to relate the lattice of wide shadows
of A to the core label order of Bic(A).

Theorem 8.1 A collection {J(wyy,), ..., J(wh,)} € JI(Bic(A)) is a face of the
canonical join complex A7 (Bic(A)) if and only if labels wh, and w%j satisfy the
following:

1) strings w® and w’ are distinct,

2) neither w* nor w? is expressible as a concatenation of at least two strings

in J(wh) U J(wbj) and

3) neither J(wk,) < J(wDJ) nor J(wDJ) < J(wh,)

for any distinct i,j5 € {1,...,k}.

Example 8.2 Assume that A is the algebra from Example 6.11. In Figure 10, we
show the canonical join complex A“7(Bic(A)).

Proof of Theorem 8.1. Let {J(wp,), ..., J(wk,)} C JI(Bic(A)) where there exist
distinct i,j € {1,...,k} such that wi,, and wj,, do not satisfy all of the stated
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‘](a{el}) J(1p) J(O‘{w})

J(B{El}) J(2@) J<B{€2})

FIGURE 10. A canonical join complex. The vertices of this com-
plex are elements of JI(Bic(A4)) and a collection of join-irreducibles
are incident in this complex if and only if the join of all of those
join-irreducibles is a canonical join representation of some biclosed
set.

properties. To prove that {J(wp,),...,J(wk,)} is not a face of A“/(Bic(4)), it
is enough to show that J(wi,,) V J (w%j) is not a canonical join representation; cf.
Lemma 2.1.

If w'® = w?, then by Lemma 8.3 there does not exist B € Bic(A) such that
wh, wh, € A (B) for any subsets D, D’ C Str(A). Now by Lemma 2.5, we have
that J(w) Vv J (w%j) is not a canonical join representation.

Next, suppose that w” or w? may be expressed as a concatenation of at least two
strings in J(wk,) U J(wd,;). Then Lemma 8.4 implies that .J(wi,;) V J(w,; ) is not
a canonical join representation.

Lastly, suppose that, without loss of generality, J(wk,) < J(w

J
D

that J(wiy,) V J(wl,) = J(w),) and so the expression .J(wiy,) V J(w),) is not an
irredundant join representation.
Conversely, suppose {J(w},),...,J(wk,)} C JI(Bic(A)) and that any pair of

distinct labels wiDi and ijj satisfy all of the stated properties. Then Lemma 8.5

;)- This implies

implies that J(wh,)V.J (w%j) is a canonical join representation for any distinct i, j €

{1,...,k}. Now, using Lemma 2.1, we have that \/f=1 J(wi;) is a canonical join
representation. Thus {J(wh:), ..., J(wh,)} C JI(Bic(A)) is a face of A“7(Bic(A)).
O

The remainder of this section is dedicated to proving the lemmas cited in the
proof of Theorem 8.1 and to proving a corollary of Theorem 8.1.

Lemma 8.3 Given B € Bic(A) and distinct covering relations (B, B), (Bz, B) €
Cov(Bic(A)), let wy,, = N(B1, B) and wh, = N(Ba, B). The string w' is not a split
of w?, w? is not a split of w', and w' # w?.

Proof. Since By # Bo, it is clear that w! # w?.

To complete the proof, it is enough to show that w'! is not a split of w?. Suppose
that w! is a split of w?. By Lemma 5.6, we have that B; = B\{w!} and By =
B\{w?}. Now let w’ € Str(A) denote the string satisfying wla®™'w’ = w? where
a € Q. Observe that since w! € By, we have w’ € B;. This implies that w’ € B
and so w’ € By. However, this means that w',w’ € By, but w? = w'a*'w' ¢ By,
which contradicts that B> is closed. O
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Lemma 8.4 Given wp,wp, € S. Assume that there exists u',...,u* € J(wp)U
J(wh,) with k > 2 such that w = ulozlilu2 oyl lakﬂlu for some ay,...,ai_1 €
Q1. Then J(wp) V J(wh,) is not a canonical join representation.

Proof. We can assume that w # w’, w’ is not a split of w, and w is not a split of
w’, otherwise we obtain the desired result from Lemma 8.3 and Lemma 2.5.

Assume that there exists u!,...,u* € J(wp) U J(wlp,) such that
w—ulafl 2.k 1af11uk
with k£ > 2 for some ay,...,ar_1 € Q1. Observe that w has such an expression

where the following hold:
i) there exists i € {1,...,k} such that u* € J(wp)\J(wp ), and
ii) u' cannot be expressed as the concatenation of at least two elements of
J(wp) U J(wh,) for any i € {1,...,k}.
From the set of all such expressions for w, let u!,...,u* € J(wp) U J(w)p,) have
the following properties:
e string u! satisfies ii) and is a maximal length string satisfying ii);
e assuming, by induction, that u!, ..., u® satisfy ii) and are maximal length
strings satisfying ii), string u**! satisfies ii) and is a maximal length string
satisfying ii).

Now let u't,...,u" denote the strings in this expression for w that belong to
J(wp)\J (wp, ). We show that (V 1 J(u ;( i ))> VJ(wh,) is a refinement of J(wp)V

J(wl,) by showing that the two expressions are equal.
First, we know that v € {w} UDUJ,cp S(u) for all j € {1,...,£} because

each u' is a substring of w. Therefore, by Lemma 5.13, J(u.’ s )< J (wD) for all

j€{1,...,0}. This implies that (\/ LI, J))) V J(wh) < J(wp) V J(wh,).
Next, we prove the opposite inclusion. Note that any element of J(wp) V J(wh,)

is a concatenation of elements of J(w?, ) and substrings of w that are contained in

J(wp)VJ(wh,). As (\/gz1 J(ug(uij ))) V J(wh,) is closed, it is enough to prove that

any substring of w contained in J(wp) V J(wp,) belongs to (V§:1 J(ug(uij))> \

J(wh,). Ifv e J(wp) V J(wp) is a substring of u' for some i = 1,...,k, we
have that v is a concatenation of strings in J(uip(ui)) U J(w}p,). Thus, v belongs to

(\/1?_ J(ug(uij))) V J(wp,). This means we must show that if v € J(wp) V J(wh,)

j=1
J? . )) V J(w), ) when one of the

D(u'd)

and v is a substring of w, then v € (\/ﬁz1

following cases holds:

1) v=u'ai'u?- - w ol for some u, EJ(wD)UJ(wD,)

2) v=ul ailu”l b 1a,f11uk for some u). € J(wp) U J(wh,), or
3) v=rulaFu - us~ oLl vl for some ul, v € J(sp) U J(sh).

We verify Case 2), and the proof of Case 1) and 3) is similar to that of Case 2).
Case 2): We show that u € J(urp(ur)). Note that J(urp(ur)) is well-defined and

J(u%(ur)) < J(wp,) by our proof of the first inclusion. Suppose ] ¢ J(urp(ur)).

Since /. is a split of u”, we may write u”a*'u!. = u” for some u! € Str(A) and

some «a € Q1. As u]. does not belong to J(uD(u,‘))7 we know that u) € D(u"). We
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also know u.. € J(wp) U J(wp,) and so the expression u” = u”a*'u! contradicts
our choice of u”. O

Lemma 8.5 Let wp,wp, € S be labels with the following properties:

1) strings w and w' are distinct,

2) neither w nor w' is expressible as a concatenation of at least two strings in
J(wp) U J(wh,), and

3) neither J(wp) < J(wh,) nor J(wh,) < J(wp).

Then J(wp) V J(wh,) is a canonical join representation.

Proof. By the stated properties satisfied by wp and wh,, there exist strings u €
J(wp)\J(wp,) and v € J(wp,)\J(wp). This implies that J(wp) < J(wp) V
J(wh) and J(wh,) < J(wp) V J(wp, ). Therefore, the join representation J(wp) V
J(wl,) is irredundant.

Next, suppose that J(wp) V J(wh,) = szl J(uky;) where the latter is irredun-
dant. We will show that J(wp) < J(ub,) for some i = 1,...,k, and one uses the
same strategy to prove that J(wp,) < J(uij) for some j =1,... k.

Since w € \/f:1 J(uk,,), there exist u;; € J(ugij) with j = 1,...,¢ such that
iilun for some «;; € Qq with j € {1,...,/—1}. By the

fact that J(wp) V J(wh,) = \/f=1 J(uky; ), we can assume

ui; € ({w} upu | 5(u)> U ({w'} up'u S(u’))

ueD u’ €D’

— w ol ,
W = Uiy O Uiy~ Uiy,

for all j = 1,...,¢. As w is not expressible as a concatenation of at least two
strings from J(wp) U J(w/p/), this implies that £ = 1 and so w € J(ulpl) for some
i*e{l,...,k}.

Now let u € D. We can write w = ua®™'v for some v € Str(A4) and some
o € Q1. Suppose u ¢ J(uZD) Since J(ugi*) is biclosed and w € J(ugi*), we
know v € J(ugi*). However, by the fact that J(wp) V J(wh,) = \/f:1 J(uky;), the
equation w = ua®'v contradicts that w is not expressible as a concatenation of
at least two strings from J(wp) U J(wh,). This implies that D C J(ugi*) and
no splits of w other than those in D belong to J(ugi*). Thus u € J(u?D) SO
D={uce J(ugi*) | wis a split of w}.

We now conclude from Lemma 5.13 that J(wp) < J(u%) so J(wp) V J(wh,)
is a canonical join representation. O

We conclude this section with the following corollary to Theorem 8.1 that we
will use when we discuss the core label order of Bic(A).

Corollary 8.6 A collection {J(wp,),...,J(wk,)} C JI(Bic(A)) is a face of
ACT(Bic(A)) if and only if

Homyy( ) (M (str(wh, ), M (str(w),;))) = 0
for any i # 7.

Proof. First, assume that {J(wh),...,J(wk,)} is a face of A®/(Bic(A4)). By
Theorem 8.1, we know that M (str(wk,)) # M (str(wy,,)) for any i # j.
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Let f € HomH(A)(M(str(wiDi)),M(str(w%j))). Since im(f) is a quotient of
M (str(wf,)), it is isomorphic to a (possibly empty) direct sum of string modules
defined by substrings of str(w,,) no two of which contain a common vertex. Simi-
larly, since im(f) is a submodule of M (str(w%j)), the summands of im(f) must be
string modules defined by substrings of str(w?,;) no two of which contain a common
vertex.

Now, let M (str(wp)) be a summand of im(f). Since M (str(wp)) is a submodule
of M(str(w%j)), we know that there does not exist any u € D7 such that w €
{u} U S(u,D7). Similarly, since M(str(wp)) is a quotient of M (str(wk,,)), there
exists v € D! such that w € {v} U S(v,D?). If w is not a split of w?, there exists
v, u” € DV and o, € Q; such that w! = v/'aT'wl*u”. We obtain a similar
equation if w is a split of w’. In each case, we obtain that w’ is expressible as a
concatenation of at least two strings in J(wh,) U J (wJD]) By Theorem 8.1, this
contradicts that {J(wk,), J(w%j)} is a face of A°7(Bic(A4)).

Conversely, assume that

Hompy( ) (M (str(wh)), M(str(w%j))) =0

for any i # j. We will show that the collection {.J(w},),...,J(wk,)} satisfies
Theorem 8.1.

We first verify part 1) of Theorem 8.1. Suppose w’ = w? for some i # j, and let
w' = Fz% .- - A7, By assumption, we know that wiD,i and wiDj are distinct labels
in S. Therefore, there exists u’ € D and v/ € D7 where, without loss of generality,
w' = uiyFlul for some 75 € Q1. Choose s € {1,...,d} to be maximal such that
w' = u'yFlul for some u' € D' and some u/ € D?/. Then the definition of the
map str(—) implies that there is a homomorphism f : M (str(wi,,)) — M (str(wi,))
satisfying im(f) = M(str(uipi(ui))) and coker(f) = M(str(u%j(uj))). This is a
contradiction.

Next, we verify part 2) of Theorem 8.1. Suppose there exist distinct 4,5 €

{1,...,k} such that w’ = u'af'u?- - u’"taF! u’ for some u',...,u’ € J(wh,) U
J(w%j) with £ > 2 and some a7, ...,ap_1 € Q1. We can further assume that
ut, .. ub e ({wi}upm U S(v",Di)> U ({wj}l_le u U S(vj,Dj)> :
vteD? vie€DI

It follows from the definition of J (w%j) that w’ cannot be expressed as concate-
nation of strings in J(w%j). Thus, there exists m € {1,...,¢} such that ™ €
J(w%)\J(wJDJ) This implies that we have an epimorphism 7 : M (str(w,)) —
M (str(ugp: (,m)))-

Now, define D*" C {w’} UDI U, cps S(v?,D?) to be the set of splits of v’
so that str(ufj,m) is a proper substring of str(wy,;). By the definition of str(—)
and the fact that u™ g J (w%j)7 there is a monomorphism ¢ : M (str(uf,m)) —
M (str(wp,,)).

As in our argument for part 1), there is a homomorphism f : M(str(u%i(um))) —
M (str(ul,m)) whose image is a string module defined by a proper substring of
str(ufy,n ). Therefore, the map to fom : M(str(w,)) — M(str(w%j)) is a nonzero
homomorphism, a contraction.
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Lastly, we verify part 3) of Theorem 8.1. Suppose that J(w%j) < J(wk,) for

some distinct 4,5 € {1,...,k}. Notice that ‘%(J(w%j)) (resp., %(J(wzpl))) is the
smallest torsion shadow containing M (str(wy,,)) (resp., M(str(wl,))). Further-
more, the strings str(w),;) and str(w,; ) specialize to w? and w?, respectively.

Theorem 6.3 implies T(J(wh,)) C T(J(wh,)). As M(str(wh,)) € T(J(wiy,)), it
follows from Lemma 6.7(a) that we can write

StI‘(’LU]Dj) — alWQﬂZ . ar—li,wilezflﬂf

for some arrows i,...,7_1 € Q1 and some string modules M (@'),..., M(ut) €
T(J(wh:)). By Lemma 6.7(b), for each r € {1,...,¢}, the string @ specializes to a
string v € J (w%) By choosing ¢ large enough, we can assume that

u" € {w'tuD' U U S(u, D)
u€eD?
for all € {1,...,¢}. It follows that M (str(ws,)) = M(a") for all r € {1,...,¢}.

We also know that there exists m € {1,...,¢} such that M (u™) — M(str(w%j)).

We conclude that there is a nonzero homomorphism M (str(ws,; ) — M (str(wy,;)),
a contradiction. O

Remark 8.7 The proof of Corollary 8.6 implies that following useful fact. Given
M (str(wp)) and M (str(wps)) where D # D', then there exists an equation w =
uaty’ with w € D and « € D’ such that there is a nonzero homomorphism
[+ M(str(wp)) — M(str(wpr)) with im(f) = M(str(upe,)) and coker(f) =
M (str(ugp,(,ry))-

9. THE CORE LABEL ORDER OF Bic(A)

We now relate the core label order ¥(Bic(A)) to the lattice of wide shadows
widshad(TI(A)). Recall that elements of W(Bic(A)) are sets ¢(B) C S of the form
W(B) = {\(B', B") | N\, B, < B' < B" < B}

with B € Bic(A) and where By, ..., By € Bic(A) are the biclosed sets covered by
B.

Theorem 9.1 If A is a brick gentle algebra, there is a poset isomorphism given
by
U(Bic(A)) - widshad(II(A))
Y(B) +— add(B,,,cpm) M(str(wp))).

Theorem 1.2 is a corollary of Theorem 9.1. We prove the latter theorem by
establishing the following lemmas.

Lemma 9.2 One has the following order-preserving map

U(Bic(4)) -% widshad(II(A))
Y(B) +— add(B®,,,cpm) M(str(wp))).

Proof. Let B € Bic(A), and let {J(w},),...,J(wk,)} be the canonical joinands
in its canonical join representation. By Lemma 6.5, Corollary 8.6, and [24, Theo-
rem)|, the extension closure of {M (str(wi,; )}, denoted W, is a wide subcategory
of mod(II(A)). By referring to Figure 5, for any wp € ¥(B) its corresponding
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string str(wp) is a concatenation of some of the strings in {str(ws;)}*_;. Thus
M (str(wp)) € W. By Lemma 6.4, given wp € 1(B), we see that M (str(wp)) € M.
Thus add(ED,,, ¢y (5) M (str(wp))) €W N M.

Conversely, suppose that M(str(wp)) € W N M. Since M(str(wp)) € W,
M (str(wp)) has a filtration 0 = Xo € X3 C --- C X, = M(str(wp)) where
for each ¢ = 1,2,...,m one has X;/X;_1 = M(Str(wjpj)) for some j = 1,...,k.
As M (str(wp)) € M, no two quotients X;/X; 1 and X, /X, 1 with ¢ # i’ are

isomorphic. Thus w is a concatenation of a subset of the strings w!,...,w*. Now
by referring to Figure 5, we see that wp € (B).
It is obvious that this map is order-preserving. (I

Next, by Lemma 6.4, there is a map widshad(II(A4)) — 25 given by sending a
given wide shadow 20U to the set of labels defining the string modules in 20. Let
W C S denote the image of 20 under this map.

Lemma 9.3 Given any nonzero wide shadow 20 € widshad(II(A)), there exists
a nonempty subset Sim(%) - W consisting of the isomorphism classes of objects
ofﬂAﬂ/ of the form M (str(wp)) where w appears in exactly one label in W. We let
Sim(W) C W denote the set of labels defining the modules in Sim(%).

Example 9.4 Consider the algebras

A=k(1<T2’7>3)/<75,57>

-

and
II(A) = k(1 ~ 2 3) /{0, oy, v 6%, 6% ~*)

and the wide shadow
W = add (M(a) ® M(es) ® M(avy*) ® M(ay™") & M(ad) ® M(a(6*)71)) .
We may express the six indecomposable objects of 20 as follows:

M(e) = M(str(evge,})),

M(es) = M(str((e3)y)),
M(av") = Mistr(angh s ,.,)),
M(ay™) = M(str(@ril 1)),
M(ad) = M (str(adgses1))s
M(a(6%)71) = M (str(ada,sy))-

It follows that

and
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Proof of Lemma 9.3. Suppose that there does not exist a string w appearing in
exactly one label in W. Let wp,wp: € W be labels where w is a minimal length
string. By Remark 8.7, there is an equation w = ua® '/ with v € D and u' € D’
such that there is a nonzero homomorphism f : M (str(wp)) — M (str(wp:)) with
im(f) = M (str(up(u))) and coker(f) = M (str(upy (,))-

Now write 20 = W N M. Since W is abelian, M(str(u/D,(u,))) € W. We also

know that M (str(up,(,.))) € M. However, this contradicts the minimality of w.
We obtain the desired result. O

Lemma 9.5 The set {J(wp) | wp € Sim(W)} is a face of ACY(Bic(A)) for any
W € widshad(II(A)). By defining B :=\,,, csimmw) J (WD), we have (B) C W.

Proof. We will that there are no nonzero homomorphisms from M (str(wp)) to
M (str(w)p,)) where wp and w), are distinct elements of Sim(WW). The statement
will then be a consequence of Corollary 8.6.

Suppose [ : M(str(wp)) — M(str(w/p,)) is a nonzero homomorphism for some
distinct wp, wp, € Sim(W). We may choose f so that im(f) = M (v). Clearly, v
is a proper substring of str(w}, ). We also know that the cokernel of f is a direct
sum of one or two string modules that belong to 20. Without loss of generality,
coker(f) = M (v') & M (v?) where ©* and 02 are proper substrings of str(w/p,).

Now, let 7 : M (str(wp,)) — coker(f) denote the epimorphism induced by f. We

see that ker(m) = M (v) and ker(7) € 20.

Next, write str(w)p,) = 037510757102 for some arrows 71,72 € Q1. We have
that M (0'37+10) € 20, since it is in the extension closure of M (v'), M (v) € 20. Let
viyi'v and v? denote the strings to which U577 and ©? specialize, respectively.
These calculations show that we have the following two extensions:

0— M@'7T0) — M(Str(Wipn gyiqeiy v pugery) = M@%) =0

and

0= M(3%) = M(SE(Wipr yire1y 020 wiqi10)) M @'A7E%) — 0.

Since the middle-term of each extension therefore belongs /Qﬁ, we obtain that w’
appears in two distinct labels in W. This is a contradiction. ([

Lemma 9.6 The indecomposable objects of W are exactly the string modules
defined by strings that may be realized as a concatenation of some of the strings in
{str(wi,,) | wh, € Sim(W)}. Consequently, W C ¢(B).

Proof. Let M (str(wp)) € 20 where wp ¢ Sim(W). We induct on the length of the
string w.

By assumption, there exists wps € W with D # D’. This implies that there exists
uw € D and u' € D’ such that w = ua®' v’ for some a € Q. Using Remark 8.7, there
is a homomorphism f : M (str(wp)) — M (str(wp:)) with im(f) = M (str(up(y)))
and coker(f) = M(str(upy(,)). Therefore, M(str(up(u))), M (str(up, () € 2.
By induction, each of these strings defining these modules are concatenations of a
subset of the strings in {str(w,) | wh, € Sim(W)}. Since M (str(wp)) € M, the
modules M (str(up(,))) and M(str(u’D,(u,))) are supported at disjoint subsets of the
vertices of Q, and so M (str(wp)) is also a concatenation of a subset of the strings
in {str(wk,) | wh, € Sim(W)}.
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The final assertion is now implied by Figure 5. (]

Proof of Theorem 9.1. Lemma 9.2 shows that the map in the statement of the
Theorem is order-preserving and its image lies in widshad(II(A)).

The map widshad(II(A)) — 25 defined before the statement of Lemma 9.3 is
clearly order-preserving. That this map produces an element of ¥(Bic(A)) follows
from Lemma 9.5 and Lemma 9.6.

It is clear that these maps are inverses of each other. (I

The following corollary is a consequence of Theorem 9.1 and Lemma 7.2.
Corollary 9.7 The poset ¥(Bic(A)) is a lattice.

Proof of Theorem 7.4. From Theorem 6.3 and Theorem 9.1, we have that 9 o
B(—) : torshad(IT(A)) — widshad(II(A4)) and T o ¥~1(—) : widshad(II(A4)) —
torshad(II(A)) are inverse bijections. O

Remark 9.8 Given B € Bic(A) with A\ (B) = {wh, }F_;, let W e widshad(II(A))
and T € torshad(II(A)) denote the wide shadow and torsion shadow corresponding
to B. It is straightforward to show that

k
9 0 B(T) = filt(add (P M (str(w:)))) N M
i=1
and
To ﬁ‘l(ﬁn) = ﬁlt(gen(@ M (str(wp:)))) N M.
i=1
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