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Let HH be a Hecke algebra associated with a Coxeter system of type D, and let
TT LL be the corresponding Temperley�Lieb quotient. The algebra TT LL admits a
canonical basis, which facilitates the construction of irreducible representations. In
this paper, we explain the relationship between the canonical basis of TT LL and the
Kazhdan�Lusztig basis of HH. � 2000 Academic Press

Key Words: canonical basis; Coxeter group; Hecke algebra; Kazhdan�Lusztig
basis; Temperley�Lieb algebra.

1. INTRODUCTION

Ž .Let X be a Coxeter graph and let W X be an associated Coxeter
Ž . Ž .group with Coxeter generators S X and length function ll . Let HH X be

the corresponding Hecke algebra. This is an associative, unital algebra
� �1 �over the ring AA � � � , � of Laurent polynomials. The Hecke algebra

Ž . Ž .HH X has generators T , one for each s � S X , which are subject to thes
2 Ž . 2 Ž .m Ž .mfollowing relations: T � q � 1 T � q, where q � � ; T T � T Ts s s s� s� s

Ž .m Ž .mif ss� has order 2m; and T T T � T T T if ss� has order 2m � 1.s s� s s� s s�

When there is no need to specify the underlying Coxeter graph X, we
sometimes simplify notation by writing W, S, and HH for the Coxeter group,
its distinguished set of generators, and the corresponding Hecke algebra.

� 4The algebra HH has an AA-basis T : w � W , where T is defined to bew w
the product T T ��� T for any reduced expression s s ��� s equal to w.s s s 1 2 n1 2 n
Ž ŽA product w w ��� w of elements from W is called reduced if ll w w1 2 n 1 2

. Ž . .��� w � Ý ll w . The presentation for HH given above ensures that then i i
T are well defined.w
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Ž . Ž .Let II X be the two-sided ideal of HH X generated by the elements
Ž .Ý T , where s, s� runs over all pairs of noncommuting Coxeterx � ² s, s�: x

² : Ž .generators such that the subgroup s, s� of W X is finite. Define
Ž . Ž . Ž .TT LL X to be the quotient AA-algebra HH X �II X and let � denote the

Ž . Ž .canonical map from HH X to TT LL X . When X is a Coxeter graph of type
Ž .A, the quotient TT LL X is known as the Temperley�Lieb algebra, which

� �emerged from the paper 14 and which has been studied in the context of
� �knot theory by Jones 11 .

Ž .When X is an arbitrary Coxeter graph, the quotient TT LL X is some-
� �times called a generalized Temperley�Lieb algebra. Graham 6 has classi-

Ž .fied the graphs X for which TT LL X is finite-dimensional; these graphs fall
into seven infinite families, denoted by A, B, D, E, F, H, and I.

Ž . � �A canonical basis for TT LL � TT LL X was introduced in 8 . This basis is
defined in a manner similar to that of the Kazhdan�Lusztig basis, relative
to a lattice and an involution, and it is uniquely determined by these data

Ž .together with a pair of conditions Theorem 2.3 gives a precise statement .
Ž .When X is simply-laced and TT LL X is finite-dimensional, the canonical

Žbasis can be used to construct the irreducible representations of TT LL see
� �.the work of Fan 4 . Various examples suggest the possibility that the

canonical basis of TT LL can be obtained from a particular subset of the
Kazhdan�Lusztig basis by projection to the quotient; in fact, such a
relationship is known to exist when the underlying graph is of type A, B,

� �or I 5, 8, 9 .
Ž .We will show Theorem 3.4 that the projection relationship described

above holds in type D. The presence of a branch node in this context
introduces some interesting complications. For example, whereas in type
A the kernel of � is spanned by the Kazhdan�Lusztig basis elements that
it contains, this is not true in type D.

Our arguments will rely on some general properties of reduced expres-
sions and on the particular nature of minimum length coset representa-
tives in type D, all of which will be described in Section 3. We remark that
our proof of Theorem 3.4 gives the corresponding type A result as a
special case.

2. CANONICAL BASES

In this section, the underlying Coxeter graph X is of arbitrary type.
� � �1 �Let AA � � � . The Hecke algebra HH admits a �-linear ring automor-

phism of order 2 that sends � to ��1 and T to T�1
�1 ; this involution isw w

� �denoted by h � h. Kazhdan and Lusztig 12, Theorem 1.1 have shown
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that for each w � W, there exists a unique element C� � HH such thatw
� �C � C andw w

� �ll Ž x . ˜C � � P T ,Ýw x , w x
x�W
x	w

˜ �1 � ˜where P � � AA if x � w, and P � 1. Here, 	 denotes thex, w w , w
� � 4Bruhat�Chevalley partial ordering on W. The set C : w � W is knownw

as the Kazhdan�Lusztig basis of HH.
� �The algebra TT LL has a canonical basis, which was introduced in 8 ; a

few additional definitions are necessary in order to describe it.

Ž .DEFINITION 2.1. We say that an element w � W X is complex if it
can be expressed as a reduced product w w w , where w is the longest1 P 2 P
element of some parabolic subgroup P generated by a pair of noncommut-

Ž . Ž .ing elements s, s� � S X . Let W � W X denote the set of all w �c c
Ž .W X that are not complex.

For any w � W, let t denote the image of T in TT LL .w w

� � � 4THEOREM 2.2 6, Theorem 6.2 . The set t : w � W is an AA-basis forw c
the generalized Temperley�Lieb algebra TT LL .

The basis arising from Theorem 2.2 is sometimes called the t-basis. It
plays a role in the definition of the canonical basis for TT LL .

The �-linear ring involution h � h of HH induces an involution of TT LL

Ž � �.see 8, Lemma 1.4 . We use the bar notation to represent this involution
�1

�1of TT LL , which is given by Ý a t � Ý a t .w � W w w w � W w wc c� � �ll Žw .Let LL denote the free AA -submodule of TT LL with basis � t : w �w
4 �1W , and let � : LL � LL�� LL be the canonical projection.c

� � � 4THEOREM 2.3 8, Theorem 2.3 . There exists a unique basis c : w � Ww c
�ll Žw .Ž . Ž .for the lattice LL such that c � c and � c � � � t for all w � W .w w w w c

� 4DEFINITION 2.4. The basis c : w � W arising from Theorem 2.3 willw c
be called the canonical basis of TT LL .

We remark that the canonical basis of TT LL is an IC basis, as defined by
� � � � Ž .Du in 1, Sect. 1.1 . In 8 , the canonical basis of TT LL X was described for

all graphs X of type A, D, or E, and the relationship between the
canonical basis and the corresponding Kazhdan�Lusztig basis was dis-
cussed for graphs of type A.

Ž . � Ž . Ž .Let CC � CC X denote the set of all C � HH X indexed by w � W X .w c
� � Ž . Ž .One sees from 8, Lemma 1.5 that the set � CC is a basis for TT LL X .

Ž . Ž .Note that the elements of � CC are fixed by the involution of TT LL X from
Ž .above. It is natural to consider the question of whether � CC equals the
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Ž .canonical basis of TT LL X . When these bases do coincide, we say that the
�graph X possesses the projection property. It is known from 5, Theorem

� � �3.8.2 together with 8, Theorem 3.6 that graphs of type A possess the
� �projection property; it was shown in 9 that the property also holds for

graphs of type B or I.
Ž .Consider the situation where the ideal II X is spanned by the Kazh-

dan�Lusztig basis elements that it contains. This is equivalent to the
� Ž . Ž .condition that C � II X for all w � W X . The graph X must thenw c

� �possess the projection property 8, Proposition 1.2.3 . While this is a useful
fact in the type A setting, it is not helpful for studying the case where X is
of type D, as the following example demonstrates.

EXAMPLE 2.5. Take the underlying Coxeter graph X to be of type D .4
Denote the Coxeter generators by � , � , � , � , where � corresponds1 2 3 4 3

Ž .to the branch node. We claim that II � II X is not spanned by the
Kazhdan�Lusztig basis elements that it contains. Assume the contrary.
Then C� � II, where w � � � � � � � � � W . Hence, C� C� � II. Butw 2 3 4 3 1 2 3 c � w1

when the product C� C� is expressed as an AA-linear combination of� w1
Ž � � �Kazhdan�Lusztig basis elements using the identity C C � C �� w � w1 1

Ž . �Ý� z, w C , where the sum is over all z such that � z � z � w andz 1
Ž . ll Žw .� ll Ž z .�1� z, w is the coefficient of � in the Kazhdan�Lusztig polyno-

ll Žw .� ll Ž z . ˜ �.mial P � � P , the element C , where x � � � � � , appearsz, w z, w x 1 2 4 3
with integer coefficient 1. This means that some nonzero AA-linear combi-

Ž .nation of elements from CC belongs to II, contradicting the fact that � CC

is an AA-basis for TT LL . Note that this example applies also to the situation
where X is of type D , for r � 4.r

Because of the phenomenon described in Example 2.5, we need a
Ž .different condition for establishing that � CC equals the canonical basis.

The following proposition provides us with such a condition. It will be used
later in Section 3.

� � �ll Žw .PROPOSITION 2.6 9, Proposition 1.2.2 . If � t � LL for all w �w
Ž . Ž . Ž .W X , then � CC coincides with the canonical basis of TT LL X .

It is necessary to introduce one more basis for the algebra TT LL .

DEFINITION 2.7. Define, for each s � S, b � ��1 t � ��1. More gen-s s
erally, for each w � W , it makes sense to define b � b b ��� b , wherec w s s s1 2 n

Žs s ��� s is any reduced expression for w. It is known and follows from1 2 n
� �. � 46, Theorem 6.2 that the set b : w � W is an AA-basis for TT LL . We call itw c
the monomial basis.

Ž .When X is a graph of type A, D, or E, the canonical basis for TT LL X
� �equals the monomial basis 8, Theorem 3.6 . We mention in passing that if
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Ž .X is non-simply-laced, then the canonical basis of TT LL X does not equal
� Ž .�the monomial basis 8, Remark 3.7 1 .

3. TYPE D

In this section, we restrict our attention to Coxeter graphs of type D .r
Ž .Our goal is to prove that the canonical basis of TT LL D equals the imager

� Ž .under � of the set of all Kazhdan�Lusztig basis elements C � HH Dw r
Ž .indexed by w � W D .c r

Ž � �. Ž .It is known see 2; 7, Sect. 1 that the algebra TT LL D is generated byr
Ž .the monomial basis elements b , with s ranging over S D , subject to thes r

following relations: b2 � q b , where q � � � ��1 ; b b � b b if ss� hass c s c s s� s� s
order 2; and b b b � b if ss� has order 3.s s� s s

Ž .DEFINITION 3.1. For any w � W, we define c w to be the set of
Ž .Coxeter generators s � S that appear in some any reduced expression

Ž . Ž .for w. We call c w the content of w. We define RR w to be the set of all
Ž . Ž . Ž .s � S such that ll ws � ll w . We call RR w the right descent of w.

Let � , � , . . . , � denote the Coxeter generators of the Coxeter group1 2 r
Ž .W D , indexed so that each of the products � � , � � , and � �r 1 3 2 3 i i�1

Ž . Ž . � 4 Ž . Ž . Ž .i � 2 has order 3. Thus, one has W D � e , W D � W A , W D0 1 1 2
Ž . Ž . Ž . Ž . Ž r . �� W A � W A , and W D � W A . Let W denote the set w �1 1 3 3

Ž . Ž . Ž .4 Ž r .W D : 1 	 i � r � ll � w � ll w . Then W is a system of right cosetr i
Ž . Ž . Ž . Ž .representatives for the subgroup W D of W D , and ll xy � ll x �r�1 r

Ž . Ž . Ž r . Ž r .ll y for all x � W D and y � W ; thus, each y � W is the uniquer�1
Ž . Ž � �.element of minimum length in W D y see 10, Sect. 5.12 .r�1

Ž r . Ž1. � 4 Ž2.The sets W have a simple description. One has W � e, � , W �1
� 4 Ž3. � 4e, � , W � e, � , � � , � � , � � � , � � � � , and for r � 3 the2 3 3 2 3 1 3 2 1 3 2 1 3
elements of W Ž r . are given by

� e, � , � � , . . . , � � ��� � � , � � ��� � � , � � ��� � � � ,r r r�1 r r�1 3 2 r r�1 3 1 r r�1 3 2 1

4� � ��� � � � � , . . . , � � ��� � � � � ��� � � .r r�1 3 2 1 3 r r�1 3 2 1 3 r�1 r

Observe that each y � W Ž r . has either a unique reduced expression, if
Ž .� ,� do not both belong to c y , or else y has two reduced expressions.1 2

The reduced expression that does not contain the subexpression � � will1 2
be called the normal reduced expression for the minimum length coset
representative.

Ž .One can express any w � W D uniquely as a reduced product w �r
Ž i. Ž � � �w w ��� w , where each w � W . To see uniqueness, let w w ��� w be1 2 r i 1 2 r

another such product. The products w w ��� w and w� w�
��� w� both1 2 r�1 1 2 r�1

Ž . Ž . Ž .belong to W D ; hence the right coset of W D in W D thatr�1 r�1 r
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contains w � w w ��� w � w� w�
��� w� must also contain w and w�. Since1 2 r 1 2 r r r

both of these are elements of the system of coset representatives W Ž r ., we
have w � w�. Iterating this argument, we find that w � w� for all i �r r i i

.1, 2, . . . , r. By deleting those w that equal the identity and replacing eachi
of the remaining w with its normal reduced expression, we obtain ai
normal reduced expression s s ��� s for w. The normal reduced expres-1 2 n
sion has the following property: for each i, either s does not appear to thei
left of the ith position in s s ��� s , or s , s do not commute, or s � �1 2 n i�1 i i 1
and s � � .i�1 2

There are some properties of reduced expressions for elements in W
that are useful for proving results about multiplication in the generalized
Temperley�Lieb algebra. Perhaps the most fundamental is a well-known
theorem of Tits, which states that for any w � W, every reduced expres-
sion for w can be transformed into any other reduced expression for w by

Ž � �.performing a sequence of braid moves see 15, Theoreme 3 . This is valid´ `
for an arbitrary Coxeter system. Using this result, one can characterize Wc
as the set of w � W such that every reduced expression for w can be
transformed into any other reduced expression for w by performing a

� �sequence of commutation moves 13, Proposition 1.1 . One sometimes calls
W the set of fully commutati�e elements of W.c

There are two additional properties, peculiar to the simply-laced case,
which play a role in our work on type D. We list these below. Both have

� �previously appeared in the paper 4, Sect. 2 . Note that the first property
can be obtained as a corollary to the theorem of Tits cited above; for a

� �proof of the second property, see 3, Lemma 2 .

Property R1. Let s , s , . . . , s be an arbitrary sequence from S. Then1 2 m
the product s s ��� s is reduced and belongs to W if and only if between1 2 m c
any two occurrences of a generator s in the sequence, there exist at least
two occurrences of generators which do not commute with s.

Property R2. Let w � W and s � S satisfy ws � W . Then there existsc c
a unique s� � S such that any reduced expression for w can be parsed as
follows: w � w sw s�w , where ss� has order 3 and s commutes with every1 2 3

Ž . Ž .member of c w 
 c w .2 3

Ž .Let w � W D and let s s ��� s be an arbitrary reduced expressionr 1 2 m
Ž . Ž . Ž .for w. Let 1 	 i 1 � i 2 � ��� � i k 	 m. Then the product b b ���s siŽ1. iŽ2.

b equals q �b , for some nonnegative integer � and some w� � W ;s c w � ciŽk .
Ž . Ž .moreover, we have ll w� 	 k and w� 	 w and s � RR w� . One caniŽk .

establish this by a straightforward induction on k, using Property R2, the
subexpression characterization of Bruhat�Chevalley order, and the pre-

Ž .sentation of TT LL D given at the beginning of the section. The above factr
will be invoked in the sequel.
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The following lemma is known to hold for any Coxeter graph of type A,
� �D, or E 4, Proposition 5.4.1 . It is possible to give a relatively simple,

self-contained proof for the type D case, as we do below.

LEMMA 3.2. Let w � W and s � S. Then b b � q �b , where w� � Wc w s c w � c
Ž . Ž . Ž . Ž .and � equals 0 or 1. If ll ws � ll w , then � � 0. If ll ws � ll w , then

w� � w and � � 1.

Proof. Observe that the last assertion follows immediately from asso-
ciativity of multiplication in TT LL and the relation b2 � q b .s c s

Ž . Ž .So assume ll ws � ll w . If ws � W , then the definition of the mono-c
mial basis gives b b � b . We are left with the case ws � W , which wew s w s c

Ž .treat by induction on n � ll w � 2. The basis for induction holds, so let
n � 2 and let s � S satisfy ws � W . Let s s ��� s be the normal reducedc 1 2 n
expression for w. We parse it according to Property R2: w � w sw s�w ,1 2 3

Ž .where ss� has order 3 and s commutes with every member of c w 
2
Ž .c w . We may assume w � e; otherwise, b b � b b b b � b b �3 3 w s w w s s� s w w s1 2 1 2

b , and the inductive step follows. Thus, we have w � s s ��� s forw sw 3 j j�1 n1 2

some j 	 n, and b b � b b b ��� b , where u � w sw . Observe thatw s u s s s 1 1 21 j j�1 n

u 	 s s ��� s .1 1 2 j�1
Ž . ŽWe have s � RR u otherwise, u has a reduced expression ending inj 1 1

s ; hence the product w sw s�s ��� s is either not reduced, or else it doesj 1 2 j n
.not belong to W , a contradiction . If u s � W , then we put u � u s . Ifc 1 j c 2 1 j

u s � W , then we apply the inductive hypothesis, obtaining b b � b1 j c u s u�1 j

for some u� � W ; in this case, we put u � u�. In either case, the elementc 2
Žu has a reduced expression ending in s this is a consequence of the2 j

.paragraph that immediately follows Properties R1 and R2 above and
u 	 s s ��� s . We may now consider b b � b b b ��� b . We claim2 1 2 j w s u s s s2 j�1 j�2 n

Ž .that s � RR u .j�1 2
Ž .Since s s ��� s is the normal reduced expression for w, either 1 s1 2 n j�1

Ž .does not occur to the left of the j � 1 th position in s s ��� s , in which1 2 n
Ž . Ž . Ž .case s � c u ; or 2 s , s do not commute; or 3 s � � andj�1 2 j j�1 j�1 1

Ž . Ž . Ž .s � � . If either 1 or 2 holds, then it is clear that s � RR u .j 2 j�1 2
Ž .Suppose that 3 holds.

Now, any reduced expression s� s�
��� s� belonging to W has the1 2 m c

property that, if � � is a consecutive subexpression, say s� � � and2 1 i 2
s� � � , then neither � nor � appears to the left of the ith position ini�1 1 1 2

� � � Žs s ��� s . To see why, consider a minimum length counterexample and1 2 m
.use Property R1 repeatedly to derive a contradiction. Applying this to our

Ž .normal reduced expression s s ��� s , we have � � c s s ��� s ; hence1 2 n 1 1 2 j
Ž . Ž .� � c u . This implies that s � RR u . If u s � W , then we put1 2 j�1 2 2 j�1 c

u � u s . If u s � W , then we apply the inductive hypothesis,3 2 j�1 2 j�1 c
obtaining b b � b for some u� � W ; in this case, we put u � u�.u s u� c 32 j�1
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Observe that in either case, u has a reduced expression ending in s3 j�1
and u 	 s s ��� s . We may now consider b b � b b b ��� b .3 1 2 j�1 w s u s s s3 j�2 j�3 n

Iterating, we eventually find that b b � b , for some u � W .w s u n�j�2 cn� j�2

The inductive step is complete.

Remark 3.3. One can also prove Lemma 3.2 by using the diagram
Ž . � �calculus for TT LL D developed by Green in 7 .r

Ž .The following theorem reconciles the Kazhdan�Lusztig basis for HH Dr
Ž . Ž �with the canonical basis of TT LL D cf. 5, Theorem 3.8.2; 9, Theoremr

�.2.2.1 .

THEOREM 3.4. Let X be a Coxeter graph of type D. Then the canonical
Ž .basis of TT LL X equals the image under � of the set of all Kazhdan�Lusztig

� Ž . Ž .basis elements C � HH X indexed by w � W X .w c

Proof. We shall verify that for every w � W, the element ��ll Žw .t liesw
in the lattice LL . An application of Proposition 2.6 then gives the theorem.

Ž . �ll Žw .As a first step, we prove by induction on n � ll w � 0 that � tw
Žequals a linear combination of monomial basis elements b x � W andx c

. �x 	 w with coefficients in AA , and if w � W then the coefficient of b isc w
Ž �ll Žw .1. It is known that for any w � W , the element � t � b is a linearc w w

�1 � �combination of monomial elements b with coefficients in � AA 8,x
�Lemma 3.5 ; thus, we are going to prove a weaker statement for the more

.general case where w is not necessarily in W .c
If n � 0 then w � e, and ��ll Ž e.t � b . If n � 1 then w is a Coxetere e

generator, and ��ll Žw .t � b � ��1 b . Let n � 1. Let r � 1 be the small-w w e
Ž . Ž .est integer such that w � W D . Write w � yz reduced , where y �r

Ž . Ž r . �ll Ž y.W D and z � W . We apply the inductive hypothesis to � t ,r�1 y
Ž .writing it as a linear combination of b x � W and x 	 y with coeffi-x c

cients in AA�; if y � W then the coefficient of b is 1. Now consider, forc y
Ž �ll Ž z . .any x � W satisfying x 	 y, the expression b � t . We shall showc x z

Ž .that this equals a linear combination of b x� � W and x� 	 w withx � c
coefficients in AA�, and when w � W , the coefficient of b is 1 if x � yc w
and is 0 if x � y. The inductive step will thereby be established.

Let s s ��� s be the normal reduced expression for the minimum1 2 m
Ž .length coset representative z where s � � , s � � , . . . . We have1 r 2 r�1

b ��ll Ž z .t � b ��1 t ��1 t ��� ��1 tŽ . Ž . Ž . Ž .x z x s s s1 2 m

� b b � ��1 b � ��1 ��� b � ��1 ,Ž . Ž . Ž .x s s s1 2 m

and the last expression expands to a sum of terms

k�m�� b b b ��� b .Ž . x s s siŽ1. iŽ2. iŽk .
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Note that when w � W , the only term which contributes a nonzeroc
coefficient to b is the one where x � y and k � m; the contributedw
coefficient is 1.

The remaining part of the inductive step rests on the following claim,
the proof of which will be given in the following section.

Ž . Ž r . � 4Claim 3.5. Let x � W D and z � W � e . Let s s ��� s be ther�1 1 2 m
normal reduced expression for z. Define MM to be the collection of all

Ž Ž . Ž . Ž .. Ž .k-tuples I � i 1 , i 2 , . . . , i k of integers k � 0 varies that satisfy 1 	
Ž . Ž . Ž .i 1 � i 2 � ��� � i k 	 m together with the following condition:

b b b ��� b � q �b , where x� � W and � � m � k .x s s s c x � ciŽ1. iŽ2. iŽk .

Suppose MM � �. Then the following statements hold:

Ž Ž . Ž . Ž ..1. For any I � i 1 , i 2 , . . . , i k � MM, when we write b b b ���x s siŽ1. iŽ2.

b � q �b , we have � � m � k � 1.s c x �iŽk .

2. There exists x� � W such that b b b ��� b � q �Ž I .b forc x s s s c x �iŽ1. iŽ2. iŽk .
Ž Ž . Ž . Ž ..any I � i 1 , i 2 , . . . , i k � MM.

� � � 4 � � � 43. The sets I � MM : I is odd and I � MM : I is even have the same
� �cardinality. Here, I denotes the number of entries in I.

Ž �ll Ž z . .We explain the relevance of Claim 3.5. The product b � t is to bex z
expressed as an AA�-linear combination of monomial basis elements. Above,

Ž �ll Ž z . . Ž .k�mwe have expanded b � t into a sum of terms �� b b b ���x z x s siŽ1. iŽ2.
Ž Ž . Ž . Ž ..b , where the sum is taken over all multi-indices I � i 1 , i 2 , . . . , i ksiŽk .

Ž . Ž . Ž .satisfying 1 	 i 1 � i 2 � ��� � i k 	 m. We may ignore those multi-
indices I which do not belong to MM, since such I must contribute a term
with coefficient in AA�. On the other hand, by the various assertions of the

Ž .k�mclaim, if MM is nonempty, then the terms �� b b b ��� b arisingx s s siŽ1. iŽ2. iŽk .
Ž . � I ��m m� � I ��1 �from I � MM equal �� q b and sum to ab , where a � AAc x � x �

Žnote that the highest degree term of the Laurent polynomial
Ž . � I ��m m� � I ��1 Ž . � I ��m�� q is �1 � , so that the positive degree terms involvedc

.in a cancel by the third assertion of Claim 3.5 . The inductive step is
complete.

We have shown, granting the truth of the claim, that for any w � W, the
�ll Žw . Ž .element � t equals a linear combination of b x � W and x 	 ww x c

with coefficients in AA�, and if w � W then the coefficient of b equals 1.c w
It follows by a straightforward induction on length that for any x � W , thec

�ll Ž y . Ž .element b equals a linear combination of � t y � W and y 	 xx y c
� �ll Žw .with coefficients in AA . We conclude that every � t lies in LL .w
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4. COMBINATORICS

This section is devoted to providing a proof of Claim 3.5. Fix an integer
Ž . Ž r . � 4r � 1. Fix elements x � W D and z � W � e . Let s s ��� s ber�1 1 2 m

the normal reduced expression for z. By a multi-index, we shall always
Ž Ž . Ž . Ž .. Ž .mean a k-tuple I � i 1 , i 2 , . . . , i k of integers k � 0 varies satisfying

Ž . Ž . Ž . � Ž . Ž . Ž .41 	 i 1 � i 2 � ��� � i k 	 m. We call i 1 , i 2 , . . . , i k the underly-
ing set of I; sometimes, we abuse notation and denote the underlying set

Ž � �.also by I and its cardinality by I .
Ž Ž . Ž . Ž ..Given a multi-index I � i 1 , i 2 , . . . , i k , we shall sometimes denote

� 4the product b b ��� b by b . The set 1, 2, . . . , n will be denoted bys s s IiŽ1. iŽ2. iŽk .� �n .

Ž Ž . Ž . Ž ..DEFINITION 4.1. Let I � i 1 , i 2 , . . . , i k be a multi-index. Let l �
� � Ž .k . We say that i l contributes q to b b if b b b ��� b � q �c x I x s s s ciŽ1. iŽ2. iŽ l .
Ž . �1b b b ��� b . Recall that q � � � � .x s s s ciŽ1. iŽ2. iŽ l�1.

DEFINITION 4.2. Define MM � to be the set of all multi-indices I �
Ž Ž . Ž . Ž ..i 1 , i 2 , . . . , i k satisfying the following two conditions:

� �1. There exists l � k such that s � � , s � � , and theiŽ l . 1 iŽ l�1. 2
Ž .entry i l contributes q to b b .c x I

� �2. For all n � m , if n � I then n � 1 � I and n � 1 contributes
q to b b .c x I

Ž Ž . Ž . Ž ..Note that if I � i 1 , i 2 , . . . , i k � MM �, and the integer l is as in
Ž . Ž .condition 1 of Definition 4.2, then i l � 1 � i l � 1. Observe also that

condition 2 guarantees m � I.

DEFINITION 4.3. Let y be an arbitrary element of W and let � be anc
� � �arbitrary nonnegative integer. We define q b � y.c y

PROPOSITION 4.4. Let MM and MM � be the collections of multi-indices
defined in Claim 3.5 and Definition 4.2, respecti�ely. We ha�e MM � MM �. Also,

Ž Ž . Ž . Ž ..if the multi-index I � i 1 , i 2 , . . . , i k belongs to MM and we write b b �x I
q �b , then � � m � k � 1.c x �

Proposition 4.4 establishes the first assertion in Claim 3.5.

Ž Ž . Ž . Ž ..Proof. Let I � i 1 , i 2 , . . . , i k be a multi-index. We claim that if
� � Ž . Ž .n � k and s � � , then i n can contribute q to b b only if i n � 1iŽn. 1 c x I

� Ž . Ž . Ž .4� 0, i 1 , i 2 , . . . , i k .
Ž . Ž . Ž .For n � 1, if i 1 � 1 then s � c x ; hence i 1 does not contributeiŽ1.

Ž . Ž . � Ž . Ž . Ž .4q to b b . If i 1 � 1 then clearly i 1 � 1 � 0, i 1 , i 2 , . . . , i k . Forc x I
� �1 � n 	 k, the element b b b ��� b has a reduced expressionx s s siŽ1. iŽ2. iŽn�1.

Ž .ending in s ; hence by Lemma 3.2, i n can contribute q to b b onlyiŽn�1. c x I
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Ž .if s commutes with s possibly s � s . But s and siŽn�1. iŽn. iŽn�1. iŽn. iŽn�1. iŽn.
Ž . Ž .can commute only if s � � or i n � 1 � i n � 1. This establishesiŽn. 1

the claim.
Thus, when we write b b � q �b , we have � 	 m � k � 1, with equal-x I c x �

ity if and only if both conditions of Definition 4.2 are satisfied. In
particular, we have � � m � k if and only if I � MM �.

Henceforth, we shall assume MM � �. Note that this implies r � 2.

Ž Ž . Ž . Ž ..PROPOSITION 4.5. Let x, z be as abo�e, and let I � i 1 , i 2 , . . . , i k �
� �MM. Then for all n � k , we ha�e

b b b ��� b � b b b ��� b .x s s s x s s s1 2 iŽn. iŽ1. iŽ2. iŽn.

� �In particular, since m � I, we ha�e b b � x� for all I � MM, where x� �x I
� �b b .x z

Proposition 4.5 establishes the second assertion in Claim 3.5.

Proof. We proceed by induction on n. Let n � 1. The case where
Ž . Ž . Ž . Ž .i 1 � 1 is trivial. If i 1 � 1, then i 1 � 2 and i 1 contributes q to b b .c x I

Thus, x can be written as a reduced product ending in s , say x � x�s .2 2
But then b b b � b b b � b b b b � b b � b ; on the otherx s s x �s s s x � s s s x � s x1 2 2 1 2 2 1 2 2

hand, b b � b b � b b � b b b � q b b � q b . The basis forx s x s x �s s x � s s c x � s c xiŽ1. 2 2 2 2 2 2

induction is established.
Let n � 1. We consider two cases.

Ž . Ž . � �Case 1. i n � i n � 1 � 1. By induction, we have b b b ��� bx s s s1 2 iŽn�1.
� �� b b b ��� b . But then it immediately follows thatx s s siŽ1. iŽ2. iŽn�1.

b b b ��� b b � b b b ��� b b .x s s s s x s s s s1 2 iŽn.� 1 iŽn. iŽ1. iŽ2. iŽn�1. iŽn.

Ž . Ž . Ž .Case 2. i n � i n � 1 � 2. Then i n contributes q to b b . Let yc x I
� �be the element b b b ��� b . Then y can be written as a reducedx s s siŽ1. iŽ2. iŽn�1.

� �product ending in s , say y � y�s . Note that b b b ��� b biŽn. iŽn. x s s s siŽ1. iŽ2. iŽn�1. iŽn.
� �equals y. We need to show that b b b ��� b equals y, as well.x s s s1 2 iŽn.

Ž . Ž .The inductive hypothesis and our assumption i n � 1 � i n � 2 to-
� �gether imply that b b b ��� b � y; let us write b b b ��� b �x s s s x s s s1 2 iŽn.� 2 1 2 iŽn.� 2

q �b for some nonnegative integer �. Recall from the remark followingc y
Ž . Ž .Definition 4.2 that if s � � , then i l � 1 � i l � 1. The assumptioniŽ l . 1

Ž . Ž .i n � 1 � i n � 2 therefore implies s � � ; hence s and s doiŽn. 1 iŽn.�1 iŽn.
not commute. Therefore,

b b b ��� b b b � q �b b b � q �b b b bx s s s s s c y s s c y � s s s1 2 iŽn.� 2 iŽn.� 1 iŽn. iŽn.� 1 iŽn. iŽn. iŽn.� 1 iŽn.

� q �b bc y � siŽn.

� q �b .c y

The inductive step is complete.
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Let us regard MM as a partially ordered set, with ordinary set-theoretic
inclusion as the partial ordering. In the following definition, we construct a
multi-index J. It will be shown that J is the unique minimal element of MM,

� � � �and J � m. Furthermore, if I is any multi-index satisfying J 
 I 
 m ,
then I � MM. From this, we will be able to deduce that MM has as many
elements with even cardinality as it has elements with odd cardinality,
thereby establishing the third and final assertion of Claim 3.5.

� �DEFINITION 4.6. Since MM � �, there exists l � m such that s � �l 1
Ž .and s � � by Proposition 4.4 . We define a multi-index J as follows.l�1 2

Ž .If x has a reduced expression ending in s , then put j 1 � 2; otherwise,2
Ž . Ž . Ž . Ž . Ž .put j 1 � 1. Suppose j 1 , j 2 , . . . , j n have been defined, and j n � m.

Ž . Ž . Ž .If j n equals l � 2 or l � 1 or m � 1, then put j n � 1 � j n � 1. If
Ž . � �instead j n � l � 2, l � 1, m � 1, then consider b b b ��� b . Ifx s s sjŽ1. jŽ2. jŽn.

this member of W has a reduced expression ending in s , then putc jŽn.�2
Ž . Ž . Ž . Ž .j n � 1 � j n � 2; otherwise, put j n � 1 � j n � 1. This procedure

Ž Ž . Ž . Ž ..produces a multi-index j 1 , j 2 , . . . , j k� , which we denote by J.

� �PROPOSITION 4.7. We ha�e J � MM and J � m.

Proof. To show J � MM, we use Definition 4.2; observe that we need
only verify that J satisfies the last part of the first condition in Definition

� � Ž .4.2. Let l� � k� satisfy s � � and s � � , and let l � j l� . NotejŽ l�. 1 jŽ l��1. 2
Ž . Ž . � �that j l� � 1 � j l� � 1 � l � 1. Let y � b b b ��� b . The ar-x s s sjŽ1. jŽ2. jŽ l��1.

�gument used in the proof of Proposition 4.5 gives us y � b b b ���x s s1 2
� � �b , and the latter expression can be rewritten as b b b ��� b .s x s s sjŽ l��1. 1 2 l�1

We claim that the last expression for y has a reduced expression ending
Ž Ž . Ž . Ž ..in � . To see why, let I � i 1 , i 2 , . . . , i k � MM, and let n satisfy1

Ž .s � � and s � � . Recall that i n must contribute q to b b .iŽn. 1 iŽn�1. 2 c x I
� �Thus, the element b b b ��� b has a reduced expression endingx s s siŽ1. iŽ2. iŽn�1.

Ž . Ž .in s . By Proposition 4.5 and the equality i n � 1 � i n � 1, this lastiŽn.
� � Ž .element equals b b b ��� b , and since i n � l, the claim follows.x s s s1 2 iŽn.� 1

� �So y � b b b ��� b has a reduced expression ending in � �x s s s 1jŽ1. jŽ2. jŽ l��1.
Ž .s . This is equivalent to saying that j l� contributes q to b b . The firstjŽ l�. c x J

part of the proposition is established.
� �We turn to the inequality J � m. As above, we let l � 3 denote the

integer such that s � � . There exists an integer 1 � n 	 l � 1 such thatl 1
Žxs s ��� s is reduced and belongs to W , but xs s ��� s � W . Other-1 2 n�1 c 1 2 n c

� �wise, b b b ��� b equals the reduced product xs s ��� s s �x s s s 1 2 l�2 l�1jŽ1. jŽ2. jŽ l�1.

xs s ��� � � � W ; hence l cannot contribute q to b b by Lemma 3.2,1 2 3 2 c c x J
. Ž .contrary to J � MM. We claim that s � RR xs s ��� s .n 1 2 n�2

To establish the claim, apply Property R2 to the situation where w �
xs s ��� s and s � s ; since s and s do not commute, the reduced1 2 n�1 n n�1 n

Ž .expression xs s ��� s replace x with any reduced expression for x1 2 n�1
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can be parsed w s w s�w , where s� � s , w � e, and s commutes1 n 2 3 n�1 3 n
Ž . Ž .with every element of c w . Thus, we have w � w w s s reduced ;2 1 2 n n�1

Ž .hence xs s ��� s � ws � w w s , so that s � RR xs s ��� s , as1 2 n�2 n�1 1 2 n n 1 2 n�2
claimed.

� � ŽBut then, since b b b ��� b � xs s ��� s recall that xs sx s s s 1 2 n�2 1 2jŽ1. jŽ2. jŽn�2.
.��� s is reduced and belongs to W , the procedure for constructing Jn�1 c

Ž .gives j n � 1 � n; hence n � 1 � J.

PROPOSITION 4.8. We ha�e J 
 I for all I � MM.

Ž Ž . Ž . Ž .. Ž .Proof. Let I � i 1 , i 2 , . . . , i k � MM. We first show that j 1 � I,
Ž . Ž .and then we show that for any 1 	 n� � k�, if j n� � I then j n� � 1 � I.

Ž .If j 1 � 1 then by the construction of J, the element x does not have a
Ž . Žreduced expression ending in s . Hence, i 1 � 1 otherwise, 1 � I; yet 22

. Ž .cannot contribute q to b b . If j 1 � 2, then by the construction of J,c x I
the element x can be expressed as a reduced product ending in s , say2

� Ž Ž .x � x s . Now assume for contradiction that 2 � I. Then 1, 3 � I i 1 � 1,2
Ž . . Ž .i 2 � 3 and 3 contributes q to b b . Since s � � � c x , the productsc x I 1 r

xs � x�s s are reduced and belong to W . Hence, b b � b . Since1 2 1 c x s x �s siŽ1. 2 1
Ž .one of the generators s , s does not commute with s , the entry i 2 � 31 2 3

Ž .cannot contribute q to b b , a contradiction. It follows that j 1 � 2 � I.c x I
Ž . � � Ž .Now let 1 	 n� � k�, and assume j n� � I. Let n � k satisfy i n �

Ž .j n� .
Ž . Ž . Ž . Ž .If i n � 1 � I, then i n � 2 � I and i n � 1 � i n � 2 contributes

� � � � Žq to b b . But then since b b b ��� b � b b b ��� b byc x I x s s s x s s sjŽ1. jŽ2. jŽn�. iŽ1. iŽ2. iŽn.
. Ž .Proposition 4.5 , the procedure for constructing J ensures that j n� � 1

Ž .� i n � 1 � I.
Ž . Ž . Ž . Ž .Now suppose i n � 1 � I, so that i n � 1 � i n � 1. If also i n � 2

Ž . Ž .� I, then we must have j n� � 1 � I. Suppose instead i n � 2 � I. If
Ž . Ž . Ž .i n � 1 � m then j n� � 1 � m � I. If instead i n � 1 � m, then the

Ž . Ž .assumption i n � 2 � I and Definition 4.2 together imply i n � 3 � I.
Ž . Ž . Ž . Ž . ŽThus, i n � 2 � i n � 3. We claim that j n� � 1 � j n� � 1 � i n �

. Ž . Ž .1 � I. To see this, assume the contrary, so that j n� � 1 � j n� � 2 �
Ž . � � Ž .i n � 2. Let l � k satisfy s � � , s � � . Recall that i l � 1 �iŽ l . 1 iŽ l�1. 2
Ž . Ž . Ž . Ž . Ž .i l � 1. The assumption j n� � 1 � j n� � 2 forces j n� � i l � 1 �
Ž . Ž . Ž . Ž . Ž .1, i l � 1. Hence i n � 1 � j n� � 1 � i l � 1 , i l . From this we see

that s commutes with neither of the generators s , s . LetiŽn.�1 iŽn. iŽn.�2
� �y � b b b ��� b . Observe that by the construction of J, the ele-x s s sjŽ1. jŽ2. jŽn�.

ment y has a reduced expression ending in s � s ; and sincejŽn��1. iŽn.�2
� �y � b b b ��� b , we see that y has a reduced expression ending inx s s siŽ1. iŽ2. iŽn.

s . Note that s � s . Thus, we can write y as a reduced productiŽn. iŽn. iŽn.�2
y � y�s s .iŽn. iŽn.�2

Since s � s commutes with neither of the generatorsiŽn�1. iŽn.�1
s , s , the product ys � y�s s s is reduced and be-iŽn. iŽn.�2 iŽn�1. iŽn. iŽn.�2 iŽn.�1
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Ž . � �longs to W by Property R1 . Hence, we have b b b ��� b �c x s s siŽ1. iŽ2. iŽn�1.
Ž . Ž .y�s s s . But then i n � 2 � i n � 3 cannot contribute q toiŽn. iŽn.�2 iŽn.�1 c

Ž . Ž . Ž .b b , a contradiction. It follows that j n� � 1 � j n� � 1 � i n � 1 � I.x I

Ž Ž . Ž . Ž ..DEFINITION 4.9. Let I � i 1 , i 2 , . . . , i k be a multi-index and let U
� �be a subset of m . We define I�U to be the unique multi-index with

� Ž . Ž . Ž .4underlying set i 1 , i 2 , . . . , i k 
 U.

� �PROPOSITION 4.10. Let U be any subset of m . Then J �U � MM. Com-
� Ž� �bined with the conclusion of Proposition 4.8, this gi�es MM � J �U : U 
 m

.4 � � � 4 � � � 4� J . Therefore, the sets I � MM : I is odd and I � MM : I is e�en ha�e
the same cardinality.

Proposition 4.10 establishes the third assertion in Claim 3.5.

Ž� � .Proof. We may assume U 
 m � J . We verify that J �U satisfies
Ž Ž . Ž . Ž ..both conditions in Definition 4.2. Write J �U � i 1 , i 2 , . . . , i k . For

� � � � Ž . Ž .each p� � k� there exists p � k such that i p � j p� . Moreover, we
have

b b b ��� b � b b b ��� b .x s s s x s s siŽ1. iŽ2. iŽ p. jŽ1. jŽ2. jŽ p�.

This can be proved by induction on p�, by mimicking the proof of
Proposition 4.5.

We first verify that J �U satisfies condition 1 in Definition 4.2. Observe
� �that since J 
 J �U, there exists l � k such that s � � and s �iŽ l . 1 iŽ l�1.

� � Ž . Ž . Ž . Ž .� . Let l� � k� satisfy j l� � i l . Note the equalities j l� � 1 � j l� �2
Ž . Ž . � � Ž .1 � i l � 1 � i l � 1 . Let y � b b b ��� b . Since j l� con-x s s sjŽ1. jŽ2. jŽ l��1.

tributes q to b b , the element y has a reduced expression ending inc x J
� �s � � � s . By the first paragraph, b b b ��� b � y. Hence,jŽ l�. 1 iŽ l . x s s siŽ1. iŽ2. iŽ l�1.

Ž .i l contributes q to b b , so that the first condition in Definition 4.2c x J �U
holds relative to J �U.

� �For the second condition, suppose we are given n � m satisfying
n � J �U. Then in particular n � J; hence n � 1 � J 
 J �U and n � 1
contributes q to b b . We need to show that n � 1 contributes q toc x J c

� � � � Ž . Ž .b b . Let p � k and p� � k� satisfy i p � n � 1 � j p� . Note thatx J �U
Ž . Ž . �if n � 1 then i p � 1 � n � 1 � j p� � 1 . Let y� � b b b ���x s sjŽ1. jŽ2.

�b . Since n � 1 contributes q to b b , the element y� has a reduceds c x JjŽ p��1.
� �expression ending in s . But b b b ��� b � y� by the firstn�1 x s s siŽ1. iŽ2. iŽ p�1.

Ž .paragraph; hence i p � n � 1 contributes q to b b , as desired.c x J �U
Finally, we address the last assertion. Recall from Proposition 4.7 that

� �m � J is nonempty. Any nonempty finite set has as many subsets of odd
cardinality as it has subsets of even cardinality. Since MM consists of the

Ž� � . � � � � � �multi-indices J �U for U 
 m � J , and since J �U � J � U , we see
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that MM has as many elements with odd cardinality as it has elements with
even cardinality.

We have established all of the assertions made in Claim 3.5.
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