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Abstract

We discuss a mapθ from the semisimple conjugacy classes of a finite groupGF of Lie type to
theF -conjugacy classes of its Weyl group. We obtain two expressions for the number of semisimple
classes mapped byθ into a givenF -conjugacy class ofW . The first involves distinguished coset
representatives in the affine Weyl group and the second is the number of elements in the coroot
lattice satisfying certain conditions. The Brauer complex plays a key role in the proof. The mapθ

has recently proved of interest in connection with probabilistic and combinatorial group theory.
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1. Introduction

Let G be a simple simply-connected algebraic group over the algebraic closureK of
the prime fieldFp , and letF :G→G be a Frobenius endomorphism. LetGF be the corre-
sponding finite group of Lie type. It was shown by Steinberg [8, 14.8], that the number of
conjugacy classes of semisimple elements inGF is q� where� is the rank ofG andq is the
absolute value of all eigenvalues ofF on the co-character group of anF -stable maximal
torus ofG.

Let s′ ∈ GF be semisimple and letT ′ be a maximally split maximal torus of the
centralizerC(s′). Then T ′ is an F -stable maximal torus ofG but is not necessarily
maximally split inG. Let T be a maximally split torus ofG. ThenT ′ = gT for some
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g ∈ G. SinceT ,T ′ are bothF -stable we haveg−1F(g) ∈ N (T ). Let W = N (T )/T be
the Weyl group andw ∈ W be the image ofg−1F(g) under the natural homomorphism
from N (T ) to W . The elementw ∈ W is not uniquely determined by the semisimple
conjugacy class ofGF containings′, but itsF -conjugacy class is uniquely determined.
Herew1,w2 ∈W areF -conjugate ifw2 = x−1w1F(x) for somex ∈W . (TheF -action on
W is induced from that onT .) Thus we have a mapθ from semisimple conjugacy classes
of GF to F -conjugacy classes inW .

This mapθ has recently proved to be of interest in probabilistic group theory in a
number of special cases. WhenGF = SLn(q) each semisimple conjugacy class inGF

determines a polynomial of degreen in Fq [t], the characteristic polynomial of the elements
in the class. TheF -conjugacy classes ofW are the conjugacy classes in the symmetric
groupSn, so correspond to partitions ofn. A given polynomial of degreen in Fq [t] will
factorize into irreducible polynomials whose degrees form a partition ofn. The mapθ
takes the semisimple conjugacy class associated to the given polynomial into this partition
of n. In this way, we obtain a measure on the set of partitions ofn given by the number of
semisimple conjugacy classes ofSLn(q) mapping to a given partition underθ . J. Fulman
[7] has obtained interpretations of this measure on theF -conjugacy classes ofW in terms
of card shuffling in the cases whenGF is SLn(q) andSp2n(q).

The purpose of this paper is to obtain two expressions for the number of semisimple
conjugacy classes ofGF mapped byθ into a givenF -conjugacy classC of W . LetX,Y
be the character and co-character groups ofT respectively and letV = Y ⊗ R. Forγ ∈ V

let τ (γ ) :V → V be the translationv 	→ v + γ . ThenWa = Wτ(Y ) is the affine Weyl
group acting onV . Let F :Y → Y be the Frobenius action onY induced by that onT .
ThenF = qF0 whereF0 :Y → Y has finite order (cf. [8, 11.14]). LetW ′

a =Wτ(F−1(Y )).
ThenW ′

a is a group of transformations ofV which containsWa as a subgroup of indexq�.
In factW ′

a is isomorphic toWa , both being isomorphic to the affine Weyl group ofG. Each
left coset ofWa in W ′

a has a unique element of minimal length with respect to the length
function on the Coxeter groupW ′

a . These are called the distinguished coset representatives
of Wa in W ′

a . We denote byπ :W ′
a →W the natural homomorphism from the affine Weyl

groupW ′
a to the Weyl groupW .

We shall prove the following result.

Theorem 1. LetC be anF -conjugacy class ofW . Then the following three numbers are
equal:

(i) The number of semisimple conjugacy classes ofGF mapped byθ toC.
(ii) The number of distinguished coset representativesd ofWa in W ′

a such thatπ(d) ∈ C.
(iii)

∑
w∈C mw, wheremw is the number of elementsγ ∈ Y satisfying the following

conditions:
(a) 〈αj , γ 〉 � 0 for j = 1, . . . , � where theαj are the set of simple roots ofG;
(b) 〈F−1

0 (α̃), γ 〉 � q whereα̃ is the highest root andF = qF0 onX;
(c) w(αj ) is a positive root for allj ∈ J (γ ). Hereα0 = −α̃ andJ (γ ) is the subset

of {0,1, . . . , �} defined as follows. Forj ∈ {1, . . . , �}, j ∈ J (γ ) if and only if
〈αj , γ 〉 = 0. For j = 0, j ∈ J (γ ) if and only if〈F−1

0 (α̃), γ 〉 = q .
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We note thatF0(α̃)= α̃ whenGF is a Chevalley group or Steinberg twisted group, but
not when it is a Suzuki or Ree group.

Theorem 1 was conjectured by Fulman in the case whenGF is split and proved by
him in several particular cases. A proof due to the author whenGF is split appears in
Fulman’s paper [7]. We give a proof here in the general (not necessarily split) case in order
to encourage further results on probabilistic and combinatorial group theory of the type
already obtained for certain particular groupsGF .

Thanks are due to Jason Fulman for stimulating the author’s interest in this question.

2. Semisimple classes in reductive groups

We recall some basic facts about semisimple conjugacy classes. Proofs can be found,
for example, in [2, Chapter 3].

LetG be a simple simply-connected algebraic group over the algebraic closureK of Fp .
Let � be the rank ofG. Let T be a maximal torus ofG andW = N (T )/T be the Weyl
group. LetK∗ be the multiplicative group ofK andX = Hom(T ,K∗), Y = Hom(K∗, T )
be the character group and co-character group ofT , respectively. ThenX,Y are free
abelian groups of rank� and we have a mapX× Y → Z given byχ,γ 	→ 〈χ,γ 〉 where

χ
(
γ (λ)

) = λ〈χ,γ 〉 for χ ∈X, γ ∈ Y, λ ∈K∗.

Given an elementw ∈ W let nw ∈ N (T ) be an element mapping tow under the natural
homomorphism. Then we define aW -action onT by

tw = n−1
w tnw, t ∈ T , w ∈W.

We also defineW -actions onX andY by

(γ w)(λ)= (
γ (λ)

)w
, γ ∈ Y, w ∈W, λ ∈K∗,(

w(χ)
)
t = χ(tw), χ ∈X, w ∈W, t ∈ T .

Let V = Y ⊗ R and for eachγ ∈ V let τ (γ ) :V → V be the translationv 	→ v + γ .
These maps forγ ∈ Y generate the translation groupτ (Y ). We have an action ofW onV
obtained by extending its action onY . LetWa =Wτ(Y ) be the affine Weyl group.Wa acts
onV as a group of affine transformations given by

(γ ⊗ r)wτ(γ
′) = (γ w ⊗ r)+ γ ′, γ , γ ′ ∈ Y, r ∈ R,w ∈W.

Let Φ ⊂ X be the root system ofG with respect toT , and letΠ = {α1, . . . , α�} be
a system of simple roots. Letα̃ be the highest root andα0 = −α̃. LetA be the subset ofV
given by

A= {
γ ∈ V ; 〈αi, γ 〉> 0 for i = 1, . . . , �, 〈−α0, γ 〉< 1

}
.
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A is called the fundamental alcove inV . Its closureA is a fundamental region for the
action ofWa onV .

We next consider semisimple conjugacy classes inG. Since each semisimple element
lies in a maximal torus and any two maximal tori ofG are conjugate, any semisimple
conjugacy class ofG contains an elements which lies in our maximal torusT . Moreover,
two elements ofT are conjugate inG if and only if they lie in the sameW -orbit onT .

Now the mapY ⊗K∗ → T determined byγ ⊗λ 	→ γ (λ) is an isomorphism. Moreover
there is a (non-canonical) isomorphism betweenK∗ and Qp′/Z whereQp′ is the set
of rational numbers with denominator prime top. Thus we have an isomorphismY ⊗
(Qp′/Z) → T . This determines a homomorphismY ⊗ Qp′ → T with kernelY ⊗ Z = Y .
Thus we have an isomorphism

(Y ⊗ Qp′)/Y → T .

This gives a bijection betweenT and theτ (Y )-orbits onY ⊗ Qp′ . There is therefore
a bijection between theW -orbits onT and the orbits ofWa = Wτ(Y ) on Y ⊗ Qp′ . Since
eachWa -orbit onV = Y ⊗ R contains a unique element ofA, eachWa -orbit onY ⊗ Qp′
will contain a unique element ofAp′ , the set of elements ofA whose coordinates all lie
in Qp′ . This is a bijection between semisimple conjugacy classes ofG and elements ofAp′ .
We shall make use of this bijection to understand the properties of the semisimple classes.

LetC(s) be the centralizer ofs in G. ThenC(s) is a reductive subgroup ofG which is
connected sinceG is assumed simply-connected. In fact,C(s) = 〈T ,Xα , α ∈ Φ1〉 where
Φ1 = {α ∈ Φ; α(s) = 1} andXα is the root subgroup ofG corresponding toα ∈ Φ.
A fundamental system of roots forC(s) can be described in terms of the above bijection
between semisimple conjugacy classes and elements ofAp′ . Let a ∈ Ap′ be the point
corresponding to the semisimple class containings. Let J be the subset of{0,1, . . . , �}
given by

j ∈ J if and only if

{ 〈αj , a〉 = 0 for j = 1, . . . , �,
〈−α0, a〉 = 1 for j = 0.

We then say thata lies on theJ -face of the fundamental alcoveA. LetΠJ ⊂Φ be defined
byΠJ = {αj ; j ∈ J }. Then it is shown in [5] that there existsw ∈W such thatw(ΠJ ) is a
fundamental system inΦ1. The elementw which appears here depends on the choice ofs

in its W -orbit in T . There exists ans in any givenW -orbit such thatΠJ is a fundamental
system of roots forC(s).

3. The Frobenius action

We now suppose thatF :G → G is a Frobenius map onG (cf. [2, 1.17]). Then there
existF -stable maximal tori inG. Among these we can find a maximally splitF -stable
maximal torusT . (T is uniquely determined up to conjugacy by an element ofGF .) We
defineF -actions onX,Y by
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(
F(χ)

)
t = χ

(
F(t)

)
, χ ∈X, t ∈ T ,

(
F(γ )

)
λ= F

(
γ (λ)

)
, γ ∈ Y, λ ∈K∗.

It follows from these definitions that

〈
χ,F (γ )

〉 = 〈
F(χ), γ

〉
, χ ∈X, γ ∈ Y.

We also define an action ofF onW by

F(nw)≡ nF(w) modT .

It follows from this definition that

F(tw)= F(t)F (w), t ∈ T , w ∈W.

Now letGF = {g ∈ G; F(g) = g} be the corresponding finite group of Lie type. Let
T ′ be anyF -stable maximal torus ofG. ThenT ′ = gT for someg ∈G. SinceF(T ′)= T ′
we haveF(gT ) = gT and sog−1F(g) ∈ N (T ). Henceg−1F(g) = nw for somew ∈ W .
We say thatT ′ is obtained from the maximally split torusT by twisting withw. The map
T ′ → w induces a bijection between theGF -classes ofF -stable maximal tori ofG and
theF -conjugacy classes ofW . (We recall thatw,w′ ∈ W areF -conjugate if there exists
x ∈W such thatw′ = x−1wF(x).)

We now consider semisimple conjugacy classes in the finite groupGF . Under the given
assumptions onG everyF -stable semisimple conjugacy class ofG containsF -stable
elements and any two such elements are conjugate by an element ofGF . Thus there is
a bijective correspondence between semisimple conjugacy classes ofGF andF -stable
semisimple conjugacy classes ofG.

We may define anF -action onV = Y ⊗ R by extending linearly the aboveF -action
on Y . We may also define an action ofF on the subsetA ⊂ V , i.e., the closure of the
fundamental above. We shall denote this action bya → F.a, whereF.a is the element
of A in the orbit ofF(a) under the affine Weyl groupWa . If a ∈ Ap′ we haveF.a ∈ Ap′ ,
thus we have anF -action onAp′ . ThisF -action onAp′ is compatible with theF -action
on semisimple conjugacy classes ofG under the bijection between semisimple conjugacy
classes ofG and points inAp′ . In particular, we obtain a bijection betweenF -stable
semisimple conjugacy classes ofG andF -stable points inAp′ . This in turn gives a bijection
between semisimple conjugacy classes ofGF andF -stable points inAp′ .

Now let s′ ∈ GF be semisimple. LetT ′ be a maximally split torus ofC(s′). ThenT ′
is obtained from a maximally split torusT of G by twisting withw ∈ W . We obtain in
this way a mapθ from semisimple conjugacy classes ofGF to F -conjugacy classes ofW .
Given anF -conjugacy classC of W we are interested in the question of how many of the
q� semisimple classes ofGF are mapped byθ toC.
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4. Distinguished coset representatives in the affine Weyl group

Let T be a maximally split torus ofG, Y the co-character group ofT and V =
Y ⊗ R. ThenF :V → V is a non-singular map defined in Section 3. LetF−1(Y ) =
{γ ∈ V ; F(γ ) ∈ Y } and letτ (F−1(Y )) be the group of translations ofV by elements of
F−1(Y ). LetW ′

a be the group of affine transformations ofV given byW ′
a =Wτ(F−1(Y )).

SinceF(Y ) ⊂ Y we haveY ⊂ F−1(Y ) andWa ⊂ W ′
a . Now the mapW ′

a →Wa given by
wτ(γ ) 	→ F(w)τ(F (γ )) is an isomorphism. This follows from the identities

F(ww′)= F(w)F(w′), F
(
γ w

′) = F(γ )F(w
′).

The former identity follows from the definition of theF -action onW and the latter from
the relations

(
F

(
γ w

′))
λ= F

(
γ w

′
(λ)

) = F
(
γ (λ)w

′)
,

((
F(γ )

)F(w′))
λ= (

F(γ )λ
)F(w′) = (

F
(
γ (λ)

))F(w′) = F
(
γ (λ)w

′)
.

ThusWa andW ′
a are isomorphic. Both act onV and the diagram

wτ(γ )

V
F

V

V
F

V

F(w)τ(F (γ ))

for γ ∈ F−1(Y ) is commutative and so the map

(
W ′
a,V

) → (Wa,V ),(
wτ(γ ), γ ′) 	→ (

F(w)τ
(
F(γ )

)
,F (γ ′)

)

is an isomorphism of permutation groups. Let

A′ = {
γ ∈ V ; F(γ ) ∈A

}
= {

γ ∈ V ; 〈
αi,F (γ )

〉
> 0 for i = 1, . . . , �,

〈−α0,F (γ )
〉
< 1

}
= {

γ ∈ V ; 〈
F(αi), γ

〉
> 0 for i = 1, . . . , �,

〈
F(−α0), γ

〉
< 1

}
.

The closureA′ is a fundamental region for the action ofW ′
a onV .

NowWa ⊂W ′
a so each affine reflection inWa lies inW ′

a . Thus all reflecting hyperplanes
for Wa are reflecting hyperplanes forW ′

a . Thus the walls of the fundamental alcoveA
are reflecting hyperplanes forW ′

a . It follows that the closureA is the union of certain
transforms ofA′ by elements ofW ′

a .
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We recall that the action ofF onY is given byF = qF0 whereq > 1 andF0 has finite
order (when the groupGF is split q is the number of elements in the base field ofGF but
in general the real numberq need not be an integer). Now

A′ = F−1(A)= q−1F−1
0 (A).

Since dimV = �, we have volA′ = (volA)/q�.
Thus there areq� transforms ofA′ which lie inA. LetD be the subset ofW ′

a given by

D = {
d ∈W ′

a; (A′)d ⊂A
}
.

Thus|D| = q�. In fact,D is a set of left coset representatives ofWa in W ′
a . For letω′ ∈W ′

a.

LetB be the alcove forWa satisfying(A′)ω′ ⊂ B. Then there exists a uniqueω ∈Wa with
Aω = B. Thus(A′)ω′ ⊂ Aω and soω′ω−1 ∈ D. So the cosetω′Wa contains an element
of D, and the above argument shows this element ofD is unique.

We next observe that eachd ∈ D is the unique element of minimal length in its coset
dWa . For letω′ = dω with ω ∈Wa , ω′ ∈W ′

a . Let � be the length function for the Coxeter

groupW ′
a . Then�(d) is the distance between the alcovesA′ and(A′)d . LetA′ω′ = B ′ and

take a sequence of consecutive alcoves fromA′ to B ′ of minimal length. The number of
steps in this sequence is�(ω′). Now for each alcove in this sequence there is a unique
alcove which lies inA and is equivalent to the given one underWa . Consider the sequence
of alcoves inA obtained in this way from the given sequence. This is called the derived
sequence. Since the original sequence runs fromA′ to B ′, the derived sequence runs
from A′ to (A′)d . Neighboring alcoves in the derived sequence are either consecutive
alcoves or are equal. So the number of steps in the derived sequence is at least�(d).
Thus,�(ω′) � �(d) for all ω′ ∈ dWa . Now suppose that�(ω′) = �(d). Then there are no
repetitions in the derived sequence. But any step in the original sequence which takes an
alcove forW ′

a into a consecutive alcove forW ′
a lying in a different alcove forWa would

give a repetition in the derived sequence. Hence, all terms in the original sequence must
lie in the same alcove forWa , viz A. In particular,B ′ ⊂ A and soω′ ∈ D. Thus,ω′ = d .
Hence�(ω′)� �(d) for all ω′ ∈ dWa with equality only ifω′ = d .

D is called the set of distinguished left coset representatives ofWa in W ′
a . (In the case

in whichGF is a split group, this situation was considered by Cellini in [3].)

5. The Brauer complex

We consider the walls of the fundamental alcoveA for Wa . Let

Hi = {
γ ∈ V ; 〈αi, γ 〉 = 0

}
for 1 � i � �,

H0 = {
γ ∈ V ; 〈−α0, γ 〉 = 1

}
.

TheHi for i ∈ {0,1, . . . , �} are the walls ofA. Hi is called thei-wall of A.
Similarly, we consider the walls of the fundamental alcoveA′ for W ′

a . Let
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H ′
i = {

γ ∈ V ; 〈
αi,F (γ )

〉 = 0
}

for 1 � i � �,

H ′
0 = {

γ ∈ V ; 〈−α0,F (γ )
〉 = 1

}
.

TheH ′
i for i ∈ {0,1, . . . , �} are the walls ofA′. H ′

i is called thei-wall of A′. We note that
if γ lies on thei-wall of A′ thenF(γ ) lies on thei-wall of A.

Consider the set of all open faces of the closed simplexA′. The set of all transforms
of such open faces ofA′ by elements ofD form a simplicial complex called the Brauer
complex. The simplices of maximal dimension in the Brauer complex are the alcoves(A′)d
for d ∈D. Thei-wall of (A′)d is defined to be(H)′i

d . The union of all faces of the Brauer
complex isA. General information about the Brauer complex can be found in [2, 3.8] and
in [4].

For eachγ ∈ A we defineJ (γ ) by J (γ ) = {i ∈ {0,1, . . . , �}; γ ∈ Hi}. We say thatγ
lies in theJ (γ )-face ofA. In general theJ -face ofA is the intersection of thei wallsHi

of A for i ∈ J whereJ ⊂ {0,1, . . . , �}.
Similarly, for eachγ ∈A′ we defineJ ′(γ ) by

J ′(γ )= {
i ∈ {0,1, . . . , �}; γ ∈H ′

i

}
.

Thenγ lies in theJ ′(γ )-face ofA′.

Lemma 5.1. Letω′ =w′τ (γ ′) ∈W ′
a wherew′ ∈W andγ ′ ∈ F−1(Y ). Thenω′ ∈D if and

only if γ ′ ∈A andw′(αj ) ∈Φ+ for all j ∈ J (γ ′).

Proof. If ω′ ∈D thenA′ω′ ⊂A. Since 0ω
′ = γ ′ we haveγ ′ ∈A.

Conversely, suppose thatγ ′ ∈A. ThenA′w′τ (γ ′) lies inA if and only if

〈
αj ,A

′w′ 〉
> 0 for all j ∈ J (γ ′).

For this condition ensures thatA′w′τ (γ ′) lies on the same side of thej -wall of A asA does,
for eachj ∈ J (γ ′). The above condition can be written as

〈
w′(αj ),A′〉> 0 for all j ∈ J (γ ′),

i.e., asw′(αj ) ∈Φ+ for all j ∈ J (γ ′). ✷
Now let d ∈ D and B ′ = (A′)d . Then B ′ is an alcove forW ′

a contained in the
fundamental alcoveA for Wa . In general, a wall ofB ′ will not be a wall ofA. However, it
may happen that a wall ofB ′ coincides with a wall ofA. If this happens, the types of this
wall for B ′ and forA need not be the same. We consider when a given wall ofB ′ is also a
wall of A and how the types of the wall with respect toB ′ andA are related.

Proposition 5.2. Let B ′ = A′w′τ (γ ′) wherew′ ∈ W,γ ′ ∈ F−1(Y ) andw′τ (γ ′) ∈ D. Let
w = F(w′), γ = F(γ ′) and letj ∈ {1, . . . , �}. Then thej -wall of B ′ is a wall ofA if and
only if 〈w−1(αj ), γ 〉 = 0. If this is so thej -wall ofB ′ coincides with thei-wall ofA where
Fw−1(αj ) is a positive multiple ofαi .
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Proof. SinceB ′ =A′w′τ (γ ′) we haveF(B ′)=Awτ(γ ). Thej -wall of A for j ∈ {1, . . . , �}
isHj = {v ∈ V ; 〈αj , v〉 = 0} and〈αj , v〉> 0 for v ∈A. Thus thej -wall of Aw is

Hw
j = {

vw ∈ V ; 〈αj , v〉 = 0
} = {

v ∈ V ; 〈
w−1(αj ), v

〉 = 0
}
.

Also 〈w−1(αj ), v〉> 0 for v ∈Aw. Thus thej -wall of Awτ(γ ) is

{
v + γ ∈ V ; 〈

w−1(αj ), v
〉 = 0

} = {
v ∈ V ; 〈

w−1(αj ), v
〉 = 〈

w−1(αj ), γ
〉}
.

Also, 〈w−1(αj ), v〉 > 〈w−1(αj ), γ 〉 for v ∈ Awτ(γ ). Now Awτ(γ ) = F(B ′). Thus the
j -wall of B ′ is

{
F−1(v) ∈ V ; 〈

w−1(αj ), v
〉 = 〈

w−1(αj ), γ
〉} = {

v ∈ V ; 〈
Fw−1(αj ), v

〉 = 〈
w−1(αj ), γ

〉}
.

Also 〈Fw−1(αj ), v〉 > 〈w−1(αj ), γ 〉 for v ∈ B ′. Now the i-wall of A is {v ∈ V ;
〈αi, v〉 = 0} if i ∈ {1, . . . , �}. Also 〈αi, v〉 > 0 for v ∈ A. Thus thej -wall of B ′ coincides
with the i-wall of A if and only if 〈w−1(αj ), γ 〉 = 0 andFw−1(αj ) is a positive multiple
of αi . ✷

Now let Xα , α ∈ Φ, be the root subgroups ofG with respect to the maximally
split F -stable maximal torusT . SinceF(T ) = T we haveF(Xα) = Xρ(α) for some
permutationρ of Φ. Moreover, we haveρ(Φ+) = Φ+. It was shown by Chevalley that
F(α) is a positive multiple ofρ−1(α) for eachα ∈Φ, (cf. [8, 11.2]).

Corollary 5.3. Under the hypotheses of the above proposition, thej -wall of B ′ coincides
with thei-wall ofA wherew−1(αj )= ρ(αi).

Proof. Fw−1(αj ) is a positive multiple of the rootρ−1w−1(αj ). It is also a positive
multiple ofαi . Henceρ−1w−1(αj )= αi . ✷

Now the Brauer complex has the following favorable properties. There is a natural
bijection between theq� F -stable points inAp′ and theq� simplices of maximal dimension
in the Brauer complex. Each such simplexB ′ has the property that its closureB ′ contains a
uniqueF -stable point, and this point lies inAp′ . Moreover, distinct simplicesB ′ give rise
to distinctF -stable points in their closures.

TheF -stable point inB ′ may be given as the fixed point of a contraction map as follows.
F(B ′) is an alcove forWa , thus there exists a uniqueω ∈ Wa with F(B ′) = Aω. Hence
F(B ′)=Aω andF−1(Aω)= B ′.

Let f :A→A be the map given by

f (a)= F−1(aω).
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Now F = qF0 onV whereq > 1 andF0 has finite order.V may be made into a metric
space on which elements ofWa andF0 act as isometries. With respect to such a metricd

we have

d
(
f (a1), f (a2)

) = 1

q
d(a1, a2).

Thusf is a contraction mapping, so has a unique fixed point. This is theF -stable point
in B ′.

6. Proof of Theorem 1

The results already described enable us to define a bijection between semisimple
conjugacy classes ofGF and distinguished coset representatives ofD. Each semisimple
conjugacy class ofGF determines anF -stable point ofAp′ and such anF -stable point
lies in a unique alcoveB ′ = (A′)d for d ∈ D. This determines our bijection. Now let
d = w′τ (γ ′) for w′ ∈ W , γ ′ ∈ F−1(Y ). The key to the proof of Theorem 1 lies in the
following proposition.

Proposition 6.1. Let d = w′τ (γ ′) ∈ D and let c be the corresponding semisimple
conjugacy class ofGF . Then theF -conjugacy classθ(c) ofW is the one containingw′.

Proof. Let B ′ = A′d . ThenF(B ′) = Aω whereω ∈ Wa is given byω = F(d). Thus,
ω=wτ(γ ) wherew = F(w′) ∈W andγ = F(γ ′) ∈ Y .

Let a ∈ B ′ be theF -stable point inB ′. Then f (a) = a where f :A → A is the
contraction map given byf (v)= F−1(vω). Hence,F(a)= aω = awτ(γ ).

Consider the homomorphismφ :Y ⊗ Qp′ → T . We havea ∈ Y ⊗ Qp′ . Let φ(a) = s.
A comparison of the actions ofF on T and onY shows thatφ(F(a))= F(s). Similarly,
a comparison of the actions ofW onT and onY shows thatφ(aw)= sw for w ∈W . Now
F(a)= awτ(γ ) with γ ∈ Y , andY is the kernel ofφ. HenceF(s)= sw.

Supposea lies in theJ -face ofA whereJ ⊂ {0,1, . . . , �}. ThenΠJ = {αj ; j ∈ J } is
a fundamental system of roots forC(s) with respect toT . Since we know thatw(ΠJ )

is such a fundamental system for somew ∈ W it is sufficient to check thatssj = s

for eachj ∈ J where sj is the reflection corresponding toαj . If j ∈ {1, . . . , �} and
j ∈ J then 〈αj , a〉 = 0, so asj = a and ssj = s. If 0 ∈ J then 〈−α0, a〉 = 1, and so
as0 = a − 〈α0, a〉αv0 = a + αv0. Sinceαv0 ∈ Y , this implies thatss0 = s. HenceΠJ is a
fundamental system of roots forC(s) with respect toT .

By the Lang–Steinberg theorem, there existsg ∈ G with g−1F(g) = nw wherenw ∈
N (T ) is an element mapping tow ∈W . Let T ′ = gT ands′ = gs. ThenF(s′)= s′ andT ′
is anF -stable maximal torus ofG containings′. The conjugacy class ofGF containings′
is the classc corresponding tod under our bijection.

We wish to show thatT ′ is a maximally split torus ofC(s′). Now a lies in theJ -face
of A. The contraction mapf preserves face types since this is true of bothw ∈Wa andF .
Sincef (A) = B ′ andf (a) = a, it follows thata lies in theJ -face ofB ′ also. Thus the
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J -face ofA coincides with theJ -face ofB ′. Let j ∈ J . Then we know that thej -wall of
B ′ coincides with thei-wall of A wherew−1(αj ) = ρ(αi). Hence,i ∈ J . It follows that
w−1(ΠJ )= ρ(ΠJ ).

Now we know thatΠJ is a fundamental system of roots forC(s′) with respect toT ′.
Let the fundamental root subgroups ofC(s′) with respect toT ′ beX′

α for α ∈ ΠJ . Let
B1 = 〈T ′,X′

α for α ∈ΠJ 〉. ThenB1 is a Borel subgroup ofC(s′).
Now X′

α = gXα whereXα is the corresponding root subgroup ofG with respect toT .
Thus the following statements are equivalent:

F(X′
α)=X′

β ⇔ F(gXα)= gXβ ⇔ F(g)F (Xα)= gXβ

⇔ nwF (Xα)=Xβ ⇔ nwXρ(α) =Xβ

⇔ w
(
ρ(α)

) = β.

But we know thatwρ(ΠJ ) = ΠJ , thus F must permute the root subgroupsX′
α for

α ∈ ΠJ . It follows thatF(B1) = B1. Hence,B1 is anF -stable Borel subgroup ofC(s′)
containingT ′. ThusT ′ is a maximally split torus ofC(s′).

Now T ′ is obtained from the maximally split torusT of G by twisting with
w ∈W . Hence, theF -conjugacy classθ(c) of W is the one containingw. Finally, we
observe that sincew = F(w′), w andw′ lie in the sameF -conjugacy class ofW . For
w′−1w′F(w′)=w. Thus the proposition is proved.✷

This proposition shows that the number of semisimple conjugacy classes ofGF mapped
by θ to C is equal to the number ofd ∈ D with π(d) ∈ C. To complete the proof of
Theorem 1, we show this is given by

∑
w∈C

mw.

Now there is a bijection between elements ofd ∈ D and alcoves(A′)d which lie inA.
Also the elementw′τ (γ ′) for w′ ∈ W , γ ′ ∈ F−1(Y ) lies in D if and only if γ ′ ∈ A and
w′(αj ) ∈Φ+ for all j ∈ J (γ ′). Thus the number of elements ofD of the formw′τ (γ ′) for
givenw′ ∈W is the number of elementsγ ′ ∈ Y ⊗ R satisfying the conditions:

F(γ ′) ∈ Y,

〈αj , γ ′〉 � 0 for j = 1, . . . , �,

〈−α0, γ
′〉 � 1,

w′(αj ) ∈Φ+ for all j ∈ J (γ ′).

Let γ = F(γ ′). SinceJ (γ )= J (γ ′) the above conditions can be written:

γ ∈ Y,

〈αj , γ 〉 � 0 for j = 1, . . . , �,
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〈
F−1

0 (α̃), γ
〉
� q whereα̃ = −α0 is the highest root,

w′(αj ) ∈Φ+ for all j ∈ J (γ ).

The number ofγ satisfying these conditions ismw′ . Thus the number of elementsd ∈ D

with π(d) ∈C is
∑

w′∈C mw′ . ✷

7. Examples

7.1. If GF = SLn(q), thenW = Sn andF acts trivially onW . Thus theF -conjugacy
classes ofW are the conjugacy classes ofSn and so correspond to partitions ofn.

For example, letGF = SL2(5). ThenW = S2 has twoF -conjugacy classes (1) and(s1).
SinceG has rank 1, there are five semisimple conjugacy classes inGF . Underθ three of
them map to (1) and two to(s1).

Now takeGF = SL3(5). ThenW = S3 has threeF -conjugacy classes (1)(s1, s2,w0)

(s1s2, s2s1) wherew0 = s1s2s1 = s2s1s2. G has rank 2 and soGF has 25 semisimple
conjugacy classes. Underθ 5 of them map to (1), 10 to(s1, s2,w0) and 10 to(s1s2, s2s1).

7.2. If GF is the unitary groupSUn(q2) then again we haveW = Sn but this timeF acts
nontrivially onW . We haveF(w)=w0ww

−1
0 wherew0 = (1n)(2n−1) . . . is the element

of maximal length inSn. Hencew′ = x−1wF(x) if and only if w′w0 = x−1(ww0)x.
Thus,w,w′ areF -conjugate if and only ifww0 andw′w0 are conjugate. It follows that
F -conjugacy classes ofW again correspond to partitions ofn.

For example, letGF = SU3(52). Then W = S3 has threeF -conjugacy classes
(1, s1s2, s2s1), (s1, s2), (w0). G has rank 2 andq = 5, soGF has 25 semisimple conjugacy
classes. Underθ , 15 of them are mapped to(1, s1s2, s2s1), 6 to (s1, s2) and 4 to(w0).

In conclusion we mention that there is another measure on partitions ofn related to card
shuffling, the so calledq-shuffles, introduced by Bayer and Diaconis in [1] and studied by
Diaconis, McGrath, and Pitman in [6]. It may also be interesting to consider to what extent
these results onq-shuffles can be generalized to arbitrary finite groups of Lie type.
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