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Abstract

We generalize the notion of an MV-algebra in the context of residuated lattices to include non-
commutative and unbounded structures. We investigate a number of their properties and prove that
they can be obtained from lattice-ordered groups via a truncation construction that generalizes the
Chang—Mundici” functor. This correspondence extends to a categorical equivalence that generalizes
the ones established by D. Mundici and A. Dvieaskij. The decidability of the equational theory
of the variety of generalized MV-algebras follows from our analysis.
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1. Introduction

A residuated lattices an algebrd. = (L, A, Vv, -, \, /, e) such thafL, A, V) is a lattice;
(L,-,e)isamonoid; and foralt, y,z €L,

x-y<z & x<z/y & y<x\z
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Residuated lattices form a finitely based equational class of algebras (see, for example,
[4]), denoted byR L.

It is important to remark that the elimination of the requirement that a residuated lat-
tice have a bottom element has led to the development of a surprisingly rich theory that
includes the study of various important varieties of cancellative residuated lattices, such as
the variety of lattice-ordered groups. See, for example, [2,4,9,12-14,18,20].

A lattice-ordered group(¢-group) is an algebraG = (G, A, Vv, -, ~1 e) such that
(G, A, V) is a lattice,(G, -, ~1, ¢) is a group, and multiplicatinis order preserving (or,
equivalently, it distributes over the lattice operations). The variety-gfoups is term
equivalent to the subvariet,G, of residuated lattices defined by the equati@nys)x ~
e ~ x(x\e); the term equivalence is given by ! = ¢/x andx\y = x~1y, y/x = yx~ L.

See [1] for an accessible introduction to the theory-gfoups.

A residuated bounded-lattiGean algebrd = (L, A, Vv, -, \, /, ¢, 0) suchtha{L, A, v,
-\, /, e) is aresiduated lattice aidsatisfies the equationv 0 ~ x. Note thatT =0\0=
0/0 is the greatest element of such an algelt residuated (boundedattice is called
commutativef it satisfies the equationy ~ yx andintegralif it satisfiesx A e ~ x.

Commutative, integral residuated boundattices have been studied extensively in
both algebraic and logical form, and includegartant classes of algebras, such as the
variety of MV-algebras, which provides the algebraic setting for Lukasiewicz’s infinite-
valued propositional logic. Several term equérd formulations of MV-algebras have been
proposed (see, for example, [8]). Within the context of commutative, residuated bounded-
lattices, MV-algebras are axiomatized by the idengity—> y) — y ~ x v y, which is a
relativized version of the law~—x ~ x of double negation; in commutative residuated
lattices we writex — y for the common value af\y andy/x, and—x for x — 0. The
term equivalence with the standard signature is givexlgyy = x - y, -x = x — 0,
x®y=—-(—x-—-y)andx - y = —x @& y. The appropriate non-commutative gener-
alization of an MV-algebra is a residudtdounded-lattice that Hsfies the identities
x/(y\x) =~ x vV y=~(x/y)\x. These algebras have recently been considered in [10,15,16]
under the name pseudo-MV-algebras.

C.C. Chang proved in [7] that i = (G, A, Vv, -, "1, ¢) is a totally ordered Abelian
group anctt < e, then the residuated-bounded lattic€G, u) = ([u, e], A, V,0,\, /, e, u)
—wherex oy =xy Vu, x\y=x"1y Aeandx/y = xy~1 A e—is an MV-algebra. Con-
versely, ifL is a totally-ordered MV-algebra, then there exists a totally ordered Abelian
group with a strong order unit < e such thal. = I' (G, u). This result was subsequently
generalized for arbitrary Abeliatrgroups by D. Mundici [24] and recently for arbitrary
£-groups by A. Dvuréenskij [10]. It should be noted that all three authors have expressed
their results in terms of the positive, rather than the negative, cone. Mundici and@wdre
skij have also shown that the object assignmEntan be extended to an equivalence
between the category of MV-algebras (respectively, pseudo-MV-algebras), and the cate-
gory with objects Abelian (respectively, arbitrafgroups with a strong order unit, and
morphism<-group homomorphisms that preserve the unit.

We generalize the concept of an MV-algebra in the setting of residuated lattices—by
dropping integrality £ A e ~ x), commutativity ¢y ~ yx) and the existence of bounds—
to a class that includesgroups, their negative cones, generalized Boolean algebras and
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the O-free reducts of MV-algebras. The aim of this paper is to extend the aforementioned
results of Mundici and Dvur&enskij.

A generalized MV-algebréGMV-algebrd is a residuated lattice that satisfies the iden-
titiesx/((x vV y)\x) ®x Vy~ (x/(x V y))\x. It is shown in Section 2, see Lemma 2.9,
that every GMV-algebra has a distributive lattice reduct.

The negative conef a residuated lattick = (L, A, V, -, \, /, e) is the algebrd.~ =
(L=, AV, \L-,/L-,e),whereL™ ={xeL|x<e}, x\|-y=x\yAeandx/ -y =
x/y Ae. Itis easy to verify that. ~ is a residuated lattice. It will be shown thatlifis a
GMV-algebra, ther. ~ is a GMV-algebra, as well. As noted before a residuated lattice is
called integral, ife is the greatest element of its lattice reduct. The negative cone of every
residuated lattice is, obviously, integral.

By anucleuson a residuated lattide we understand a closure operafoon L satisfy-
ing y(a)y (b) < y(ab),foralla,bin L.

We note that ifL = (L, A, Vv, -, \,/, e) is a residuated lattice andis a nucleus om.,
then the imagd.,, of y can be endowed with a residuated lattice structure as follows (see
Lemma 3.3):

Ly ={Ly, A Vyiop\s /v (@),

y(@) Vv, y(b)=yaVb), y(a) oy, y(b) =y (ab).

As an illustration, let: be a negative element of @ngroupG, and lety,,: G~ — G~
be defined by, (x) =x vu, forallx € G~. Then,y, is a nucleus oG~ andG;u is equal
to the O-free reduct of (G, u).

We say that a residuated lattiéeis thedirect sumof two of its subalgebraB, C, in
symbolsA =B@C, ifthe mapf : B x C — A defined byf (x, y) = xy is anisomorphism.

The primary purpose of this paper is to establish the following six results.

Theorem A (See Theorem 5.6 residuated latticavl is a GMV-algebra if and only if
there are residuated latticeS, L, such thatG is an¢-group,L is the negative cone of an
¢-group,y is anucleus o andM =G &L,

Theorem B (See Theorem 3.12A residuated latticé/ is an integral GMV-algebra if and
only if there exists ad-groupH and a nucleug onH™, such thaM =H_ .

LetIGMV be the category with objects integral GMV-algebras and morphisms residu-
ated lattice homomorphisms. Also, leG; be the category with objects algebras y),
such thatl is the negative cone of afigroup andy is a nucleus on it such that its image
generateg. as a monoid. Let the morphisms of this category be homomorphisms between
these algebras. The generalization of Mundici's and D&emskij's results is provided by
the following theorem.

Theorem C (See Theorem 4.12The categoriesGMV andL G, are equivalent.
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Theorem D (See Theorem 6.6A residuated latticd is a GMV-algebra if and only if
L = Gg, for somet¢-group G and some corgd on G. (For the concept of a core, see
page28land Lemmd.8.)

Let GMYV be the category with objects GMV-algebras and morphisms residuated lattice
homomorphisms. Also, ldt G* be the category with objects algebr@, 8) such thaiG
is an ¢-group andg is core onG whose image generaté€x, let the morphisms of this
category be homomorphisms between these algebras.

Theorem E (See Theorem 6.9The categorie&MV andL G* are equivalent.

Let GMYV be the variety of GMV-algebras and &G MV be the variety of integral
GMV-algebras.

Theorem F (See Theorem 7.3)he varietiesyf MV and ZGMYV have decidable equa-
tional theories.

2. Definitionsand basic properties

We refer the reader to [4] and [20] for basic results in the theory of residuated lattices.
Here, we only review background material needed in the remainder of the paper.

The operationg, and / may be viewed as generalized division operations, with
being read asx' over y” and y\x as “y underx”. In either casex is considered the
numeratorand y is the denominator We refer to\ as theleft division operation and
as theright division operation. Other commonly used terms for these operationkefire
residuationandright residuation respectively.

As usual, we writexy for x - y and adopt the convention that, in the absence of paren-
thesis,- is performed first, followed by and/, and finally byv and A. For example,
x/yz Au\v represents the expressipry (v -z)] A (u\v). We tend to favok in calculations,
but any statement about residuated structures happosite‘mirror image” obtained by
reading terms backwards (i.e., replacingy by y - x and interchanging/y with y\x).
Examples of opposite equations can be seen in properties (i)—(vi) of Lemma 2.1 below.

The existence of the division operations has the following basic consequences.

Lemma 2.1 [4]. Residuated lattices satisflye following identities

() x(yvz)~xyvxzand(y Vz)x ~ yx V zx.

(i) x\(y Az2)= (x\y) A (x\z) and(y Az)/x ~ (y/x) A (z/x).
(i) x/(yv2)~(x/y)Ax/z)and(y v 2)\x ~ (y\x) A (2\x).
(iv) (x/y)y<xandy(y\x) <x.

(V) x(y/2) < (xy)/z and(z\y)x < z\(yx).
(Vi) (x/y)/z=~x/(zy) andz\(y\x) ~ (yz)\x.
(vii) x\(y/z) = (x\y)/z.

(viil) x/e~x=~e\x.
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(iX) e<x/xande < x\x.
(X) (x/x)2~x/x and (x\x)% 2~ x\x.

A residuated lattice is calledommutative(respectivelycancellativé, if its monoid
reduct iscommutativégrespectivelycancellativg. It is shown in [2] that the clasSanR L
of all cancellative residuated lattices is a variety with defining equatigfis ~ x ~ y\yx.
As mentioned before, a residuated lattice is calietggral if it satisfies the identity
e A x ~ x. The variety of all integral residuated lattices will be denotedZtR/L. We
will also have the occasion to refer to the subvarietRdf generated by all totally ordered
residuated lattices. We denote this variety BY.¢ and refer to its members aspre-
sentableresiduated lattices. It follows from Jonsson’s Lemma on congruence-distributive
varieties (see [21]) that all subdirectly irreducible algebraRi¢ are totally ordered
and whence every representable residuatiteé is a subdirect product of totally ordered
residuated lattices. The following result provides a concise equational bagisCfor

Theorem 2.2 ([4,20], see also [18])A residuated lattice is representable, i.e., it is a mem-
ber of the varietyRLC, if and only if it satisfies the identitgz\(x/(x V y)z A e) V
(w(y/(xVy)/wne) ~e.

Definition 2.3.

(i) A generalized BL-algebréGBL-algebrd is a residuated lattice that satisfies the iden-
tities

(AN /y)y=xAy=y(y\(x AY)).

(i) A generalized MV-algebréGMV-algebrg is a residuated lattice that satisfies the iden-
tities
/(v )\x) 2 x vy~ (x/(x v )\
We denote the variety of all GBL-algebras IGy3L and that of GMV-algebras by
GMYV. GBL-algebras generalize BL-algebras, the algebraic counterparts of basic logic

(see [17]). In particular, representable, commutative, bounded (integral) GBL-algebras are
(term equivalent to) the O-free reducts of BL-algebras.

Lemma 2.4 [2]. The preceding sets of identities have, respectively, the following quasi-
identity formulations

x<y = (x/yyrxxy(y\x)
and

xSy = x/G\)Ry~@/y)\x.
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Moreover, the first set of identities is also equivalent to the properdyvasibility in the
setting of residuated lattices:

x<y = (Fzw) @yExxyw).
Lemma 2.5 [2]. Every GMV-algebra is a GBL-algebra.

Proof. Let x,y be elements of. such thatx < y. Setz = (x/y)y and note that, by
Lemma2.1z < x andz/y < z/x.

Using Lemma 2.1(vii), (vi) and the defining quasi-equation for GMV-algebras, we have
the following:

(z/x)\z=x

((z/x)\2)/y=x/y
(z/\z/y)=x/y

@/ (@/0\z/) = @/)/(x]y)
/x=2z/(x/y)y

(z/x)\z = (z/(x/y)y)\z

= x=(x/y)y.

N T

Thus,x <y impliesx = (x/y)y. Likewise,x < y impliesy(y\x) =x. O

Lattice-ordered groups and their negative cones are examples of cancellative GMV-
algebras. Non-cancellative exampleslirde generalized Boolean algebras.

Definition 2.6. An elementz in a residuated lattick is calledinvertible, if a(a\e) =e =
(e/a)a; a is calledintegral, if e/a = a\e = e. We denote the set of invertible elements of
L by G(L) and the set of integral elements bgL ).

Note thatz is invertible if and only if there exists an element! such thata =1 =e¢ =
a~ta. In this caser™1 = ¢/a = a\e. It is easy to see that multiplication by an invertible
element is an order automorphism.

Lemma 2.7. LetL be a GBL-algebra.
(i) Every positive element afis invertible.
(ii) L satisfies the identities/x ~ x\x ~ e.

(i) L satisfies the identity/x ~ x\e.

Proof. For the first property, let be a positive element; by the defining identity for GBL-
algebras, we gei(a\e) = ¢ = (¢/a)a; that is,a is invertible. By (i) and Lemma 2.1(ix),
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x/x andx\x are invertible for every. Hence, by Lemma 2.1(x},/x = ¢ = x\x. Finally,
by (ii) and Lemma 2.1(V)x(e/x) < x/x = ¢, hencee/x < x\e. Likewise,x\e <e/x. O

Lemma 2.8. A residuated lattice is a GBL-algebra if and only if it satisfies the identities
x(x\yAe)xx Ay~ (y/x Ae)x.

Proof. Assume that is a GBL-algebra and, y € L. By Lemmas 2.7(ii) and 2.1(ii), we
get

XAYy= x(x\(x A y)) =x(x\x Ax\y)=x(e Ax\y).
Likewise, we get the opposite identity.
Conversely assume that the identities in the statement of the lemma hold. We first
show that every positive elemeatis invertible. Indeed¢ = a(a\e A e) < a(a\e) < e.

S0,a(a\e) = e and likewise(e/a)a = e. Arguing as in the proof of (ii) of Lemma 2.7, we
show thate\x = x/x = ¢, for everyx € L. Using Lemma 2.1(ii), we get

x(x\(x A y)) =x(x\x Ax\y)=x(eAx\y)=x AYy.
Likewise, we obtain the opposite equatior
Lemma 2.9. Every GBL-algebra has a distributive lattice reduct.

Proof. LetL be a GBL-algebra and, y, z € L. Invoking Lemmas 2.1 and 2.8, we have

xA(yv)=[x/(yVv)re](yVva)

=[x/(sz)Ae]yV[x/(sz)/\e]z
S(x/yneyVi(x/znez
=

XAY)V (X A2),
forall x, y, z. Thus, the lattice reduct df is distributive. O

Lemma 2.10. If x, y are elements of a GBL-algebra and y = ¢ (x, y are orthogona),
thenxy=x A y.

Proof. We havex =x/e=x/(xVy)=x/xAx/y=eAx/y=Yy/yAx]/y=(yAXx)/y.
So,xy=((x Ay)/y)y=xAy. O

The variety of integral GBL-algebras is denotedby3L and that of integral GMV-
algebras by GMV. Obviously,ZGBL =TRLNGBL andIGMYV =TIRLNGMV.
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Lemma2.11.

(i) The varietyZGBL is axiomatized, relative tR £, by the equationéc/y)y ~x Ay &
y(y\x).

(iiy The varietyZG MYV is axiomatized, relative t&R £, by the equations/(y\x) ~ x Vv
YA (x/y)\x.

Proof. In view of the alternative axiomatizations 6L andG MYV given in Lemma 2.8,

the proposed equations hold in the corresponding varieties. For the reverse direction we
verify that the proposed idéties imply integrality. This is obvious for the first set of
identities fory = e. For the second set, observe that for every

e<eVe/x :e/((e/x)\e) =e/(eVXx);
soevx<e,ie,x<e. O

Negative cones of-groups are examples of integral GMV-algebras, hence also of in-
tegral GBL-algebras. Moreover, these are céatiee residuated lattices, that is, members
of CanR L. It is shown in [2] that the clas§G~ of negative cones of-groups is a vari-
ety andCG™ =ZGMV N CanRL =ZGBL N CarRL. This result provides an equational
basis for£G™.

Theorem 2.12 [2]. The class,LG™, of negative cones df-groups is a variety and the
equationsry/y ~ x &~ y\yx, x(x\y) ® x A y =~ (y/x)x form an equational basis for it,
relative toR L.

The variety of Brouwerian algebras is term equivalent to the subvasietf residuated
lattices axiomatized by the identityy ~ x A y. It is clear thatBr € ZGBL. The variety
GB A of generalized Boolean algebras is generated, in the setting of residuated lattices, by
the two-element residuated latti2zandGBA = ZGMV N Br (see [13]).

Lemma 2.13.

(i) Everyintegral GBL-algebra satisfies the identityx)\(x/y) =~ x/y and its opposite.
(i) Every integral GMV-algebra satisfies the identityy v y/x ~ e and its opposite.
(i) Every integral GMV-algebra satisfies the identitieg(y A z2) ~ x/y V x/z, (x V
y)/z~x/zV y/z and the opposite ones.
(iv) Every commutative integral GMV-algebra is representable. Consequently, the subdi-
rectly irreducible, commutative, integral GMV-algebras are totally ordered.

Proof. (i) For every integral GBL-algebra,/x < e, so(y/x)\(x/y) > x/y. To show the
reverse inequality, we need to check that

(/0N /9)y < x.
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By Lemma 2.1(vii), it suffices to show that

((/2)\x)/y)y < x.
Using Lemma 2.11(i), we see that the last equation is equivalent to
(/(/0\x)) ((/2)\x) < x,
which in turn is equivalent to
¥/ ((/0)\x) < x/((v/x)\x).
To show that this holds note that
y/((/0\x) < y/x,
sincey/x < e, and that
y/x <x/((y/x)\x),
sinceu < v/(u\v) is valid in every residuated lattice, by Lemma 2.1(iv).

(i) Using Lemma 2.11(ii), we have/y v y/x = (x/y)/((y/x)\(x/y)), which simpli-
fiesto(x/y)/(x/y), by invoking (i) and the fact that integral GMV-algebras are integral
GBL-algebras. Finally, the last term is equakt integral residuated lattices.

(i) Since every GMV-algebra has a distributive lattice reduct by Lemma 2.9, the equa-
tions in (iii) follow from (ii) and Proposition 6.10(ii) of [4].

(iv) This follows from (i) and [18]. O

It will be shown in Section 5, refer to Corollary 5.5, that the assumption of integrality
in condition (iv) is not needed.

3. A concreterealization of integral generalized MV-algebras
A closure operatoon a poseP isamapy : P — P with the usual properties of preserv-
ing the order, being extensive K y (x)), and being idempotertuch a map is completely
determined by its image
C=imy (3.1)
by virtue of the formula
y(x)=min{ce C: x <c}. (3.2)

A closure retractis any subsef C P such that the minima (3.2) exist for alle P. Con-
ditions (3.1) and (3.2) establish a bijective correspondence between all closure operators
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y and all closure retracts of P. In what follows, we will useP, to denote the closure
retract onP corresponding to the closure operagor

A nucleuson a residuated lattide is a closure operator on the lattice reduct df such
thaty (a)y (b) < y(ab), foralla,b € L. Itis clear that a closure operatpron L is a nu-
cleusifand only ify (y (a)y (b)) = y (ab), for all a, b € L. Note that the monotonicity con-
dition in the definition of a nucleus can be replaced by the inequalityy (x\y) < vy ();
so, the property that is a nucleus on a residuated lattice can be expressed equationally in
the expansion of the language of residuatdtitias by a unary operation. A closure retract
C of aresiduated latticé is called ssubactof L if x/y, y\x € C,forallx € C andy € L.

As an example, note that if is an element of an integral residuated latticethen
Yu L — L—defined byy, (x) = x v u, for all x e L—is a nucleus oh.. Its imageL,, is
the principal filterfu = {x € L | u < x}.

The next result describes the relationship between nuclei and subacts (see [25, p. 30];
and [26, Corollary 3.7], for an earlier result in the setting of Brouwerian meet-semilattices).

Lemma 3.1. Let y be a closure operator on a residuated lattice and letL, be the
closure retract associated with. The following statements are equivalent.

() vy isanucleus.
(i) y(@/b,b\y(a)eL,, foralla,beL.
(i) L., is asubactof_.

Proof. (i) = (ii). Leta, b € L. We have,

y(y(@)/b)b < y(y(a)/b)y(b) (yis extensivg
< v((y@y/b)b) (i)
< v(ry@) (v is monotone, Lemma 2.1(iy)
= y(a) (y is idempotent

So,y(y(a)/b) < y(a)/b, by the defining property of residuated lattices. Since the re-
verse inequality follows from the fact thatis extensive, we havg(a)/b =y (y(a)/b) €
L, . Likewise, we obtain the result for the other division operation.

(i) = (i). Leta,b € L. Sincey is extensiveab < y(ab), soa < y(ab)/b. By the
monotonicity ofy and the hypothesis;(a) < v (ab)/b. Using the defining property of
residuated lattices, we gét< y (a)\y (ab). Invoking, once more, the monotonicity of
and the hypothesis, we obtaitib) < y (a)\y (ab), namelyy (a)y (b) < y (ab).

(i) < (iii). This is trivial by the definition of a subact. O

Actually, it can be shown that an arbitrary mpmn a residuated lattice is a nucleus
if and only if y(a)/b = y(a)/y(b) andb\y (a) = y (b)\y(a), for all a,b € L (see [25,
p. 30]).

Corollary 3.2. Conditions(3.1) and (3.2) establish a bijective correspondence between
nuclei on and subacts of a residuated lattice.
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Proof. Use Lemma 3.1. O

The next result shows that every subact of a residuated lattice is a residuated lattice in
its own right.

Lemma3.3. LetL = (L, A, V, -\, /, e) be a residuated lattice; be a nucleus oh and
L, be the subact associated with Then the algebraic systeln), = (L,, A, Vy, 0., \,/,
y(e))—wherex o, y =y (x - y) andx v, y = y(x vV y)—is a residuated lattice.

Proof. Obviously,y (e) is the multiplicative identity of., . Further,L,, being the image of

a closure operator dn, is a lattice with joins and meets definedby, y =y (x v y) and

x Ay y=x Ay, forallx,yeL,.One can easily check that multiplication is associative.
Finally, to check thas,, is residuated, recall thdt, is closed under the division operations
by Lemma 3.1. Consider, y,z€ L,,. We havex o, y <z < y(xy) <z < xy < z (since
z=y(z)andxy < y(xy)) & y < x\z. Likewise, we haver o, y <z < x <z/y. O

Theorem 34.1f L = (L, A, V,-,\,/,e) is a GMV-algebray a nucleus on it and., the
associated subact, then

@) vy =v;
(i) y preserves binary joins
(iii) y(e)=e;
(iv) Ly =(Ly,A,V,0,,\,/,e) isa GMV-algebraand
(V) L, isafilterinL.

Proof. (i) Sincel is a GMV-algebra, ifx € L,,, thenx vy =x/((x vV y)\x) € L, by
Lemma 3.1(iv). Thusy,, is the restriction of/ onL,,.

(ii) It is well known, and easy to prove, thatjifis a closure operator on a pogetindX
is a subset oP such that’\/ X exists, therl\/ y (X) exists and”\/ y (X) = y (P \/ X).
Thus, (i) and (ii) are equivalent.

(i) Since y is extensivee < y (e). Hence,y (e) is invertible, by Lemma 2.7(i). Since
y isanucleusy(e)y(e) < y(e), soy(e) <e. Thus,y(e) =e.

(iv) By Lemma3.3L, is aresiduated lattice. It is a GMV-algebra because the join and
division operations ok, are the restrictions of the corresponding operatioris,inndL
is a GMV-algebra.

MIifxeL,, yeLandx <y, thenby Lemma3.ly=x Vv y=x/((x Vy)\x)isan
element ofL,, . SincelL,, is also a sublattice, it is a lattice-filter.o

Corollary 3.5. If L is an integral GMV-algebra angt is a nucleus orL, thenL,, is an
integral GMV-algebra.

Lemma 3.6. Let y be a nucleus on the negative caneof an ¢-group. Ifz € L andu =
y(z), theny agrees with the nucleus, on the principal filtertz.
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Proof. Let x > z. We will show thaty (x) = u Vv x. Note thatu v x =y (z) Vx < y(x),
sincey is monotone and extensive. On the other hand,u v x, soy (x) <y Vv x) =
u VvV x, becausd,, is afilter, by Theorem 3.4(v). O

Corollary 3.7. Every nucleus on a GMV-algebra is a lattice homomorphism.

Proof. In view of Theorem 3.4(ii), we need only show thatpreserves binary meets.

Let x, y be elements of a GMV-algebra and set x A y andu = y(z). Recall that a
GMV-algebra has a distributive lattice reduct; refer to Lemmas 2.5 and 2.9. Whence by
Lemma3.6y(x Ay) =y Ay)=uVxAY)=@V)AW@VY)=yux)Ayu(y)=
y@)AyQy). O

By Corollary 3.5, the image of a nucleus on the negative cone of-group is an
integral GMV-algebra. In the remainder of this section we are concerned with the proof
of the converse, namely that every integral GMV-algebra is the image of a nucleus on
the negative cone of afrgroup. Our proof is based on Theorem 3.11, which is due to
B. Bosbach, see [5] and [6].

Definition 3.8. A cone algebras an algebr& = (C, \, /, e) that satisfies:

AV = WO\ (2/y)/ (x/y) = (2/x)/(y/x),

e\y~y, y/ery,
2\ /2)~ (x\y)/z, x/(\x) ~ (y/x)\y,
x\x X e, xX/x ~e.

Lemma3.9[5,6]. If C=(C,\, /, e) is a cone algebra, then

(i) foralla,beC, a\b=e < bj/a=c¢;
(ii) the relation< onC, defined by: < b & a\b = e, is a semilattice order witla v b =
a/(b\a); in particulara < e, for all a;
(i) if a <b,thenc\a <c\banda/c <b/c.

Itis easytoseethatlf = (L, A, V, -, \, /, e) is anintegral GMV-algebra—for example,
L e LG —then(L,\, /, ) is a cone algebra, calléde cone algebra df .

It will be shown that every cone algebra is a subalgebra of the cone algebra of a resid-
uated lattice inCG~. In the following construction, the algebra G~ is defined as the
union of an ascending chai, | n € N) of cone algebras, each of which is a subalgebra
of its successor. In the process of constructing the algebyasve also define irC, 41
binary products of elements &,,. Each such product is identified with the congruence
class of the corresponding ordered pair. Tledirdtion below of the division operations
becomes less opaque if we note that the negative cones of-grgup satisfies the law

ab\cd = (b\(a\c)) - ((a\c)\b)\((c\a)\d)) and its opposite.
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Let C be a cone algebra. Define the operatigrasd/ and the relation® and®’ on
C xC,by

(@.b)\(c.d) = (b\(a\o). ((@\c)\b)\((c\a)\d)).
(d,c)/(b,a)=((d/(a/e))/(b/(c/a)), (c/a)/b),
(a,b)® (c,d) < (a,b)\(c,d)=(e,e) and (c,d)\(a,b)=(e,e),
(a,b)® (c,d) & (a,b)/(c,d)=(e,e) and (c,d)/(a,b)= (e, e).

Lemma 3.10[6]. LetC = (C,\, /, e) be a cone algebra. Then

i) =0
(i) © is a congruence relation & x C.
(i) s(C)=(C xC,\,/,e)/O is acone algebra.
(iv) Foreachx € C, let[(x, ¢)]e denote the?-congruence class @k, ¢). Then the map
x> [(x, e)]e is an embedding of into s(C).

Let Co=C, C,41=s(C,), for every natural number, andC = JC,, the directed
union of theC,,’s.
We can now establish the main result of [6].

Theorem 3.11 [6]. Every cone algebr& is a subalgebra of the cone algebra of some
C € LG~. Moreover, every element 6f can be written as a product of elementsof

Proof. We will show that the algebr@ defined above is the cone algebra, i.e. {the, ¢}-
reduct,ofaC e LG™.

For two elements ofC, we define their produczb, to be the elemenk(a, b)lo.
Ihis is well defined, because of the embeddingGyf into C,41, for everyn. Let
C=(C,A, Vv, \,/,e),where\ =\g, /= /g, x Vy=x/(y\x) andx Ay = (x/y)y.
We will show thatC € £G~. R R

By the definition of the operations i6@ and Lemma 3.9(ii)C is a join semilattice.
Note thatab\cd = (b\(a\c)) - (((a\c)\D)\((c\a)\d)). In particularab\c = b\ (a\c) and
a\ab = b. The opposite equations hold, as well. Finally, note that=e¢ = a\e.

Multiplication is order preserving
Leta < ¢; thene = a\c, by the definition of<. To show thaub < cb, we note that

ab\cb = b\[(c\a)\b] = [(c\a)b]\b.
On the other hand,
b/[(c\a)b] = (b/b)/(c\d) = e/(c\d) =e.

This successively yieldgc\a)b < b, [(c\a)b]\b = e, ab\cb = ¢ andab < cb. Likewise
a < cimpliesba < be.
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Multiplication is residuated

Note thata(a\c) < ¢, sincela(a\c)]\c = (a\c)\(a\c) = e. If ab < ¢, thena\ab <
a\c, Sob < a\c. Conversely, ifb < a\c, thenab < a(a\c) < ¢. The other equivalence is
obtained similarly.

Multiplication is associative
We have the following sequence of equivalences:

(abyce<d & ab<d/c < b<a\{d/c) & b<(a\d)/c
& be<(@a\d) & a(bo)<d.

A is the meet operation

We havea(a\b) < b anda(a\b) < ae = a. Additionally, if ¢ <a andc < b, then
e =c\a =c\b. We havec\a(a\b) = (c\a)\(c\b) = ¢, sOc < a(a\b). Interchanging the
roles ofa andb we get that < a,b < ¢ < b(b\a). The opposite properties are obtained
similarly.

Thus, C is a residuated lattice. Since it satisfies the identitiesy ~ y ~ yx/x and
x/(Y\x)~xVy= (x/y)\x, itis in LG, by Theorem 2.12. Finally, by construction,
every element o€ is the product of elements &f. O

The algebraA: is called theproduct extensioof C.
We can now prove the main result of this section.

Theorem 3.12. The residuated lattichl is an integral GMV-algebraifand only =L,
for someL € LG~ and some nucleug onL.

Proof. One direction follows from Corollary 3.5. For the opposite implication Met=
(M,A,V,0,\,/,e) be an integral GMV-algebra. Using Lemmas 2.5, 2.11(ii), 2.1(vi),
2.7(ii), 2.1(viii), 2.1(vii) and 2.11(i), we see théM, \, /, ¢) is a cone algebra. So, by The-
orem 3.11, it is a subreduct of a residuated lattice M € £G~ such that\ generatet
as a monoid.
Since the division operations ™ are the restrictions of the division operationd.of
we use the symbolsand/ for the latter, as well. Moreover, the same holds for the join and
the constant, because in integral GMV-algebras they are term definable by the division
operationsx v y ~ x/(y\x) ande ~ x /x. We use *” to denote the multiplication of .
SinceM generated. as a monoid, for every € L there exists a sequencey, ..., x,)
of elements off such thatx = x1---x,.

Clam1l. If ze M,x € L and(x1,...,x,) is a sequence of elementsMfsuch thatx =
X1+ Xp, thenzvx=zVvxio---o0xy,.

Indeed,

zvx=z/(x\z) (axiom of IGMV-algebras
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2/((Ge1 - x0)\2)
Z/[xa\(- - (x2\(x1\2)) ---)]  (Lemma 2.1(vi)
z/((x10--0xp)\2) (Lemma 2.1(vi)

ZVx (axiom of IGMV-algebrags

Claim 2. Let (x1,...,x,) and (y1,..., ym) be sequences of elements Mf such that
X1+ Xp=Y1"""Ym. ThE€Nx10---0X;, =y10-+-0 yp,.

Indeedyxjo---0x,Vyio---oy, =x10---0x, VX10---0xy, by the preceding claim.
It follows thatyjo---oy,; < x10---0x,, and likewisexio---ox, < y10---0y,. Hence,
X10::+0Xy; =Yy10--:0 Y.

We now define a map on L as follows: ifx € L and (x1, ..., x,) is a sequence of
elements of\f such thatx = x1---x,, we lety(x) =x10---0x,. By Claim 2,y is well
defined. We will show that it is a nucleus en L, = M andL, =M.

Note thaty (x) € M, for all x € L, so by setting = y (x) in the statement of Claim 1,
we gety (x) Vx =y (x). So,x < y(x),forallx e L. If x <y, then

y(x) < y(y)Vvykx)

y(y) Vv x (Claim 1 forz =y (y))
Yy Vy (x <y)

y(y) (sincey is extensive.

N IN

This shows thay is monotone. The following computation shows thats idempotent,
and hence a closure operator.

y(yx))=y(x10---oxy)=x10---0x, =y (x).

Finally, if x =x1---x, andy = y1-- -y, are two representations ofandy in terms
of elements off, then

Y@y < y(y@y (k) (sincey is extensive
=y@ oy (definition of )
= (x10---0xy)o0(y10---0yy) (definition ofy)
= y(xy) (definition of ).

Thus,y is a nucleus.

It is clear thatL, = M, by the definition ofy (x). Further, we have already observed
that the division operations, join ardagree orl, andM. Also, forx,y e M, x o, y =
y(xy) = x o y. Finally, the meet operation on the two structures is the same, since integral
GMV-algebras satisfy the identity A y ~ (x/y)y. Thus, the two structuréd andL, are
identical. O



N. Galatos, C. Tsinakis / Journal of Algebra 283 (2005) 254-291 269

As an example, we note that the collection of all co-finite subsets isfthe universe
of a generalized Boolean algebda hence an integral GMV-algebra. It is easy to see that
A= ((Z7)*),, whereZ is thet-group of the integers under addition and the natural order,

andy ((Xp)new) = (n V (=) new-

4. A categorical equivalence for integral GMV-algebras

In this section we extend the representation of integral GMV-algebras, discussed in the
previous section, to a categorical equivalence.

Let IGMV be the category with objects integral GMV-algebras and morphisms resid-
uated lattice homomorphisms. Also, I&(G, be the category with objects algebras
(L,A, Vv, \,/,e,y),whereL = (L, A, V,-,\,/,e) € LG~ andy is a nucleus ot such
that its image generatdsas a monoid. (In what follows, we will use the notatitn y)
for the objects oL G .) Let the morphisms of this category be homomorphisms between
these algebras. The main result of this smttiTheorem 4.12, asserts that the two cate-
gories defined above are equivalent.

Definition 4.2 and Lemma 4.3 below have been influenced by results in [24]. Lem-
mas 4.5 and 4.7 are non-commutative, unbounded versions of results in the same paper.

Lemma 4.1. Let a, b, c be elements of a residuated lattitec £LG~. Then,ab = c iff
(a=c/bandc < b)iff (b=a\c andc < a).

Proof. We prove only the first equivalence. &b = ¢, thenab/b = ¢/b, so, by Theo-
rem 2.12a = ¢/b. Moreoverc = ab < eb < b, by integrality. Conversely, i = ¢/b and
¢ < b, thenab = (¢/b)b. So,ab = ¢ A b, becausd € ZGBL, by Theorem 2.12. Since
c<b,wegeub=c. O

Recall that ify is a nucleus on some € £LG~, the monoid multiplicatior»,, of L, is
defined byx o, y = y(xy), for all elementst, y € L (see Lemma 3.3).

Definition 4.2. Let y be a nucleus oh € LG~ and letx be an element df . A sequence
(x1,...,x,) of elements ofL, is called adecompositiorof x with respect toy if x =
x1---xp. A decomposition is calledanonicalif, in addition, x; o, x;41 = x;, forall i €
{1,...,n—1}.

Lemma 4.3. LetL € LG~ and lety be a nucleus oL such thatL, generatesl as

a monoid. Then every element bfhas a canonical decomposition with respectyto
Moreover, if(x, ..., x,) and(x], ..., x;,) are canonical decompositions of the same ele-
ment with respect ty andm > n, thenx; = x/, forall i € {1,...,n} andx] = e for all
ie{n+1,...,m}.

Proof. We first construct a canonical decomposition of an arbitrary elemefitL. Let
x1=vy(x)andx;+1 = y((x1---x;)\x), for all i > 1. We will prove that there exists a
natural numben such thate = x1 - - - x, andx; o, x;41=x; foralli e {1,...,n —1}.
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We show, by induction, that < x1---xx, for every integek > 1. Fork = 1 we have
x <yx)=x1. If x <x1---x¢, then Lemma 2.11(i) yields

X=X1'" "Xk N\NX
=xp-xp- [(xne )\ ]
g_xl.. - Xf - J/((_xl. .._xk)\_x)

Next, letz be any element of. such that: < x and setx = y(z). By Lemma 3.6, the
mapsy andy, agree ontx. The arguments of in the definition of the elements, as
well as in the equality (x; - x;+1) = x;, are intx, so we can replace by y,. In particular,
a decomposition of an elemenis canonical with respect tp if and only if it is canonical
with respect to some/evepy, such thatt = y (z) andz < x.

Applying Lemma 4.1, fow = x;, b = x;\((x1---x;—1)\x) andc = (x1---x;—1)\x, we
obtainforalli > 1,

xifxi\(Ge1- - xim)\x) ] = (1w -\,

wherexy ---x;_1 =e fori = 1. It follows that, for alli > 1,

Xi oy Xip1 =Y (XiXi+1) = Yu(XiXi11)
=uV (xixig1) =u V (xiyu (1 x)\x))
=uVuxi(uV[@x1 - x)\x])
=uVoxjuVxi[(x1-x)\x]
=u Vv xiu vV xi[x\((e1- - xi-1)\x)]
=uVoxiuV[(x1-xi-1)\x]
=uV[(x1--xi—)\x]
=yu((x1--xi—1)\x)
=y ((x1- xi—1)\x) =x;.

We next show thatx1 - - - x)\x = u¥\x, for all k > 1, using induction oit. Fork =1,
we have

x1\x =y@)\x =y,)\x =@ Vu)\x =x\x Au\x =e Au\x =u\x.

Assume that the statement is true forTo show that it is true fok + 1, note that, using
properties (iii) and (vi) of Lemma 2.1, we get
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(1 2D \x = xepa\[ (- x)\x |
=y (1 2\ [(r1 - x) \x ]
= [uv (Ga- v\ N[0 \x]
=u\[(x1 - x)\x] A [Gr - x)\e\[ Gz x0)\x ]
=u\[(r1---x0\x] Ae

u\(uk\x) = uk+l\x.

We have shown thatvy - - - xx)\x = u*\x, for all k > 1.

SinceL is the monoid generated Wy, , there exist a natural numberand elements
ai,...,an € L, suchthatt =az---a,. Thusu <y(x) =y(a1---a,) =aizoy, --- oy a, <
a;, foralli. Itfollows thatu” < a1 - --a, = x. Consequenthg < u\x = (x1---x,)\x, that
is, x1---x, < x. Since the reverse inequality was established above, wexhave - - - x,,.

To establish uniqueness, lets, . . ., x,) and(x, ..., x;,) be canonical decompositions
of an element with respect toy andm > n. Then,x; o, x;11 = Xx;, X/ 0y, xf+1 =x/, for
all appropriate values of andxy - --x, = x7---x,,. SO,y (x1---x,) =y (x]---x;,), i.€.,

/
m*

X10y ++ 0y Xy =X 0y +++ 0y X

Hencex; = x}, by the defining property of canarl decompositions. Consequently,
x1\X1x2- - X, = x7\X} X5 - - X;,, SOX2- - X, = X, - - x,,, by cancellativity. Proceeding in-
ductively, we getr; = x/, foralli € {1, ..., n}. Another application of cancellativity yields
e=x, 4 X, hencexj=ceforalli e {n+1,...,m}, by integrality. O

It follows from the preceding lemma that eaelement has a canonical decomposition
unigue up to the addition of extra terms, equat tat the end of the sequence. Thus, when
we consider canonical decompositions of déiset of elements, we may assume that all
have the same length.

Corollary 4.4. LetL € LG and lety be anucleusoh. If (x1,...,x,) and(y1, ..., yn)
are canonical decompositions of the elemengnd y, respectively, with respect to and
x <y, thenx; < y;, foralli <n.

Proof. In view of the preceding lemma, we may assume thandy; are given by the
formulas at the beginning of its proof. Lebe an element of such that < x A y and let
u = y(z). From the proof of the previous theorem we have that - - x;)\x = u*\x, and
(y1---y)\y =uf\y, forallk € {1,...,n}. Thus, foralli € {1, ..., n},
xi =y (1 xim0)\x) =y (' x)
<y hy)=y(01 - yiD\y) =i,

wherexy - xj_1=y1---yi—1=e¢,ifi=1. O
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Lemma 4.5. LetL € LG~ and lety be a nucleus o such thatL, generates. as a
monoid. Also, letxy, ..., x,) and (y1, ..., y») be canonical decompositions for the ele-
mentsx andy, respectively. Then,

n

n
x/\yZH(Xi/\)’i) and XV)’Zl_[(xiVyi)~
i=1 i=1

Proof. Let(zs,...,z,) be acanonical decompositiono& x A y. Without loss of gener-
ality we assume that the length of the decompositionief:. We can do that by extending
the decompositions of andy or of z with extra terms each equal &0 Obviously,

n n n
[Jainyy<[]xin]]vi=xny=z
i=1 i=1 i=1

Moreover,z < x, y, S0z; < x;, y;, for all i, by Corollary 4.4; hence; < x; A y;. Con-
sequently,

n n
7= l_[z,' < l_[(xz' A Yi).
i=1 i=1
Thus,

n

z= l_[(xi A Yi).

i=1
The proof for joins is analogous.O

The following refinement lemma can be found in [11]. Its importance in the proof of the
categorical equivalence was suggested to us by the considerations in [10]. For complete-
ness, we give the proof in the language of negative conésgjobups.

Lemma 4.6 [11, Theorem 1, p. 68]LetL € LG~ and letas, ..., a,, b1, ..., b, be ele-
ments ofL. The following statements are equivalent.

(1) The equalityay - - -a, = b1 - - - by, holds.
(2) There exist elementsg; of L, wherel <i <»n and1 < j <m, such that for all, j,

m n m n
ajzl_[c,-j, b,’ZHC,‘j and l_[ Cil V l_[ Ckj = e.
i=1 j=1

I=j+1 k=i+1
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Notation. We denote the fact that condition (2) holds by the following configuration:

al “ .. an
by €11 -+ Cln
b Cml te Cmn

Thus, with respect to this description, condition (2) states that for aiid j, a; is the
product of the elements of thgh column,b; is the product of the elements of thith
row and that the product of the elements to the right;pfs orthogonal to the product of
elements below it.

Proof. First, we show that (2) implies (1). Recall thatifv y = e, thenxy = yx, by
Lemma 2.10. Fom = n = 2, we haveaiaz = c11¢21¢12c22 = c11€12¢21¢22 = b1ba. We
proceed by induction on the pa&im, n). Letm > 2, n > 2 and assume that the lemma is
true for all pairs(m, k), wherek < n. We will show it is true for the paitm, n).

Suppose that condition (2) holds. It is easy to see that

a - ay al ¢
c1 €12 -+ Cln b1 c11 1

and . . .
Cm Cm2 cee Cmn b Cml Cm

wherec =c1---¢. SO,a1a2---a, = ar(c1---cpm) = arc = bibs---b,,. Note that the
lemma holds for the pai@n, n) if and only if it holds for the paii(n, m), a fact that com-
pletes the induction proof.

For the converse we use induction, as well. We first prove itifer n = 2. Assume that
aiaz = b1by = ¢ and set

cii=aiV by, c12=az/c22,

c21=rc11\a1, co2=azV bo.

Using Lemmas 2.13(iii), 4.1 and 2.1 we get

c12=az/c2=az/(azV b)
= (a1\c)/(a1\c Vv b1\c) = (a1\c)/((a1 A b1)\c)
= a1\[¢/((ax AbD)\c)] = a1\[(a1 A b1) V c]
=ai\(a1 A b1) = a1\a1 A ai\by
=eAai\bi=ai1\bi Ab1\D1

= (a1 Vv b1)\b1 = c11\b1.
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Similarly, we show that1 = b2/c22. S0, we have

c11c21 = c11(c11\a1) =ci1 A a1 = (a1 V b1) ANa1=ay,
€12c22 = (az/c22)c22 = az A c22 = ay,
c11c12 = c11(c11\b1) = c11 A b1 =D,
c21c22 = (b2/c22)c20 = b2 A c22 = bo.
Finally, c21 Vv c12=c11\a1 V c11\b1 = c11\ (a1 V b1) = c11\c11 =e.
For the general case, we proceed by induction on the (pair). Letm > 2,n > 2
and assume that the lemma is true for all painsk), wherek < n. We will show it is

true for the pairim, n). Assume thatiyaz - - -a, = b1bz - - - by, and setu = azaz- - - a,. SO,
aia = biba - - - b,,. By the induction hypothesis, we get

ay a a ---  ap

b1 c11 €12 €12 diz - diy
: Do and

b Cml Cm2 Cm2 dm2 te dnn

for somec;;, di;, with appropriate indices. So, we have

a1 as ... a
b1 c11 d12 ... duy
] C]o
b Cml dm2 ... dmn

Lemma 4.7. LetL € £LG™, y be a nucleus on it and,ay,...,a, € L,. Thena =ay -
az---ay ifandonlyifa =aio, azoy --- 0, a, anday = (ax oy ary10y -+ -0y an)/(ar+10y
ag4+20y -0y ay), forall 1<k <n.

Proof. We use induction on. Forn = 2, if a = aiaz, theny (a) = y (a1a2), S0a =aj o,
ap. Moreover, by Lemma 4.y = a/az, S0a1 = (a1, az)/az. Conversely, it = ajo, a
and (a1 oy az)/az = a1, thena = y(a1az) < y(a2) = ap. Sinceay = a/az, we geta =
aiaz, by Lemmad4.1.

Assume now that the statement is true for all numbers less #hadote that if
aiaz---a, € L,, thenaz---a, € Ly, sinceaiaz---a, < az---a, and L, is a filter, by
Theorems 3.4 and 2.12,

a=ai(az---ay)
& a=aih, b=az---a, and bel,

& a=aioy b, ai=a/b, b=azo,---0,a, and
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ay = (ak 0y Ak410y -+ 0y ay)[(Ak410y Ak420y -0y ay) forall2<k <n
& a=agoyazoy ---o,a, and

ar = (ax Oy Ak+10y - - Oy an)/(ag+1 Oy Ak+2 0Oy * -+ Oy an)

forall 1<k <n. O

Lemma4.8. Assume thak,L € LG, y1, y2 are nucleiorK, L andK,,, L,, generateK
andL as monoids, respectively. LétK,, — L,, be a residuated lattice homomorphism
and letay,...,an, b, ..., b, be elements oK,,, such thataias---a, = bibs--- by,
where multiplication is irK. Then, f (a1) f (a2) - - - f(an) = f(b1) f(b2) - - - f (bm), Where
multiplication takes place ih..

Proof. First note that, for alty, c2, ..., c, € Ky, if c1c2---cp € Ky, then

Sflcica---cn) = flc) f(c2)--- flcn).

Indeed, by Lemma 4.7, the statement c1cz - - - ¢, fOr an element € K, is equivalent
to a system of IGMV-algebra equations k,,. Since f is a homomorphism, the same
equations hold for the images of the elements urfdépplying Lemma 4.7 again, we get
fle)=flen) f(c2)--- flcn).

Next, the equalityiiaz - - - a, = b1b2 - - - by, implies, by Lemma 4.6, that there exigt €
K,,, such that if for all;, j,

m n m n
aj= l_[cij, b; = l_[ Cij and l_[ ¢V l_[ Ckj = €.
i=1 j=1 I=j+1 k=i+1

Note that all of the products above arekp, . Using the observation above and the fact
that f preserves joins (recall that the join operatiorKip, is the restriction of the join
operation inK, by Theorems 3.4 and 2.12), we get that, for afl,

flaj)= ﬁf(cij)a fbi) = ﬁ f(cij) and ﬁ flei)v ﬁ flekj) =e.
i=1 j=1 I=j+1 k=i+1
Finally, we obtain
flay) f(a2)--- flan) = f(b1) f(b2)--- f(bm)
by applying Lemma 4.6 once mored

The following result is an immediate consequence of Theorem 1.4.5 of [3].

Lemma 4.9. Any multiplicative meet-homomorphism between two membetg ofis a
residuated lattice homomorphism.
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Lemma 4.10. LetK,L € LG, and lety1, y» be nuclei onK, L, respectively, such that
Ky, Ly, generateK,L as monoids. Iff :K,, — L,, is a residuated lattice homomor-
phism, then there exists a unigue homomorphfsi{ — L, such thatf o y1 = y20 f.

Proof. By assumption every element of is a product of elements oK,,. By
Lemma 4.8, the mag : K — L, defined by f(x1x2---x,) = f(x1) f(x2) - -- f(x,), for
X1, x2,..., %, € Ky, is well defined and obviously preserves multiplication.

If x € K, then there existy, ..., x, € K, such thatc = x; - - - x,,. Hence,

F(r@) = f(r1(0) = f(ya(x1--xn)) = f(x10y, =+ 0py Xn)
= f(x1) 0y -+ 0y, fxn) = VZ(f(xl) T f(xn)) = )’Z(f(x))~

ThUS,f oyL=Yy20 f
Moreover, if (x1, ..., x,) iS a canonical decomposition farwith respect toy1, then
X =x1--- Xy @NAx; oy xi41 = x;. SO, f(x) = f(x1) -+ f(xn) @Nd f(x;) 0y, f(xi41) =
fx), i.e.,(f(x1),..., f(x,)) is a canonical decomposition fgi(x) with respect tg.
We can now show thaf preserves meets. Lét1, .. ., x,) and(ys, . .., y,) be canonical
decompositions for, y. Then, by Lemma 4.5,

n

feny = f(]"[(x,» A y») =[[reny)=]](fenA fon)=F@ A Fo,
i=1

i=1 i=1

where the last equality is given by Lemma 4.5, sintereserves canonical decompo-
sitions. Thusf preserves multiplication and meet, and hence it is a residuated lattice
homomorphism, by Lemma 4.9.0

Corollary 4.11. Under the hypothesis of the previous lemmg; i§ an injection, a surjec-
tion or an isomorphism, then so j&

Proof. Assume thatf is onto and lety € L. There existys, ..., y, € L,,, such thaty =
y1---¥ya. Moreover, there existy, ..., x, € K, such thatf (x;) = y; for all i. Then,
SOGrxn)=fG) - fn)=y1---yn=1.

Assume thatf is injective. If (x1, ..., x,), (y1, ..., yn) are canonical decompositions
for x,y and f(x) = f(y), namely f (x1) - -+ f(x») = f(y1) - - - f (yn) then, by the preser-
vation of the canonicity of the decomposition undgrestablished in the proof of the
previous lemma, we gef(x;) = f(y;) for all i. By the injectivity of f we getx; = y;, for
alli,sox=y. O
Theorem 4.12. The categoriesGMV andL G, are equivalent.

Proof. For an object(K,y) of LG_, let I'((K,y)) = K,; for a homomorphism
f K, y1) = (L, y2), letI"'(f) be the restriction off to K, .

By Corollary 3.5,I"((K, y)) is an object inlGMV. Using the fact thatf commutes
with the nucleiy; and y», it is easy to see thal’(f) is a morphism ofl GMV. To
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Table 1
Categorical equivalences
K= IGMV LGy LGy
K Obj ZGMY (L,y)e LGy (G,y),Ge LG
L=(y(L)) G™=({y(G7))
y is anucleus o5~
Mor HZGMV) H(LGY) feHLS, f:G—H
f|Gf°V:V°f|Gf
bK Obj bIGMV (L,vu) € LGy (G, w),Ge LG
uel=(yL) ueG™ = (u(GT))
yu 1S a nucleus o~
Mor HZGMV) H(LGY) feHLS, f:G—H
f|Gf°V:V°f|Gf
Kb Obj IGMY (L,y)e LGy (G,y),Ge LG
L=(y(L)) G™=({y(G7))
y is a nucleus o~
Mor feHIZGMV) feHLGY) feHLS, f:G—H
f:M =N, f:K—>L, flg=ov=voflg-
tfIM]=N TfIKlI=L 1+ fIG1=H
bKb Obj bIGMV (L, vu) € LGy G, v),GeLg
uel=(y()) ueG™ = (yu(G7))
yu is anucleus o~
Mor fe HZGMYV) feHLGY) feHLG, f:G—H
f:M — N, fiK—L, flg-ov=voflg-
TfIM]=N 1fIKl=L 1fIGl=H

check, for example, that it preserves multiplication, noteif@t) (x o,, y) = f(y1(xy)) =
Y2(f (xy) = y2(f () f () = f(x) 0, f().

Moreover, it is obvious thak' (f o g) = I'(f) o I'(g) and thatI"(idel) = idez. Thus,
I’ is a functor between the two categories.

By Theorem 3.12[" is onto the objects ofGMV and by Lemma 4.10/" is full.
Finally, I is faithful, because if two morphisms agr on a generating set, they agree on
the whole negative cone of tilegroup. Thus/" is a categorical equivalence between the
two categories, by Theorem 1, page 93, of [2311

In addition tol GMV andLG_, we also consider the following categories, the defini-
tions of which we organize in Table 1.

We first explain the notation that is used.b®undedGMV-algebra is a residuated
bounded-lattice whose O-free reduct is a GMyedra; bounded GMV-algebras are called
pseudo-MV-algebram [15]. It is easy to see that every bounded GMV-algebra is inte-
gral. Bounded GMV-algebras form a variety, which we denotelbg M V. We denote the
class of integral GMV-algebras B§G. MV, and the class of objects of the categh@,
by £G . If K is a class of algebras, we denote BYK) the class of all homomorphisms
between the algebras #&f; we denote the submonoid of asiduated lattice generated by
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a setX by (X). The categorK in the first column takes as values the categories in the top
row. For example, the last entry of the table describes the catétd@dyb.

Note that the functor defining the equivalence of Theorem 4.12 specializes to pairs of
domain and range as described in (the first two columns of) the last three rows of the
table. Moreover, since the category®fjroups and the category of their negative cones
are equivalent, by [2], the categorie&, andL G, are equivalent. Consequently, all three
categories in the first row of the table are equivalent. The same arguments apply to the last
two columns of the remaining three rows, sach of the four rows consists of a triple of
equivalent categories. The categorical equivalence of the last row is the one established
by A. Dvure&Censkij in [10]. If we restrict further to the commutative case, we obtain D.
Mundici’s result in [24].

5. Decomposition of GBL -algebras

The primary objective of this section is to establish Theorem A (see Theorem 5.6 be-
low). Its proof is based on the decomposition result of Theorem 5.2. We refer the reader to
[22] for a comprehensive discussiohproducts of residuated structures.

Lemma 5.1. GBL-algebras satisfy the identity~ (x V e)(x A e).

Proof. By Lemma 2.8(¢e/x Ae)x = x Ae. Moreover, by Lemma 2.7(i), Vv e is invertible
and(xve) l=e¢/(xVe)=e/x Ae. Thus,(x Ve) Ix =x Ae,0rx = (x Ve)(x Ae). O

The following theorem shows thatlif is a GBL-algebra then the sefgL) and/ (L),
given in Definition 2.6, are subuniverseslof We denote the corresponding subalgebras
by G(L) andI(L).

Theorem 5.2. Every GBL-algebrd. decomposes into the direct sudgL) & 1(L).
Proof. We begin with a series of claims.
Claim 1. G(L) is a subuniverse df.

Let x, y be invertible elements. It is clear thap is invertible. Additionally, for all
x,yeGL)andze L, z<x 'y & xz<y & z<x\y. It follows thatx\y = x~1y,
hencex\y is invertible. Likewisey/x = yx 1 is invertible.

Moreover,x vV y = (xy~ Vv e)y. So,x V y is invertible, since every positive element
is invertible, by Lemma 2.7(i), and the product of two invertible elements is invertible. By
Lemma 2.1(iii),x A y =¢/(x~1 v y~1), which is invertible, since we have already shown
thatG (L) is closed under joins and the division operations.

Claim 2. I(L) is a subuniverse df.

Note that every integral elemesnis negative, since = ¢/a impliese < e/a anda < e.
Forx,y e I(L), using Lemma 2.1 repeatedly, we get:
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e/xy=(e/y)/x=e/x=e, SO xyel(lL),
e/xVvy)=e/xNnel/y=e, SO xVyel(l),
e<e/x<e/(xny)<e/xy=e, SO xAyel(),
e=e/(e/y)<e/(x/y)<e/(x/e)=e/x=e, sO x/yel(l).
Claim 3. Foreveryg e (G(L))” andeveryh e I(L),gVvh=ce.
Letge (G(L))” andh e I(L). We havee/(g VvV h)=e/gNne/h=¢e/g Ne=e, SINCE

e <e/g.Moreoverg < gV h,soe < g (g Vv h). Thus, by the GBL-algebra identities and
Lemma 2.1

e=(e/[¢Mevm]))g e vi]=([e/ev ]/ g gV h)
=(e/g g Hgv)=ggH(gvh)=gVh.
Claim 4. Foreveryg e (G(L))” andeveryh € I(L), gh=g A h.

In light of Lemma 5.1g1h = (g7 1h v e)(g~1h A e). Multiplication by g yieldsh =
(hv g)(g~Yh Ae). Using Claim 3, we haveh = g(g~1h Ae) = h A g, since multiplication
by an invertible elemensian order automorphism.

Claim 5. For everyg e G(L) and everyh € I (L), gh = hg.

The statement is true f < e, by Claim 4. Ifg > e theng=1 < e, thusg~1h = hg~1,
hencehg = gh. For arbitraryg, note that botly v ¢ andg A e commute withk. Using
Lemmab5.1,weqgeth =(gVve)(gheh=(gVeh(grne)=h(gVe)gne)=hg.
Claim 6. For everyx € L, there exisg, € G(L) andh, € I(L), such thatc = g, h,.

ByLemmab5.1x = (x Ve)(x Ae). Sincee < x Ve ande < e/(x Ae), by Lemma 2.7(i),
these elements are invertible. Set= (x vV e)(e/(x A e)) "L andh, = (¢/(x Ae))(x Ae).

Itis clear thatc = g hy, g, iS invertible andh, is integral.

Claim 7. For everygy, g2 € G(L) andhy,hp € I(L), g1h1 < g2hp ifand only ifg1 < g2
andhy < ho.

For the non-trivial direction we have
g1h1 < g2h2 = gz_lglhl <hy, = gz_lgl <h2/hi<e = g1<g2.

Moreover,
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&re1<ha/h1 = e<grgatha/h1)
= e=[e/g; g2(ho/h1)]g1 *g2(h2/ h1)
= e=[(e/(ha/h1))/g1 ‘2]e1 g2(h2/ 1)
= e=g, 8181 "galha/h1)
= e=ha/hy
= hy1<ho

By Claims 1 and 2G(L) andl (L) are subalgebras af. Define f: G(L) x I(L) — L by
f(g, h) = gh. We will show thatf is an isomorphism. It is onto by Claim 6 and an order
isomorphism by Claim 7. So, it is a lattice isomorphism, as well. To verify thateserves
the other operations note thags'hh’ = ghg'h’, for all g, g’ € G(L) andh,h’ € I(L), by
Claim 5. Moreover, for alg, g, g € G(L) andh, k', h € I(L), gh < gh/g'h’ if and only

if ghg'h’ < gh. By Claim 5, this is equivalent t9g’hh’ < gh, and, by Claim 7, t@g’' < g
andih’ < h. This is in turn equivalent tg < g/g’ andh < h/K’, which is equivalent to
gh < (g/g))(h/}) by Claim 7. Thus, for allg, ¢’ € G(L) andh,h’ € I(L), gh/g'h =
(g/8)(h/h') and, likewiseg'h"\gh = (g'\g)(W'\h). O

Coroallary 5.3. The varietieyBL andGg MYV decompose as follows
GBL=LGxIGBL=LGVIGBL and GMV=LGxIGMV =LGVIGMYV.
Taking intersections witllanR £ and recalling Theorem 2.12, we get:
Corollary 5.4. CangMV = CanGBL = LG x LG .

Here we have s&€anG MV = CarlRLNGMYV andCanGBL = CanRLNGBL. More-
over, in conjunction with Lemma 2.13(iv) and Theorem 2.2, Corollary 5.3 yields:

Corollary 5.5. Every commutative GMV-algebra is representable.

By combining Theorems 5.2 and 3.12, we obtain the main result of this section.
Theorem 5.6. A residuated latticé/l is a GMV-algebra if and only if there exist residuated
latticesG, L, such thaiG is an¢-group,L € LG, y isanucleus o andM =G & L,,.
Equivalently,M is a GMV-algebra if and only if it has a direct product decomposition
M =G x H,, whereG, H are £-groups andy is a nucleus o~

6. A categorical equivalence for GMV-algebras

The goal of this section is to establish Theorems D and E (see Theorems 6.6 and 6.9
below).
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If G,H are ¢-groups andy is a nucleus orH™, defined(g,h) = (g,h A e) and
y'(g,h)=(g,y(h)), forallge G, h e H andh’ € H™. It follows from Theorem 5.6
that the underlying set of every GMV-algebvhis of the formy'(8(G x H)), whereG, H
are¢-groups and is a nucleus ot .

Note thats is an interior operator oh = G x H, i.e., itiscontracting(§(x) < x, for all
x € L), monotondif x < y, thend(x) < é§(y), forall x, y € L) andidempoten{s(§ (x)) =
8(x), forall x € L). Moreover, itsimagé.s = (L) is a submonoid and a lattice ideallof
More explicitly, we haves (§(x)8(y)) = §(x)8(y), 8(e) = e, §(x) Ay =8(8(x) A y) and
8(x) VE(y)=8(8(x)Vvi(y)),forallx,yin L. We call an interior operator on a residuated
lattice that satisfies the above propertigemeloperator; note that the last equality follows
from the fact that is an interior operator and is not needed in the definition of a kernel.
A coreoperator on a residuated latticas the compositiory o § of a kernel operatof on
L and a nucleug on the imagé.s of §; see Lemma 6.1.

6.1. The object level: representations of GMV-algebras

The main result of this subsection is Theorem D (see Theorem 6.6 below). En route, we
show that any core on a GMV-algebra has a unique representation as the composition of a
nucleus and a kernel operator.

Lemma 6.1. If L is a residuated lattice and a kernel on it, then the algebrhs =
(8(L), A, V, -, \s, /5, €), Wherex/sy = §(x/y) and x\s;y = §(x\y), is a residuated lat-
tice. MoreoverL; is a lattice ideal olL. If L is a GMV-algebra or a GBL-algebra, then so
is Ls.

Proof. L; is closed under join, sinckis an interior operator, and under multiplication, by
the first property of a kernel. Moreover, it containgind it is obviously closed undg&g
and/;s. By the third property of a kernel and the fact that it is closed under jdips$s an
ideal ofL. So,Ls is a submonoid and a subsemilatticeLofMoreover,L s is residuated.
Forallx,y,z € Ls, x < z/sy is equivalent tax < §(x/y), which in turn is equivalent to
x < z/y, sinces is contracting and = §(x).

If L is a GMV-algebra, then

V) \xr=x\x Ay\x =eA y\x <e.
SinceL; is an ideal that contains we haveS((x Vv y)\x) = (x vV y)\x, for x, y € Ls. So,
x/s[0r v N\sx] = 8(x/8((x v )\x)) =8(x/((x v )\x)) =8(x V) =x V y,
Similarly, if L is a GBL-algebra, we have

(cAN/sy)y=8(x AY)/y)y=(xAY)/y)y=xAY,

since(x Ay)/y<e. O
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Note that the map on a residuated lattice, defined bys(x) = x A e, is a kernel orL
andLs =L".

For a class of algebras we denote byn(X) andk(K) the class of all images of nu-
clei and kernels, respectively, of member&ofWe already know that(LG ™) =ZGMYV,
from Theorem 3.12, an@ MV < n(k(LG)). We will show thatk(£LG) = Cang MV and
n(Cang MV) = GMYV. Moreover, we will give an alternative characterization of core op-
erators. It follows from the lemma below that£G) = LG andk(ZGMV) = ZGMV.

Lemma6.2.

(i) The identity map is the only nucleus on&group.
(i) The identity is the only kernel on an integral GMV-algebra.

Proof. (i) Assumey is a nucleus on thé-groupG. SinceG is a GMV-algebra, we have
e=y(e) € Gy, by Theorem 3.4; hencé™ < G,,. Moreover, by Lemma 3.1, for every
xeG,e/x € Gy, that is,xle G, . Thus,G, = G. Since a closure operator is uniquely
defined by its imagey is the identity onG.

(i) Assume that is a kernel on an integral GMV-algebké&. By Lemma 6.1 M; is an
ideal of M. Moreovere = §(e) € Ms. SO,Ms = M ands is the identity map od/. O

The following corollary describes the action of a kernel on a GMV-algebra and shows
thatk (LG) € Cang MV. In what follows, we will use the termrsubgroup for a subalgebra
of a residuated lattice that happens to be&-amoup.

Corollary 6.3. If § is a kernel on a GMV-algebri, then there exist a GMV-subalgebra
N and an¢-subgroupH of M, such thatM =N @ H and§(nh) =n(h Ae),foralln e N
andh € H. ThusMs =N@® H™. If M is an¢-group, then so ifN.

Proof. By Theorem 5.6, there exigtgroupsG, L, and a nucleus on L~, such that
M =G L, . The restrictions 08 on G andL ,, also denoted by, are kernels, because
of the equational definition of a kernel.

First, note thaﬁ(L;) cLy, ands(G) C G. To verify this, observe that the image df
unders is an ideal ofM, that contains the identity, by Lemma 6.1; hence the negative
cone ofM is fixed bys. In particular,L), andG™ are fixed bys. Consider an element
in G. We will show thats (x) is also inG. Let§(x) = yk, wherey € G andk € L. Since
vk =38(x) < x = xe, we havey < x. Both yk ande are fixed bys, so the same holds for
their join (y Ve)(k v e) = y Ve, since the image af is a lattice ideal. Likewisey is fixed
by § sincey < y Vv e. The element(x) is the maximum element belowfixed by §; so
y < é8(x), sincey < x. On the other hand,(x) = yk < y; henceS(x) =y € G.

We will show that there exigt-subgroup&, H of G, such thats = K & H andé (kh) =
k(h ne), forall k e K andh € H. Observe thaG; is a GMV-algebra, by Lemma 6.1, so
there are-groupsK, H and a nucleug onH~, such that

Gy =K @®H.,
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by Theorem 5.6. SincK x H_ is isomorphic toGs, the negative cone™ x H,’ and

G; are isomorphic. Moreover, we hav&;)~ = G, becaus&s; is an ideal ofG that
containse. The operations 0o(Gs)~ andG~ agree, since the lattice and monoid operations
on both algebras are the restrictiong @)~ = G~ of the operations ofs. Additionally,
forall z € G, z A e is the greatest element fixed undehat is belowz; s0,z Ae=68(z) =

8(z) ne,and forallx,y € G, x\(g,)-y =x\sy Ae=38x\y) he=x\y Ae=x\g-y

and likewise for right division. Consequently;” x H is isomorphic toG™ via the map
(k,h) — kh;i.e.,

G =K~ @H,.

SinceH,, is a subalgebra o6~ € £G~, we haveH € LG~ . For simplicity of the pre-
sentation, and without loss of generality, we assumeHhiatsuch that is the identity on
H~. So,

G =K T@oH =K oH)~

andG is isomorphic toK @ H. We simplify notation by identifying isomorphic algebras,
soG=K&H.

We have shown thatK @ H)s = K & H—. Thus,8(K ® H) =68 (K & H), where
8'(gh) = g(h A e) is a interior operator. Since an interior operator is defined by its image,
we gets(gh) = g(h ne). SOM =K @ H @ L, . Moreover,; is the identity orL. If we
setN=K@L,,wegetM =N&H andé(nh) =n(h Ae),forallne Nandhe H. O

Definition 6.4.

(i) If 6 is a map on a residuated lattiteandy a map ors(L), define the mag,, s) on
L by B(y.5)(x) =y (8(x)).

(i) If g is a map on a residuated lattice define the map8g on L andyg ondg(L) by
8g(x) = B(x) Ax andyg(x) = B(x).

Lemma 6.5. LetL be a GMV-algebra. I§ is a kernel orL andy a nucleus orLs, then
8y = 81 VB = V-

Proof. We havedg,, , (x) = B(y.6(x) A x = y(3(x)) A x. In view of Corollary 6.3, to
show thata,gw) = ¢, it will suffice to verify thaty (§(x)) A x = 8(x), only for the cases
8(x) =x and§(x) = x A e. In the first case, the equation holds, becgusgextensive. In
the second case, the equation reducegion e) Ax = x Ae. Sincey is extensive, we have
xAe=xAeAx <y Ae)Ax.Invoking the monotonicity of we gety (x Ae) Ax <
y(e) Ax =e A x, by Theorem 3.4(iii).

For everyx in the range ofa,gw) = §, namely forx = §(x), we havey,gw) x) =
Biy.s)(¥) =y((x) =y(x). O

Therefore cores on GMV-algebras decompose uniquely as compositions of kernels and
nuclei. For a GMV-algebra and a cores on it, definel g = (L) y,.
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Theorem 6.6. A residuated lattice. is a GMV-algebra if and only it. = Gg, for some
£-groupG and some cor@ onG.

Proof. By Lemma 6.1, ifG is an¢-group and a kernel on it, theiss is a GMV-algebra.
Moreover, by Theorem 3.4G;), is a GMV-algebra, as well.

Conversely, let. be a GMV-algebra. By Corollary 5.6,= K x H,/, for some¢-groups
K andH, and a nucleug onH~. Define a mag on K x H, by sk, h) = (k,h A e). We

will show thaté is a kernel. It is obviously an interior operator a$@, ¢) = (e, ¢). Note
that
Sk, WS(K' 1) = (k,h ne)(K',h Ae)
= (kk', (h ne)(h' Ne))
= (kk',hh" AL AR Ae)
ands(kk’,hh' AR AR Ae)= (kk',hh' Ah AR Ae). Similarly
Stk Wy A (K W)=k, hne) A(K h) = (kAK hAenh)

andS(k Ak',hnenh)=((k ANk ,h AeANK).

Note that the underlyingset & x H)s is K x H~. Definey onK x H~, by y (k, h) =
(k, y (h)). We will show thaty is a nucleus oK x H);. Itis obviously a closure operator.
Moreover,

pk, )y (k' h') = (k, y (m)(K', ¥ (k"))
= (kk', y (h)y (k"))
< (kK y (hR'))
(kk', i)

((k, h)(K', h')).

We havey (K x H)s) =7(K x H") = K x H, . SoK x H, and((K xH);); have the
same underlying set. Recalling the definitiaighe image of a residuated lattice under a
kernel and under a nucleus, we see that the &tijgerations on the two algebras coincide.
To show that the other operations coincide, note that fogkalt), (K'h’) € K x H,,

|
—_—~ e~~~

=V

(k, h) o((k xH)y); (K', h")

(k, h) o5 (K, 1)
=7(k. ) - (K. 1))
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(ks I\ (K xHg), (K 1) = 8 (G )\ et (K, 1))
=38((k\ck', h\ph'))

= (k\k', h\yh' Ae)
= (K\k', B\py-h')

= (k\cK', A\ 1)

= (k’h)\KxH;(k/’h/)'

—_

The proof for the other division operation is analogous.

It follows from the preceding theorem thktn(£G)) = GMV. We show below that
k(LG) = Cang MV andn(Carg MV) = GMV. Further, we provide an equational de-
scription for a core operator.

Corollary 6.7.

(i) A residuated latticd is a cancellative GMV-algebra if and onlylif = G, for some
£-groupG and some kernel on G.

(i) Aresiduated latticd is a GMV-algebra if and only it =K,,, for some cancellative
GMV-algebraK and some nucleug onK.

Proof. (i) One direction follows from Corollaries 6.3 and 5.4. For the other direction,
assume that is a cancellative GMV-algebra. By Corollary 54,=K x H™, for some
£-groupsK, H. We have already remarked that the néagn K x H, defined bys (k, h) =
(k,h ne),isakernelandthaK x H)s =K xH™ =L.

(i) One direction follows from Theorem 3.4. Converselyl.ifis a GMV-algebra, then,
by Theorem 5.6, there exisigroupsG, H and a nucleug onH™, suchthat =G x HJ.
Itis easy to check that the mapon G x H~, defined byy (g, h) = (g, y (h)), is a nucleus
andthatG x H™); =G x H, =L. Finally, K = G x H™ is a cancellative GMV-algebra,
by Corollary 5.4. O

Lemma 6.8. A mapp on a GMV-algebrd._ is a core if and only if it is monotone, idempo-
tent and satisfies the following properties

(i) BB < B(xy),

(i) Ble)=e,

(i) (B AX)BO) AY) <BUABX) AX)BY)AY)),
(iv) B Ax Ay <BBE)AXAY),

(V) B(B(x) Ax)=B(x).

Proof. The result is a consequence of the following two claims and Lemma 6.5.
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Claim 1. If 8 is a monotone, idempotent map lorthat satisfies the properties above, then
p is akernelorL, yp is a nucleus ok s, and By, 54 = B-

Sinceyy is the restriction off, we haveyg(x)ys(y) < yp(xy), by the first property.
Moreover,yg is monotone and idempotent, being a restrictio okt is also extensive on
Ls, becauség(x) = B(x) Ax < B(B(x) Ax) =yp(8p(x)), by (V). Thus,y is a nucleus.

Obviously,dg(e) = B(e) A e = e, by the second property. The remaining two properties
of a kernel state thadg(x)8g(y) anddg(x) A y are elements fixed byg. It is easy to
see that for every, 8g(x) = x if and only if x < B(x). So, the remaining properties are
equivalent to properties (iii) and (iv) of the lemma. Additionally,is an interior operator,
sincedg(x) = B(x) Ax < x;88(8p(x)) = B(B(x) Ax)Ax = B(x) Ax =8g(x), by (v); and
if x <y, thendg(x) = B(x) Ax < B(y) Ay=238s(y). Thus,ig is a kernel.

Finally, By.65) (X) = yp(8p(x)) = B(B(x) Ax) = B(x).

Claim 2. If § is a kernel onL andy a nucleus orl_s, then the mag, s is monotone,
idempotent and it satisfies the properties in the statement of the lemma.

For the first property we have

BB =y (8))y(8(») <y (8(x)3(»))
=y(3(8(x)8(»)) <y (8(xy))
= Bxy).

Also, B(e) =y (8(e)) = y(e) = e, by Theorem 3.4(iii).

Since for everyr, x < By.5)(x) if and only if 85, , (x) = x, properties (iii) and (iv)
hold for B, s) if and only if the corresponding properties of a kernel holddgy , . This
is actually the case, sinég,, ,, = §, by Lemma 6.5.

The last property forf, s is equivalent t0B(y.5)(8p,.5 (X)) = By.5)(x), that is,
By.8)(8(x)) = B(y.5)(x), which follows from the idempotency 6 O

6.2. The morphism level

Let GMYV be the category with objects GMV-algebras and morphisms residuated lattice
homomorphisms. Also, ldt G* be the category with objects algebr@, ) such thaiG
is an¢-group andg is a core onG whose image generat€x let the morphisms of this
category be homomorphisms between these algebras.

Theorem 6.9. The categorie&MV andLG* are equivalent.

Proof. For an objectG, g) of LG*, definel’ ((G, B)) = Gg. For a morphismy of LG*
with domain(G, 8), defineI" (f) to be the restriction of to Gg.

Let§ =dg andy = yg. By Lemma 6.1 and Theorem 3.4, the algebrgG, g)) is an
object of GMV. Actually, it can be easily seen thG@lg = ((Gs),, A, V, 0y, \s, /s, €). TO
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show thatl"(f) is a morphism oMV, we use the fact thgt commutes withB—we use
the same symbol for the cores in the domain and in the codomain.
First note thatf commutes witht§ onL andy oné(L). Indeed, by Lemma 6.5,

$(f))=B(f@) A f)=F(BO)) A fx)
= f(B() Ax) = f(8(x)).

Moreover,y (f(x)) = y(8(f(x))) = f(y(6(x))) = f(y(x)). In particular, ifx = B(x),
thenx =y (x) = 8(x) and f (x) =8(f (x)) = y (f (x)).

We can now show thaf preserves multiplication. For, y € 8(G), x =38(x) = y (x)
andy =8(y) =y(y), sO

§(xy) =8(8(x)8(y)) =8(x)8(y) = xy.

Thus,

faoy»=flyen)=y(fe»)=r(f@Ff®)=fx) oy fF().

Additionally,

f&/sy)=f(8Gx/») =8(fx/»)=8(f )/ f )= Fx)/sf )

The proof for the other division is analogous( f) preserves the lattice operations, be-
cause they are restrictions of the lattice operations ot tgeoup, sol"(f) is a homomor-
phism.

By Theorem 6.6] is onto the objects dBMV. Moreover,I" is faithful, because if two
morphisms agree on a generating set, they agree on the vdgotaip.

To see that" is full, let g:M — N, be a morphism irGMV. By Theorem 5.6, there
exist¢-groupsK , H, K, H and nucleiy onH~ andy onH~, such that

M:KXH; and N:KXH;.

Moreover, by the proof of Theorem 6.6, there exist kerd@sK x H, 5 onK x H, and nu-

cleiy’ on(K x H)s andy’ on (K x H)z, such thas(k, h) = (k, h ne), 8(k, h) = (k, h Ae),

y'(k,h) = (k, y(h)) and¥’(k, h) = (k, 7 (h)),forh e H,h € H, k € K andk € K. For the

coresf =y’ 0§ andB = ¥’ o §, there exist homomorphismg :K — K andgx: H, —

H;, such thatg = (g1, g2); the reason for this is that invertible and integral elements
are preserved under homomorphisms. By Theorem 4.10, there exists a homomorphism
fo H” — H~ that extendg, and commutes with the’s. By the results in [2], there
exists a homomorphisnf :H — H that extendsf, . Let f: (K x H, 8) — (K x H, B) be
defined byf = (g1, f2). Itis clear that" (f) = g. We will show thatg(8(x)) = B(f (x)).

Let (k,h) e K x H.
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g(Bk.m) =g(v(8(k, 1)) = g(k.y(h Ae))

g1(k). g2(y (h A €))) = (81(k). ¥ (f5 (h Ae)))
81k, 7 (f2(h) Ae)) =7'(g1(k), fa(h) Ae)
=7(8((g2k), f2(h)))) = B(f (k. ).

—~

Thus, by [23, Theorem 1, p. 93] is an equivalence between the two categories.

7. Decidability of the equational theories

In this section, we obtain the decidability of the equational theories of the varieties
ZGMY andG MYV as an easy application of the represgion theorems established in the
previous sections.

For a residuated lattice termand a variable ¢ Var(r), we define the term inductively
on the complexity of a term, by

X;=xVz, e;=e,
(SVr),=s;Vr;(s \r);, =58; ATy,

(s/r);=s;/rz, (s\r)z = s;\rz, (sr); =812V Z,

for every variablec and every pair of terms r.
For a termy and an algebra, we writer- for the term operation oh induced byr.
For a residuated lattice terma residuated lattice and a map’ onL, we define the
operatiory, on L, of arity equal to that of, by

L L
R N
(SVT)y =5, Vry,(§ AF)y =5y, ATy,

(S/r)y:Sy/"yv (s\r)y =sy\ry, (Sr)yzy(sy”y),

for every variablex and every pair of terms r.

Note thatz, is obtained fromv' by replacing every product by y (sr) and every
variablex by y (x); ¢, is obtained from by replacing every produet by sr v z and every
variablex by x v z. We extend the above definitions to every residuated lattice identity
e=(t~s)bye, = (1, & s;), for avariable; that does not occur in. Moreover, we define
gy (a) = (t,(a) = s, (a)), wherea is an element of an appropriate powerlof

Proposition 7.1. An identitye holds inZG MYV if and only if the identity,; holdsin£G~,
wherez ¢ Var(e).

Proof. We prove the contrapositive of the lemma. kdte an identity that fails iTG MV .
Then there exists an integral GMV-algelMa and an elemeri in an appropriate powet,
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of M, such thak(a) is false. By Theorem 3.12, there existslag LG~ and a nucleuy
onlL suchthaM =L, . By the definition ofL,, it follows thate, (a) does not hold irL..
Let p be the meet of all products (a)s, (a), wheret, s range over all subterms efand
u=7y(p). By Lemma 3.6y andy, agree on the principal filter gi. Since the arguments
of all occurrences of in ¢, (a) are of the forny, (a)s, (a), wheret, s are subterms of,
andr, (a)s, (a) are in the principal filter op, we can replace, working inductively inwards,
all occurrences of in ¢, (a) by y,. Hences,, (a) = ¢, (a) ands,, (@) fails in L. Moreover,
&y, (a) = (e-)t (@, u). Thuse, fails in L ande. is not a valid identity ofCG~.

Conversely, ife,, fails in LG, there exist ai. € LG, a in an appropriate powen,
of L andu € L such that(e,)" (a, u) is false. Obviouslyy, is a nucleus o, soL,, is
an integral GMV-algebra. Lét be the element of”, defined byb(i) = a(i) v u, for all
i €{1,...,n}. Note that(e,)" (@, u) = ¢,, (@) = &y, (b) = - (b) andu, b(i) € L,,, for all
ie{l,...,n}. Soe failsinL,, and hence ifgMYV. O

In view of Theorem 5.6 we have the following corollary.

Corollary 7.2. An identitye holds inGMYV if and only ife holds in£G and e, holds in
LG~ , wherez ¢ Var(e).

The variety of¢-groups has a decidable equational theory by [19]. Based on this fact, it
is shown in [2] that the same holds f6G . So, we obtain the following result.

Theorem 7.3. The varietieG MV andG M)V have decidable equational theories.

Recall that a bounded GMV-algebra (also called a pseudo MV-algebra) is an expansion
of a GMV-algebra by a constant 0 that satisfies the identity 0 ~ 0. We denote the
variety of all bounded GMV-algebras g MV . Note that every bounded GMV-algebra
is integral, as a consequence of Theorem 5.6.

For a termr in the language of residuated bounded-lattices and a variapMar(r),
we define the term, inductively on the complexity of a term, by

X, =xVz, e, =e, 0, =z,
(SVr),=s,Vr(s \r), =58; A1y,
(s/r);=s;/12, (s\r); = s;\rz, (sr); =571,V 7,
for every variablex and every pair of terms, r. We use the same notatien as before,
since the two definitions agree if the equatiodoes not contain any occurrences of the

constant 0.
Minor modifications in the proof of Biposition 7.1 yield the following result.

Proposition 7.4. An identitye holds inbG MYV if and only if the identity; holds in£G~,
wherez ¢ Var(e).



290 N. Galatos, C. Tsinakis / Journal of Algebra 283 (2005) 254-291

A careful analysis of the construction of an algebrali— from an integral GMV-
algebra shows that if the latter is commutative then so is the former. The same result is
shown in [24]. So, the proof of Proposition 7.1 also shows the following.

Proposition 7.5. An identitye holds in MV if and only if the identity, holds in£G ™,
wherez ¢ Var(e).

Consequently, we have the following result.

Theorem 7.6. The varieties of MV-algebras and bounded GMV-algebras have decidable
equational theories.
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