
Journal of Algebra 337 (2011) 181–194
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Infinite branching in the first syzygy

F.E.A. Johnson

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2010
Available online 7 May 2011
Communicated by Gernot Stroth

MSC:
primary 16E05
secondary 19A13

Keywords:
Syzygy
Minimal level
Branching

The first syzygy Ω1(Z) of a group G consists of the isomorphism
classes of modules which are stably equivalent to the augmentation
ideal I = Ker(ε : Z[G] → Z). When G is finitely generated Ω1(Z)

admits the structure of an infinite tree whose roots do not extend
infinitely downward. We show that the minimal level Ωmin

1 (Z) is
infinite for certain groups of the form G = C N∞ × Φ where Φ is
finite.
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Let G be a group for which the trivial module Z admits a truncated resolution

0 → J → Ek−1 → ·· · → E0 → Z → 0

where each Er is a finitely generated stably free module over Z[G]. The kth-syzygy Ωk(Z) is the class
of Z[G]-modules stably equivalent to J ; it has the structure of a tree whose roots do not extend in-
finitely downward. Beyond that general fact however, very little is known about the detailed structure
of Ωk(Z) even for quite familiar groups. In this paper we exhibit cases where the first syzygy Ω1(Z)

has infinitely many roots; that is, where the minimal level Ωmin
1 (Z) is infinite. If C∞ denotes the in-

finite cyclic group and Q (8m) is the quaternion group of order 8m then, for any N � 1 and m � 1,
we show:

Theorem I. Ωmin
1 (Z) is infinite when G ∼= C N∞ × Q (8m).
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We aim to parametrize Ωmin
1 (Z) by the more familiar class S F1 of stably free modules of rank 1;

up to sign, each stably free Z[G]-module S of rank 1 gives a unique surjective Z[G]-homomorphism
εS : S → Z and the correspondence S �→ κ(S) = Ker(εS ) determines a mapping κ : S F1 → Ω1(Z).
Observe that κ(Z[G]) is simply I , the kernel of the augmentation homomorphism ε : Z[G] → Z. To
show infinite branching in Ω1(Z) at the level of I it is enough, since each κ(S) is at same height as
κ(Z[G]) = I , to show that Im(κ) is infinite. In this connection we shall prove:

Theorem II. Let G be a finitely generated infinite group for which the induced mapping ε∗ : Ext1
Z[G](Z,Z[G]) →

Ext1
Z[G](Z,Z) is injective; then κ : S F1 → Ω1(Z) is injective.

The hypotheses of Theorem II are satisfied by G = C N∞ × Φ for any finite group Φ . Determining
whether Im(κ) ⊂ Ωmin

1 (Z) leads to the question:

(∗) Is I a minimal element of Ω1(Z)?

Perhaps surprisingly, the answer in general is ‘No’; I fails to be minimal when G is a free product of
the form G = Γ ∗ C∞ . There are, however, criteria which guarantee minimality:

Theorem III. I is minimal in Ω1(Z) if either Ext1(Z,Z[G]) = 0 or Gab is finite.

In conjunction with the main result of [9], this establishes the cases N � 2 of Theorem I. The case
N = 1 is more difficult however, as then neither condition holds; to complete the proof of Theorem I
we use a much more delicate argument to show:

Theorem IV. I is minimal when G = Fm ×Φ where Fm is the free group of rank m and Φ is a nontrivial finite
group.

1. The tree structure on a stable module

For a ring Λ, the stability relation ‘∼’ on Λ-modules is defined by

M1 ∼ M2 ⇐⇒ M1 ⊕ Λn1 ∼= M2 ⊕ Λn2

for some n1,n2 � 0. When M is a Λ-module [M] will denote the corresponding stable module, that is,
the set of isomorphism classes of modules N such that N ∼ M; then [M] has a natural structure of
a directed graph in which the vertices are the isomorphism classes of modules N for which N ∼ M
and where edges take the form N → N ⊕ Λ. The ring Λ has the surjective rank property when, given
integers n, N � 1 and a surjective Λ-homomorphism ϕ : ΛN → Λn then n � N . It is a comparatively
mild restriction as the following shows (cf. [3]).

Proposition 1.1. Let Λ be a ring for which there exists a (nontrivial) ring homomorphism ψ : Λ → F where F
is a field. Then Λ has the surjective rank property.

In particular, this is true for any group ring Λ = A[G] where A is commutative. At one point we
shall also need to appeal to a slightly stronger property. A ring Λ is said to be weakly finite (see [3])
when any surjective Λ-homomorphism Λm → Λm is necessarily an isomorphism. By a theorem of
Montgomery and Kaplansky [11], for any group G the integral group ring Z[G] is weakly finite.

Assuming that Λ has the surjective rank property, it is straightforward to show that if M is finitely
generated then M ⊕Λa ∼= M only when a = 0. It follows that the stable module [M] has the structure
of a tree. Moreover there is a ‘gap function’ g : [M] × [M] → Z defined by means of

g(N1, N2) = p − q ⇐⇒ N1 ⊕ Λp ∼= N2 ⊕ Λq
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which satisfies the following properties:

g
(
N, N ⊕ Λb) = b, (1.2)

g(N2, N1) = −g(N1, N2), (1.3)

g(N1, N3) = g(N1, N2) + g(N2, N3). (1.4)

For a nonzero finitely generated Λ-module M we define ρΛ(M) to be the least positive integer a for
which there exists a surjective Λ-homomorphism ϕ : Λa → M .

Proposition 1.5. Let Λ be a ring with the surjective rank property and let M be a finitely generated Λ-module;
if K ∈ [M] is such that 0 � g(K , M) then g(K , M) � ρΛ(M).

The correspondence K �→ g(K , M) gives a function [M] → Z which is bounded above by ρΛ(M).
Choose M0 ∈ [M] to maximize this function. It then follows from (1.3), (1.4) that 0 � g(M0, N) for all
N ∈ [M]. Such a module M0 is called a root module for [M]; the function h : [M] → N; K �→ g(M0, K )

is then surjective and measures the height of N above the root level. We may paraphrase the ex-
istence of the height function on [M] by saying that [M] is a tree with roots which do not extend
infinitely downwards. For example, over the integral group ring of the generalized quaternion group
Q 36 the stable module [0] (that is, the isomorphism classes of finitely generated stably free modules)
is represented by the tree below, the deepest root representing the zero module and the remain-
ing four roots representing the nontrivial stably free modules of rank 1 (compare [12] or Chapter 9
of [7]).

2. Syzygies and the corepresentability of cohomology

Given a finitely generated Λ-module M one may construct an exact sequence

0 → J → Λa → M → 0

for some integer a � 0; the kernel J may be regarded as a ‘first derivative’ of M . A significant consid-
eration in classical invariant theory was to establish the uniqueness of J when a assumes its minimal
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value. The difficulties inherent in this approach may be avoided, however, by the use of stable mod-
ules; given exact sequences 0 → J → Λa → M → 0 and 0 → J ′ → Λα → M → 0 then by Schanuel’s
Lemma J ⊕ Λα ∼= J ′ ⊕ Λa; thus the stable class [ J ] of the kernel is uniquely determined by M .
We write Ω1(M) = [ J ] and Ω1(M) is then called the first syzygy of M . More generally, for each k � 1
we may construct a stably free resolution of M truncated at stage k − 1; that is, an exact sequence

0 → Jk → Ek−1
∂k−1→ ·· · ∂2→ E1

∂1→ E0
ε→ M → 0

in which Er is stably free over Λ for 1 � r � k − 1. Although the isomorphism class of Jk is not
uniquely determined by M it follows from Swan’s extension of Schanuel’s Lemma that the stable
isomorphism class of Jk is an invariant of M; the set Ωk(M) of isomorphism classes of modules stably
equivalent to Jk is called the kth-syzygy of M .

The construction Ωk has a cohomological interpretation. Recall the notion of the derived module
category over Λ; if f , g : M → N are Λ-homomorphisms where M, N ∈ F (Z[G]) we write f ≈ g
when f − g factors through a projective module thus; f − g = β ◦ α where α : M → P and β : P → N
are Z[G]-homomorphisms and P is projective over Λ; ≈ is an equivalence relation compatible with
addition and two sided composition. By the derived module category Der(Λ) we mean the category
whose objects are modules over Λ, and in which, for any two modules M, N , the set of morphisms
HomDer(M, N) is given by

HomDer(M, N) = HomΛ(M, N)/≈.

Stably equivalent modules are isomorphic in the derived category so that Ωk(M) also denotes an
isomorphism class in Der(Λ). The characterization of Extk(−,−) as the kth derived functor of

Hom(−,−) can be made explicit in this context. Given an extension of Λ-modules E = (0 → J
i→

E
p→ M → 0) in which E is free and a Λ-homomorphism f : J → N we form the pushout exten-

sion f∗(E ) = (0 → J → lim−→( f , i) → M → 0). The natural transformation ν : HomDer(Ω1(M),−) →
Ext1(M,−) is induced by the correspondence f �→ f∗(E ) and ν is an isomorphism when
Ext1(M,Λ) = 0. We may extend this to k � 1 by dimension shifting to obtain the following corepre-
sentation formula:

Theorem 2.1. There is a natural transformation ν : HomDer(Ωk(M),−) → Extk(M,−) which is an isomor-
phism when Extk(M,Λ) = 0.

The proof is straightforward (cf. [6] or Chapter 4 of [7]). The condition Ext1(M,Λ) = 0 thus guaran-
tees that Ext1(M, N) ∼= HomDer(Ω1(M), N). It also intervenes in another way; we note the following
de-stabilisation result (see [8], Theorem (3.1)):

Proposition 2.2. Let 0 → J ⊕ Λα i→ Λβ → M → 0 be an exact sequence of Λ modules; if Ext1(M,Λ) = 0
then Λβ/i1(Λ

α) is projective.

3. Proof of Theorem II

Given a ring A and a group G the augmentation εA,G : A[G] → A is defined by

εA,G

(∑
g

ag g

)
=

∑
g

ag .

Evidently εA,G is surjective ring homomorphism; we put I A(G) = Ker(εA,G).
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Proposition 3.1. For any A[G]-module N on which G acts trivially there is an isomorphism
HomA[G](I A(G), N) ∼= Ext1

A[G](A, N).

Proof. The augmentation sequence 0 → I A(G)
i→ A[G] εA→ A → 0 gives an exact sequence in cohomol-

ogy

HomA[G]
(

A[G], N
) i∗→ HomA[G]

(
I A(G), N

) δ→ Ext1
A[G](A, N)

ε∗
A→ Ext1

A[G]
(

A[G], N
)
.

We will show that i∗ : HomA[G](A[G], N) → HomA[G](I A(G), N) is zero. First suppose that α ∈
HomA[G](A[G], N); then, for g ∈ G , i∗(α)(g − 1) = α(i(g − 1)) = α(g) − α(1). As G acts trivially on N
then α(g) = α(1)g = α(1) and i∗(α)(g − 1) = 0 for all g ∈ G . Hence i∗(α) = 0 since I A is generated
over A by elements of the form g − 1 where g ∈ G . However Ext1

A[G](A[G], N) = 0 so that the exact

sequence simplifies to the desired isomorphism δ : HomA[G](I A(G), N) → Ext1
A[G](A, N). �

The case of primary interest is when A = Z and Λ = Z[G]; then as in the Introduction, we put
I = IZ(G). If G has a finite generating set {xr}1�r�m we obtain an exact sequence

Λm X→ Λ
ε→ Z → 0 (3.2)

where X = (x1 − 1, . . . , xm − 1). In particular, Im(X) = I so that:

Proposition 3.3. If G is a finitely generated group then the integral augmentation ideal I is finitely generated
over Λ = Z[G] and defines an element of Ω1(Z).

Suppose S is a stably free Λ module of rank k so that S ⊕Λr ∼= Λk+r . On applying HomΛ(−,Z) we
see that HomΛ(S,Z) ⊕ Zr ∼= Zk+r so that, by the cancellation property for finitely generated abelian
groups, HomΛ(S,Z) ∼= Zk . When k = 1 then HomΛ(S,Z) ∼= Z and in this case there is a surjective
homomorphism κS : S → Z which is unique up to sign. In particular, Ker(εS ) depends only upon S .
Applying Schanuel’s Lemma to the exact sequences 0 → I → Λ → Z → 0; 0 → Ker(εS ) → S → Z → 0
we see that Ker(εS )⊕Λ ∼= I ⊕ S so that Ker(εS )⊕Λr+1 ∼= I ⊕Λr+1. Thus Ker(εS ) ∈ Ω1(Z); moreover,
if I is minimal in Ω1(Z) then Ker(εS ) is also minimal. In summary:

Proposition 3.4. There is a mapping κ : S F1 → Ω1(Z) determined by the correspondence S �→ Ker(εS );
furthermore, if I is minimal in Ω1(Z) then Im(κ) ⊂ Ωmin

1 (Z).

For the remainder of this section we assume:

(∗) G is finitely generated infinite and ε∗ : Ext1
Λ(Z,Λ) → Ext1

Λ(Z,Z) is injective.

When G is finitely generated Ext1
Λ(Z,Z) ∼= H1(G,Z) ∼= Gab/Torsion is a finitely generated free abelian

group. Thus with the hypotheses (∗) we have:

Proposition 3.5. Ext1
Λ(Z,Λ) is a finitely generated free abelian group.

Corollary 3.6. If S stably free module of rank 1 then Ext1
Λ(Z, S) ∼= Ext1

Λ(Z,Λ).

Proof. If S ⊕Λn ∼= Λn+1 then Ext1
Λ(Z, S)⊕ Ext1

Λ(Z,Λ)n ∼= Ext1
Λ(Z,Λ)⊕ Ext1

Λ(Z,Λ)n . The result follows
since Ext1

Λ(Z,Λ) is a finitely generated free abelian group. �
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Theorem 3.7. Given an extension S = (0 → J
i→ S

εS→ Z → 0) where S is stably free of rank 1 then, under
the hypotheses (∗), Ext1

Λ(Z, J ) ∼= Z and [S] is a generator.

Proof. First consider the augmentation sequence (0 → I i→ Z[G] ε→ Z → 0). Since ε∗ : Ext1
Λ(Z,Λ) →

Ext1
Λ(Z,Z) is injective the exact sequence

HomΛ(Z,Λ) → HomΛ(Z,Z) → Ext1
Λ(Z, I) → Ext1

Λ(Z,Λ)
ε∗→ Ext1

Λ(Z,Z)

reduces to HomΛ(Z,Λ) → HomΛ(Z,Z) → Ext1
Λ(Z, I) → 0. However, as G is infinite, HomΛ(Z,Λ) = 0

so that Ext1
Λ(Z, I) ∼= HomΛ(Z,Z) ∼= Z. In the general case where S = (0 → J

i→ S
εS→ Z → 0), by

Schanuel’s Lemma, J ⊕ Λ ∼= I ⊕ S. Hence

Ext1
Λ(Z, J ) ⊕ Ext1

Λ(Z,Λ) ∼= Ext1
Λ(Z, I) ⊕ Ext1

Λ(Z, S) ∼= Z ⊕ Ext1
Λ(Z,Λ).

Thus Ext1
Λ(Z, J ) ∼= Z as Ext1

Λ(Z,Λ) is a finitely generated abelian group. Finally suppose that X =
(0 → J → X → Z → 0) represents a generator of Ext1

Λ(Z, J ) ∼= Z. We will show that [S] = ±[X ]. Since

S is projective then Ext1
Λ(S, J ) = 0 so that from the exact sequence HomΛ(S, J )

i∗→ HomΛ( J , J )
δ→

Ext1
Λ(Z, J ) → 0 we see that the mapping

δ : HomΛ( J , J ) → Ext1
Λ(Z, J ); δ(α) = α∗(S)

is surjective. In particular, we may write [X ] = [α∗(S)] for some α ∈ HomΛ( J , J ). However, [X ]
generates Ext1

Λ(Z, J ) ∼= Z so for some n ∈ Z we may write [S] = n[X ]. Thus [X ] = n[α∗(X )]. Writing
[α∗(X )] = m[X ] for some integer m we obtain [X ] = mn[X ]. Since mn ∈ Z we see that mn = ±1 and
so n ± 1. �
Theorem 3.8. If G is finitely generated infinite and ε∗ : Ext1

Λ(Z,Λ) → Ext1
Λ(Z,Z) is injective then κ : S F1 →

Ω1(Z) is injective.

Proof. Let S , S ′ ∈ S F1 and suppose that κ(S) = κ(S ′) = J . We must show that S ∼= S ′ . There are

exact sequences S = (0 → J
i→ S

ε→ Z → 0); S ′ = (0 → J
i′→ S ′ ε′→ Z → 0) and, by (3.7), both [S], [S ′]

generate Ext1
Λ(Z, J ) ∼= Z so that [S ′] = ±[S]. Replacing ε′ by −ε′ if necessary we may suppose that

[S ′] = [S]. Thus there is a congruence

S
c ↓

S ′
=

⎛
⎜⎝ 0 → J

i→ S
ε→ Z → 0

Id ↓ c ↓ Id ↓
0 → J

i′→ S ′ ε′→ Z → 0

⎞
⎟⎠

and c : S → S ′ is the required isomorphism. �
Theorem (3.8) is precisely Theorem II of the Introduction.

4. Minimality conditions

We define M(1) to be the class of finitely generated groups G for which the trivial Z[G] module
Z satisfies Ext1(Z,Z[G]) = 0.

Proposition 4.1. If G ∈ M(1) then I is minimal in Ω1(Z).
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Proof. Suppose that J ∈ Ω1(Z) and that h : J ⊕ Λa �→ I ⊕ Λb is an isomorphism for some integers

a,b � 0. We must show that a � b. From the exact sequence 0 → I → Λ
ε→ Z → 0 we may form

successive exact sequences

0 → I ⊕ Λb i→ Λb+1 ε→ Z → 0; 0 → J ⊕ Λa j→ Λb+1 ε→ Z → 0; 0 → J → S
ε→ Z → 0

where j = i◦h and S = Λb+1/ j(Λa). Since Ext1
Λ(Z,Λ) = 0 then S is projective by (2.2) and is evidently

nonzero. From the exact sequence 0 → Λa → Λb+1 → S → 0 we see that Λb+1 ∼= Λa ⊕ S. Since Λ

has the surjective rank property and S �= 0 then a � b. �
Proposition 4.2. Let A be a ring which is free as a module over Z; if G is finitely generated then
Ext1

A[G](A, A) ∼= (Gab/Torsion) ⊗Z A.

Proof. Extension of scalars gives HomZ[G](IZ(G), A) ∼= HomA[G](I A(G), A) so from (3.1):

Ext1
A[G](A, A) ∼= HomA[G]

(
I A(G), A

) ∼= HomZ[G]
(

IZ(G), A
) ∼= Ext1

Z[G](Z, A).

As A is free over Z it follows from the Universal Coefficient Theorem that

Ext1
Z[G](Z, A) ∼= H1(G, A) ∼= HomZ

(
H1(G,Z), A

) ∼= (
Gab/Torsion

) ⊗Z A. �
It now follows from (3.1) and (4.2) that:

Corollary 4.3. The following conditions on a finitely generated group G are equivalent:

(i) Gab is finite;
(ii) Ext1

Λ(Z,Z) = 0;
(iii) HomΛ(I,Z) = 0.

We define M(2) to be the class of finitely generated groups G which satisfy (i)–(iii) of (4.3).

Proposition 4.4. If G ∈ M(2) then I is minimal in Ω1(Z).

Proof. Let J ∈ Ω1(Z) and suppose that J ⊕ Λa ∼= I ⊕ Λb; we will show a � b. Applying HomΛ(−,Z)

gives HomΛ( J ,Z) ⊕ HomΛ(Λ,Z)a ∼= HomΛ(I,Z) ⊕ HomΛ(Λ,Z)b . However since G ∈ M(2) and
HomΛ(Λ,Z) ∼= Z then HomΛ( J ,Z) ⊕ Za ∼= Zb. The conclusion a � b now follows from the cancella-
tion property for free abelian groups. �

Together (4.1) and (4.4) prove Theorem III of the Introduction. Note that the conditions M(1),
M(2) are independent; if G is a free abelian group of finite rank N � 2 then G satisfies Poincaré
Duality in dimension N , and so Extr(Z,Λ) = 0 for r �= N (see [10]). In particular, G satisfies con-
dition M(1). However, Gab ∼= G is infinite and so G fails the condition M(2). Conversely, take
G = H1 ∗ H2 to be the free product of nontrivial finite groups H1, H2; then Gab ∼= Hab

1 ⊕ Hab
2 is finite

and so G satisfies condition M(2). If F denotes the kernel of the natural mapping G → H1 × H2 then
by the Kurosh subgroup theorem (for example in the form given in [5, p. 118]) F is a free group
of rank (|H1| − 1)(|H2| − 1) � 2. Put Ω = Z[F ]; F has finite index in G so applying the Eckmann–
Shapiro Lemma we conclude that Ext1

Λ(Z,Λ) ∼= Ext1
Ω(Z,Ω). Since F is a (generalized) duality group

of dimension 1 it follows that Ext1
Ω(Z,Ω) �= 0; thus Ext1

Λ(Z,Λ) �= 0 and so G fails condition M(1).
Both conditions M(1), M(2) fail when G is a free product of the form G = Γ ∗ C∞; in that case

I also fails to be minimal in Ω1(Z) as shown by:

Proposition 4.5. Let G = Γ ∗ C∞; then I fails to be minimal in Ω1(Z).
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Proof. Write IG for the integral augmentation ideal of G; when G = Γ ∗ � we see that (see [4,
p. 140])

IG ∼= (
IΓ ⊗Z[Γ ] Z[G]) ⊕ (

I� ⊗Z[�] Z[G]).
On taking � to be the infinite cyclic group C∞ = 〈t|∅〉 the following exact sequence

0 → Z[C∞] t−1→ Z[C∞] ε→ Z → 0

shows that IC∞ ∼= Z[C∞] and hence IC∞ ⊗Z[C∞] Z[G] ∼= Z[G]. On substituting � = C∞ in the above
we see that

IG ∼= (
IΓ ⊗Z[Γ ] Z[G]) ⊕ Z[G];

hence IΓ ⊗Z[Γ ] Z[G] lies below IG in ΩG
1 (Z). �

Taking Γ = Fn−1 one sees iteratively that I Fn
∼= Z[Fn]n so that I Fn departs progressively from

minimality as n increases. Moreover, even when Γ is the trivial group, (4.5) still shows that 0 lies
below IC∞ in Ω

C∞
1 (Z).

5. A complete resolution for Fm × Cn

As above, let Fm denote the free group of rank m. For any group Φ , we may identify Z[Fm × Φ] =
Z[Fm] ⊗ Z[Φ] where tensor product is taken over Z. Now suppose that

A = (· · · → An+1
∂n+1→ An

∂n→ An−1
∂n−1→ ·· · A1

∂1→ A0
ε→ Z → 0

)
is a complete resolution for Z over Z[Φ]. We construct a complete resolution C for Z over Z[Fm × Φ]
as follows: put R(m) = R ⊕ · · · ⊕ R︸ ︷︷ ︸

m

where R = Z[Fm]. Put C0 = R ⊗ A0 and write C+
n = R(m) ⊗ An−1,

C−
n = R ⊗ An for n � 1. When n = 1 we put �1 = (X ⊗ 1,1 ⊗ ∂1). For any n � 2 and any signs σ , τ

we define Z[Fm × Φ]-linear maps (�n)στ : Cτ
n → Cσ

n−1 as follows:

(�n)++ = −(1 ⊗ ∂n−1); (�n)+− = 0;
(�n)−+ = X × 1; (�n)−− = 1 ⊗ ∂n

and put

�n =
(

(�n)++ (�n)+−
(�n)−+ (�n)−−

)
=

( −(1 ⊗ ∂n−1) 0

X ⊗ 1 1 ⊗ ∂n

)
.

We obtain homomorphisms �n : Cn → Cn−1 over Z[Fm × Φ] where Cn = C+
n ⊕ C−

n :

Theorem 5.1. C = (· · · → Cn+1
�n+1→ Cn

�n→ Cn−1
�n−1→ ·· · �2→ C1

�1→ C0
ε→ Z → 0) is a complete resolution for

Z over Z[Fm × Φ].

We now specialise to the case where Φ = Cn = 〈y|yn = 1〉, the cyclic group of order n. Take the
usual periodic resolution of Z over Z[Cn]

· · · Σ→ Z[Cn] y−1→ Z[Cn] Σ→ ·· · y−1→ Z[Cn] Σ→ Z[Cn] y−1→ Z[Cn] ε→ Z → 0
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where Σ = ∑n
r=1 yr . The tensor product resolution of (5.1) then assumes the form:

C = (· · · → Λ2 �2k+1→ Λ2 �2k→ Λ2 �2k−1→ ·· · �3→ Λ2 �2→ Λ2 �1→ Λ
ε→ Z → 0

)
where �1 = (X ⊗ 1,1 ⊗ (y − 1)) whilst for k � 1

�2k =
( −1 ⊗ (y − 1) 0

X ⊗ 1 1 ⊗ Σ

)
; �2k+1 =

( −1 ⊗ Σ 0

x ⊗ 1 1 ⊗ (y − 1)

)
.

Evidently this resolution is periodic in dimensions � 2 so that for all k � 1,

Ω2k(Z) = Ω2(Z) and Ω2k+1(Z) = Ω3(Z).

What is less clear is that Ω3(Z) = Ω1(Z) so that, at the level of syzygies, the resolution is completely
periodic. To see this, we first make an elementary observation: suppose X , M1, M2 are modules over
a ring Λ and that h = (

h1
h2

) : X → M1 ⊕ M2 is a Λ-homomorphism. Let π : M1 ⊕ M2 → M2 be the
projection; then with this notation:

Proposition 5.2. The sequence 0 → Im(h1| Ker(h2)) → Im(h)
π→ Im(h2) → 0 is exact.

We now obtain:

Theorem 5.3. Im(�2k+1) ∼= Im(�1) = I for all k � 1.

Proof. Observe that �2k+1 =
(

g
�1

)
where g = (−1 ⊗ Σ,0). Thus we may apply (5.2) to get an exact

sequence 0 → Im(g| Ker(�1)) → Im(�2k+1)
π→ Im(�1) → 0. Observe that Im(�1) = I . Moreover, one

calculates easily that g ◦ �2 ≡ 0; that is, g| Im(�2) = 0. However, Im(�2) = Ker(�1) by exactness of C
so that the above exact sequence reduces to an isomorphism Im(�2k+1) ∼= Im(�1) = I as claimed. �
Corollary 5.4. For each k � 0, I ∈ Ω2k+1(Z) over the ring Λ = Z[Fm × Cn].

6. Two calculations

Given a ring R and a finite group Φ we consider R as a bimodule over the group ring Λ = R[Φ]
where Φ acts trivially.

Proposition 6.1. EndDer(Λ)(R) ∼= R/|Φ|.

Proof. Any Λ-homomorphism β : Λ → R is a multiple β = bε where b ∈ R and ε : Λ = R[Φ] → R
is the R-augmentation. Any Λ-homomorphism γ : R → Λ is a multiple γ = cε∗ where c ∈ Λ and
ε∗ : R → Λ is the R-dual of ε; that is ε∗(1) = ∑

φ∈Φ φ̂ where {φ̂}φ∈Φ is the canonical R-basis of
Λ = R[Φ]. Observe that ε∗(1) lies in the centre of Λ and that εε∗(1) = |Φ|. Suppose that α = βγ is
a factorization of α through Λm where

γ =
⎛
⎜⎝

c1ε
∗

...

c ε∗

⎞
⎟⎠ : R → Λm and β = (b1ε, . . . ,bmε) : Λm → R.
m
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Then α is completely determined by α(1) = ∑
i biεε

∗(1)ci = (
∑

i bici)|Φ|. Conversely, if α = λ|Φ| for
some λ ∈ Λ then α factors through Λ since α = λε ◦ ε∗; thus with the above notation

α : R → R factors through Λm ⇐⇒ α = λ|Φ| for some λ ∈ Λ.

The result now follows as α ∈ EndΛ(R) factorizes through a projective module if and only if it factor-
izes through some Λm . �

We now specialize to the case where R is the integral group ring R = Z[Fm] where Fm is free
group of rank m � 1 and where Φ = Cn so that Λ = R[Cn] = Z[Fm × Cn]. We denote by I the in-
tegral augmentation ideal of Z[Fm × Cn]. From the exact sequence 0 → I → Λ → Z → 0 we get, by
dimension shifting, that:

Proposition 6.2. Extk+1
Λ (Z, N) ∼= Extk

Λ(I, N) for any Λ-module N.

Proposition 6.3. Extk+1
Λ (Z,Z) ∼= Extk+1

Λ (I, I) for k � 1.

Proof. Clearly Extk
R(Z, R) = 0 for k � 2 since Fm has cohomological dimension one. Moreover, as Fm is

a subgroup of finite index in G = Fm ×Φ it follows by the Eckmann–Shapiro Lemma that Extk
Λ(Z,Λ) =

0 for k � 2. Thus by dimension shifting as in (6.2), we see that Extk
Λ(I,Λ) = 0 for k � 1. Hence the

exact sequence

Extk(I,Λ) → Extk(I,Z) → Extk+1(I, I) → Extk+1(I,Λ)

reduces to an isomorphism Extk
Λ(I,Z) ∼= Extk+1

Λ (I, I). However, again by dimension shifting,

Extk+1
Λ (Z,Z) ∼= Extk

Λ(I,Z) so that Extk+1
Λ (Z,Z) ∼= Extk+1

Λ (I, I) for k � 1. �
Proposition 6.4. Ext3

Λ(Z, I) ∼= Z/n.

Proof. The Künneth Theorem applied to G = Fm × Cn shows that Ext2
Λ(Z,Z) ∼= Z/n; thus Ext2

Λ(I, I) ∼=
Z/n by (6.3); now apply dimension shifting as in (6.2). �

By (5.4) I is a representative of Ω3(Z) over Λ = Z[Fm × Cn]. As Ext3
Λ(Z,Λ) = 0 the corepresenta-

tion formula (2.1) gives an isomorphism HomDer(I, N) ∼= Ext3
Λ(Z, N) for any Λ-module N; on taking

N = I we obtain:

Corollary 6.5. EndDer(I) ∼= Z/n.

7. Proof of Theorem IV

Let G be a direct product of groups G = Ψ × Φ and make the abbreviations

Λ = Z[G]; R = Z[Ψ ]; I = IZ(G).
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With the identifications Λ = Z[Ψ ×Φ] ∼= Z[Ψ ]⊗Z Z[Φ] ∼= R[Φ] we may write ε = εZ,Ψ ×Φ = εZ,Ψ εR,Φ ;
we obtain a commutative diagram of Λ-homomorphisms in which the rows and the right hand col-
umn are exact:

0
↓

0 → I R(Φ) → I → Ker(εZ,Ψ ) → 0
|| ⋂ ⋂

0 → I R(Φ) → Λ
εR,Φ→ R → 0.

↓ εZ,Ψ

Z
↓
0

In particular Λ is an extension of the form:

0 → I R(Φ) → Λ → R → 0. (7.1)

Specializing to the case where Ψ = Fm = 〈x1, . . . , xm〉 is the free group of rank m we obtain a complete

resolution (0 → Rm X→ R
εZ,Fm→ Z → 0) for Z over R where X = (x1 − 1, . . . , xm − 1). Then Ker(εZ,Fm ) ∼=

Rm so that

I is an extension of the form 0 → I R(Φ) → I → Rm → 0. (7.2)

Now specialize further to the case where Φ is a nontrivial finite group and put n = |Φ| > 1.

Proposition 7.3. If L ∈ [I] then L �= 0.

Proof. Otherwise one would have I ⊕ Λr ∼= Λs for some r, s � 1. That is, I is stably free and so G
has cohomological dimension 1. This is a contradiction, since G = Fm × Φ has infinite cohomological
dimension. �

We note the following:

Proposition 7.4. HomΛ(I R(Φ), R) = 0.

Proof. By (3.1) it suffices to show that Ext1
R[Φ](R, R) = 0. However, by (4.2), as R is free over Z,

Ext1
R[G](R, R) ∼= (Φab/Torsion) ⊗Z R = 0 since Φ is finite. �
Now suppose that L ∈ [I], so that L ⊕ Λa ∼= I ⊕ Λb for some a,b � 0. We shall establish a se-

quence of increasingly better estimates for the relative sizes of I and L:

Proposition 7.5. a � b + m.

Proof. From the exact sequence 0 → HomΛ(Rm, R) → HomΛ(I, R) → HomΛ(I R(Φ), R) and (7.4)
we see that HomΛ(I, R) ∼= Rm . It follows that HomΛ(I ⊕Λb, R) ∼= Rb+m; since L ⊕Λa ∼= I ⊕Λb then
HomΛ(L ⊕ Λa, R) ∼= HomΛ(L, R) ⊕ Ra ∼= Rb+m. Thus HomΛ(L, R) is a projective R-module. By the
Bass–Sheshadri Theorem (see [1]) HomΛ(L, R) is free and so HomΛ(L, R) ∼= Rb+m−a since R has the
invariant basis property [2]. Hence a � b + m. �

Next we show:
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Proposition 7.6. a < b + m and HomΛ(L, R) ∼= Rb+m−a �= 0.

Proof. Choose an isomorphism h : L ⊕ Λa → I ⊕ Λb . Since HomΛ(I ⊕ Λb, R) ∼= Rb+m there exists a
surjective homomorphism p : I ⊕ Λb → Rb+m . We know from (7.5) that a � b + m, so suppose that
a = b + m. Then HomΛ(L, R) = 0 so that the restriction p ◦ h|L : L → R is zero. Likewise, we may
choose a surjective homomorphism q : Λa → Ra in which Ker(q) ∼= I R(Φ)a . Abbreviating I R(Φ) to I R

then in the following diagram

0 → L ⊕ Ia
R

j→ L ⊕ Λa (0,q)→ Ra → 0
↓ h

0 → I R ⊕ Ib
R

i→ I ⊕ Λb p→ Rb+m → 0,

p ◦ h vanishes on L ⊕ Ia
R . Thus there exist unique homomorphisms h− : L ⊕ Ia

R → I R ⊕ Ib
R and h+ :

Ra → Rb+m making the following diagram commute:

0 → L ⊕ Ia
R

j→ L ⊕ Λa (0,q)→ Ra → 0
↓ h− ↓ h ↓ h+

0 → I R ⊕ Ib
R

i→ I ⊕ Λb p→ Rb+m → 0.

As h is bijective and the rows are exact h+ : Ra → Rb+m is surjective and, by hypothesis, a = b + m.
Now R = Z[Fm], being an integral group ring, is weakly finite [11]. Thus h+ is an isomorphism. It
follows from the Five Lemma (extending the rows to the left by zeroes) that h− : L ⊕ Ia

R → Ib+1
R is

also an isomorphism. Now I R is free of rank n − 1 over R where n = |Φ| > 1. As L ⊕ Ia
R

∼= Ib+1
R

it follows that L is stably free and hence (by the Bass–Sheshadri Theorem of [1]) free over R . In
particular

rkR(L) = (n − 1)(b + m − a) < (n − 1)(b + m − a) = 0.

This contradicts (7.3). Hence a < b + m and HomΛ(L, R) ∼= Rb+m−a �= 0. �
Proposition 7.7. If L ⊕ Λa ∼= I ⊕ Λb then a � b + 1.

Proof. Since HomΛ(L, R) ∼= Rb+m−a choose π : L → Rb+m−a to be a surjective Λ-homomorphism and
put L0 = Ker(π). Let g : L ⊕ Λa → I ⊕ Λb be the inverse of the isomorphism h considered above,
and consider the following diagram with exact rows:

0 → I R ⊕ Ib
R

i→ I ⊕ Λb p→ Rb+m → 0
↓ g

0 → L0 ⊕ Ia
R

j→ L ⊕ Λa (π,Id)→ Rb+m−a ⊕ Ra → 0.

Making the obvious identification of Rb+m−a ⊕ Ra with Rb+m , we note that (π, Id) ◦ g vanishes on
I R ⊕ Ib

R since Hom(I R , R) = 0 so that, again using the fact that R is weakly finite, g induces an
isomorphism of exact sequences

0 → I R ⊕ Ib
R

i→ I ⊕ Λb p→ Rb+m → 0
↓ g− ↓ g ↓ g+

0 → L ⊕ Ia j→ L ⊕ Λa (π,q)→ Rb+m → 0.
0 R
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Thus L0 ⊕ Ia
R

∼= Ib+1
R . Computing R-ranks we obtain

rk(L0) + (n − 1)a = (n − 1)(b + 1)

so that rk(L0) = (n − 1)(b + 1 − a). Hence 0 � b + 1 − a and so a � b + 1. �
Now consider the special case of Theorem IV when Φ ∼= Cn .

Proposition 7.8. I is minimal in Ω1(Z) when G ∼= Fm × Cn.

Proof. Suppose that L ∈ [I] and that L ⊕Λa ∼= I ⊕Λb; then a � b+1 by (7.7). Suppose that a = b+1.
Then b + m − a = m − 1, so that, as in (7.7), there exists a surjection π : L → Rm−1 with Ker(π) = L0.
As in the proof of (7.7), rkR(L0) = (n − 1)(b + 1 − a) = 0; thus L0 = 0 so that the surjection π : L →
Rm−1 is an isomorphism of Λ-modules. Thus

EndDer(L) ∼= Mm−1
(
EndDer(R)

)
.

By (6.1) EndDer(R) ∼= R/n which is an infinite ring. Thus Mm−1(EndDer(R)) is also infinite. However
L ∼= I so that EndDer(L) ∼= Z/n is finite. From this contradiction we conclude that a � b and that I
is minimal in Ω1(Z). �

Before proving Theorem IV when Φ is an arbitrary nontrivial finite group we make a general
observation. Suppose G is a group and let i : H ⊂ G be the inclusion of a subgroup H with finite index
k � 2. Let I = Ker(εG : Z[G] → Z); I0 = Ker(εH : Z[H] → Z) be the respective integral augmentation
ideals and let � : i∗(I) → i∗(I)/I0 be the canonical mapping. If {x0, x1, . . . , xk−1} is a complete set of
coset representatives for G/H with x0 = 1 then i∗(I)/I0 is free of rank k − 1 over Z[H] on the basis
�(xr − 1)1�r�k−1. It follows immediately that:

Proposition 7.9. i∗(I) ∼= I0 ⊕ Z[H]k−1 .

Proof of Theorem IV. Let G = Fm ×Φ where Φ is a nontrivial finite group. Put Λ = Z[Fm ×Φ] ∼= R[Φ]
where R = Z[Fm] and let I = Ker(ε : Z[Fm × Φ] → Z) be the integral augmentation ideal. We shall
prove that I is minimal in Ω1(Z); that is, if L ⊕ Λa ∼= I ⊕ Λb then a � b.

By the special case already established we may suppose that Φ is not cyclic. Let Cn ⊂ Φ be a
nontrivial cyclic subgroup and put H = Fm × Cn and k = |G/H| = |Φ|/n. Put Λ0 = R[Cn] and let
I0 = Ker(ε : Z[Fm × Cn] → Z) be the integral augmentation ideal of Fm × Cn . From the hypothesis
L ⊕ Λa ∼= I ⊕ Λb it follows that

i∗(L) ⊕ i∗(Λ)a ∼= i∗(I) ⊕ i∗(Λ)b.

However, i∗(Λ) ∼= Λk
0 and by (7.9), i∗(I) ∼= I0 ⊕Λk−1

0 . Thus i∗(L)⊕Λka
0

∼= I0 ⊕Λkb+k−1
0 . Now, by (7.8),

ka � kb + (k − 1) and so a � b. �
8. Proof of Theorem I

Let Q (8m) = 〈x, y|x2m = y2, xyx = y〉 be the generalized quaternion group of order 8m. Put
G = C N∞ × Q (8m) where N � 1, Λ = Z[G] and Λ0 = Z[C N∞]. Then by the Eckmann–Shapiro Lemma,
Ext1

Λ(Z,Λ) ∼= Ext1
Λ0

(Z,Λ0). Since C N∞ is a Poincaré Duality group of dimension N it follows (see [10])
that

Ext1
Λ(Z,Λ) =

{
Z, N = 1,

0, N � 2.
(8.1)
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By direct calculation one may first show:

ε∗ : Ext1
Q[C∞]

(
Q,Q[C∞]) → Ext1

Q[C∞](Q,Q) is an isomorphism. (8.2)

We now prove:

Proposition 8.3. ε∗ : Ext1
Λ(Z,Λ) → Ext1

Λ(Z,Z) is injective.

Proof. The statement for N � 2 is trivial by (8.1) so that it suffices to consider the case N = 1. In this
case, again by (8.1), Ext1

Λ(Z,Λ) ∼= Z so that it suffices to prove that with rational coefficients the cor-
responding map ε∗ : Ext1

Q[G](Q,Q[G]) → Ext1
Q[G](Q,Q) is nonzero. This follows from the isomorphism

already noted in (8.2) by applying the Künneth Theorem with rational coefficients to G = C∞ × Φ

above. �
For N = 1, I is minimal in Ω1(Z) by Theorem IV whilst for N � 2 minimality of I follows from

(8.1) and Theorem III. In [9], we showed that Λ = Z[G] admits infinitely many isomorphism types of
stably free modules of rank 1. As I is minimal, to complete the proof of Theorem I it suffices to show
that κ : S F1 → Ω1(Z) is injective. This now follows from (8.3) and Theorem II.
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