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Abstract

We prove constructively that for any ring R of Krull dimension � 1 and n � 3, the group En(R[X])
acts transitively on Umn(R[X]). In particular, we obtain that for any ring R with Krull dimension � 1,
all finitely generated stably free modules over R[X] are free. This settles the long-standing Hermite ring
conjecture for rings of Krull dimension � 1.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

In 1955, J.-P. Serre remarked [18] that it was not known whether there exist finitely generated
projective modules over A = K[X1, . . . ,Xn], K a field, which are not free. This remark turned
into the “Serre conjecture,” stating that indeed there were no such modules. Proven independently
by Quillen [15] and Suslin [18], it became subsequently known as the Quillen–Suslin theorem.
The book of Lam [7] is a nice exposition about Serre’s conjecture which has been updated re-
cently in [8]. An important related fact worth mentioning is that it has been known well before
the settlement of Serre’s conjecture (since 1958) that finitely generated projective modules over
A are stably free, i.e., every finitely generated projective A-module is isomorphic to the kernel of
an A-epimorphism T : An → A�. In that situation the matrix T is unimodular, that is the maximal
minors of T generate the unit ideal in A.
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Quillen’s and Suslin’s proofs had a big effect on the subsequent development of the study of
projective modules. Nevertheless many old conjectures and open questions still wait for solu-
tions. Our concern here is the following equivalent two conjectures.

Hermite ring conjecture (1976) [7,8]:

Conjecture 1. If R is a commutative Hermite ring, then R[X] is also Hermite.

Conjecture 2. If R is a commutative ring and v = (v0(X), . . . , vn(X)) is a unimodular row over
R[X] such that v(0) = (1,0, . . . ,0), then v can be completed to a matrix in GLn+1(R[X]).

Recall that a ring A is said to be Hermite if any finitely generated stably free A-module is free
[7,8]. Examples of Hermite rings are local rings, rings of Krull dimension � 1 [3,8], polynomial
rings over Bezout domains [1,5,9,12], and polynomial rings over zero-dimensional rings [5,8].

In this paper, we give a positive answer to these conjectures in case R has Krull dimension
� 1. The proof we give is short, simple, and constructive. It relies heavily on the very nice paper
[17] of Roitman. So, we assume that the reader has a copy of [17] in hands.

Let us fix some notations. For any ring A and n � 1, Umn(A) denotes the set of unimodular
rows in A, that is Umn(A) = {(x0, . . . , xn−1) ∈ An | 〈x0, . . . , xn−1〉 = A}.

We call an n × n matrix elementary if it has 1’s on the diagonal and at most one nonzero
off-diagonal entry. More precisely, if a ∈ A and i �= j , 1 � i, j � n, we define the elementary
matrix Ei,j (a) to be the n × n matrix with 1’s on the diagonal, with a in the (i, j)-slot, and with
0’s elsewhere. In other words, Ei,j (a) is the matrix corresponding to the elementary operation
Li → Li + aLj . En(A) will denote the subgroup of SLn(A) generated by elementary matrices.

For f,g ∈ A[X], Res(f, g) will denote the resultant of f and g.
All the considered rings are unitary and commutative. The undefined terminology is standard

as in [8,18], and, for constructive algebra in [11,13].

1. The main result

Lemma 1. Let R be a ring, and f,g ∈ R[X] with f a monic polynomial. Then

〈f,g〉 = R[X] ⇐⇒ Res(f, g) ∈ R×.

Proof. “⇐” This is an immediate consequence of the fact that Res(f, g) ∈ 〈f,g〉 ∩ R.
“⇒” Let u,v ∈ R[X] such that uf + vg = 1. Since f is a monic polynomial, we have

Res(f, vg) = Res(f, v)Res(f, g) = Res(f, vg + uf ) = Res(f,1) = 1. �
Now, we give a constructive and elementary proof of a lemma which was used by Roitman

[17] in the proof of his Theorem 5. The proof of that lemma given by Lam in [7,8] (Chapter III,
Lemma 1.1) is not constructive and relies on the “going-up” property of integral extensions.

Lemma 2. Let R be a ring, and I an ideal in R[X] that contains a monic polynomial. Let J be
an ideal in R such that I + J [X] = R[X]. Then (I ∩ R) + J = R.
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Proof. Let us denote by f a monic polynomial in I . Since I + J [X] = R[X], there exist g ∈ I

and h ∈ J [X] such that g + h = 1. It follows that 〈f̄ , ḡ〉 = (R/J )[X] where the classes are
taken modulo J [X]. By virtue of Lemma 1, we obtain that Res(f̄ , ḡ) ∈ (R/J )×. As f is a
monic polynomial, Res(f̄ , ḡ) = Res(f, g), and thus 〈Res(f, g)〉+J = R. The desired conclusion
follows from the fact that Res(f, g) ∈ I ∩ R. �
Lemma 3. Let R be a reduced local ring of dimension � 1, n � 2, and let v(X) =
(v0(X), . . . , vn(X)) ∈ Umn+1(R[X]). Then there exists E ∈ En+1(R[X]) such that Ev(X) =
(v0(X), v1(X), c2, . . . , cn), where ci ∈ R.

Proof. As stated by Rao in his proof of Proposition 1.4.4 of [16], this is implicit in [17] (The-
orem 5). It is worth pointing out, that the hypothesis that for each nonzero-divisor π of R there
exists Eπ ∈ En+1(R[X]) such that Eπv(X) ≡ v(0) mod (πR[X])n+1 is guaranteed by the fact
that dim (R/πR) � 0. Moreover, there is no need of the Noetherian hypothesis and we can obtain
a fully constructive proof of the desired result. To see this, let us reread carefully Roitman’s proof
of his Theorem 5 in [17] and let us list the intermediary results he used and which we need for
our lemma:

– If v0 is a monic polynomial then there exists E ∈ En+1(R[X]) such that Ev(X) =
(1,0, . . . ,0). This is an immediate consequence of a lemma of Suslin [18] (Lemma 2.3).
A constructive proof of that lemma is given in [14,19,20].

– Lemma 3 of [17]. Roitman proved it constructively. The proof is free of any Noetherian
hypothesis.

– Lemma 1 of [17]. This is also Proposition III.6.1(b) of Lam [8] (page 125). The proofs given
by Lam and Roitman are constructive and free of any Noetherian hypothesis.

– In case deg(v0) = 1 we immediately get that for i � 2, deg(vi) < 1, and thus vi is constant.
In more details, by Lemma 3 of [17], we can suppose that, for 1 � i � n, vi = X2kwi with
deg(wi) < deg(v0) = 1, that is, wi ∈ R. Now by Lemma 1 of [17] (taking t = X), we can
suppose that vi ∈ R for 1 � i � n.

– Lemma 2 of [17]. This is the stable range theorem and there is no need of the Noetherian
hypothesis. For a constructive proof of the stable range theorem, the reader can refer to
[3] (Theorem 2.4).

– Lemma III.1.1 of [7,8]. This is Lemma 2 above.
– Lemma 4.1(b) of [2]. The proof given by Bass is constructive and free of any Noetherian

hypothesis. �
Recall that the boundary ideal of an element a of a ring R is the ideal I(a) of R generated

by a and all the y ∈ R such that ay is nilpotent. Moreover, dimR � d ⇔ dim(R/I(a)) � d − 1
∀a ∈ R (this defines the Krull dimension recursively initializing with “dim R � −1 ⇔ R being
trivial”) [4].

Recall also that for any ring R, the ring R〈X〉 (respectively R(X)) is the localization of R[X]
at monic polynomials (respectively primitive polynomials). We have R[X] ⊆ R〈X〉 ⊆ R(X), and
the containment R〈X〉 ⊆ R(X) becomes an equality if and only if dim R � 0 [6] (see [5] for a
constructive proof).

Theorem 4. Let R be a ring of dimension � 1, n � 2, and let v(X) = (v0(X), . . . , vn(X)) ∈
Umn+1(R[X]). Then there exists E ∈ En+1(R[X]) such that E v(X) = v(0).
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Proof. By the local–global principle for elementary matrices [8] (see [10] for a constructive
proof), we can suppose that R is local. Moreover by a result of Kumar and Roitman quoted in
[17] (Lemma 1.4.2), we can suppose that R is reduced. By virtue of Lemma 3, there exists E ∈
En+1(R[X]) such that Ev(X) = (v0(X), v1(X), c2, . . . , cn), where ci ∈ R. So we can without
loss of generality suppose that v0 = a is constant.

Now, let us consider the ring T := R/I(a). Since dim T � 0, we have that T〈X〉 = T(X)

and thus T〈X〉 is a local ring. It follows that one among v1, . . . , vn, say v1, divides a monic
polynomial in T[X]. This means that there exist a monic polynomial u ∈ R[X], w,h1, h2 ∈ R[X]
with ah2 = 0, such that

wv1 = u + ah1 + h2.

This means that 1 ∈ 〈v1, a,h2〉 in the ring R〈X〉 and thus 1 ∈ 〈v1, a + h2〉 by Lemma 2.3 of [3].
That is, ∃w1,w2 ∈ R[X] | v1w1 + (a + h2)w2 =: ũ is a monic polynomial.

Let d ∈ N and denote by u0, . . . , un polynomials in R[X] such that u0v0 + · · · + unvn = 1.
Denoting by

γ1 := E1,2(h2u1) · · ·E1,n+1(h2un),

γ2 := E3,2
(
Xdw1

)
E3,1

(
Xdw2

)
,

γ := γ2γ1,

we have

γ1v = (a + h2, v1, . . . , vn),

and

γ v = (
a + h2, v1, v2 + Xdũ, v3, . . . , vn

)
.

So, for sufficiently large d , the third entry of γ v becomes a monic polynomial. Thus, as stated in
the proof of Lemma 3, we have an algorithm transforming γ v into (1,0, . . . ,0) using elementary
operations [20]. �
Corollary 5. For any ring R of Krull dimension � 1, all finitely generated stably free modules
over R[X] are free.

Proof. It is classical that if R has Krull dimension � 1 then all finitely generated stably
free modules over R are free (see [3] for a constructive proof). So, we have only to prove
that all finitely generated stably free modules over R[X] are extended from R. For this, let
v = (v0(X), . . . , vn(X)) ∈ R[X]n+1 (n � 2) be a unimodular row. Our task amounts to prove that
there exists Γ ∈ GLn+1(R[X]) such that Γ V = (1,0, . . . ,0). This follows from Theorem 4. �
Corollary 6. The Hermite ring conjecture is true for rings of Krull dimension � 1.

Corollary 5 encourages us to set the following conjecture.
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Conjecture 3. For any ring R of Krull dimension � 1, and k ∈ N, all finitely generated stably
free modules over R[X1, . . . ,Xk] are free.

Also, Corollary 5 raises the K1-analogue question. I will state it as a conjecture.

Conjecture 4. Let R be a ring of Krull dimension � 1 and n � 3. Then every matrix M ∈
SLn(R[X]) is congruent to M(0) modulo En(R[X]).

In fact, by virtue of Theorem 4 and the local–global principle for elementary matrices (see
[10] for a constructive proof), Conjecture 4 is equivalent to the following conjecture.

Conjecture 5. Suppose R is a local ring of Krull dimension � 1, and

M =
(

p q 0
r s 0
0 0 1

)
∈ SL3

(
R[X]).

Then M ∈ E3(R[X]).
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