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Abstract

We discuss a mag from the semisimple conjugacy classes of a finite grép of Lie type to
the F-conjugacy classes of its Weyl group. We obtain two expressions for the number of semisimple
classes mapped by into a given F-conjugacy class of¥. The first involves distinguished coset
representatives in the affine Weyl group and the second is the number of elements in the coroot
lattice satisfying certain conditions. The Brauer complex plays a key role in the proof. Thé map
has recently proved of interest in connection with probabilistic and combinatorial group theory.
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1. Introduction

Let G be a simple simply-connected algebraic group over the algebraic clésofe
the prime fieldF,, and letF : G — G be a Frobenius endomorphism. l&f be the corre-
sponding finite group of Lie type. It was shown by Steinberg [8, 14.8], that the number of
conjugacy classes of semisimple elemenis fnis ¢ where is the rank ofG andg is the
absolute value of all eigenvalues Bfon the co-character group of a@fstable maximal
torus ofG.

Let s’ € G be semisimple and leT’ be a maximally split maximal torus of the
centralizerC(s’). ThenT’ is an F-stable maximal torus o5 but is not necessarily
maximally split inG. Let T be a maximally split torus o&. ThenT’ = ¢T for some
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g € G. SinceT, T’ are bothF-stable we have1F(g) € N(T). Let W = N(T)/T be
the Weyl group andy € W be the image og~1F(g) under the natural homomorphism
from NV(T) to W. The elementw € W is not uniquely determined by the semisimple
conjugacy class o&f containings’, but its F-conjugacy class is uniquely determined.
Herewr, wp € W are F-conjugate ifw, = x ~1w1 F (x) for somex € W. (The F-action on

W is induced from that ofi".) Thus we have a map from semisimple conjugacy classes
of Gf to F-conjugacy classes iW.

This map6 has recently proved to be of interest in probabilistic group theory in a
number of special cases. Whe&i = SL,(¢) each semisimple conjugacy class @t
determines a polynomial of degreén F; [¢], the characteristic polynomial of the elements
in the class. Thea -conjugacy classes dV are the conjugacy classes in the symmetric
groupS,, so correspond to partitions ef A given polynomial of degree in F,[¢] will
factorize into irreducible polynomials whose degrees form a partition. athe map6
takes the semisimple conjugacy class associated to the given polynomial into this partition
of n. In this way, we obtain a measure on the set of partitionsgif’en by the number of
semisimple conjugacy classes$f, (¢) mapping to a given partition undér J. Fulman
[7] has obtained interpretations of this measure onARkhepnjugacy classes & in terms
of card shuffling in the cases wheéi" is SL,(¢) andSp, ().

The purpose of this paper is to obtain two expressions for the number of semisimple
conjugacy classes @’ mapped by into a givenF-conjugacy clas€ of W. Let X, Y
be the character and co-character groups oéspectively and leV =Y Q R. Fory e V
let T(y):V — V be the translation — v + y. ThenW, = Wz (Y) is the affine Weyl
group acting onV. Let F:Y — Y be the Frobenius action an induced by that or7'.
ThenF = g Fo whereFp:Y — Y has finite order (cf. [8, 11.14]). Lé¥, = Wt (F~L(Y)).
ThenW! is a group of transformations &f which contains¥, as a subgroup of index.

In fact W/ is isomorphic toW,, both being isomorphic to the affine Weyl group®fEach

left coset of W, in W, has a unique element of minimal length with respect to the length
function on the Coxeter grouly,. These are called the distinguished coset representatives
of W, in W/. We denote byr : W, — W the natural homomorphism from the affine Weyl
groupW,, to the Weyl group'.

We shall prove the following result.

Theorem 1. Let C be anF-conjugacy class oW. Then the following three numbers are
equal

(i) The number of semisimple conjugacy classes oimapped by to C.
(i) The number of distinguished coset representativesW, in W, such thatz (d) € C.
(i) >, eccmw, Wherem,, is the number of elements € Y satisfying the following
conditions
(@) (aj,y)=0for j=1,..., ¢ where thex; are the set of simple roots 6f;
(b) (Fy (@), y) < g whereq is the highest root and’ = ¢ Fo on X;
(c) w(ay) is a positive root for allj € J(y). Hereag = —a and J(y) is the subset
of {0,1,...,¢} defined as follows. Foyj € {1,...,¢}, j € J(y) if and only if
(@j,y)=0.Forj=0, j e J(y) ifand only if (Fy }(@), y) = g.
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We note thatFo(@) = @ whenG* is a Chevalley group or Steinberg twisted group, but
not when it is a Suzuki or Ree group.

Theorem 1 was conjectured by Fulman in the case wdiénis split and proved by
him in several particular cases. A proof due to the author wdiénis split appears in
Fulman’s paper [7]. We give a proof here in the general (not necessarily split) case in order
to encourage further results on probabilistic and combinatorial group theory of the type
already obtained for certain particular groups.

Thanks are due to Jason Fulman for stimulating the author’s interest in this question.

2. Semisimple classesin reductive groups

We recall some basic facts about semisimple conjugacy classes. Proofs can be found,
for example, in [2, Chapter 3].

Let G be a simple simply-connected algebraic group over the algebraic cl&sofré’, .
Let ¢ be the rank ofG. Let T be a maximal torus off andW = AN (T)/T be the Weyl
group. LetK* be the multiplicative group oK andX = Hom(T, K*), Y = Hom(K*, T)
be the character group and co-character grouff pfespectively. ThenX, Y are free
abelian groups of rankand we have amafi x Y — Z given by, y — (x, y) where

x(y)) =257 foryeX, ye¥, re k™.

Given an elementy € W let n,, € N(T) be an element mapping to under the natural
homomorphism. Then we defineéé-action onT by

v =n;1tnw, teT, weW.

We also defindV-actions onX andY by
"M =(rW)", yeY,weW, reKk*
(wGO)r=x1"), xeX, weW, teT.
Let V=Y ® R and for eachy € V let 7(y):V — V be the translation > v + y.
These maps foy € Y generate the translation groupY). We have an action o onV

obtained by extending its action ah Let W, = Wt (Y) be the affine Weyl grougV, acts
onV as a group of affine transformations given by

N )= er +y., y.y €Y, reRweW.
Let & C X be the root system of; with respect toT’, and let/T = {«1, ..., a¢} be
a system of simple roots. Létbe the highest root arneh = —&. Let A be the subset of

given by

A={yEV; {(aj,yy>0fori=1,...,¢, (—ao,y)<1}.
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A is called the fundamental alcove In. Its closureA is a fundamental region for the
action of W, onV.

We next consider semisimple conjugacy classe§.irsince each semisimple element
lies in a maximal torus and any two maximal tori 6f are conjugate, any semisimple
conjugacy class of; contains an elementwhich lies in our maximal torug. Moreover,
two elements of” are conjugate i if and only if they lie in the sam&/ -orbitonT.

Now the mapy ® K* — T determined by ® A — y (1) is an isomorphism. Moreover
there is a (non-canonical) isomorphism betwdeh and Q,/Z whereQ,, is the set
of rational numbers with denominator prime po Thus we have an isomorphisih®
(Q,1/Z) — T. This determines a homomorphism® Q, — T with kernelY @ Z =Y.
Thus we have an isomorphism

Y®Q,)/Y—T.

This gives a bijection betweefi and thez(Y)-orbits onY ® Q, . There is therefore

a bijection between th#&-orbits onT and the orbits oW, = Wz(Y) onY ® Q. Since

eachW,-orbit onV =Y ® R contains a unique element df eachW,-orbitonY ® Qp

will contain a unique element of ,/, the set of elements of whose coordinates all lie

inQ,. Thisis a bijection between semisimple conjugacy classesarid elements QK,,/.

We shall make use of this bijection to understand the properties of the semisimple classes.
Let C(s) be the centralizer of in G. ThenC(s) is a reductive subgroup @ which is

connected sincé& is assumed simply-connected. In fa€ts) = (T, X4, o € @1) where

@1 = {a € @; a(s) =1} and X, is the root subgroup of; corresponding taxr € @.

A fundamental system of roots f@f(s) can be described in terms of the above bijection

between semisimple conjugacy classes and eIemenZ\g,ofLet ae Zp/ be the point

corresponding to the semisimple class contaisinget J be the subset of0, 1, ..., ¢}

given by

jeJ ifandonlyif { Eoifo;(?a;gl ISH S

We then say that lies on theJ-face of the fundamental alcove Let IT; C @ be defined
by IT; ={«;; j € J}. Then itis shown in [5] that there existse W such thatw (/1) is a
fundamental system i#;. The elementv which appears here depends on the choice of
in its W-orbit in 7. There exists am in any givenW-orbit such that'7; is a fundamental
system of roots foC (s).

3. TheFrobeniusaction

We now suppose that : G — G is a Frobenius map o6 (cf. [2, 1.17]). Then there
exist F-stable maximal tori inG. Among these we can find a maximally sphitstable
maximal torusT . (T is uniquely determined up to conjugacy by an element 6f) We
defineF-actions onX, Y by
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(FOO)t=x(F®), xeX, teT,

(FW)A=F(y0), yeY, reK"
It follows from these definitions that
(. F)=(F(0).v). xeX, yeY.
We also define an action &f on W by
F(ny)=nrq) modT.
It follows from this definition that
F@")=F@n)f™, teT, wew.

Now let GF = {g € G; F(g) = g} be the corresponding finite group of Lie type. Let
T' be anyF-stable maximal torus off. ThenT’ = 4T for someg € G. SinceF(T") =T’
we haveF (8T) =&T and sog~1F(g) € N(T). Henceg 1F(g) = n,, for somew € W.
We say thafl”’ is obtained from the maximally split torus by twisting withw. The map
T’ — w induces a bijection between tl@’ -classes ofF-stable maximal tori oG and
the F-conjugacy classes d¥. (We recall thatw, w’ € W are F-conjugate if there exists
x € W such thatw’ = x " 1wF (x).)

We now consider semisimple conjugacy classes in the finite ggdupgJnder the given
assumptions orG every F-stable semisimple conjugacy class @fcontainsF'-stable
elements and any two such elements are conjugate by an eleméift. dfhus there is
a bijective correspondence between semisimple conjugacy classg§ ahd F-stable
semisimple conjugacy classes@®@f

We may define arF-action onV =Y ® R by extending linearly the abovE-action
on Y. We may also define an action &f on the subse# C V, i.e., the closure of the
fundamental above. We shall denote this actioruby F.a, where F.a is the element
of A in the orbit of F(a) under the affine Weyl group/,,. If a € A, we haveF.a € A,
thus we have aif'-action oan/. This F-action oan/ is compatible with theF-action
on semisimple conjugacy classes®iunder the bijection between semisimple conjugacy
classes ofG and points ian/. In particular, we obtain a bijection betwednstable
semisimple conjugacy classes@fnd F-stable points irﬁp/. This in turn gives a bijection
between semisimple conjugacy classe§éfand F-stable points inKp/.

Now lets’ € G be semisimple. LeT’ be a maximally split torus of (s’). ThenT’
is obtained from a maximally split torus of G by twisting with w € W. We obtain in
this way a map from semisimple conjugacy classes®@f to F-conjugacy classes o¥ .
Given anF-conjugacy clasg of W we are interested in the question of how many of the
q* semisimple classes @i’ are mapped by to C.
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4. Distinguished coset representativesin the affine Weyl group

Let T be a maximally split torus of5, Y the co-character group df and V =
Y @ R. ThenF:V — V is a non-singular map defined in Section 3. lEtl(y) =
{y e V; F(y) e Y} and lett (F~1(Y)) be the group of translations &f by elements of
F~Y(Y). Let W/ be the group of affine transformationsigiven byw/ = Wt (F~1(Y)).
SinceF(Y) c Y we haveY c F~1(Y) andWw, c W/ . Now the mapWw, — W, given by
wt(y) — F(w)T(F(y)) is anisomorphism. This follows from the identities

Fww') = F(w)F W), F(yw’) _ F(]/)F(wl).

The former identity follows from the definition of thB-action onW and the latter from
the relations

(Fr")=F(" ) =Fym"),
((Fo) ™= (F) ™ = ()™ = Flr ™).
ThusW, andW), are isomorphic. Both act ovi and the diagram

F
R

wz(y)

< =<

1%
l Fw)t(F(y))
\%

F
—_—
for y € F~1(Y) is commutative and so the map

(W, V) > (Wa, V),
(wr(y).y') » (Fw)t(F(»)), F(¥"))
is an isomorphism of permutation groups. Let
A = {yeV; F(y)e A}

ly eV (i, F(y))>0fori=1,....¢, (a0, F(y)) <1}
{y cev: <F(ai)’y>>0fori=1,...,€, (F(—Oéo),)’><1}~

The closured’ is a fundamental region for the action 8f, on V.

Now W, C W, so each affine reflection iW, lies in W, . Thus all reflecting hyperplanes
for W, are reflecting hyperplanes fé¥,. Thus the walls of the fundamental alcoye
are reflecting hyperplanes fov/. It follows that the closured is the union of certain
transforms ofA’ by elements ofV,.
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We recall that the action af on Y is given by F = g Fp whereq > 1 andFp has finite
order (when the groug© is splitq is the number of elements in the base fielddt but
in general the real numbgrneed not be an integer). Now

A =FYA) =¢F N A).

Since dimV = ¢, we have VoA’ = (vol A)/4*.
Thus there arg* transforms ofA’ which lie in A. Let D be the subset oW/, given by

D={deW); (A)" C A}.

Thus|D| = ¢*. Infact, D is a set of left coset representativediof in W.. For leto’ € W.,.
Let B be the alcove foW, satisfying(A’)“” C B. Then there exists a uniques W, with
A® = B. Thus(A")® c A® and sow'w™! € D. So the coset’ W, contains an element
of D, and the above argument shows this elemen? @f unique.

We next observe that eaehe D is the unique element of minimal length in its coset
dW,. For leto’ = dw with w € W,, ' € W/, Let ¢ be the length function for the Coxeter

groupW,. Then¢(d) is the distance between the alcoEsand(A')4. Let A = B and
take a sequence of consecutive alcoves fmio B’ of minimal length. The number of
steps in this sequence #$w’). Now for each alcove in this sequence there is a unique
alcove which lies iM and is equivalent to the given one und&y. Consider the sequence
of alcoves inA obtained in this way from the given sequence. This is called the derived
sequence. Since the original sequence runs frgnto B’, the derived sequence runs
from A’ to (A")?. Neighboring alcoves in the derived sequence are either consecutive
alcoves or are equal. So the number of steps in the derived sequence is &ideast
Thus,£(w’) > £(d) for all " € dW,. Now suppose that(w’) = £(d). Then there are no
repetitions in the derived sequence. But any step in the original sequence which takes an
alcove forW, into a consecutive alcove fd¥, lying in a different alcove fow, would
give a repetition in the derived sequence. Hence, all terms in the original sequence must
lie in the same alcove foW,, viz A. In particular,B’ C A and sow’ € D. Thus,o’ =d.
Hencel(w') > £(d) for all ' € dW,, with equality only ifw’ =d.

D is called the set of distinguished left coset representativé®,ah W,. (In the case
in which G* is a split group, this situation was considered by Cellini in [3].)

5. TheBrauer complex

We consider the walls of the fundamental alcevéor W, . Let

Hi={yeV: (ai,y)=0} forl<i<e,
Ho={y € V; (—a0,y) =1}.

TheH,; fori €{0,1,...,¢} are the walls ofA. H; is called the -wall of A.
Similarly, we consider the walls of the fundamental alcavdor W). Let
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H ={yeV; (a, F(y))=0} forl<i<e,
Hy={y € V; (—a0, F(y))=1}.

TheH fori €{0,1,...,¢} are the walls ofd’. H] is called thei-wall of A’. We note that
if y lies on thei-wall of A’ thenF (y) lies on thei-wall of A.

Consider the set of all open faces of the closed simplexThe set of all transforms
of such open faces of’ by elements ofb form a simplicial complex called the Brauer
complex. The simplices of maximal dimension in the Brauer complex are the alcéVés
for d € D. Thei-wall of (A")? is defined to bQH);d. The union of all faces of the Brauer
complex isA. General information about the Brauer complex can be found in [2, 3.8] and
in [4].

For eachy € A we defineJ(y) by J(y) ={i €{0,1,...,¢}; y € H;}. We say thaty
lies in theJ (y)-face of A. In general the/-face of A is the intersection of thewalls H;
of Afori e J whereJ C{0,1,...,¢}.

Similarly, for eachy € A’ we defineJ’(y) by
J'(y)y={ie{0,1,....¢%; y € H}.
Theny lies in theJ'(y)-face of A’.

Lemma5.1. Leto' = w'z(y') € W, wherew’ € W andy’ € F~1(Y). Thenw' € D if and
onlyify’ € Aandw'(aj) € @7 forall j € J(y).

Proof. If o' € D thenA™ C A. Since @ =y’ we havey’ € A.
Conversely, suppose that € A. ThenA"'*?) lies in A if and only if

(aj, A")>0 forall jeJ(").

For this condition ensures that”'*") lies on the same side of thewall of A asA does,
for each;j € J(y’). The above condition can be written as

(w'(aj),A’)>0 forallje ",
i.e.,asw'(xj) e @t forall jeJ(y). O

Now let d € D and B’ = (A")¢. Then B’ is an alcove forw, contained in the
fundamental alcove for W, . In general, a wall o8’ will not be a wall of A. However, it
may happen that a wall @&’ coincides with a wall ofd. If this happens, the types of this
wall for B and for A need not be the same. We consider when a given wal @ also a
wall of A and how the types of the wall with respectRboand A are related.

Proposition 5.2. Let B’ = A™'*0") wherew’ € W,y’ € F~1(Y) andw't(y’) € D. Let
w=Fw'),y=F(y)andletj € {1,...,¢}. Then thej-wall of B’ is a wall of A if and
only if (w*l(aj), y) = 0. If this is so thej-wall of B’ coincides with the-wall of A where
Fw™(a;) is a positive multiple of; .
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Proof. SinceB’ = A"'*"") we haveF (B') = A»*™), The j-wall of A for j € {1, ..., ¢}
isH;={veV; (aj,v) =0} and(«;, v) > 0 forv e A. Thus thej-wall of A" is

H}” _ {Uw evV; (aj,v) = O} = {v eV; (wil(aj), v) =0}.
Also (w™L(a;), v) > 0 forv e A¥. Thus thej-wall of A¥*) is
foryev: fwhep.v)=0}={veV: (w @), v)={w @), v)}

Also, (w™ (), v) > (w™(a;),y) for v e A¥*Y). Now A¥*") = F(B’). Thus the
j-wall of B is

{F_l(v) evV; (w_l(aj), v) = (w_l(aj), y)} = {v eV, (Fw_l(aj), v) = (w_l(ozj), y)}

Also (Fw™Y(a;),v) > (w™(«;),y) for v e B’. Now thei-wall of A is {v e V;
{(aj,v) =0}if i € {1,...,£}. Also {o;, v) > 0 for v € A. Thus thej-wall of B’ coincides
with thei-wall of A if and only if (w*l(aj), y)=0 ande*l(a.,') is a positive multiple
ofa;. O

Now let X,, « € @, be the root subgroups af with respect to the maximally
split F-stable maximal torug". Since F(T) =T we haveF(X,) = X,@«) for some
permutationo of @. Moreover, we have (@) = @ . It was shown by Chevalley that
F(a) is a positive multiple op~(«) for eacha € @, (cf. [8, 11.2]).

Corallary 5.3. Under the hypotheses of the above proposition,jtiveall of B’ coincides
with thei-wall of A wherew=1(a;) = p ().

Pr oof. Fw*l(aj) is a positive multiple of the roop*lwfl(aj). It is also a positive
multiple of ;. Hencep™tw=(e;) = ;. O

Now the Brauer complex has the following favorable properties. There is a natural
bijection between thg® F-stable points im ,» and they* simplices of maximal dimension
in the Brauer complex. Each such simpgxhas the property that its closuBé contains a
uniqueF-stable point, and this point lies if1,,. Moreover, distinct simplices’ give rise
to distinct F-stable points in their closures.

The F-stable pointinB’” may be given as the fixed point of a contraction map as follows.
F(B') is an alcove foiW,, thus there exists a uniquee W, with F(B’) = A®. Hence
F(B) = A® andF~1(A®) = B'.

Let f: A — A be the map given by

f@)=Fa®).
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Now F = g Fp onV whereg > 1 andFp has finite orderV may be made into a metric
space on which elements @f, and Fp act as isometries. With respect to such a meitric
we have

1
d(f(ay), f(a2)) = 5d(a1, az).

Thus f is a contraction mapping, so has a unique fixed point. This isFtsgable point
in B’.

6. Proof of Theorem 1

The results already described enable us to define a bijection between semisimple
conjugacy classes @¥” and distinguished coset representativedofEach semisimple
conjugacy class of;© determines arF-stable point ofA, and such anF'-stable point
lies in a unique alcoved’ = (A")? for d € D. This determines our bijection. Now let
d=w't(y’) forw € W, y’ € F~1(Y). The key to the proof of Theorem 1 lies in the
following proposition.

Proposition 6.1. Let d = w't(y’) € D and let ¢ be the corresponding semisimple
conjugacy class ofi . Then theF-conjugacy clas$(c) of W is the one containing’.

Proof. Let B’ = A’. Then F(B') = A® wherew € W, is given byw = F(d). Thus,
o =wt(y) wherew = F(w') e Wandy = F(y) €Y.

Let a € B’ be the F-stable point inB’. Then f(a) = a where f:A — A is the
contraction map given by (v) = F~1(v®). HenceF (a) = a® = a®* ).

Consider the homomorphisgh. Y ® Q,, — T. We havea € Y @ Q. Let ¢ (a) =ss.
A comparison of the actions df on 7 and onY shows that (F (a)) = F(s). Similarly,
a comparison of the actions #f on T and onY shows that (a¥) = s* for w € W. Now
F(a) =a"*™ with y € ¥, andY is the kernel ofp. HenceF (s) = s¥.

Suppose lies in the J-face of A whereJ c {0,1,...,¢}. Thenll; = {aj; jeld}is
a fundamental system of roots far(s) with respect toT'. Since we know thatv(I7;)
is such a fundamental system for somwec W it is sufficient to check that®/ = s
for each j € J wheres; is the reflection corresponding ;. If j € {1,...,¢} and
jeJ then(aj,a) =0, soa’ =a ands®’ =s. If 0 € J then (—ap,a) =1, and so
a®® =a — (ap, a)ay = a + ag. Sinceay € Y, this implies thats® = 5. Hencell; is a
fundamental system of roots far(s) with respect tar'.

By the Lang—Steinberg theorem, there exjsts G with g~ 1F(g) = n,, wheren,, €
N(T) is an element mapping to € W. Let T’ =8T ands’ =$s. ThenF(s') =s" andT’
is an F-stable maximal torus off containings’. The conjugacy class @’ containings’
is the class: corresponding td under our bijection.

We wish to show thaf” is a maximally split torus of”(s"). Now a lies in theJ-face
of A. The contraction may preserves face types since this is true of hoth W, andF.
Since f(A) = B’ and f(a) = a, it follows thata lies in the J-face of B’ also. Thus the
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J-face of A coincides with the/-face of B'. Let j € J. Then we know that thg-wall of
B’ coincides with the-wall of A wherew(e;) = p(a;). Hence,i € J. It follows that
w™ 1) = p(1)).

Now we know that/T; is a fundamental system of roots f61(s") with respect tor”.
Let the fundamental root subgroups ©fs’) with respect tol"” be X/, for « € I1,. Let
B1=(T'", X, fora € I1;). ThenBy is a Borel subgroup of (s”).

Now X/, = 8X, whereX, is the corresponding root subgroup@fwith respect tar'.
Thus the following statements are equivalent:

F(X))=X; & FCEXa)=%Xp & FOFX,)=%Xp
o nwF(Xa):Xﬁ & anp(a):Xﬂ
& w(p@)=4
But we know thatwp(I1;) = I, thus F must permute the root subgroups, for
a € I1,. It follows that F(B1) = B1. Hence,B; is an F-stable Borel subgroup af' (s")
containing?’. ThusT’ is a maximally split torus o€ (s”).
Now T’ is obtained from the maximally split toru¥ of G by twisting with
w € W. Hence, theF-conjugacy clas®(c) of W is the one containingw. Finally, we

observe that since = F(w’), w andw’ lie in the sameF-conjugacy class o#. For
w'~lw' F(w’) = w. Thus the proposition is proved.o

This proposition shows that the number of semisimple conjugacy claseds miapped
by 6 to C is equal to the number af € D with = (d) € C. To complete the proof of
Theorem 1, we show this is given by

E My.

weC

Now there is a bijection between elementsiaf D and alcovegA’)¢ which lie in A.
Also the elemeniw’t(y’) for w’ e W, y’ € F~1(Y) lies in D if and only if ' € A and
w'(aj) € @t forall j € J(y’). Thus the number of elements bfof the formw’z (y’) for
givenw’ € W is the number of elemenis € Y ® R satisfying the conditions:

F(y ey,
(@j,y)=0 forj=1,...,¢,
(_a07 J//> g 17

w'(aj) e @t forall j e J(y)).
Lety = F(y'). SinceJ (y) = J(y') the above conditions can be written:

y €Y,
(aj,y)=0 forj=1,....¢,
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(Fo'@),y)<q wherea = —aq is the highest root

w'(aj) e @t forall jeJ(y).

The number of satisfying these conditions is,,. Thus the number of elemendse D
with(d) e Cis ) comy. O

7. Examples

7.1.If GF =Sl,(g), thenW = S, and F acts trivially onW. Thus theF-conjugacy
classes oV are the conjugacy classes$f and so correspond to partitionsof

For example, leGF = Sly(5). ThenW = S, has twoF-conjugacy classes (1) arist).
SinceG has rank 1, there are five semisimple conjugacy classéd inUnder6 three of
them map to (1) and two t61).

Now takeG’ = Sl3(5). ThenW = S3 has threeF-conjugacy classes (1)1, s2, wo)
(5152, s251) Where wg = s15251 = s2s152. G has rank 2 and s&f has 25 semisimple
conjugacy classes. Unders of them map to (1), 10 tés1, s2, wo) and 10 to(s1s2, s251).

7.2. If G is the unitary grousu, (q2) then again we hav® = S, but this timeF' acts
nontrivially onW. We haveF (w) = wowwal wherewo = (1n)(2n—1)...is the element
of maximal length inS,. Hencew’ = x~twF (x) if and only if w'wg = x H(wwo)x.
Thus,w, w’ are F-conjugate if and only ifvwg andw’wg are conjugate. It follows that
F-conjugacy classes d¥ again correspond to partitions of

For example, letGF = SU3(5%). Then W = S3 has three F-conjugacy classes
(1, 5152, 5251), (51, 52), (wp). G has rank 2 ang =5, soG’ has 25 semisimple conjugacy
classes. Undet, 15 of them are mapped {4, s1s2, s251), 6 t0 (s1, s2) and 4 to(wo).

In conclusion we mention that there is another measure on partitionsetdted to card
shuffling, the so calleg-shuffles, introduced by Bayer and Diaconis in [1] and studied by
Diaconis, McGrath, and Pitman in [6]. It may also be interesting to consider to what extent
these results ogp-shuffles can be generalized to arbitrary finite groups of Lie type.
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