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1. Introduction
For a long time the following groups G have been studied:

Hypothesis (A). Assume that G has a subgroup H such that there is a transversal K to H in G which
is the union of 1 € G and G-conjugacy classes of involutions.

It has been conjectured that G is a 2-group if G is a finite group which is generated by K.
Nagy [Nag] as well as Baumeister and Stein [BS1] found a counterexample to that conjecture. This
paper is part of a series of papers where we determine the structure of the finite groups appearing
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in those triples (G, H, K) which satisfy Hypothesis (A). In the present paper we reduce the question
on the structure of the groups to a question on finite simple groups, which is solved in [BS2] and [S].
Notice that, as K is closed under conjugation, K is a transversal to all the conjugates of H in G,
and moreover, 1 € K. Baer observed that we can construct out of such a triple (G, H, K) a loop [Baer]
(see Section 2.1). A loop is a set X together with a binary operation o on X, such that there exists a
unique 1, € X with 1,0x=x01, =x for all x € X and such that the left and right translations

X=X, y=>x0y, px:X—=>X, yryox

are bijections. A loop can be thought of as a non-associative group.
Conversely given a loop X, we can recover the triple (G, H, K) [Baer] (see Section 2.1). A triple
(G, H, K) is called loop folder, if

e K is a transversal to all the conjugates of H and if
e 1eK.

Clearly, every triple (G, H, K) satisfying (A) is a loop folder. Moreover, if (A) holds, then K is a
twisted subgroup of G, that is 1 € K and x~!, xyx € K for all x, y € K. This translates into the language
of loops to the right Bol identity:

(xoy)oz)oy=xo0((yoz)oy) forallx,y, zeX,

where (X, o) is the loop constructed from (G, H, K).

A loop is called (right) Bol loop, if it satisfies this identity. In a Bol loop, the subloop generated by a
single element is a cyclic group. Therefore powers, inverses and orders of elements are well defined,
as is the exponent of a finite Bol loop.

The loop associated to a triple (G, H, K) fulfilling (A) is a Bol loop of exponent 2, as k? =1 for
every k € K. The loop then also satisfies the automorphic inverse property, AIP, that is:

(xoy) '=xloy ! forallx,yeX.

Bol loops with that property are Bruck loops. Our project is not only to determine the structure of
the groups in the triples satisfying Hypothesis (A), but as well the structure of the groups appearing
in the larger class of triples associated to the finite Bruck loops. In [BS3] we use the results proved in
this paper and [S] to find out the structures of the possible G, H and K.

In 2005 Aschbacher, Kinyon and Phillips gave insight into the structure of general finite Bruck
loops, as they showed in [AKP]:

e Elements of 2-power order and elements of odd order commute.

e Bruck loops are a central product of a subloop of odd order and a subloop generated by elements
of 2-power order.

e Simple Bruck loops are of 2-power exponent.

e The structure of a minimal simple Bruck loop (M-loop) is very restricted (see Theorem 3).

This focuses attention on Bruck loops of 2-power exponent, i.e. Bruck loops where every element is
of 2-power order. We call a loop folder associated to a Bruck loop a BX2P-folder, if

e K is a twisted subgroup,
e every element in K has a 2-power order,
e H acts on K.

To formulate the statement of the main theorem we need a further definition. A finite non-abelian
simple group S is called passive, if whenever (G, H, K) is a BX2P-folder with
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F*(G/02(G)) =,

then G = 0,(G)H.
Notice that in this case the loop to (G, H, K) is of 2-power size and therefore solvable by Corol-
lary 3.10.

Theorem 1. Let (G, H, K) be a loop folder associated to a finite Bruck loop such that:

a) K is a twisted subgroup,

b) every element in K has a 2-power order,
¢) Hactson K,

d) G = (K)

and assume, that every non-abelian simple section of G is either passive or isomorphic to PSL,(q) for q =9 or
a Fermat prime q > 5. Then the following holds:

= PGL;(q;) with g; > 5 a Fermat prime or g; =9, for 1 <i<e.

NH=gq;:(qi — 1) is a Borel subgroup in D; with H := H02(G)/02(G).

/02(G)=Dq x Dy x --- x D, for some nonnegative integer e.
i

i

*(G) = 02(G).

(1) ¢
(2) b
(3)D
(4) F

Notice that the assumption that the simple sections of G are either passive or one of Aschbach-
ers candidates is similar to a K-group assumption in the classification of finite simple groups, see
Section 4. Another way to think of the main theorem is as a structure reduction:

Given any finite group G, are there H and K, such that (G, H, K) is a nice folder (i.e. (a)-(d) of
Theorem 1 holds) to a Bruck loop? The main theorem reduces this problem to the case of those G
such that F*(G/03,(G)) is a finite simple group.

We call a loop folder (G, H, K) nice with respect to some loop property (Bol, A, Bruck) if this
property translates into a group theoretic property of the triple (G, H, K).

The only known example of a non-passive group is PSL,(5). The work of Aschbacher, Kinyon and
Phillips suggests that also PSL,(q) is a non-passive group for other values of g with ¢ — 1 a 2-power.
Unfortunately it is an open question, whether these groups are passive or not. An answer demands
either an example or a proof of the nonexistence of examples. This relates to hard questions about
2-groups. However in a forthcoming paper we show, that the non-passive finite simple groups are
among the PSLy(q) with ¢ —1 >4 a 2-power |[S].

The structure of the finite groups G which satisfy Hypothesis (A) and which are generated by K is
completely determined in [BS3]. Application of Theorem 1 yields the following:

Corollary 1.1. Let G be a finite group and H < G, such that there is a transversal K to H in G which is the
union of 1 € G and G-conjugacy classes of involutions. If G = (K) and if every non-abelian simple section of G
is either passive or isomorphic to PSL,(q) for ¢ =9 or a Fermat prime q > 5, then (G, H, K) is a loop envelope
to a Bruck loop of exponent 2 with H acting on K. Therefore, Theorem 1 describes G, H and K.

The organization of the paper is as follows: In the next section we introduce the relevant notation
on loops and assemble all the important facts on the relation between loops and groups. The idea
of that section is to provide a base for our series of papers - the results given there will be needed
in this paper, in [S] and in [BS3] - as well as for future papers on loops. If we have a proof of
some result which is more instructive than the known one, then we include that proof. Else we
quote the literature. The third section contains general results on Bruck loops of 2-power exponent,
which provide a set of tools for the classification of non-passive groups. Finally, the proof of the main
theorem is contained in Section 4.
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2. The relation between loops and groups

We follow the notation of Aschbacher [Asch1] and [AKP]. In particular we use the right Bol identity
and talk about right Bol loops. As there is an opposite relation between left and right Bol loops, the
decision between left and right Bol loops is only a notational convention, but also in the tradition of
Bol, Bruck, Glauberman and Aschbacher.

2.1. The Baer correspondence

Baer observed that statements about loops can be translated into the language of group the-
ory [Baer].

Given a loop (X, o), we define for x€ X a map p: X — Sym(X), x> px.

We record some standard loop theoretic notation,

G :=RMult(X) := (px: x € X) < Sym(X),
H := Stabg(1,),

K:={px: x€ X} G and

K:K— X:px—X.

Then (G, H, K) satisfies the following properties:

K is a transversal to all conjugates of H.
H is core free: 1= (", HE.

G = (K).

1

Definition. A triple (G, H, K) with G a group, H < G and K C G is called

a loop folder, if it satisfies (1) and (4),
a faithful loop folder, if it satisfies (1) and (2),
a loop envelope, if it satisfies (1), (3) and (4).

Remarks. (a) (1) is equivalent to the property
(1): |K|=|G:H| and HENKK~1=1 for all g €G.

(b) (1) and (2) imply (4).

(c) Conditions (2) and (3) seem to be natural, but may not be satisfied in loop folders to subloops,
so-called subfolders (see below for a definition).

(d) To a loop (X, o), there is up to isomorphism (of loop folders) a unique loop folder to X satis-
fying (2) and (3): The loop folder, which we constructed above in G = RMult(X). We call it the Baer
envelope of the loop.

(e) Let (G, H,K) be a loop folder and let k be a bijection between K and some set X. Then the
following operation o on X x X defines a loop on X: Set for all k1, ky € K

Kk (k1) ok (ky) =k (k1) where {k12} = K N Hk1k>.

(Notice that this notation of « is different from the notation given in [Asch1].)

We define the inverse mapping to x by R: X — K. Let @ be the homomorphism from (K) into
Sym(X). Then @ (R(X)) = px.

(f) For technical reasons it is useful to formally distinguish between elements of K and elements
of X, as elements of G may act on both sets, but in different ways.
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Subloops, homomorphisms, normal subloops, factor loops and simple loops are defined as usual
in universal algebra: A subloop is a nonempty subset which is closed under loop multiplication. Be
aware that we study finite loops. Therefore, any subloop contains the identity.

Homomorphisms are maps between loops, which preserves loop multiplication. The preimage rela-
tion induces an equivalence relation on the source loop, such that a product of equivalence classes is
again an equivalence class.

Normal subloops are preimages of 1, under a homomorphism and therefore subloops. A normal
subloop defines a partition of the loop into blocks (cosets), such that the set of products of elements
from two blocks is again a block. Such a construction gives factor loops as homomorphic images with
the normal subloop as the kernel.

Simple loops have only the full loop and the 1,-loop as normal subloops.

Finally we recall the definition of a solvable loop given in [Asch1]. A loop X is solvable if there
exists a series 1 = Xo < --- < X; = X of subloops with X; normal in X;+q and Xj+1/X; an abelian
group.

There are related concepts in the language of loop folders. We give here only the most important
concept of a subfolder. For other concepts and more results on loop folders see [Asch1] and [AKP].

Definition. Let (G, H, K) be a loop folder. A subfolder (U,V,W) is a loop folder with U < G, V <
UNHand W CUNK.

A subfolder defines a subloop Y of a loop X, such that the multiplications ox and oy coincide
on Y. Moreover, every subfolder is the folder of a subloop.

Lemma 2.1. A subgroup U < G gives rise to a subfolder (U, V, W), if and only if U = (U N H)(U N K). Then
V=UNHand W =UNK.

Proof. Let (U,V,W) be a subfolder. Then W < U NK is a transversal to V < U N H in U, which
implies U =WV < (U N H)(U NK). The Dedekind identity and the fact that H N K =1 then implies
V=UNHand W =UNK.

Now assume U = (U N H)(UNK). Then HN K =1 shows that (U NK) is a transversal to (U N H)
in U. As (UNK) acts transitively on the cosets of (UNH) in U, it follows that (UNK) acts transitively
on the cosets of (UN H)" in U for every u in U. Thus (U, U N H,U NK) is a subfolder. O

Corollary 2.2. If U is a subgroup of G containing H or K, then (U, U N H, U N K) is a subfolder of (G, H, K).

Though subfolders give access to inductive arguments, we have to be carefully for two reasons.

e A subfolder of a faithful loop folder may not be faithful.
e A subfolder of a loop envelope may not be a loop envelope.

Another useful concept is the concept of morphisms between loop folders, see [Asch1]. We con-
sider here only a special case, which is used to get faithful folders from arbitrary ones.

Lemma 2.3. Let (G, H, K) be a loop folder to a loop X, N < G with N < H and G = G/N. Then (G, H, K) is a
loop folder to the same loop X.

Proof. The loop folder property is clearly inherited to the factor group. The two loops are natural
isomorphic from the definition of the loop: the multiplication depends only on the action of K on the
H-cosets and N is in the kernel of this action. O
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Finally we need another relation between H = Stabg(1,) and K = {px: x € X} in the Baer envelope
of a loop. Let X be a loop and x, y € X. Define:
hyy = ,ox,oy,(fl € RMult(X).

Xoy

Lemma 2.4. Let X be a loop and (G, H, K) the Baer envelope of X. Then
H=(hyxy: x,y € X).

Proof. Let Hy := (hyy : X,y € X) <G. Then Hy is a subgroup of H and |G : H| = |X|. We claim that
G = H1K, which then yields the assertion.

We show this, using induction on the minimal length of elements o in RMult(X), expressed as a
product of elements of K. We assume that the minimal length is at least two, as words of length at
most one are already in K.

Suppose o = px, Px, - - Px, € G. If k=2, then o = hy, x, Px;0x, € H1K. For k > 2, the word o1 :=
Dxiox Px3 *+* Px, has a shorter expression as product of elements from K, so o1 = hypx for some
h1 € Hi and x € X. Then o = hy, x,01 = hx, x,h1px € H1K. O

2.2. Bol loops and twisted subgroups

If we write the Bol identity using the right translations p, we get

forally,ze X: p(yozyoy = pypzpy.

This leads to the concept of twisted subgroups:
Definition. A twisted subgroup K of a group G is a subset, such that for all x, y € K:
(1) 1eK,
(2) x 1 eK, and
(3) xyxe K.

Notice that the second condition is not necessary for finite groups: If x is in a twisted subgroup K,
then (1) and (3) imply that K contains all the powers of x. Therefore, K contains x~! as well.

We get (see also [Aschl, 6.1]):
Lemma 2.5. If X is a Bol loop with faithful loop folder (G, H, K), then K is a twisted subgroup of G.
Proof. By Remark (d) we may assume that (G, H, K) is the Baer envelope of the loop X. Therefore,

the elements of K are the permutations py with x in X. Thus the Bol identity implies that kikyky is
in K for all ki,ky in K. O

Notice, that for arbitrary (nonfaithful) loop folders (G, H, K) to X, K may not be a twisted sub-
group: we may replace elements k of K by ck with c € Coreg(H) without changing the loop multi-
plication.

Definition. A loop folder (G, H, K) to a Bol loop X is called a Bol-folder, if K is a twisted subgroup
of G.

As just noted not any loop folder to a Bol loop is a Bol folder, but
o the Baer folder of a Bol loop is a Bol folder, see Lemma 2.5,

e subfolders of Bol folders are Bol folders again,
e homomorphic images of Bol folders are Bol folders, see Lemma 2.6(2).
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In a Bol folder the Bol identity is translated into the group theoretic property of a twisted sub-
group. In this sense we call Bol folders nice loop folders.

We recall some of the results of Aschbacher on twisted subgroups from [Asch2]. As the original
paper contains much more, we extract some of the critical arguments (see [Asch2, Section 1], but
also [FKP]).

Lemma 2.6. Let K be a twisted subgroup of the group G. Then:

(1) Forallk e K, (k) <K.

(2) If N <G, then the image of K in G/N is a twisted subgroup.

(3) Forallk € K, the set kK is a twisted subgroup. The twisted subgroups kK, k € K, are called the associates
of K.

(4) Forxe K, xKx =K.

Proof. (1) is shown above. (2) is immediate from the definition. For (3) let x,y,z € K. We write
xy)(x2)(xy) = x(yxy)(y~1zy~D(yxy) and (xy)~ ! =x(x"1y~1x~1). As x~! € K, it follows that 1 € xK
and that xK is a twisted subgroup of G. (4) follows from the definition. O

Let G be a group with a twisted subgroup K such that G = (K). Define a sequence of relations
RiC€G xG by

Ro={(1, 1)} and Riiy={(kx.k'y): (x,y)€Ri, ke K}
and set Ry = U?io R;. As G is finite, R, is a finite union of the R;’s. For (X, y) € Roc We write x=y.

Lemma 2.7. Let G, K and = be as above, then the following holds.

(1) If g1 =hq and g3 = hy, then g1g> = h1h;.

(2) If g =h, then gK = Kh.

(3) {gK: geG}={Kg: g€G}.

(4) Ex(G) :={g € G: g=1}isanormal subgroup of G.

(5) Ek(G) C Wk (G):={g e G: gK =K} is also a normal subgroup of G.

(6) Wk (G)K = K = KWk (G) and ¥k (G) C K.

(7) If Ex(G) = 1, then there exists some T € Aut(G) with g = g forall g € G. Furthermore T2 =1,k* = k™!
forallk € K and the set A := tK C G(t) is G-invariant. Notice, that by the action of T on K there is at
most one automorphism of G with that action.

Proof. (1) is obvious, as g =h if and only if there exist ki,...,k;, € K with g =kqky---k, and h =
ki'ky kg

In (2) use induction: Let (kg,k~'h) be in R;y; with k € K and (g, h) € R;. Then gK = Kh and
therefore kgK = kKh = kKkk~'h = Kh by Lemma 2.6(4).

(3) is a consequence of (2): for any g1, h1 € G elements g,, hy € K exist with g; = gy and hy, =h;.

For (4) we use (1): If g=1, then gk =k 'gk=k1k 1 =1.

In (5) notice, that ¥k (G) is a subgroup containing Z'x (G) by definition. Let g € ¥x(G) and k € K.
Then gk =k 1gkK =k~1(g(kKk)k~! =K. As G = (K) we get (5).

For (6) notice, that ¥ (G)K = K from the definition, so as 1 € K, ¥k (G) C K. As kK = Kk~ by (2),
also K¥g(G) =K.

For (7) suppose Zk(G) = 1. Notice, that for any g € G: if hy = g and h, = g, then hl’lhz €
Ex(G) =1, so hy =hy. As G = (K), for any g € G there is a unique h € G, such that g = h. De-
fine g¥ = h and notice, that 7 is a homomorphism by (1) with image (K) = G, so an automorphism.
As K C C¢(t2), but (K) =G, 2 =1. Finally let k € K. Then (tK)* =k~ 't Kk = ttk~ 't Kk = T (kKk) =
K. O
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Remarks. (a) As 7 acts on ¥k (G)/Ek(G) by inverting all elements, this section is abelian.
(b) It may happen that 7 is the identity. This happens for instance in Bol loops of exponent 2.

Following Aschbacher, G is said to be reduced, if Zx(G) = 1. Together with Lemma 2.7(7) we get
the following statement, see also [Asch2, 2.2].

Lemma 2.8. Let K be a twisted subgroup of the group G and G = (K). Suppose, there exists an automorphism
o € Aut(G) withk® =k~ forallk € K. Then Ex(G)=1and o =T.

Proof. Let g € £ (G). There exist elements k1, ...,k, € K with g=kiky---ky, and 1= k1‘1k2_] . ~k;1.
Using the automorphism property of o and its values on K, we get 6(g) =1,s50 g=1 and & (G) =1.
Now we use Lemma 2.7(7). O

This yields the following characterization of a twisted subgroup.

Lemma 2.9. Let G be a finite group, T € Aut(G) with T2 =1 and K € G with k¥ =k~! for all k € K and
(K) = G. Then K is a twisted subgroup, if and only if 1 € K and A = tK C G(t) is G-invariant.

Proof. If K is a twisted subgroup, then we can use Lemma 2.8 to get &x(G) = 1. Now t is the
uniquely determined automorphism defined in Lemma 2.7(7) and the statement holds.

Suppose A is G-invariant. Notice, that (tk)2 =k7k = 1. Let kq,ky € K. Then kikaki = T(tky)¥1 €
TA.As 1€ K and k; € K iterating this procedure, we see that K contains all positive powers of k1. O

Lemma 2.10. (See [Aschl, 6.5].) Let (G, H, K) be the Baer envelope to a Bol loop X. Then (Zx(G), 1, Zk (G))
is a subfolder to a normal subloop Z (X). Moreover, E (X) is a group and isomorphic to the group Zx (G).

Following Aschbacher, a Bol loop X is called radical free, if Z(X)=1.
2.3. Ar-loops

If we wish to apply group theory in loop theory, the loops should have some automorphisms.
Furthermore there should be a way to find other subloops than just those mentioned in Lemma 2.1.
A concept, which occurs naturally here is the concept of Ar-loops.

As it will turn out, Bruck loops are examples of A.-loops, while general Bol loops need not have
the A, -property.
Definition. The loop X is called an A;-loop, if for all x, y € X: hy y € Aut(X), This means that

forallx,y,u,ve X: (uo v)hw = (u)hw o (v)hx-y.
This definition implies, that subloops and homomorphic images of an A,-loop are again A-loops.

Due to Lemma 2.4 our definition of A,-loop is the same as in Section 4 of [Asch1]. The following
lemmata are results of Aschbacher, see Section 4 in [Asch1].

Lemma 2.11. (See [Asch1, 4.1].) A loop X with Baer envelope (G, H, K) is an A-loop if and only if H acts on
K via conjugation. In that case p)’(’ = pyn forany x e X, h e H < Sym(X).

Definition. An A;-loop folder is a loop folder (G, H, K), such that H acts on K by conjugation.

In an A,-folder the A,-property of the loop is translated into the group theoretic condition, that
H acts by conjugation on K. Therefore, we call it a nice folder. It holds:
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o The Baer folder of an A,-loop is an A.-folder, see Lemma 2.11.
e Subfolders of A,-folders are A,-folders again, see [Asch1, 4.2(2)].
o Homomorphic images of A,-folders are A,-folders, see [Asch1, 4.2(2)].

We give an example of a loop folder to an A,-loop, which is not an A,-folder: Let G = (a,b | a® =
b% = (ab)* =1) = Dg, H := (ab) and K := (a). The corresponding loop is the group of size 2.
The next lemma is essentially 4.3 of [Asch1].

Lemma 2.12. (See [Asch1, 4.3].) Let (G, H, K) be an A,-loop folder to a loop X and L < H. Then:

Fixx(L) := {x € X: X =xforalll € L} is a subloop of X and so closed under o.
Forke K, {h € H: h* € H} = Cy (k).
ForkeK,{keK: L*=L}={keK: [L,k] =1} =: Cx(L).
(Cg(L),Cy(L),Ck (L)) aswellas (Ng(L), Nyg(L), Cx (L)) are subfolders to Fixx (L).
H controls G-fusion in H.

), coreg(H)]=1.

NSRS ANG I

(1
(2
3
(4
(5
(6

Notice, that (6) is a consequence of (2).

If (G,H,K) is an Ar-loop folder, then for L < H, Ng(L) and Cg(L) give subfolders. This is the
reason, why the group theoretic approach to loops is so powerful: The corresponding subloops may
not be that interesting in loop theory, but the subgroups C¢(L) and Ng(L) play an important part in
the local structure of a group.

2.4. Bruck loops

Recall, that a Bruck loop X is a Bol loop, such that the inverse map ¢:X — X, x+— x~! is an

automorphism of (X, o).
Lemma 2.13. (See [Asch1, 6.6], [AKP, 5.1].) Let X be a Bruck loop with Baer envelope (G, H, K). Then:

(1) X is radical free.

(2) Themap t: X — X, x> x~ ! induces on G exactly T from Lemma 2.7(7).

(3) Theset A =1tK C G(t) is G-invariant.

(4) H< Cg().

(5) X isan A;-loop.

(6) Fixx(t) is a Bol loop of exponent 2 with folder (C¢(t), H, Cx (T)).

Lemma 2.14. (See [AKP, 5.1].) Let X be a Bol loop with Baer envelope (G, H, K). The following statements are
equivalent:

) X is a Bruck loop.

) X is aradical free A;-loop.

) Z(X)=EZ(G) =1and H acts on K by conjugation.
)

(
(
(
(4) E(X)=E(G)=1and H < C¢(t) for some T € Aut(G) with T2 =1 and k* =k~ forallk € K.

1
2
3
4
Definition. A Bruck folder (G, H, K) is a loop folder to a Bruck loop X, which is both an A;-folder and
a Bol folder. So K is a twisted subgroup and H acts on K by conjugation.

Notice, that the Baer folder to a Bruck loop is a Bruck folder.
Lemma 2.15. Let (G, H, K) be a Bruck folder. Then the following hold.

(1) There is a subgroup Z of Z({K)) such that (K)/Z = RMult(X).
(2) There exists a unique T € Aut(G) with [H, t]=1and k' =k~ forall k € K.
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(3) Theset A =tK C Aut(G) is G-invariant.
(4) Subfolders and homomorphic images are Bruck folders.

Proof. (1) By Lemma 2.12(6), (K) is a central extension of RMult(X) by a group Z < H with Z <
Z((K)).

(2) If Ex((K)) =1, then t exists by Lemma 2.7(7). We claim that in fact &g ((K)) = 1. By
Lemma 2.7(4)-(6) Ex({(K)) € K. Let a be the natural homomorphism from (K) to RMult(X). Then
K and «a(K) are twisted subgroups and a(&x((K))) < Eqr)(@((K))) =1 by Lemma 2.14. Hence,
Ex((K)) <kera < Z({K)) by (1). As |X| =|K| = |a(K)|, we get K Nkera = 1. Thus Zx ((K)) = 1.

We claim that for all h € HN (K) it holds h™ = h. We have

1

K = (k)™ = () =k

Thus 7 and ¢/ are two automorphisms which invert every element in K, which implies v = t"* by
Lemma 2.8. So, h® =h for all h € HN (K).
We extend the map 7 to G by defining 7 (hk) =hk~! for h € H and k € K. Then 7 is in Aut(G):
Let hy,hy € H and kq,k, € K. Then

(hikihikz)® = (hihok!?ky)" = (Rihok!2koksks )
where k3 is an element in K such that kq2k2k3 is an element in H. Then by the definition of 7
(h1hakkoksk3 )T = hihak!2koksks.
Notice also that kK2kaoks = (kK?kyk3)™ = (kI2)~k; 'k ! This yields

(hikihika)™ = hiha (K12) 7'k kg ks = hoho (K12) kgt = haky Thaky ! = (k)™ (haka)",

which yields the claim. This gives (2).

As K is a twisted subgroup (3) holds by Lemma 2.9.

Subfolders and homomorphic images of A-loop folders (resp. Bol folders) are again A;-loop folders
(resp. Bol folders). As subloops and homomorphic images of Bruck loops are again Bruck loops, we
get (4). O

We add, that Bruck folders are nice in our sense: The Bruck loop property of the loop (Bol identity
and automorphic property) translates into the existence of an automorphism t € Aut(G) with

2
v =1,

forallhe H, ke K: h" =h and k¥ =k~1.
7K is G-invariant, and

H acts by conjugation on K.

Notice, that TK is another transversal to H in (G, 7). If T #1, 1 ¢ TK, so in general this transversal
does not give a loop.

Notation. Let (G, H, K) be a Bruck folder (G, H, K) and t € Aut(G) the automorphism introduced in
Lemma 2.15(2). Then let

G :=G(1),
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the semidirect product of G with T,

HT:=H(r)<G" and A:=tKcG".
By Lemma 2.15(3) A is a GT-invariant set of involutions.

2.5. Bruck loops of 2-power exponent

As mentioned in the introduction, results of Glauberman [Glaub1,Glaub2], Aschbacher [Asch1] and
Aschbacher, Kinyon and Phillips [AKP], now focus the attention to Bruck loops of 2-power exponent.
Again the loop properties translate into a property of G and we get yet another nice folder type.

Lemma 2.16. (See [AKP, (5.13)].) Let (G, H, K) be a Bruck folder. Then T € 0,(G™) if and only if every element
of K has 2-power order.

Proof. Suppose 7 € 05(G1). As k¥ =k~! for all k in K, it follows that every element in K is of
2-power order.

Now assume that every element in K is of 2-power order. Let g = hk with h in H and k in K.
Then 78 = ¥ = k=27. Hence, (, T8) is a 2-group for all g € G. By the Baer-Suzuki Theorem T is in
02(Gh). O

Notice, that if (G, H, K) is a Bruck folder to a loop X, X is of exponent 2 iff K is a union of 1 € G
and G-conjugacy classes of involutions.

Definition. Let X be a Bruck loop of 2-power exponent. A loop folder (G, H, K) to X is called a BX2P-
folder, if it is a Bruck folder and every element of K has 2-power order. Equivalently T € 0,(G™).
A loop folder (G, H, K) is called a BX2P-envelope, if (G, H, K) is a BX2P-folder and a loop envelope, so
G = (K).

Again, the Baer folder to a Bruck loop of 2-power exponent is a BX2P-folder, while subfolder and
images of BX2P-folders are again BX2P-folders.

Lemma 2.17. Let (G, H, K) be a BX2P-folder. Then k% e 02(G) forallkin K. IfG=G/05(G), then1 €K and
K — {1} is a union of conjugacy classes of involutions of G.

Proof. Let k € K and T € Aut(G) be the automorphism of Lemma 2.15(2). Then k% = tk~ 'tk =[t,k] €
[02(G1),G] < 02(GT) NG < 02(G) by Lemma 2.16. In particular K = A in GT/02(G1). As A is
a union of GT-conjugacy classes of involutions (and 1 if T = 1) by Lemma 2.15(3), also the last
statement holds. O

Remark 2.18. The set K has not to be a normal set in G, but A is a normal set in Gt by Lem-
ma 2.15(3). If t =1, then K is normal in G. As (K) =G N {A), the group (K) is normal in G.

This lemma is the reason, why the special case of Bol loops of exponent 2 is so closely related to
the general case of Bruck loops of 2-power exponent.

While working on the case of Bol loops of exponent 2, we decided to completely ignore the struc-
ture of 0,(G), as almost nothing was known about 0,(G). Luckily in the general case of Bruck loops
of 2-power exponent, the group G*/0,(G") behaves exactly as in the special case of Bol loops of
exponent 2, since the sets K and A have the same image modulo 0,(G1): K = A. This trick was
already used in [AKP] to reuse the arguments of [Asch1] for the classification of M-loops.
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3. The Bruck loops of 2-power exponent

This section contains just about anything, which was previously known about Bruck loops of 2-
power exponent, as well as about Bol loops of exponent 2. We formulate this knowledge in the
language of BX2P-folders. Not everything is needed in order to prove the main theorem, but most
statements are used in [S] and in [BS3].
3.1. Basic results

Here we present results known before the paper [Asch1] of Aschbacher. Most of the arguments

essentially go back to Heiss, see [Hei].
In a Bol loop, the order of every element divides the loop order. Therefore, the following holds.

Lemma 3.1.

(1) A Bruck loop of 2-power exponent has even size or size 1.
(2) If (G, H, K) is a BX2P-folder, then |G : H| = | X| is 1 or even.

Proof. For k € K, (k) acts semiregularly on the H-cosets of G by the loop folder property. O

Lemma 3.2. Let (G, H, K) be a BX2P-folder. Let U < G be a subgroup such that U = (U N H)(U NK). Then the
subfolder to U (see Lemma 2.1)is (U, UNH, U NK), which is itself a BX2P-folder. The size of the corresponding
subloop is |U : U N H|. In particular overgroups of H and of (K satisfy this condition.

Proof. See Lemma 2.1 and the remark before Lemma 2.17. O
Lemma 3.3. Let (G, H, K) be a BX2P-folder. Let . € A, h € H and g € G. If (h&)* = (h8)~1, then h* = 1.

Proof. Suppose h&* = (h&)* = (h&)~1 = (h~1)8. Let u = ghg~' € A. Then h* = h~!, so [h, u] =
h=2 e H. But [h,u] =h"'uhu = pu'"uw e AANH=KKNH. Since KKNH =1 by the loop folder
property, 2 =1. O

Lemma 3.4. Let (G, H, K) be a BX2P-folder. Then the following holds.
(1) 02/(G) < Cu({K)).

(2) If (G, H, K) is a faithful BX2P-folder, then 0y (G) = 1.

(3) If (G, H, K) is a BX2P-envelope, then 0,/ (G) < Z(G) N H.

Proof. O, (G)H gives rise to a subfolder by Corollary 2.2, but |0,/ (G)H : H| is odd, so by Lemma 3.1,
|02 (G)H : H| = 1. By Lemma 3.3 then [(A), 0»(G)]=1. O

The following stronger version of Lemma 3.1 holds. It has very strong consequences, see Corollar-
ies 3.6, 3.7.

Lemma 3.5. Let (G, H, K) be a BX2P-folder and U < G with H < U. Then |G : U] is even or 1.

Proof. Assume |G : U| to be odd. Then U contains a Sylow-2-subgroup of G, so every element of K
is conjugate to some element of U NK. Let UT =U(t) <GT, so |[GT:U™| is odd. Then |{A8: A €
ANUT, geGl <1+ (UT:HY = D|GT:Ut|=1+|G:H|—|G:U|. Since |G:H|=|K|=|A| =
[{A8: A e ANUT, geG}lweget|G:Ul=1. O

Corollary 3.6. H is a 2-group if and only if G is a 2-group.
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Proof. If H is a 2-group, then H is contained in a 2-Sylow subgroup M of G, so by Lemma 3.5
|G:M|=1and G is a 2-group. O

Corollary 3.7. Let (G, H, K) be a BX2P-folder. Then 0, »'(G)H = 02(G)H.

Proof. 0,(G)H is of odd index in 032 (G)H, so the statement is a consequence of Lemmas 3.5
and 3.2. O

Lemma 3.8. Let (G, H, K) be a BX2P-envelope to a solvable Bruck loop L of 2-power exponent. Then |L| = |G :
H| is a power of 2.

Proof. As L is solvable, there is a series 1 =Lg < --- < L, =L of subloops of L with L; normal in L4
such that L;;1/L; is an abelian group. Every element in L is of 2-power, which implies that L;1/L; is
a 2-group. Thus |L| is a power of 2. O

In this case even more can be said.
Lemma 3.9. Let (G, H, K) be a BX2P-envelope and |G : H| a power of 2. Then G is a 2-group.

Proof. As |G : H| is a 2-power, H contains Sylow subgroups for all odd primes. But then the product
of any two elements of K has to be of 2-power order: If kik, is not of 2-power order for kq, k; € K,
then rkl_lrkz € AA is not of 2-power order. Then there exist 11,12 € A with A11; of odd prime
order and Aq inverts AqAy. By Lemma 3.3 this is a contradiction, as A1\, is conjugate to an element
in H by assumption. Now by the Baer-Suzuki Theorem, (A) is a 2-group, so G = (K) is a 2-group
too. O

Now we study conditions on the BX2P-envelope which force L to be solvable.
Corollary 3.10. Let (G, H, K) be a BX2P-envelope to a Bruck loop L and G = O2(G)H. Then L is solvable.

Proof. By Lemma 3.9 G is a 2-group. Let G = G; > Gr_1 > ---> Gog = H be a normal series starting at
G =G, and ending at H such that G;;1/G; is of order 2. Let L; be the loop defined by (G;, H, GiNK).
Then |Ljy1 — Lj| = |L;|. This property allows to construct a homomorphism from L;;q into Z, with
kernel L;. Thus L;j;q is a normal subloop of L;, for 0 <i<r—1, and Lj;1/L; is a group of order 2.
This shows that L = L; is solvable. O

Lemmas 3.8 and 3.9 imply: if a Bruck loop of 2-power exponent is solvable, then G is a 2-group.
The following theorem shows that if G is solvable, then the Bruck loop is solvable as well, and (K) is
already a 2-group.

Theorem 2. Let (G, H, K) be a BX2P-folder and assume that G is solvable. Then (K) < 0,(G) is a 2-group.

Proof. Our proof uses [Aschl, 8.1], see Lemma 3.14. Nevertheless the theorem was already proved
in [Hei].

Let G =G/03(G). By Corollary 3.7, F*(G) = F(G) < H. Let A € A. If A acts nontrivially on F(G), it
inverts some element of odd prime order p in F(G). By Lemma 3.14, A inverts some element of order
p in the preimage of F(G), but H contains a Sylow-p-subgroup of that preimage. By Lemma 3.3 we
get a contradiction. Therefore, the elements in A act trivially on F(G). As Cor(F(GT)) < Z(F(GH)), it
follows A € 02(G), which implies (A) < 02(GT). O

Corollary 3.11. Let (G, H, K) be a BX2P-folder to a Bruck loop L. Then L is solvable if and only if (K) is a
2-group.
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The following lemma will be helpful.

Lemma 3.12. Let (G, H, K) be a BX2P-folder and G = G/0y (G). Then (G, H, K) is a loop folder to the same
loop.

Proof. By Lemma 3.4, 0,/ (G) < H, so Lemma 2.3 gives the result. O

3.2. Selected results of Aschbacher, Kinyon, Phillips

Next we present some of the results from [Asch1], and [AKP], which are fundamental to our results.
For the next lemma see also Lemmas 2.12 and 3.2.

Lemma 3.13. Let (G, H, K) be a BX2P-folder to a Bruck loop X of 2-power exponent.

(1) Let L < H. Then (Ng(L), Ny (L), Cx (L)) and (Cg(L), Cy(L), Cx (L)) are BX2P-subfolders to a (the same)
subloop of X.
(2) Let U < Gwith U <|UNH||UNK]|.Then (U,U N H, U N K) is a BX2P-subfolder to a subloop of X.

Proof. By Lemma 2.15(4), subfolders of BX2P-folders are BX2P-folders. So (1) is a consequence of
Lemma 2.12(4) and (2) follows from Lemma 3.2. O

The idea to ignore 0(G) resp. 0,(G™) origins in [Asch1]. We present here the main arguments:

Lemma 3.14. (See [Asch1, 8.1(1)].) Let G be a group and x € G an involution. If X € G := G/02(G) inverts
some element y € G of odd prime order p, then x inverts some element of order p in G.

Now we get the next lemma, which will be used repeatedly in [S].

Lemma 3.15. Let (G, H, K) be a BX2P-folder. Let G = G/05(G) and X € K.y € G. If 1 # o(¥) is odd and
y* =y, then for every zZ € G: ¥* ¢ H. In particular, y ¢ H.

Proof. Assume otherwise. Let T € Aut(G) be the automorphism defined above and recall that Tk € A
and that 0,(GT)k = 0,(GT)Tk, as T € 0,(G™). Since (y,X) is a dihedral group with all involutions
conjugate, we may assume w.l.o.g. that o(y) is some odd prime p, by replacing y with some suitable
element from (y).

We can choose preimages x € K of X and y € H of y with o(y) =o0(¥). Recall, that tx is another
preimage of X in G*. As Tx inverts some element of prime order p in

02(G*)(¥).

by Lemma 3.14 then tx inverts some element of prime order p in O,(G){y). But 02(G)(y) < 02(G)H
and H contains a p-Sylow-subgroup of 02(G)H. So tx inverts some element of odd order, which is
conjugate into H, a contradiction to Lemma 3.3. O

The following definition is taken from [AKP].

Definition. An M-loop is a finite Bruck loop X, such that each proper section of X is solvable, but X
itself is not solvable.

The next theorem is Theorem 3 of [AKP].
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Theorem 3. (See [AKP].) Let X be an M-loop with Baer envelope (G, H, K), ] = 0,(G) and G* = G/ ]. Then:

(1) X is a Bruck loop of 2-power exponent.

(2) G* = PGLy(q) with g =2"+1 > 5, H* is a Borel subgroup of G* and K* consists of the involutions in
G* — F*(G™).

(3) F*(G)=J.

(4) Letng=|K N Jlandny = |K NaJ| fora e K — J. Then ng is a power of 2, ng =n12" ! and | X| = |K| =
(@+Dng=n2"Q2"" 1+ 1).

The following lemma is another formulation of Aschbachers [Asch1, (12.5)(2)], which is based on
an idea of Heiss. The formula for Bruck loops occurs in (3.2)(3) of [AKP] and will be heavily used
in [S] and [BS3].

Lemma 3.16. Let (G, H, K) be a BX2P-folder and Iy < G with 02(G) < N. Letaj,i€{1,...,r}, be represen-
tatives for the orbits of G = G/N on A%, m; := |{@;®}|, nj = |ANa;Nt| and ng := AN N+. Then

.
K| =|Al=no+ ) mm;.

i=1

Proof. Let A;:={ae€ A: a ea_ia} and Ag:=ANNT.Then {A;: i €{0,...,r}} is a partition of A with
|[Aol =np and |Aj|=nym; forie{l,...,r}. O

3.3. Additional results

In the following G always denotes the group G/0,(G). The results presented here emerged during
work on the classification of passive simple groups. We start with a corollary to Lemma 3.16 which
is basic to the classification of the passive groups in [S]. It is a very powerful tool to get a full Sylow
p-subgroup of G into H for p a prime divisor of |H|.

Corollary 3.17. Let (G, H, K) be a BX2P-folder. Suppose 02(H) = 1 and that there exists an odd prime p
dividing |G|, such that m; = 0 (mod p) foralli e {1,...,r}, with m; as in Lemma 3.16 for N = O5(G). Then
p does not divide |[K| = |G : H|.

Proof. Since by assumption O;(H) € 0,(G), we have 03(02(G)H) = 0,(G). Therefore, as |02(G)H :
H| is a 2-power,

(02(G)H, H, 02(G)HNK)
is a subfolder to a solvable subloop by Corollary 3.10. Hence |02(G)HNK]| as well as [{02(G)HNK)] is
a 2-power, and, as (02(G)HNK) is normal in 02(G)H, we get (02(G)HNK) < 02(02(G)H) = 02(G).

Thus ng = |02(G)T N A| =]02(G) N K| =|02(G)H N K| is a 2-power. By Lemma 3.16 p does not
divide |K|. O

There is a corollary to Lemma 3.15, which generalizes Theorem 2:
Corollary 3.18. Let (G, H, K) be a BX2P-folder. If F*(G) = F(G), then G = H.

Proof. We have F(G) < H by Corollary 3.7. By Lemma 3.15, no element of K acts nontrivially on
F(G). Therefore (K) < Cz(F(G)) < Z(F(G)) < H. Therefore, (K)=1and G=H. O
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Therefore, by Corollaries 3.10 and 3.18, in a non-solvable loop with BX2P—f01der_(G, H,K), G has
components. The following lemma makes use of solvable subloops. It shows, that H has to contain
certain elements of odd order.

Lemma 3.19. Let (G, H, K) be a BX2P-folder, G = G/07(G) and U < G be a subgroup with the following
properties:

(1) U= U NH)UNK).
(2) [02(U), 02(U)] < 02(G).
(3) (UNK) < 0z(U).

Then 0%2(U) < 0,(G)H.

Proof. Let u € U be of odd order. We can write u =hk with he HNU and k€ KNU by (1). Now
ke (KNU) < 0,(U) by (3). By (2) we have [u,k] € [0%(U), 02(U)] < 02(G). In G = G/02(G) the
element u is of odd order and commutes with k. As [i1, k] =1 implies [h,k] =1 and as k is of order
1 or 2, it follows that k € H, which yields the assertion. O

There exists a powerful generalization to non-solvable subloops.
Lemma 3.20. Let (G, H, K) be a BX2P-folder, G = G/0>(G) and D := (K). Then 0%(Cz(D)) < H

Proof. Let x € G be of odd order, such that [D X] = 1. We can write x = hk with h € H, k € K. As
ke 02(G)D, [k,X] =1. As X =hk, [h,k] =1, so k is in H as x has odd order. Therefore % is in H. O

Definition. A Bruck loop L of 2-power exponent is called a 2M-loop, if L is not solvable, but every
proper subloop is solvable.

Remark 3.21. Notice, that an M-loop has to be simple while a 2M-loop may not. For instance, a non-
split extension of a solvable subloop by a simple non-solvable loop may be a 2M-loop. In order not
to have to exclude such extensions, we have introduced the concept of a 2M-loop.

The classification of M-loops by Aschbacher, Kinyon and Phillips given in Theorem 3 yields a de-
scription of the 2M-loops.

Lemma 3.22. Let q > 1 be an integer with ¢ — 1 a 2-power. Then q = 2 or 9 or q > 5 is a Fermat prime.
Proof. See [BS2] for a proof, based on Zsigmondy’s Theorem. O
Lemma 3.23. Let (G, H, K) be a BX2P-envelope to a 2M-loop L. Then the following holds.

(1) Cc(02(6)) < 02(6),

(2) G = PGLy(q) and q =9 or q > 5 is a Fermat prime,

(3) IG: 02(G)HI=q+1,

(4) K consists of 1 and all involutions in PGL;(q) \ PSL(q),
(5) 02(G) = (02(G) NH)(02(G) N K).

Proof. Let L1, L, be normal proper subloops. These subloops are solvable by definition of the 2M-
loop. Notice, that L{L, is another solvable normal subloop, see [Bruck], thus a proper subloop too.
Therefore there exists a biggest proper normal subloop Lg, which is solvable. The quotient L/Lg then
is an M-loop as defined in the definition before Theorem 3. Let D := (R(X): x € Lyp) < G. Then, as Lg
is a normal solvable subloop, D is a normal 2-group of G, so D < 02(G) and G/D is a loop envelope
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to an M-loop, see [Asch1, 2.6]. If we manage to prove the statement for (G, H, K) with G = G/D, the
statement holds for (G, H, K), so we may assume D = 1.

The structure of a faithful loop envelope to an M-loop is described in Theorem 3, which together
with Lemma 3.22 implies the statement. Notice, that (5) follows from Theorem 3(4).

Now assume that (G, H, K) is not faithful. By Lemma 2.12(6) C := coreg(H) is in Z(G). Let Z :=
04(Z(G)). Then Z < C by Lemma 3.4(1) and (G, H, K) with G := G/C is a faithful loop envelope
to an M-loop by Lemma 2.3. So we can apply Theorem 3. Then G = G/0,(G) is a central extension
of PGLy(q) with Z still contained in the group generated by K. Thus, if Z= Z # 1, then ¢ =9 and
|Z| =3, as this is the only case of nontrivial odd order Schur multiplier of the groups in question. (The
r-part of the Schur multiplier of a perfect group may be nontrivial for noncyclic Sylow-r-subgroups
only. The unique noncyclic case ¢ =9 actually results in a Schur multiplier Z3 for Alt(6) = PSL,(9).)

According to Theorem 3 the involutions in G\ G’ are in K. However in this case, involutions outside
G’ invert Z, as is visible using the embedding of 3 Alt(6) into SL3(4), see [ATLAS, p. 23] for the action
of L3(4)-automorphisms on the Schur multiplier. This contradicts Corollary 3.7 and Lemma 3.15, so
Z=1.

The factorization 0,(G) = (02(G) N H)(02(G) N K) can be seen as follows: We have O0,(G)H =
H(02(G)HNK) by Lemma 3.2. Let ke KN 0(G)H. As H=q: (q— 1) does not contain involutions of
PGL(q) \ PSLy(q), we obtain that k=1. Thus k € 0,(G) and the assertion follows with the Dedekind
identity. O

A powerful application of Aschbachers results is the 2M-loop-embedding: Any non-solvable Bruck
loop of 2-power exponent contains a 2M-loop as a subloop. Since the structure of a 2M-loop is very
restricted, we get strong information on G.

Lemma 3.24. Let (G, H, K) be a BX2P-folder with G # 0,(G)H. Then some subgroup U < G exists such that

U=UNK)UNH),U={UNK),

the loop to (U,UNH,U NK) isa2M-loop,

F*(U) = 02(U),

U/0,(U) = PGLy(q) for q > 5 a Fermat prime or q =9,

U:02(U)(UNH)| =q+1,

K N U consists of 1 and all involutions in PGL(q) \ PSL2(q),

there exist elements of order % in U inverted by elements of AN U™,

there exist elements h € U N H N G of order 3 or q ifq =9 or q # 9, respectively,
in particular G contains a section isomorphic to PSL,(q).

Proof. We can find the subgroup U recursively: If the loop is non-solvable, but every subloop is
solvable, then the loop is itself a 2M-loop. Else we can find a proper non-solvable subloop, which
contains a 2M-loop Y. Set U := (R(x): x € Y). Then (U,U N H,UNK) is a loop folder to Y, see
[Aschi, 2.1].

Now Lemma 3.23 describes the structure of U, which implies the statements. O

4. Proof of Theorem 1

If not explicitly defined otherwise,_a = G/0,(G) and for subsets X C G, X is the image of the
natural homomorphism from G onto G.

Definition. Let S be a finite non-abelian simple group. Let L5 be the class of all Bruck loops X of
2-power exponent, such that there is a BX2P-folder (Gx, Hx, Kx) to X with F*(Gx/02(Gx)) = S.
A prime p, p > 2, is called passive for S, if p{|X| for all X € Ls. (p itself may not divide |S|.)

The smallest passive prime p € 7 (S) is called the anchor prime of S. It is the smallest odd prime
p € w(S) such that for every X € Ls, p does not divide |Gx : Hx| = |X|.

The finite non-abelian simple group S is called passive, if every odd prime p € 7 (S) is passive.
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Remarks. (1) Notice that the definition of a passive finite non-abelian simple group is equivalent to
the definition given in the introduction:

The finite non-abelian simple group S is passive if and only if X is solvable for every X € L if and
only if G = 0,(G)H whenever (G, H, K) is a BX2P-folder with F*(G) & S. The equivalence of these
conditions follows from Corollary 3.10, the 2M-loop embedding Lemma 3.24 and Lemmas 3.8, 3.9: The
2M-loop embedding implies, that G® contains elements of order either 3 or 5, which are products
of two elements in K = A, so any 2M-loop embedding prevents one of the primes 3 or 5 from being
passive.

(2) The anchor prime to a finite non-abelian simple group may not exist. Its existence will be
established later by classifying the non-passive finite simple groups, using the classification of finite
simple groups.

(3) If S is passive, then S has an anchor prime, usually 3, except in case of the Suzuki groups
2B,(q), where it is 5.

Lemma 4.1. Let S = PSL,(q) for ¢ > 5 a Fermat prime. Then either q or 3 is the anchor prime of S.

Proof. The 2M-loop embedding, Lemma 3.24, and the list of subgroups of PSL,(q) by Dickson and
the fact that 5 does not divide g + 1 = 2% + 1 + 1, implies that we have an embedding such that
UO,(G) =G and U = PGLy(q).

We get that H always contains a Sylow-g-subgroup of U. Thus the prime q is passive for S. For
q =5 the existence of examples ensures, that ¢ =5 is the smallest such prime. In the other cases
there may be no examples of M-loops for the corresponding g, so PSLy(q) is passive. Then g =3 is
the anchor prime. If examples exist, the anchor prime is q. O

Lemma 4.2. Let S = PSL,(9) = Alt(6). Then p = 3 is the anchor prime.

Proof. Let (G, H, K) be a BX2P-folder with F*(G) = S. If G = 0,(G)H, then H contains a Sylow-3-
subgroup of G. By Lemma 3.24 and Dixons theorem we can only embed 2M-loops for g =5 or ¢ =9.
The case ¢ =9 implies, that H contains a Sylow-3-subgroup of G.

Otherwise there is a subgroup U in G such that U/0(U) = PGL,(5) and such that UNH = 5: 4 by
Lemma 3.24. Then H contains elements of order 5. These elements are inverted by inner involutions of
Alt(6) and (if G contains PGL»(9)) involutions of PGL,(9) outside PSL;(9). Therefore, by Lemma 3.15 K
can consist only of the 1-element, the 15 transpositions of Sym(6) and the 15 involutions of Sym(6),
which are a product of three commuting transpositions. Therefore, |G : H| < 31. As G is a subgroup of
Aut(Alt(6)), it follows from the list of subgroups of Aut(Alt(6)) that H = Sym(5). Thus H contains an
element x of order 3. Then (C(x), Cy(x), Ck(x)) is a subfolder by Lemma 3.13(1). As C¢(x) contains
a Sylow-3-subgroup of G which covers 0, (Cg(x)), the subgroup H contains a Sylow-3-subgroup of
G by Corollary 3.7. Thus 3 is the anchor prime to Alt(6). O

Definition. Let (G, H, K) be a BX2P-folder and C a component of G = G/02(G). An anchor group A of
C is a subgroup of C N H such that A € Syl,,(C) for the anchor prime p of C/Z(C).

The following proposition is crucial for the proof of Theorem 1 as it will be used to show that
every component of G is either normal in (K) or contained in H.

The assumption, that every simple section has an anchor prime can be considered as a kind of K-
group assumption: In the classification of finite simple groups, K is the list of ‘known’ finite simple
groups and the goal was to show, that K contains every finite simple group.

With regard to Bruck loops we first study groups, such that every simple section has an anchor
prime. In [S] it is shown that every finite simple group has an anchor prime.

Proposition 4.3. Let (G, H, K) be a BX2P-folder and suppose every non-abelian simple section of G has an
anchor prime. Then every component of G has an anchor group.
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Proof. The proof proceeds by induction on |G|. We reduce the structure of G in multiple steps and
produce either anchor groups or a contradiction.

(1) 02(G)=1:

If 05(G) # 1, then by induction on G/0y(G), the statement holds for the loop folder from
Lemma 3.12. Since 04 (G) < H by Lemma 3.4, the statement holds in G too.

(2) F(G)=1:

By Corollary 3.7 we have F(G) < H. If X € F(G) for some element x € H of odd prime order, then
(Cg(x),Cy(x), Ck(x)) is a subfolder by Lemma 3.13(1). Since 0»(G) =1 by (1), C¢(x) is a proper
subgroup. Let E be the full preimage of Cz(x) in G. Then by Frattini E = 02(G)Cg(x) which yields
that Cg(x) covers Cg(x). Clearly, the latter contains E (G). Therefore anchor groups of components of
Cc(x)/02(Cc(x)), which exist by induction, lift to anchor groups of G.

(3) E(G) contains more than one component:

Else G has a unique component, which has an anchor prime p by assumption. By definition of the
anchor prime an anchor group exists.

(4) If C N H contains nontrivial elements of odd order for some component C of G, then anchor
groups for all components exist:

Let x be such an element. Then C¢ (x) covers all but the component C. By induction we get anchor
groups for all components of Cg(x)/02(C¢(x)). These lift to anchor groups for the components of G,
other than C. Since we have more than one component, we can use some element z of odd prime
order in one of these anchor groups to get the anchor group of C by induction on C¢(z), which
covers C.

(5) HNE(G) is a 2-group:

Otherwise let X € H N E(G) be of odd prime order p. We can write X uniquely as X = X{X3 --- X
with X; € C;, where Cq, ..., Cy are the components of G.

If X; =1 for some i, C;(x) covers the component C;, so by induction on Cg(x) we get an anchor
group to C; as in (4). We saw already in (4), that this implies, that all components have anchor groups.
So x; # 1 for every i. Now CE(E) (%) is the direct product of the Cc;(¥;). In particular (x1,X2,...,X) <
0p(Cp®) < 0p(C(X)). Let x be some preimage of x of order p.

Since Cg (x) covers Cg(X), it follows that 0, (Cgz(x)) is covered by O3 2 (Cg(x)). By Corollary 3.7, we
may choose therefore preimages of the ; in H. By (4) we now get anchor primes for all components
of G.

By Lemma 3.24 there is an element h € H of odd prime order p.

(6) h normalizes every component of G:

Otherwise let C be a component with C" # C and D = CCh...ch"™"| the closure of C under h.
Now Cp(h) = {cch--- """ cecy=c.

By Lemma 3.13(1), Cg(h) is a group to a subloop. Notice, that CQ(E) maps to a component of
Cg(h)/02(Cg(h)): D is subnormal in G, so Cp(h) is subnormal in Cz(h), but Cg(h) covers Cz(h).

By induction, we get an anchor group A of Cp(h). But then A < E(G) N H, so E(G) N H contains
elements of odd order contrary to (5).

(7) We get anchor groups for all components of G:

We use Lemma 3.24 to get an additional property of h € H: some h € H of odd prime order exists,
such that h € N}(fo), with Np the normal closure of h. (Recall, that the element h is in a PSL,(q)-
section.)

Let G; be the subgroup of G consisting of all elements, which normalize every component of G.
Notice, that the preimage E of E(G) is contained in Gi. By the Schreier-conjecture G1/E is solvable.
By (6) we have h € G1. Therefore N, < G1.As he N,(fo) < E, this is a contradiction to (5). O

The following lemma reveals the idea behind the anchor groups: Anchor groups insure that the
involutions of K fix all components of G (see Lemma 2.17).

Lemma 4.4. Let (G, H, K) be a BX2P-folder and suppose that every non-abelian simple section of G has an
anchor prime. Then every element x of K normalizes every component C of G. In particular a component of G
is either a normal subgroup of (K) or contained in H.
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Proof. Let x € K, . € A with X=X and C be a component of G. Assume C* = C. Let A, B be anchor
groups to the components C and C*, respectively, which exist by Proposition 4.3. As C and C* are
isomorphic, the corresponding anchor primes p; and p, are equal.

In particular AB € Syl, (CC¥). Let y € A be of order p;. As py is odd and A is Sylow in C, not
every element of order pq of Ais m Z(C) > CNC*. Therefore, we may choose y ¢ C*.

Then X inverts the element y~'y*, which is of order pi, and hence is conjugate to some element
of AB < H. This is a contradiction to Lemma 3.15.

So [C, (K)] < C N (K). Therefore either C < (K) or [C, (K)] =1. In the latter case let c € C be of
odd order. We can write ¢ = kh with k € K, h € H. As k commutes with c, it follows that k commutes
with i = ck as well. The fact that c is of odd order and k an involution yields k is contained in H,
which implies that c is in H. Now C = 02(C) yields C<H. O

Proof of Theorem 1. Let (G, H, K) be a BX2P-envelope and assume, that every non-abelian simple
section of G is either passive or isomorphic to PSLy(q) for ¢ =9 or a Fermat prime q > 5. If G=H,
then by Lemma 3.9 G is a 2-group and the theorem holds. Hence we may assume G#H.If F*(G) =
F(G), then by Corollary 3.18 G = H, so we assume F*(G) # F(G).

We prove the theorem by induction on the order of G.

(1) F(G) < Z((K)):

As G = (K) and as no element of K acts nontrivially on F(G) by Lemma 3.15 and Corollary 3.7,
F(G) < Z({K)).

Recall that by Lemma 4.4:

(2) Every component of G is normal in G.

(3) Every passive component C which is not isomorphic to PSLy(q), with g =9 or g > 5 a Fermat
prime is contained in H:

We distinguish the two cases that G contains either one or more components.

G has precisely one component C. If F(G) =1, then by the definition of passive C is as desired.
Thus we may assume F(G) # 1. Let F be a subgroup of H of odd order such that F = F(G). Let N
be the full preimage of C in G. Then, as C < CG(IE), N = 0,(G)Cn(F) by Frattini. Let Gy := Cg(F),
so (G1,G1 NH,G1NK) is a subfolder by Lemma 3.13. Set G, = G1/F. Then (G2, B(H N Gy1), B(K N
G1)) with B the natural homomorphism from G; onto G1/F is a loop folder to the same loop by
Lemma 3.12. As F < Z(G) it follows F(G2/02(G2)) = 1. Then F*(G3/03(G2)) = C/Z(C). Hence by
induction and by the definition of a passive group G = 0,(G2)B(H N G1). Therefore, the loop to
the folder for G, as well as this one for G, is solvable by Corollary 3.10. Now Lemma 3.8 implies
G1=02(G1)(HN Gy). Hence N is contained in 0,(G)H and C in H.

G has more than one component. Let D be a component of G different from C. By Proposition 4.3
there is a nontrivial element x in H of odd order such that x is in an anchor group of D. Then, as X is
in D, [C,X] =1. Let N be the full preimage of C in G. Then by the Dedekind identity N = 05 (G)Cn (x).
Let Gy = C¢(x), H =Cy(x) and K1 = G1 N K. Then (G1, H1, K1) is a proper subfolder of of (G, H, K) by
Lemma 3.13. Then Lemma 4.4 implies that C = Cy(x) is contained in either (K;) or in Hi. In the first
case we obtain by induction on |G| (|G1] < |G|) the statement of Theorem 1 for ((K1), (K1) N H1, K1).
Hence, C = PSL,(q), with ¢ =9 or q > 5 a Fermat prime in contradiction to our assumption. In the
latter case C < H; which yields C < H, the assertion.

(4) H does not contain a component of G:

Assume H contains a component C of G. Let X be an element in K. By (2) [%, C] < C. Set By :=

C: (x). By Lemma 3.15 X does not invert an element of odd order in C. Hence (x, xb) is a 2-group for
every b of B. Thus by Baer-Suzuki X € 0, (By) and therefore [C,X] = 1. This implies C < Z(G), which
is not possible.

(3) and (4) imply that:

(5) Every component of G is isomorphic to PSL,(q), with g =9 or q > 5 a Fermat prime.

(6) G/F*(G) is an elementary abelian 2-group:

As F(G) < Z(G) by (1), we have G/Z(F*(G)) is isomorphic to a subgroup of Aut(E(G)) which
fixes every component of G. By (5) the outer automorphism group of every component of G is an
elementary abelian 2-group which yields the assertion.

(7) If G has a unique component, then the assertion holds:




336 B. Baumeister et al. / Journal of Algebra 327 (2011) 316-336

By Lemma 3.24 there is a subgroup U of G such that E(U) = PSLy(q'), ¢ =9 or ¢’ > 5 a Fer-
mat prime and U/0,(U) = PGLy(q'). By assumption, (5) and by (33.14) of [Asch0] E(G) = PSL,(q) or
3PSLy(9).

We claim that q =¢q'. If ¢ # ¢, then ¢ =9 and q’ =5 by the subgroup list of PSLy(q) given by
Dickson and by the fact that g +1= 22" + 2 =3(5) for n > 1. Then by Lemma 4.2 H contains a Sylow
3-subgroup of G. On the other hand, HN U also contains a Sylow 5-subgroup by Lemma 3.24. Hence
H = U or G which is not possible. Thus g =¢'.

This yields that 0,(G)U =G or =9 and G contains a subgroup isomorphic to PGL,(9). So, it
remains to consider the case ¢ =9. As H contains a Sylow 3-subgroup of G, Lemma 3.15 implies
that K consists only of involutions in PGL;(9) \ PSL2(9). As (K) = G we get G = PGLy(9). If G =
3PGLy(9), then the elements in K invert Z(G) by [ATLAS, p. 23], in contradiction to Lemma 3.15 and
Corollary 3.7 and (1) and (2) of the theorem. By Lemma 3.24 (3) and (4) hold as well.

(8) If G has at least two components C; and Cy, then the assertion holds:

By Proposition 4.3 we get anchor groups A; < C;. Let B; < H be of odd order with B; = A;. We can
use induction on G; := (C¢(B;) N K) by applying Lemma 3.13( ). This shows that G; is as described in
the statement of the theorem. In particular, no components of G; are isomorphic to 3 PSL,(9) and the
elements in K N G; induce PGL,(9)-involutions on these components. As before, we see that K does
not contain an element which induces a Sym(6)-involution on some component, so (1) and (2) hold.

Moreover by induction every component of G; acts faithfully on 0(G;). As 02(G;) is contained
in 0,(G), it follows that 0,(G) = F*(G), which is (4). By induction and as g(q — 1) is a maximal
subgroup of PSL,(q) we get (3) using (4). This proves the assertion. O
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