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We show that the representation, introduced by Lawrence and
Krammer to show the linearity of the braid group, is generically
irreducible. However, for some values of its two parameters when
these are specialized to complex numbers, it becomes reducible.
We construct a representation of degree n(n−1)

2 of the BMW algebra
of type An−1. As a representation of the braid group on n strands,
it is equivalent to the Lawrence–Krammer representation where
the two parameters of the BMW algebra are related to those
appearing in the Lawrence–Krammer representation. We give the
values of the parameters for which the representation is reducible
and give the proper invariant subspaces in some cases. We use
this representation to show that for these special values of the
parameters, the BMW algebra of type An−1 is not semisimple.
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1. Introduction

1.1. Introduction and main results

In [8], Daan Krammer constructed a faithful linear representation of the braid group. Since this
representation was earlier introduced by Ruth Lawrence in [9], it is called the Lawrence–Krammer
representation. Stephen Bigelow uses this same representation in [1] to show independently from
Krammer that the braid group is linear. A generalization of the linearity result for the braid group
to the other Artin groups of finite type is given in [5] and independently in [6]. In this paper, we
examine a representation of degree n(n−1)

2 of the BMW algebra of type An−1. As a representation
of the braid group on n strands, this representation is equivalent to the Lawrence–Krammer repre-
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sentation (abbreviated L–K representation). By studying this representation we show that the L–K
representation is generically irreducible. However, for some values of its two parameters when these
are specialized to complex numbers, it becomes reducible. Throughout the paper, we let l, m and r
be three nonzero complex numbers, where m and r are related by m = 1

r − r. We define H F ,r2(n) as
the Iwahori–Hecke algebra of the symmetric group Sym(n) over the field F = Q(l, r) with generators
g1, . . . , gn−1. They satisfy the braid relations and the quadratic relation g2

i + mgi = 1 for all i. Our
definition is the same as the definition of [11] after the generators have been rescaled by a factor 1

r .
Our main result is as follows.

Theorem 1 (Main theorem). Let n be an integer with n � 3 and let m, l and r be three nonzero complex
numbers, where m and r are related by m = 1

r − r. Assume that H F ,r2(n) is semisimple, and so assume that

r2k �= 1 for every integer k ∈ {1, . . . ,n}.
When n � 4, the Lawrence–Krammer representation of the BMW algebra of type An−1 with parame-

ters l and m over the field Q(l, r) is irreducible, except when l ∈ {r,−r3, 1
r2n−3 , 1

rn−3 ,− 1
rn−3 }, when it is

reducible.
When n = 3, the Lawrence–Krammer representation of the BMW algebra of type A2 with parameters l and

m over the field Q(l, r) is irreducible, except when l ∈ {−r3, 1
r3 ,1,−1}, when it is reducible.

As will appear in the proof of the main theorem, the assumption that H F ,r2(n) is semisimple is
crucial. It is equivalent to the condition that r2k �= 1 for every k ∈ {1, . . . ,n}: see Corollary 3.44, p. 48
of [11].

Some cases of reducibility of the Lawrence–Krammer representation have been studied in the past,
but no systematic study is done. For instance in [2], Stephen Bigelow studies the case of reducibility
l = r by topological methods.

A consequence of our result and of the method that we use is the following.

Theorem 2. Let n be an integer and let l, m and r be three nonzero complex numbers, where m and r are
related by m = 1

r − r.

Suppose n � 4. If r2k = 1 for some k ∈ {2, . . . ,n} or if l belongs to the set of values {r,−r3, 1
rn−3 ,− 1

rn−3 ,
1

r2n−3 ,−r2n−3, rn−3,−rn−3, 1
r3 ,− 1

r }, the BMW algebra of type An−1 with parameters l and m over the field
Q(l, r) is not semisimple.

Suppose n = 3. If r4 = 1 or r6 = 1 or if l ∈ {−r3, 1
r3 ,1,−1}, the BMW algebra of type A2 with parameters

l and m over the field Q(l, r) is not semisimple.

In [14], Hans Wenzl states that the BMW algebra of type An−1 is semisimple except possibly if r is
a root of unity or l = rn , for some n ∈ Z. Here, Theorem 2 gives instances in which the algebra is not
semisimple. The result of this theorem is also contained in the recent work of Hebing Rui and Mei Si
(see [13]). They use the representation theory of cellular algebras.

1.2. Definitions

1.2.1. The BMW algebra
We recall below the defining relations of the BMW algebra B(An−1) (or simply B) of type An−1

with nonzero complex parameters l and m over the field Q(l, r), where r is a root of the quadratic
X2 − mX + 1. This algebra has two sets of (n − 1) elements, namely the invertible gi ’s that satisfy
the braid relations (1) and (2) and generate the algebra and the ei ’s that generate an ideal. For nodes
i and j with 1 � i, j � n − 1, we will write i ∼ j if |i − j| = 1 and i � j if |i − j| > 1. The defining
relations of the algebra are as follows

gi g j = g j gi if i � j, (1)

gi g j gi = g j gi g j if i ∼ j, (2)
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ei = l

m

(
g2

i + mgi − 1
)

for all i, (3)

giei = l−1ei for all i, (4)

ei g jei = lei if i ∼ j. (5)

We will also use some direct consequences of these defining relations (see [4, Proposition 2.1]):

ei gi = l−1ei for all i, (6)

g2
i = 1 − mgi + ml−1ei for all i, (7)

g−1
i = gi + m − m ei for all i (8)

as well as the following “mixed braid relations” (see [4, Proposition 2.3]):

gi g jei = e jei if i ∼ j, (9)

gie jei = g jei + m(ei − e jei) if i ∼ j. (10)

1.2.2. The Lawrence–Krammer space
We now recall some terminology associated with root systems of type An−1. Let

M = (mij)1�i� j�n−1 be the Coxeter matrix of type An−1.
Let (α1, . . . ,αn−1) be the canonical basis of Rn−1 and let’s define a bilinear form BM over Rn−1

by

BM(αi,α j) = −cos

(
π

mij

)
.

By the theory in [3], BM is an inner product that we will simply denote by ( | ). Let ri denote the
reflection with respect to the hyperplane Ker(αi |.) of Rn−1, and so

∀x ∈ Rn−1, ri(x) = x − 2(αi|x)αi .

Finally, let φ+ denote the set of n(n−1)
2 positive roots

φ+ = {α1,α2,α2 + α1,α3,α3 + α2,α3 + α2 + α1, . . . ,

αn−1,αn−1 + αn−2,αn−1 + αn−2 + · · · + α1}.
We define V (n) as the vector space over the field F = Q(l, r) with basis the vectors xβ ’s, indexed by
the positive roots β ∈ φ+ . Thus, dimF V (n) = |φ+| = n(n−1)

2 . This space V (n) is the Lawrence–Krammer
space (L–K space).

2. The representation

We define the following map on the generators of the BMW algebra

ν(n) : B(An−1) −→ EndF
(

V (n)
)
,

gi �−→ νi .

For each node i, the action of νi on xβ is given as follows
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νi(xβ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rxβ if (β|αi) = 0 (a),

1
l xβ if (β|αi) = 1 (b),

xβ+αi if (β|αi) = − 1
2 and (c),

xβ+αi + mrht(β)−1xαi − mxβ if (β|αi) = − 1
2 and (c′),

xβ−αi + m
lrht(β)−2 xαi − mxβ if (β|αi) = 1

2 and (d),

xβ−αi if (β|αi) = 1
2 and (d′),

where (c), (c′), (d), (d′) are the following conditions:

(c) β = αt + · · · + αi−1 with t � i − 1,

(c′) β = αi+1 + · · · + αs with s � i + 1,

(d) β = αt + · · · + αi with t � i − 1,

(d′) β = αi + · · · + αs with s � i + 1.

We then define ν(n)(ei) = l
m (ν2

i + mνi − idV (n) ). We have

ν(n)(ei)(xβ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (β|αi) = 0,

(1 − l− 1
l

1
r −r

)xαi if (β|αi) = 1,

1
rht(β)−1 xαi if (β|αi) = − 1

2 and (c),

rht(β)−1xαi if (β|αi) = − 1
2 and (c′),

1
lrht(β)−2 xαi if (β|αi) = 1

2 and (d),

lrht(β)−2xαi if (β|αi) = 1
2 and (d′).

We can check that the map ν(n) defines a representation of B(An−1) in the L–K space V (n) (see [10,
Chapter 7, pp. 66–68]). We notice that ν(n)(ei)(xβ) is always a multiple of xαi . This is an important
fact to show the reducibility of the representation for some specializations of its parameters.

3. Reducibility of the representation

We show that when the representation ν(n) is reducible, the action on a proper invariant subspace
of the L–K space is an Iwahori–Hecke algebra action. Indeed, we show that the ei ’s act trivially. We
then recall some facts about the degrees of the irreducible representations of the Iwahori–Hecke
algebra, which we assume to be semisimple. This assumption plays a key role in the proof of the
main theorem in Section 4, ruling out some values for r. We will investigate whether the Iwahori–
Hecke algebra representations of small degrees may occur in the L–K space and if so for which values
of l and r. We show that if there exists a one-dimensional invariant subspace inside V (n) , it forces the
value 1

r2n−3 for l, except when n = 3 when it forces l ∈ {−r3, 1
r3 }. Conversely, we show that for these

values of l and r, there exists a one-dimensional invariant subspace of V (n) and the representation
is thus reducible. Similarly, we show that if there exists an irreducible (n − 1)-dimensional invariant
subspace inside V (n) , it forces l = 1

rn−3 or l = − 1
rn−3 in the case when n �= 4 and l ∈ {−r3, 1

r ,− 1
r } in the

case when n = 4. Conversely, for each of these values of l and r, there exists an irreducible (n − 1)-
dimensional subspace of V (n) , which shows the reducibility of the representation in these cases as
well. We end the section by showing that when l = r or l = −r3, the representation is reducible. We
exhibit an invariant subspace of the L–K space that we show to be proper for these values of l and r.
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3.1. Action on a proper invariant subspace of the L–K space

We show that if the representation is reducible, then the ei ’s act trivially on any proper invariant
subspace of the L–K space, which means the action is a Hecke algebra action.

Proposition 1. For any proper invariant subspace U of V (n) , we have ν(n)(ei)(U ) = 0 for all i.

Proof. Let U be a proper invariant subspace of V (n) and let u be a nonzero vector of U such that
ν(n)(ei)(u) �= 0. Since ν(n)(ei)(u) is a multiple of xαi , we see that xαi is in U . From there, we have

νi−1(xαi ) = xαi+αi−1 + mxαi−1 mod F xαi .

Hence xαi+αi−1 + mxαi−1 is in U . Another application of νi−1 now yields

νi−1(xαi+αi−1 + mxαi−1) = xαi + m

l
xαi−1 ,

from which we derive that xαi−1 is in U . By induction, we see that all the xαt ’s for t � i are in U . In
particular, xα1 is in U . From there, it is easy to see that all the xβ ’s are in fact in U . Then U is the
whole L–K space V (n) , in contradiction to our assumption that U is proper. �
Corollary 1. Let W be a proper irreducible invariant subspace of V (n) . Then, W is an irreducible H F ,r2(n)-
module.

Proof. Let W be a proper irreducible invariant subspace of V (n) . By Proposition 1 and defining rela-
tion (3), we have

[
g2

i + mgi − 1
]
.W = 0 for all i.

Hence W is an irreducible H F ,r2(n)-module. �
We now recall some general facts about the irreducible representations of the Iwahori–Hecke al-

gebra of the symmetric group. The following two propositions were established by James for the
symmetric group Sym(n). They remain true for the Iwahori–Hecke algebra H F ,r2(n) since we work in
characteristic zero and assume H F ,r2(n) to be semisimple (see [11]).

Proposition 2. Let n be an integer with n � 7. Assume that H F ,r2(n) is semisimple. Then, every irreducible

H F ,r2(n)-module is either isomorphic to one of the Specht modules S(n) , S(1n) , S(n−1,1) , S(2,1n−2) or has di-
mension greater than (n − 1).

Proof. It follows from Theorem 6, point (i) of [7]. �
We note that the statement is also true when n = 3 and n = 5. When n = 4, the statement fails

as S(2,2) has dimension 2 and when n = 6, the statement also fails since S(3,3) and S(2,2,2) both have
dimension 5.

When the integer n is greater than or equal to 9, there exist even better estimates of the dimen-
sions of the irreducible H F ,r2(n)-modules, as follows.

Proposition 3. Let n be an integer with n � 9. Assume that H F ,r2(n) is semisimple. Then, every irreducible

H F ,r2(n)-module is either isomorphic to one of the Specht modules S(n) , S(n−1,1) , S(n−2,2) , S(n−2,1,1) or to one

of their conjugates, or has dimension greater than (n−1)(n−2)
2 .
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Proof. It follows from Theorem 7 of [7] with N = 9. �
We have the corollary on the dimensions.

Corollary 2.

(i) Let n be an integer with n � 3 and n /∈ {4,8}. Assume that H F ,r2(n) is semisimple. Let D be an irreducible
H F ,r2(n)-module. Then, there are two possibilities:

either dim D ∈
{

1,n − 1,
n(n − 3)

2
,
(n − 1)(n − 2)

2

}
,

or dim D >
(n − 1)(n − 2)

2
.

(ii) Assume that H F ,r2(4) is semisimple. Let D be an irreducible H F ,r2(4)-module. Then dim D ∈ {1,2,3}.
(iii) Assume that H F ,r2(8) is semisimple. Let D be an irreducible H F ,r2(8)-module. Then dim D ∈ {1,7,14,

20,21} or dim D > 21.

Proof. Points (ii) and (iii) can be seen directly by using the Hook formula. Point (i) is for n � 9 a
direct consequence of Proposition 3 after noticing that S(n−2,2) has dimension n(n−3)

2 and S(n−2,1,1)

dimension (n−1)(n−2)
2 . For smaller n, the statement also holds by direct investigation using the Hook

formula. �
Corollary 1 and Corollary 2 imply that any proper irreducible invariant subspace of the L–K space

V (n) has dimension 1, n−1, n(n−3)
2 , (n−1)(n−2)

2 or dimension greater than (n−1)(n−2)
2 , except in the spe-

cial cases when n ∈ {4,8}. Next, we investigate the existence of a one-dimensional invariant subspace
of V (n) . We define for two nodes i and j with i < j

wij = xαi+···+α j−1 .

We will sometimes write wi, j instead of wij .

3.2. The case l = 1
r2n−3

We will show the existence of a one-dimensional invariant subspace of the L–K space when
l = 1

r2n−3 . We prove the following theorem.

Theorem 3. Let n be an integer with n � 3 and assume (r2)2 �= 1.
Suppose n � 4. There exists a one-dimensional invariant subspace of V (n) if and only if l = 1

r2n−3 . If so, it is

spanned by
∑

1�s<t�n rs+t wst .

Suppose n = 3. There exists a one-dimensional invariant subspace of V (3) if and only if l = 1
r3 or l = −r3 .

Moreover, if r6 �= −1, it is unique and

when l = 1

r3
, it is spanned by w12 + rw13 + r2 w23,

when l = −r3, it is spanned by w12 − 1

r
w13 + 1

r2
w23.

If r6 = −1, there are exactly two one-dimensional invariant subspaces of V (3) and they are respectively
spanned by the vectors above.
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Proof. Let U be a one-dimensional invariant subspace of V (n) and let u be a spanning vector
of U . For each i, let γi be the scalar such that νi(u) = γiu. Since by Proposition 1 we have
(ν2

i +mνi − idV (n) )(u) = 0, it follows that γ 2
i +mγi −1 = 0. Hence γi ∈ {r,− 1

r }. Further, since (r2)2 �= 1,
the braid relation νiν jνi = ν jνiν j when i ∼ j forces that γi takes the same value as γ j . Let’s denote
by γ the common value of the γi ’s. So, for each i, we have νi(u) = γ u with γ ∈ {r,− 1

r }. �
A general form for u is

u =
∑

1�i< j�n

μi j wij, where μi j ∈ F .

We look for relations between these coefficients. We will use the following lemma.

Lemma 1. Let i be some node. Suppose v = ∑
1�k< f �n μkf wkf is a vector of V (n) with νi(v) = γ v, where

γ ∈ {r,− 1
r }. Then the following equalities hold for the coefficients of v:

∀s � i + 2, μi+1,s = γμi,s, (11)

∀t � i − 1, μt,i+1 = γμt,i . (12)

When i = 1, only (11) holds and when i = n − 1, only (12) holds.

Proof. To show (11), we look at the coefficient of wi+1,s in νi(v) = γ v , where s � i + 2. We get
μi,s − mμi+1,s = γμi+1,s . Since γ + m = 1

γ , this equality is equivalent to μi+1,s = γμi,s . Similarly, by
equating the coefficients of wt,i+1 in νi(v) = γ v , we obtain (12). �

Applying these equalities to the coefficients of u, we see that all the coefficients of u must be
nonzero. In particular, when n � 4, the coefficient μ34 of u is nonzero. Because an action of g1 on
w34 is a multiplication by r and an action of g1 on the other terms wij does not create any term
in w34, this forces γ = r. Thus, without loss of generality, we have

u =
∑

1�i< j�n

ri+ j wij .

From there, we look at the action of g1 on u and the resulting coefficient in w12. The action of g1 on
w12 is a multiplication by l−1 and an action of g1 on the w2, j ’s for 3 � j � n creates new terms in
w12 with respective coefficients mr j−3. Thus, we get the equation:

r3

l
+ m

r

n∑
j=3

(
r2) j = r4,

from which we derive that l = 1
r2n−3 .

Conversely, if l = 1
r2n−3 , we define u as

∑
1�i< j�n ri+ j wij and check that νi(u) = ru for each i. For

details, see [10, §8.2].
This ends the proof of the theorem when n � 4. The case n = 3 is different in that γ can take either

values r or − 1
r forcing in one case l = 1

3 and in the other case l = −r3. Details appear in [10, §8.2].

r
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3.3. The case l ∈ { 1
rn−3 ,− 1

rn−3 }

In Theorem 4, the case n = 3 was special. Likewise, in the following theorem, the case n = 4 needs
to be formulated separately.

Theorem 4. Let n be a positive integer with n � 3 and n �= 4. Assume H F ,r2(n) is semisimple. Then, there exists

an irreducible (n − 1)-dimensional invariant subspace of V (n) if and only if l = 1
rn−3 or l = − 1

rn−3 .

If so, it is spanned by the v(n)
i ’s, 1 � i � n − 1, where v(n)

i is defined by the formula:

v(n)
i =

(
1

r
− 1

l

)
wi,i+1 +

n∑
s=i+2

rs−i−2
(

wi,s − 1

r
wi+1,s

)

+ εl

i−1∑
t=1

rn−i−2+t
(

wt,i − 1

r
wt,i+1

)

with ⎧⎨
⎩

ε 1
rn−3

= 1,

ε− 1
rn−3

= −1.

Suppose n = 4 and assume H F ,r2(4) is semisimple. Then, there exists an irreducible 3-dimensional invariant

subspace of V (4) if and only if l ∈ { 1
r ,− 1

r ,−r3}.

If l ∈ {− 1
r , 1

r }, it is spanned by v(4)
1 , v(4)

2 , v(4)
3 .

If l = −r3 , it is spanned by the vectors:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1 = rw23 + w13 +
(

1

r
+ 1

r3

)
w34 − w24 − 1

r
w14,

u2 = −rw12 − r2 w13 − 1

r
w34 − 1

r2
w24 +

(
r + 1

r

)
w14,

u3 = (
r + r3)w12 + 1

r
w23 − w13 + w24 − rw14.

Proof. Suppose that there exists an irreducible (n − 1)-dimensional invariant subspace U of V (n) .

Claim 1. Except in the case when n = 6, there exists a basis (v1, . . . , vn−1) of U such that one of the following
two sets of relations holds

(
)

∣∣∣∣∣∣∣∣∣

νt(vi) = rvi, ∀t /∈ {i − 1, i, i + 1},
νi(vi) = − 1

r vi, ∀1 � i � n − 1,

νi+1(vi) = r(vi + vi+1), ∀1 � i � n − 2,

νi−1(vi) = rvi + 1
r vi−1, ∀2 � i � n − 1,

(�)

∣∣∣∣∣∣∣∣∣

νt(vi) = −1/rvi, ∀t /∈ {i − 1, i, i + 1},
νi(vi) = rvi, ∀1 � i � n − 1,

νi+1(vi) = −1/r(vi + vi+1), ∀1 � i � n − 2,

νi−1(vi) = −1/rvi − rvi−1, ∀2 � i � n − 1.
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Proof. By Proposition 2, there are exactly two inequivalent irreducible representations of H F ,r2(n) of
degree (n − 1), except in the case n = 6, when there are exactly four inequivalent irreducible repre-
sentations of H F ,r2(6) of degree 5. Consider now the set of relations (
) (resp. (�)). For each i, let Mi
(resp. Ni) be the matrix of the endomorphism νi in the basis (v1, . . . , vn−1). It is a straightforward
verification that the Mi ’s (resp. Ni ’s) satisfy the braid relations and the relation M2

i + mMi = In−1

(resp. N2
i + mNi = In−1) for each i, where In−1 is the identity matrix of size (n − 1). Hence the Mi ’s

(resp. the Ni ’s) yield a matrix representation of H F ,r2(n) of degree (n − 1). To show that these two
matrix representations are irreducible, relying on Proposition 2, it suffices to check that there is no
one-dimensional invariant subspace of F n−1. This is the case when r2n �= 1. When n = 3, the two
matrix representations are equivalent. When n � 4, they are not: visibly, the matrices of one repre-
sentation all have the same trace − (n−2)

r + r and the matrices of the other representation all have
the same trace (n − 2)r − 1

r . These two values are distinct when (r2)2 �= 1 and n � 4. We conclude
that these two matrix representations are the two inequivalent irreducible representations of H F ,r2(n)

when n � 4 and n �= 6. �
For n � 4, we can show that it is impossible to have the second set of relations, except in the case

n = 4 when it forces l = −r3. For a detailed proof of this fact, see [10, Chapter 8, pp. 81–95]. Let n � 3
and suppose that the vi ’s satisfy (
). The relation νi(vi) = − 1

r vi implies that in vi there are no terms
in wts for s � i − 1 or t � i + 2 or t � i − 1 and s � i + 2. Thus, a general form for vi must be

vi = μi,i+1 wi,i+1 +
n∑

s=i+2

μi,s wi,s +
n∑

s=i+2

μi+1,s wi+1,s

+
i−1∑
t=1

μt,i wt,i +
i−1∑
t=1

μt,i+1 wt,i+1. (13)

Since νi(vi) = − 1
r vi , both equalities (11) and (12) hold with γ = − 1

r . Further, since νq(vi) = rvi for
q /∈ {i − 1, i, i + 1}, applying (11) and (12) with i = q and γ = r yields

∀ j � q + 2, μq+1, j = r,μq, j, (14)

∀k � q − 1, μk,q+1 = rμk,q. (15)

Apply (14) with q � i − 2 and j ∈ {i, i + 1} to get

∀q � i − 2, μq+1,i = rμq,i & μq+1,i+1 = rμq,i+1.

Apply (15) with q � i + 2 and k ∈ {i, i + 1} to get

∀q � i + 2, μi,q+1 = rμi,q & μi+1,q+1 = rμi+1,q.

Expression (13) can now be rewritten as follows.

vi = ζ (i)wi,i+1 + δ(i)
n∑

s=i+2

rs−i−2
(

wi,s − 1

r
wi+1,s

)
+ λ(i)

i−1∑
t=1

rt−1
(

wt,i − 1

r
wt,i+1

)
,

where ζ (i) , δ(i) and λ(i) are three coefficients to determine. First, we show that all the δ(i) with i ∈
{1, . . . ,n − 2} may be set to the value one. Notice that if v1, . . . , vn−1 satisfy (
), then δv1, . . . , δvn−1
also satisfy (
), where δ is any nonzero scalar. Then, without loss of generality, we set δ(1) = 1.



C. Levaillant, D. Wales / Journal of Algebra 323 (2010) 1966–1982 1975
Suppose δ(i) = 1 for some node i with 1 � i � n − 2. We will show that δ(i+1) = 1. Notice that δ(i+1)

is the coefficient of wi+1,i+3 in vi+1. Since an action of gi+1 on vi never creates a term in wi+1,i+3,
by looking at the coefficient of wi+1,i+3 in νi+1(vi) = rvi + rvi+1, we get 0 = −rδ(i) + rδ(i+1) . After
replacing δ(i) by 1, this yields δ(i+1) = 1. Thus, all the δ(i) may be set to the value 1. It remains to
find the coefficients ζ (i) and λ(i) . By looking at the coefficient of wi,i+1 in νi+1(vi) = r(vi + vi+1), we
get

rζ (i) + riλ(i+1) = 1, for each i with 1 � i � n − 2. (16)

Also, by looking at the coefficient of the same term wi,i+1 in the relation νi−1(vi) = rvi + 1
r vi−1, we

get

−mζ (i) − ri−3λ(i) = rζ (i) − 1

r2
, for each i with 2 � i � n − 1.

After multiplication by a factor r2, we obtain

rζ (i) + ri−1λ(i) = 1, for each i with 2 � i � n − 1. (17)

By (16) and (17), we get λ(i) = 1
ri−2 λ(2) , for all i � 2. Further, change indices in (16) to get

rζ (i−1) + ri−1λ(i) = 1 for each i with 2 � i � n − 1. (18)

Now (17) and (18) show that ζ (i) = ζ (i−1) for each i with 2 � i � n − 1. In other words, all the ζ (i)

are equal with a certain scalar ζ . The relation between ζ and λ(2) is given by Eq. (18) with i = 2

λ(2) = 1

r
− ζ. (19)

Thus, by determining ζ , we will get a complete expression for all the vectors vi ’s. Since we have

v1 = ζ w12 +
n∑

s=3

rs−3
(

w1,s − 1

r
w2,s

)
,

by looking at the coefficient of w12 in the relation ν1(v1) = − 1
r v1, we get the equation:

ζ

(
1

l
+ 1

r

)
= 1

r2
− (

r2)n−3
. (20)

Further, by looking at the coefficient of wi,i+1 in νi(vi) = − 1
r vi , we have

ζ

(
1

l
+ 1

r

)
=

n∑
s=i+2

rs−i−3mrs−i−2 + λ(i)
i−1∑
t=1

rt−2 m

lri−t−1

i.e.

ζ

(
1

l
+ 1

r

)
= 1

r2
− (

r2)n−i−2 + λ(i)

l

(
1

ri
− ri−2

)
. (�)i
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Now write down (�)2 and (�)3:

ζ

(
1

l
+ 1

r

)
= 1

r2
− (

r2)n−4 + λ(2)

l

(
1

r2
− 1

)
, (�)2

ζ

(
1

l
+ 1

r

)
= 1

r2
− (

r2)n−5 + λ(2)

lr

(
1

r3
− r

)
, (�)3

where λ(3) has been replaced with λ(2)

r . Subtract these two equalities to get

λ(2)

l

(
1

r2
− 1

r4

)
= (

r2)n−4
(

1 − 1

r2

)
. (�)2–(�)3

After multiplying this equality by 1
r2 and dividing it by 1

r2 − 1
r4 (recall that m �= 0), we obtain

λ(2) = l
(
r2)n−3

.

Hence, by (19), ζ = 1
r − l(r2)n−3. Plugging this value for ζ into (20) now yields

l2 = 1

(r2)n−3
, hence l ∈

{
1

rn−3
,− 1

rn−3

}
.

If l = 1
rn−3 , we get successively λ(2) = rn−3 = 1

l , ζ = 1
r − 1

l and λ(i) = rn−i−1.

If l = − 1
rn−3 , λ(2) and ζ are still respectively 1

l and 1
r − 1

l and λ(i) = −rn−i−1.
We obtain the formula announced in Theorem 4.
Conversely, if l ∈ { 1

rn−3 ,− 1
rn−3 }, we can show that the v(n)

i ’s defined in Theorem 4 satisfy the rela-

tions (
) (see [10, §8.3]). In particular, their linear span over F is a proper invariant subspace of V (n) ,
hence is an H F ,r2(n)-module by Corollary 1. When n �= 4, if the vectors v(n)

i ’s were linearly depen-
dent, then their linear span would either be one-dimensional or would contain a one-dimensional
H F ,r2(n)-submodule, as there is no irreducible H F ,r2(n)-module of dimension between 1 and (n − 1)

by Corollary 2. In any case, by Theorem 3, that would force l = 1
r2n−3 when n �= 3 and l ∈ {−r3, 1

r3 }
when n = 3. This is impossible with our assumption that l ∈ { 1

rn−3 ,− 1
rn−3 } and the fact that r2n �= 1. As

for n = 4, the freedom over F of the family of vectors (v(4)
1 , v(4)

2 , v(4)
3 ) is a straightforward verification.

We are now able to conclude: the vector space SpanF (v(n)
1 , . . . , v(n)

n−1) is (n − 1)-dimensional, is invari-
ant under the action by the gi ’s and is an H F ,r2(n)-module since it is a proper invariant subspace

of V (n) . Then, by the relations satisfied by the v(n)
i ’s, it must be irreducible.

To complete the proof of Theorem 4, we show that there does not exist any irreducible 5-
dimensional invariant subspace of V (6) that is isomorphic to one of the Specht modules S(3,3)

or S(2,2,2) . Indeed, suppose such a subspace exists and name it W . Since we have assumed that
H F ,r2(6) is semisimple, we may use the branching rule as it appears in Corollary 6.2 of [11]. We have

S(3,3) ↓H F ,r2 (5)
 S(3,2), S(2,2,2) ↓H F ,r2 (5)
 S(2,2,1).

We will show that the restriction of W to H F ,r2(5) cannot be isomorphic to S(3,2) or S(2,2,1) , hence
a contradiction. A proof of the following fact is in [10, §8.3].
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Fact. Suppose H F ,r2(5) is semisimple. Then, up to equivalence, the two irreducible matrix represen-
tations of degree 5 of H F ,r2(5) are respectively defined by the matrices P1, P2, P3, P4 and Q 1, Q 2,
Q 3, Q 4 given by

P1 :=

⎡
⎢⎢⎢⎣

r
r

r
1 −r2 − 1

r
1 − 1

r

⎤
⎥⎥⎥⎦ , P2 :=

⎡
⎢⎢⎢⎣

− 1
r 1

− 1
r 1 1

r
r

r

⎤
⎥⎥⎥⎦ ,

P3 :=

⎡
⎢⎢⎢⎣

r
r
1 − 1

r
1 − 1

r −r2

r

⎤
⎥⎥⎥⎦ , P4 :=

⎡
⎢⎢⎢⎣

1 −r
1 r − 1

r 1
r

−r2 1
r 1 r − 1

r

⎤
⎥⎥⎥⎦ ,

where the blanks must be filled with zeros; the matrices Q i ’s are defined from the matrices Pi ’s by
replacing r with − 1

r .

In [10, Chapter 8, pp. 125–128], it is shown that it is impossible to have a basis (w1, w2, w3,

w4, w5) of W in which the matrices of the left action by the gi ’s, i = 1, . . . ,4 are the Q i ’s. In partic-
ular, by considering W as a subspace of V (5) instead of a subspace of V (6) , the computations of [10]
also show that:

Result 1. The irreducible matrix representation of degree 5 of H F ,r2(5) defined by the matrices Q i ’s
is not a constituent of the Lawrence–Krammer representation of degree 10 of the BMW algebra of
type A4.

Suppose now that there exists a basis (w1, w2, w3, w4, w5) of W in which the matrices of the left
action by the gi ’s, i = 1, . . . ,4 are the Pi ’s. We read from the matrices P1 and P3 that g1.w4 = − 1

r w4

and g3.w4 = − 1
r w4. Thus, we have

w4 = μ
(4)
13 w13 + μ

(4)
23 w23 + μ

(4)
24 w24 + μ

(4)
14 w14,

where the coefficients are related by μ
(4)
14 = μ

(4)
23 = − 1

r μ
(4)
13 = −rμ(4)

24 . In particular, all these coeffi-
cients are nonzero. The other spanning vectors of W are

w5 = g4.w4,

w1 = g2.w4 − rw4,

w2 = g4.w1,

w3 = g3.w2 − rw2.

A quick glance at these equations shows that the node number 6 never appears in any of the wi ’s.
But W is an invariant subspace of V (6) . In particular, it must be invariant under the action by g5. This
is not compatible with the expression for w5. We conclude that it is impossible to have

W ↓H 2 (5)
 S(3,2) or W ↓H 2 (5)
 S(2,2,1)
F ,r F ,r
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and so W cannot be isomorphic to S(3,3) or S(2,2,2) . Thus, by the first part of the proof, the existence
of an irreducible 5-dimensional invariant subspace of V (6) implies that l ∈ { 1

r3 ,− 1
r3 }. This completes

the proof of the theorem. �
As in Result 1, by considering W as a subspace of V (5) instead of a subspace of V (6) , we can show

the following result.

Result 2. Assume H F ,r2(5) is semisimple. If there exists an irreducible 5-dimensional invariant sub-
space of V (5) then l = r.

3.4. The cases l = r and l = −r3

In this section, we show that when l = r the representation ν(n) is reducible for all n � 4 and when
l = −r3, the representation is reducible for all n � 3. We introduce an invariant subspace of V (n) that
we show to be nontrivial for these values of l and r.

Proposition 4. For any two nodes i and j with 1 � i < j � n, define

{
ci j = g j−1 . . . gi+1ei g−1

i+1 . . . g−1
j−1 if j � i + 2,

ci,i+1 = ei .

Then, K (n) = ⋂
1�i< j�n Kerν(n)(ci j) is an invariant subspace of V (n) . Moreover, any proper invariant sub-

space of V (n) must be contained in K (n).

Proof. K (n) is not the whole L–K space, as is visible from the expressions for ν(n)(ei). We can check
that K (n) is a B-module. Verification of this fact is tedious and can be found in [10, §2]. Let W
be a proper invariant subspace of V (n) . By Proposition 1, we have ν(n)(ci,i+1)(W ) = 0 for all i with
1 � i � n − 1. Then ν(n)(ci, j)(W ) = 0 for all i and j with 1 � i < j � n. Hence W must be contained
in K (n). �

To show that ν(n) is reducible, it will suffice to exhibit a nontrivial element in K (n) when l = r
or l = −r3. The following proposition shows that K (4) is irreducible when l = r and H F ,r2(4) is
semisimple.

Proposition 5. Assume H F ,r2(4) is semisimple. There exists an irreducible 2-dimensional invariant subspace

of V (4) if and only if l = r. If so it is unique and it is K (4). Moreover, it is spanned over F by the two linearly
independent vectors:

v1 = w13 − 1

r
w23 + 1

r2
w24 − 1

r
w14,

v2 = w12 − 1

r
w13 − 1

r
w24 + 1

r2
w34.

Proof. See the proofs of Result 2, p. 154 and Corollary 5, p. 159 of [10]. �
The next proposition shows the reducibility of the representation when l = r and n � 4.

Proposition 6. Assume l = r. Then the vector v1 = w13 − 1
r w23 + 1

r2 w24 − 1
r w14 of Proposition 5 belongs

to K (n) for all n � 4. Thus, ν(n) is reducible for every n � 4.
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Proof. For n = 4, the result is contained in Proposition 5. When i � 5, we simply have for any
j � i + 2, ν−1

i+1 . . . ν−1
j−1(v1) = 1

r j−i−1 v1 and since ν(n)(ei)(v1) = 0, we see that v1 is thus annihilated

by all the ν(n)(ci j)’s with i � 5. Also, as we saw in Proposition 5, the vector v1 is in K (4), hence
it is annihilated by all the ν(n)(ci j)’s with j � 4. Thus, it suffices to check that v1 is annihilated by
ν(n)(c1 j), ν(n)(c2 j), ν(n)(c3 j) and ν(n)(c4 j) for all j � 5. We will use the following formulas that give
the action of the ci j ’s on the basis vectors of the L–K space in some relevant cases here.

∣∣∣∣∣∣∣∣∣∣∣∣

ν(n)(ci j)(wi, j−k) = 1

lrk−1
wij, (Rk)1�k� j−i−1,

ν(n)(ci j)(wi−k,i) = 1

r(k−1)+( j−i−1)
wij, (L j−i,k)1�k�i−1,

ν(n)(ci j)(wi−t, j−s) =
(

1

rt+s−1
− 1

rt+s−3

)(
1

l
− 1

r

)
wij, (Ct,s)1�t�i−1,1�s� j−i−1.

These formulas can be obtained by using the isomorphism between the BMW algebra and the tangle
algebra of Morton and Traczyk (see [12]). The use of the tangles allows us to derive algebraic relations
by a geometric approach as in Appendix C of [10].

When l = r, we note that the action of ci, j on wi−t, j−s is zero. From there, we have for j � 5,
where we replaced l by r:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(n)(c1, j)(v1) = ν(n)(c1, j)

(
w13 − 1

r
w14

)
= 0 by (R j−3) and (R j−4),

ν(n)(c2, j)(v1) = ν(n)(c2, j)

(
−1

r
w23 + 1

r2
w24

)
= 0 by (R j−3) and (R j−4),

ν(n)(c3, j)(v1) = ν(n)(c3, j)

(
w13 − 1

r
w23

)
= 0 by (L j−3,2) and (L j−3,1),

ν(n)(c4, j)(v1) = ν(n)(c4, j)

(
1

r2
w24 − 1

r
w14

)
= 0 by (L j−4,2) and (L j−4,3).

So v1 is in K (n) for all n � 4, as announced. It will be useful to notice that by the game of the
coefficients, the equalities to the right of the first two lines of equations still hold when l = −r3. �

When l = −r3, we have a similar result.

Proposition 7. When l = −r3 , the vector u1 defined as in Theorem 4 by the expression u1 = rw23 + w13 +
( 1

r + 1
r3 )w34 − w24 − 1

r w14 belongs to K (n) for all n � 4. Thus, when l = −r3 , the representation ν(n) is
reducible for every n � 3.

Proof. When l = −r3, ν(3) is reducible by Theorem 3 and ν(4) is also reducible by Theorem 4. Sup-
pose now n � 5. To show that u1 is in K (n), like in the case l = r, it will suffice to check that
ν(n)(ci j)(u1) = 0 for all i � 4 and j � 5. With l = −r3, the coefficients of type (Ct,s) are no longer
zero. But we have: ν(n)(c2, j)(w13 − 1

r w14) = 0 by (C1, j−3) and (C1, j−4). For ν(n)(c3, j)(u1), there is no
shortcut and a complete evaluation must be performed. We have, where we respected the same order
of the terms in Proposition 7 for the coefficients:

ν(n)(c3, j)(u1) =
[

r
1

r j−4
+ 1

r j−3
+

(
1

r
+ 1

r3

)(
− 1

r3r j−5

)
+

(
1

r j−4
− 1

r j−6

)(
1

r3
+ 1

r

)

+ 1

r

(
1

r j−3
− 1

r j−5

)(
1

r3
+ 1

r

)]
w3, j .
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The rules used are, in the same order: (L j−3,1), (L j−3,2), (R j−4), (C1, j−4) and (C2, j−4). All the coeffi-
cients cancel nicely to give ν(n)(c3, j)(u1) = 0.

Finally, for ν(n)(c4, j)(u1), only the terms in u1 whose last node is node number 4 yield a nonzero
contribution, the first one contributing with a coefficient ( 1

r + 1
r3 ) 1

r j−5 , the second one with a co-

efficient − 1
r j−4 and the third one with a coefficient − 1

r
1

r j−3 by rules (L j−4,1), (L j−4,2) and (L j−4,3)

respectively. The sum of these three coefficients is zero. Thus, we are done with all the cases and
conclude that u1 belongs to K (n) for all n � 4. �

At this stage, we have shown that when l and r take the values of Theorem 1, the representation
ν(n) is reducible. In the next part, we show conversely that if ν(n) is reducible, then l and r must be
related in the way described in Theorem 1.

4. Proof of the main theorem

We prove the main theorem on the representation ν(n) . We then show that ν(n) is equivalent to
the Lawrence–Krammer representation of the BMW algebra. The idea is to prove the main theorem
separately for small values of n and to use induction for larger n. Let’s assume that the main the-
orem is true for n ∈ {3,4,5,6}. These cases will be dealt with separately. Given an integer n with
n � 7, suppose that the main theorem holds for ν(n−1) and for ν(n−2) . We saw in part 3 that when
l ∈ {r,−r3, 1

r2n−3 , 1
rn−3 ,− 1

rn−3 }, the representation ν(n) is reducible. We will show conversely that if ν(n)

is reducible, it forces these values for l and r. Suppose ν(n) is reducible and let W be an irreducible
invariant subspace of V (n) . By Corollary 1, W is an irreducible H F ,r2(n)-module.

Suppose first n = 7 or n � 9. So dim W ∈ {1,n − 1,
n(n−3)

2 ,
(n−1)(n−2)

2 } or dim W >
(n−1)(n−2)

2 (see
Corollary 2). If dim W = 1, Theorem 3 implies that l = 1

r2n−3 . Also, if dim W = n−1, Theorem 4 implies

that l ∈ { 1
rn−1 ,− 1

rn−1 }. Suppose now that l /∈ { 1
r2n−3 , 1

rn−3 ,− 1
rn−3 }. Then we have dim W � n(n−3)

2 . We

show that this bound is large enough to make the intersection of W with the L–K spaces V (n−1) and
V (n−2) nontrivial. Indeed, we have the following result.

Claim 2. Let W be a subspace of V (n) .
If dim W > n − 1, then W ∩ V (n−1) �= {0}.
If dim W > 2n − 3, then W ∩ V (n−2) �= {0}.

Proof. If W ∩ V (n−1) = {0}, the L–K space V (n) contains the direct sum W ⊕ V (n−1) , which yields on
the dimensions: dim W + (n−1)(n−2)

2 � n(n−1)
2 . Then dim W � n − 1. Similarly, if W ∩ V (n−2) = {0}, we

get dim W � n(n−1)
2 − (n−2)(n−3)

2 = 2n − 3. �
Lemma 2. When n > 6, we have n(n−3)

2 > 2n − 3 and n(n−3)
2 > n − 1.

By the claim and the lemma, the intersections W ∩ V (n−1) and W ∩ V (n−2) are both nontrivial.
Since W is not the whole space V (n) , it cannot contain V (n−1) by the arguments of the proof of
Proposition 1. Similarly, it cannot contain V (n−2) . Hence W ∩ V (n−1) (resp. W ∩ V (n−2)) is a proper
invariant subspace of V (n−1) (resp. V (n−2)). This implies that ν(n−1) and ν(n−2) are both reducible.
Since we assumed the main theorem to be true for ν(n−1) and ν(n−2) , we get

l ∈
{

r,−r3,
1

r2n−5
,

1

rn−4
,− 1

rn−4

}
∩

{
r,−r3,

1

r2n−7
,

1

rn−5
,− 1

rn−5

}
.

Since r2 �= 1, r2(n−3) �= 1 and r2n �= 1 when H F ,r2(n) is semisimple, this only leaves the possibility
l ∈ {r,−r3}.
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It remains to deal with the case n = 8. Suppose n = 8. If l /∈ { 1
r13 , 1

r5 ,− 1
r5 }, then we have dim W �

14 > 13 = 2 × 8 − 3. Hence, the same arguments as before apply and yield again l ∈ {r,−r3}.
Thus, we have shown that if ν(n) is reducible and if l and r are such that l /∈ { 1

r2n−3 , 1
rn−3 ,− 1

rn−3 },

then l ∈ {r,−r3}. So we have proven that if ν(n) is reducible, then l ∈ {r,−r3, 1
rn−3 ,− 1

rn−3 , 1
r2n−3 }.

We now show that the main theorem holds for ν(n) where n ∈ {3,4,5,6}. The case n = 3 follows
from Theorem 3 and Theorem 4 and the case n = 4 from Theorem 3, Proposition 5 and Theorem 4.
For the case n = 5, we refer the reader to [10, §11, pp. 222–226]. As for the case n = 6, it must be
slightly adapted from the general case. Indeed, suppose ν(6) is reducible and let W be an irreducible
invariant subspace of V (6) with dim(W ) � 9. If dim(W ) > 9, then Claim 2 implies that W ∩ V (4) �= {0}.
If dim(W ) = 9, Claim 2 does not apply, but we notice that dim(W ) + dim(V (4)) = dim(V (6)). Thus,
if W ∩ V (4) = {0}, we then get W ⊕ V (4) = V (6) . By Proposition 1, we have ν(6)(e5)(W ) = 0. But
e5 also acts trivially on V (4) , hence acts trivially on V (6) . This is a contradiction. So again we have

W ∩ V (4) �= {0}, and the rest of the proof is the same as in the general case.
To end the proof of the main theorem, we show that ν(n) is equivalent to the Lawrence–

Krammer representation of the BMW algebra. Above, we proved that ν(n) is reducible if and only
if l ∈ {r,−r3, 1

r2n−3 , 1
rn−3 ,− 1

rn−3 }. In particular, ν(n) is generically irreducible over Q(l, r). Further, we

notice that ν(n) factors through the quotient B/I2 where I2 is the two-sided ideal generated by all
the products eie j with |i − j| > 1. Also, if I1 denotes the two-sided ideal of B generated by e1, we
observe that I1 is not in the kernel of ν(n) . Then, ν(n) is an irreducible representation of I1/I2 of
degree n(n−1)

2 . To conclude, we use the work of Cohen, Gijsbers and Wales. In [4], they show that

there are only two inequivalent irreducible representations of I1/I2 of degree n(n−1)
2 . One of them is

the Lawrence–Krammer representation of the BMW algebra. The representation ν(n) is equivalent to
that representation. Our r is the 1

r of [4].

5. Non-semisimplicity of the BMW algebra for some specializations of its parameters

Replacing the L–K representation by one in which r is replaced by its algebraic conjugate − 1
r

gives another representation. We call it the conjugate L–K representation. By the symmetry of the
roles played by r and − 1

r , when n � 4 and H F ,r2(n) is semisimple, the conjugate L–K represen-

tation is reducible if and only if l ∈ {− 1
r , 1

r3 ,−r2n−3, rn−3,−rn−3}. In particular, for n � 6, since
1
r3 /∈ {r,−r3, 1

r2n−3 , 1
rn−3 ,− 1

rn−3 }, the two representations are not equivalent. This is also true when
n ∈ {4,5}. For instance, for the L–K representation, the trace of the matrix of the left action by gn−1

is (n−2)(n−3)
2 r + 1

l − (n − 2)m (see for instance [10, Chapter 6, p. 55]). For the conjugate representation

it is (n−2)(n−3)
2 (− 1

r ) + 1
l − (n − 2)m.

We note that Proposition 1 remains valid for the conjugate L–K representation. A consequence of
this proposition is that when the representation is reducible, it is indecomposable. Then the BMW
algebra is not semisimple for the values of l and r for which the L–K representation or its conjugate
representation are reducible. Finally, the Iwahori–Hecke algebra H F ,r2(n) is a quotient of the BMW
algebra B(An−1). Thus, if H F ,r2(n) is not semisimple, B(An−1) is not semisimple either. Theorem 2 is
thus proven.
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