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Introduction

In recent years, Calabi–Yau (CY) algebras have attracted lots of attention due to their applications
in Algebraic Geometry and in Mathematical Physics. The study of Calabi–Yau Hopf algebras was ini-
tiated by K. Brown and J. Zhang in 2008, cf. [5], where they studied rigid dualizing complexes of
Noetherian Hopf algebras. S. Chemla showed in [6] that quantum enveloping algebras are Calabi–Yau.
In [8] J. He, F. Van Oystaeyen and Y. Zhang showed that the smash product of a universal envelop-
ing algebra of a finite dimensional Lie algebra is Calabi–Yau if and only if the group is a subgroup
of the special linear group and the enveloping algebra itself is Calabi–Yau. Thus they were able to
classify the Noetherian cocommutative Calabi–Yau Hopf algebras of dimension less than 4 over an
algebraically closed field. The smash product construction of Calabi–Yau Hopf algebras applied in [8]
provides in fact an effective method to construct new Calabi–Yau (Hopf) algebras based on existing
Calabi–Yau (Hopf) algebras. However, the Calabi–Yau property of the smash product R #kG depends
strongly on the action of kG on R . For example, the pointed Hopf algebra U (D, λ) of finite Cartan type
constructed in [1] with Γ an infinite group of finite rank is Calabi–Yau if and only if the associated
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graded Hopf algebra R #kΓ is Calabi–Yau, where R is the Nichols algebra of U (D, λ). But in this
case, if R #kΓ is Calabi–Yau, then R cannot be Calabi–Yau; and vice versa cf. [22]. This leads to the
question: can we find the “right” action of G on R so that the Calabi–Yau property of an algebra R
delivers the Calabi–Yau property of R #kG?

The question was answered by Wu and Zhu in [20], where they considered the smash product
R #kG of a Koszul Calabi–Yau algebra R by a finite group of automorphisms of R . They showed that
the smash product R #kG is Calabi–Yau if and only if the homological determinant (Definition 1.13)
of the G-action on R is trivial. Later, this result was generalized to the case where R is a p-Koszul
Calabi–Yau algebra and kG is replaced by an involutory Calabi–Yau Hopf algebra [13]. A crossed prod-
uct is a generalization of a smash product. P. Le Meur studied in [12] when the crossed product of a
graded Calabi–Yau algebra by a finite group is still Calabi–Yau.

Inspired by the work of Wu and Zhu [20] and the fact that the associated graded Hopf algebra
of a pointed Hopf algebra is a smash product of a braided Hopf algebra in a Yetter–Drinfeld module
category over the coradical, we consider in this paper the Calabi–Yau property of a smash product
Hopf algebra R # H , where R is a braided Hopf algebra in the Yetter–Drinfeld module category over
H . We use the homological determinant of the Hopf action to describe the homological integral (Def-
inition 1.10) of R # H . We then give a necessary and sufficient condition for R # H to be a Calabi–Yau
algebra in case R is Calabi–Yau and H is semisimple (Theorem 2.8). We then continue to consider the
inverse problem. That is, if R # H is Calabi–Yau, when is R Calabi–Yau? In Section 3, we answer this
question in case H = kG is the group algebra of a finite group. We then go on to characterize the
Calabi–Yau property of R when R #kG is Calabi–Yau (Theorem 3.10). Applying our characterization
theorem we obtain the Calabi–Yau property of U (D, λ) in case the datum is not generic. The generic
case is completely worked out in [22]. We will provide two examples of Calabi–Yau pointed Hopf
algebras with a finite abelian group of group-like elements.

The paper is organized as follows. In Section 1, we review the definition of a braided Hopf alge-
bra, the definition of a Calabi–Yau algebra, the concept of a homological integral and the notion of
homological determinants.

In Section 2, we study the Calabi–Yau property under a Hopf action. Our main result in this section
is Theorem 2.8, which characterizes the Calabi–Yau property of the smash product Hopf algebra R # H ,
where H is a semisimple Hopf algebra and R is a braided Hopf algebra in the Yetter–Drinfeld module
category over H .

In Section 3, we consider the question when the Calabi–Yau property of R # H implies that R is
Calabi–Yau. We answer this question in case H = kG is the group algebra of a finite group. We first
construct a bimodule resolution of R from a projective resolution of k over the algebra R #kG . Based
on this, we obtain a rigid dualizing complex of R in case R is AS-Gorenstein (Theorem 3.8). Our main
result in this section is Theorem 3.10.

Throughout, we work over a fixed field k. All vector spaces and algebras are assumed to be over k.

1. Preliminaries

Given an algebra A, let Aop denote the opposite algebra of A and Ae denote the enveloping algebra
A ⊗ Aop of A. The unfurnished tensor ⊗ means ⊗k in this paper. Mod A denotes the category of left
A-modules. We use Mod Aop to denote the category of right A-modules.

For a left A-module M and an algebra automorphism φ : A → A, write φ M for the left A-module
defined by a · m = φ(a)m for any a ∈ A and m ∈ M . Similarly, for a right A-module N , we have Nφ .
Observe that Aφ

∼= φ−1 A as A–A-bimodules. Aφ
∼= A as A–A-bimodules if and only if φ is an inner

automorphism.
For a Hopf algebra, we use Sweedler’s notation (sumless) for its comultiplication and its coactions.

Let A be a Hopf algebra, and ξ : A → k an algebra homomorphism. We write [ξ ] to be the winding
homomorphism of ξ defined by

[ξ ](a) = ξ(a1)a2,

for any a ∈ A.
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1.1. Braided Hopf algebra

Let H be a Hopf algebra. We denote by H
HYD the category of Yetter–Drinfeld modules over H

with morphisms given by H-linear and H-colinear maps. If Γ is a finite group, then kΓ
kΓ

YD will be
abbreviated to Γ

Γ YD.
The tensor product of two Yetter–Drinfeld modules M and N is again a Yetter–Drinfeld module

with the module and comodule structures given as follows

h(m ⊗ n) = h1m ⊗ h2n and δ(m ⊗ n) = m(−1)n(−1) ⊗ m(0) ⊗ n(0),

for any h ∈ H , m ∈ M and n ∈ N . This turns the category of Yetter–Drinfeld modules H
HYD into a

braided tensor category. For more detail about braided tensor categories, one refers to [10].
For any two Yetter–Drinfeld modules M and N , the braiding cM,N : M ⊗ N → N ⊗ M is given by

cM,N (m ⊗ n) = m(−1) · n ⊗ m(0),

for any m ∈ M and n ∈ N .

Definition 1.1. Let H be a Hopf algebra.

(i) An algebra in H
HYD is a k-algebra (R,m, u) such that R is a Yetter–Drinfeld H-module, and both

the multiplication m : R ⊗ R → R and the unit u : k → R are morphisms in H
HYD.

(ii) A coalgebra in H
HYD is a k-coalgebra (C,�,ε) such that C is a Yetter–Drinfeld H-module, and

both the comultiplication � : R → R ⊗ R and the counit ε : R → k are morphisms in H
HYD.

Let R and S be two algebras in H
HYD. Then R ⊗ S is a Yetter–Drinfeld module in H

HYD, and
becomes an algebra in the category H

HYD with the multiplication mR⊗S defined by

mR ⊗ S := (mR ⊗ mS)(id ⊗c ⊗ id).

Denote this algebra by R ⊗ S .

Definition 1.2. Let H be a Hopf algebra. A braided bialgebra in H
HYD is a collection (R,m, u,�,ε),

where

(i) (R,m, u) is an algebra in H
HYD.

(ii) (R,�,ε) is a coalgebra in H
HYD.

(iii) � : R → R⊗R and ε : R → k are morphisms of algebras in H
HYD.

If, in addition, the identity is convolution invertible in End(R), then R is called a braided Hopf algebra
in H

HYD. The inverse of the identity is called the antipode of R .

In order to distinguish comultiplications of braided Hopf algebras from those of usual Hopf alge-
bras, we use Sweedler’s notation with upper indices for braided Hopf algebras

�(r) = r1 ⊗ r2.

Let H be a Hopf algebra and R a braided Hopf algebra in the category H
HYD. For h ∈ H and

r ∈ R , we write h(r) for h acting on r. It is an element in R . On the other hand, we write hr for
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h multiplying with r. It is an element in R # H . The algebra R # H is a usual Hopf algebra with the
following structure [16]:

The multiplication is given by

(r # g)(s # h) := rg1(s)# g2h

with unit uR ⊗ uH . The comultiplication is given by

�(r # h) := r1 #
(
r2)

(−1)
h1 ⊗ (

r2)
(0)

# h2 (1)

with counit εR ⊗ εH . The antipode is as follows:

SR # H (r # h) = (
1 #SH (r(−1)h)

)(
SR(r(0))# 1

)
. (2)

The algebra R # H is called the Radford biproduct or bosonization of R by H . The algebra R is a
subalgebra of R # H and H is a Hopf subalgebra of R # H .

Conversely, let A and H be two Hopf algebras and π : A → H , ι : H → A Hopf algebra homomor-
phisms such that πι = idH . In this case the algebra of right coinvariants with respect to π

R = Acoπ := {
a ∈ A

∣∣ (id⊗π)�(a) = a ⊗ 1
}
,

is a braided Hopf algebra in H
HYD, with the following structure [16]:

(i) The action of H on R is the restriction of the adjoint action (composed with ι).
(ii) The coaction is (π ⊗ id)�.

(iii) R is a subalgebra of A.
(iv) The comultiplication is given by

�R(r) = r1ιSHπ(r2) ⊗ r3.

(v) The antipode is given by

SR(r) = π(r1)SA(r2).

Define a linear map ρ : A → R by

ρ(a) = a1ιSHπ(a2),

for all a ∈ A.

Theorem 1.3. (See [16].) The morphisms Ψ : A → R # H and Φ : R # H → A defined by

Ψ (a) = ρ(a1)#π(a2) and Φ(r # h) = rι(h)

are mutually inverse isomorphisms of Hopf algebras.
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1.2. Calabi–Yau algebras

We follow Ginzburg’s definition of a Calabi–Yau algebra [7].

Definition 1.4. An algebra A is called a Calabi–Yau algebra of dimension d if

(i) A is homologically smooth, that is, A has a bounded resolution of finitely generated projective
A–A-bimodules;

(ii) there are A–A-bimodule isomorphisms

Exti
Ae

(
A, Ae) =

{
0, i �= d;
A, i = d.

In the sequel, Calabi–Yau will be abbreviated to CY for short.
CY algebras form a class of algebras possessing a rigid dualizing complex (ungraded version). The

non-commutative version of a dualizing complex was first introduced by Yekutieli.
A Noetherian algebra in this paper means a left and right Noetherian algebra.

Definition 1.5. (Cf. [21], [18, Defn. 6.1].) Assume that A is a Noetherian algebra. Then an object R of
Db(Ae) is called a dualizing complex if it satisfies the following conditions:

(i) R is of finite injective dimension over A and Aop .
(ii) The cohomology of R is given by bimodules which are finitely generated on both sides.

(iii) The natural morphisms A → RHomA(R,R) and A → RHomAop (R,R) are isomorphisms in
D(Ae).

Roughly speaking, a dualizing complex is a complex R ∈ Db(Ae) such that the functor

RHomA(−,R) : Db
f g(A) → Db

f g

(
Aop)

(3)

is a duality, with adjoint RHomAop (−,R) (cf. [21, Prop. 3.4 and Prop. 3.5]). Here Db
f g(A) is the full tri-

angulated subcategory of D(A) consisting of bounded complexes with finitely generated cohomology
modules.

Dualizing complexes are not unique up to isomorphism. To overcome this weakness, Van den Bergh
introduced the concept of a rigid dualizing complex cf. [18, Defn. 8.1].

Definition 1.6. Let A be a Noetherian algebra. A dualizing complex R over A is called rigid if

RHomAe (A, AR ⊗ RA) ∼= R

in D(Ae).

The following lemma can be found in [5, Prop. 4.3] and [18, Prop. 8.4]. Note that if a Noetherian
algebra has finite left and right injective dimension, then they are equal cf. [23, Lemma A]. We call
this common value the injective dimension of A.

Lemma 1.7. Let A be a Noetherian algebra. Then the following two conditions are equivalent:

(i) A has a rigid dualizing complex R = Aψ [s], where ψ is an algebra automorphism and s ∈ Z.
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(ii) A has finite injective dimension d and there is an algebra automorphism φ such that

Exti
Ae

(
A, Ae) ∼=

{
0, i �= d;
Aφ, i = d

as A–A-bimodules.

If one of the two conditions holds, then φψ is an inner automorphism and s = d.

The following corollary follows directly from Lemma 1.7 and the definition of a CY algebra.

Corollary 1.8. Let A be a Noetherian algebra which is homologically smooth. Then A is a CY algebra of dimen-
sion d if and only if A has a rigid dualizing complex A[d].

1.3. Homological integral

In [8], the CY property of Hopf algebras was discussed by using the homological integrals of Artin–
Schelter Gorenstein (AS-Gorenstein for short) algebras [8, Thm. 2.3]. The concept of a homological
integral for an AS-Gorenstein Hopf algebra was introduced by Lu, Wu and Zhang in [14] to study
infinite dimensional Noetherian Hopf algebras. It generalizes the concept of an integral of a finite di-
mensional Hopf algebra. In [5], homological integrals were defined for general AS-Gorenstein algebras.

Definition 1.9. (Cf. [5, Defn. 1.2].)

(i) Let A be a left Noetherian augmented algebra with a fixed augmentation map ε : A → k. A is
said to be left AS-Gorenstein, if
(a) injdim A A = d < ∞,

(b) dim Exti
A(Ak, A A) =

{
0, i �= d;
1, i = d,

where injdim stands for injective dimension.
A Right AS-Gorenstein algebras can be defined similarly.

(ii) An algebra A is said to be AS-Gorenstein if it is both left and right AS-Gorenstein (relative to the
same augmentation map ε).

(iii) An AS-Gorenstein algebra A is said to be regular if in addition, the global dimension of A is finite.

Definition 1.10. Let A be a left AS-Gorenstein algebra with injdim A A = d. Then Extd
A(Ak, A A) is a 1-

dimensional right A-module. Any non-zero element in Extd
A(Ak, A A) is called a left homological integral

of A. We write
∫ l

A for Extd
A(Ak, A A). Similarly, if A is right AS-Gorenstein with injdim A A = d, any non-

zero element in Extd
A(kA, A A) is called a right homological integral of A. Write

∫ r
A for Extd

A(kA, A A).∫ l
A and

∫ r
A are called left and right homological integral modules of A respectively.

The left integral module
∫ l

A is a 1-dimensional right A-module. Thus
∫ l

A
∼= kξ for some algebra

homomorphism ξ : A → k.

Proposition 1.11. Let A be a Noetherian augmented algebra such that A is CY of dimension d. Then A is

AS-regular of global dimension d. In addition,
∫ l

A
∼= k as right A-modules.

Proof. If A is an augmented algebra, then Ak is a finite dimensional A-module. By [4, Remark 2.8],
A has global dimension d.

It follows from [4, Prop. 2.2] that A admits a projective bimodule resolution

0 → Pd → ·· · → P1 → P0 → A → 0,
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where each Pi is finitely generated as an A–A-bimodule. Tensoring with functor ⊗Ak, we obtain a
projective resolution of Ak:

0 → Pd ⊗A k → ·· · → P1 ⊗A k → P0 ⊗A k → Ak → 0.

Since each Pi is finitely generated, the isomorphism

k ⊗A HomAe
(

Pi, Ae) ∼= HomA(Pi ⊗A k, A)

holds in Mod Aop . Therefore, the complex HomA(P• ⊗A k, A) is isomorphic to the complex k ⊗A

HomAe (P•, Ae). The fact that the algebra A is CY of dimension d implies that the following A–A-
bimodule complex is exact:

0 → HomAe
(

P0, Ae) → ·· · → HomAe
(

Pd−1, Ae) → HomAe
(

Pd, Ae) → A → 0.

Thus the complex k ⊗A HomAe (P•, Ae) is exact except at k ⊗A HomAe (Pd, Ae), whose homology is k.
It follows that the isomorphisms

Exti
A(Ak, A A) ∼=

{
0, i �= d;
k, i = d

hold in Mod Aop . Similarly, we have isomorphisms

Exti
A(kA, A A) ∼=

{
0, i �= d;
k, i = d

in Mod A. We conclude that A is AS-regular and
∫ l

A
∼= k. �

Remark 1.12. From the proof of Proposition 1.11 we can see that if A is a Noetherian augmented
algebra such that

(i) A is homologically smooth, and
(ii) there is an integer d and an algebra automorphism ψ , such that

Exti
Ae

(
A, Ae) ∼=

{
0, i �= d;
Aψ, i = d

as A–A-bimodules,

then A is AS-regular of global dimension d. In this case,
∫ l

A
∼= kξ . The algebra homomorphism ξ is

defined by ξ(a) = ε(ψ(a)) for all a ∈ A, where ε is the augmentation map of A.

1.4. Homological determinants

The homological determinant was defined by Jørgensen and Zhang [9] for graded automorphisms
of an AS-Gorenstein algebra and by Kirkman, Kuzmanovich and Zhang [11] for Hopf actions on an
AS-Gorenstein algebra. The homological determinant was used to study the AS-Gorenstein property of
invariant subrings.
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Definition 1.13. (Cf. [11].) Let H be a Hopf algebra, and R an H-module AS-Gorenstein algebra of in-
jective dimension d. There is a natural H-action on Extd

R(k, R) induced by the H-action on R . Let e be
a non-zero element in Extd

R(k, R). Then there exists an algebra homomorphism η : H → k satisfying
h · e = η(h)e for all h ∈ H .

(i) The composite map ηSH : H → k is called the homological determinant of the H-action on R , and
it is denoted by hdet (or more precisely hdetR ).

(ii) The homological determinant hdetR is said to be trivial if hdetR = εH , where εH is the counit of
the Hopf algebra H .

2. Calabi–Yau property under Hopf actions

Let H be a Hopf algebra and R a braided Hopf algebra in the category H
HYD. In this section, we

study the CY property of the smash product R # H , when R is a CY algebra and H is a semisimple
Hopf algebra.

For a left R # H-module M , the vector space M ⊗ H is a left R # H-module defined by

(r # h) · (m ⊗ g) := (r # h1)m ⊗ h2 g,

for all r # h ∈ R # H and m ⊗ g ∈ M ⊗ H . Denote this R # H-module by M # H .
Let M and N be two R # H-modules. Then there is a natural left H-module structure on

HomR(M, N) given by the adjoint action

(h ⇀ f )(m) := h2 f
(
S−1

H (h1)m
)
,

for all h ∈ H , f ∈ HomR(M, N) and m ∈ M .

Lemma 2.1. Let M be a left R # H-module. Then HomR(M, R) ⊗ H is an H–R # H-bimodule, where the left
H-module structure is defined by

h · ( f ⊗ g) := h1 ⇀ f ⊗ h2 g

and the right R # H-module structure is given by the diagonal action:

( f ⊗ g) · (r # h) := f g1(r) ⊗ g2h,

for all f ∈ HomR(M, R), g,h ∈ H and r ∈ R.

Proof. First we show that for all h ∈ H , f ∈ HomR(M, R) and r ∈ R

(h1 ⇀ f )h2(r) = h ⇀ ( f r). (4)

For m ∈ M , we have

[
(h1 ⇀ f )h2(r)

]
(m) = (h1 ⇀ f )(m)h2(r)

= h2
(

f
(
S−1

H (h1)m
))

h3(r)

= h2
(

f
(
S−1

H (h1)m
)
r
)

= h2
(
( f r)

(
S−1

H (h1)m
))

= [
h ⇀ ( f r)

]
(m).
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Now we check that for all f ⊗ g ∈ HomR(M, R)⊗ H , h ∈ H and r # k ∈ R # H , (h · ( f ⊗ g)) · (r # k) =
h · (( f ⊗ g) · (r # k)). We have

(
h · ( f ⊗ g)

) · (r # k) = (h1 ⇀ f ⊗ h2 g) · (r # k)

= (h1 ⇀ f )(h2 g1)(r) ⊗ h3 g2k

and

h · (( f ⊗ g) · (r # k)
) = h ⇀

(
f g1(r) ⊗ g2k

)
= h1 ⇀

(
f g1(r)

) ⊗ h2 g2k

(4)= (h1 ⇀ f )(h2 g1)(r) ⊗ h3 g2k. �
Let M be an R # H-module. There is a natural right R # H-module structure on HomR # H (M # H,

R # H) induced by the right R # H-module structure of R # H . HomR # H (M # H, R # H) is also a left
H-module defined by

(h · f )(m ⊗ g) := f (m ⊗ gh), (5)

for all h ∈ H , f ∈ HomR # H (M # H, R # H) and m ⊗ g ∈ M ⊗ H . Then HomR # H (M # H, R # H) is an
H–R # H-bimodule.

Proposition 2.2. Let P be an R # H-module such that it is finitely generated projective as an R-module. Then

HomR(P , R) ⊗ H ∼= HomR # H (P # H, R # H)

as H–R # H-bimodules.

Proof. Let

ψ : HomR(P , R) ⊗ H → HomR # H (P # H, R # H)

be the homomorphism defined by

[
ψ( f ⊗ h)

]
(p ⊗ g) = (g1 ⇀ f )(p)# g2h

= g2
(

f
(
S−1

H (g1)p
))

# g3h,

for all f ⊗ h ∈ HomR(P , R) ⊗ H and p ⊗ g ∈ P # H .
We claim that the image of ψ is contained in HomR # H (P # H, R # H). For any f ⊗ h ∈

HomR(P , R) ⊗ H , r # k ∈ R # H and p ⊗ g ∈ P # H , on one hand, we have

[
ψ( f ⊗ h)

](
(r # k)(p ⊗ g)

) = [
ψ( f ⊗ h)

](
(r # k1)p ⊗ k2 g

)
= (k3 g2)

(
f
(
S−1

H (k2 g1)
(
(r # k1)p

)))
# k4 g3h

= (k2 g3)
(

f
(((

S−1
H (k1 g2)

)
(r)

)
S−1

H (g1)p
))

# k3 g4h.



198 X. Yu, Y. Zhang / Journal of Algebra 358 (2012) 189–214
On the other hand,

(r # k)
[
ψ( f ⊗ h)

]
(p ⊗ g) = (r # k)

(
g2

(
f
(
S−1

H (g1)p
))

# g3h
)

= r(k1 g2)
(

f
(
S−1

H (g1)p
))

# k2 g3h

= (k2 g3)
(
S−1

H (k1 g2)(r) f
(
S−1

H (g1)p
))

# k3 g4h

= (k2 g3)
(

f
(((

S−1
H (k1 g2)

)
(r)

)
S−1

H (g1)p
))

# k3 g4h,

where the third equation follows from the identity: r # h = h2 · S−1
H (h1)(r). Now we show that ψ is

an H–R # H-bimodule homomorphism. We have

[
ψ

(
( f ⊗ h)(r # k)

)]
(p ⊗ g) = [

ψ
(

f h1(r) ⊗ h2k
)]

(p ⊗ g)

= g2
([

f h1(r)
](
S−1

H (g1)p
)) ⊗ g3h2k

= g2
(

f
(
S−1

H (g1)p
))

(g3h1)(r) ⊗ g4h2k

= (
g2

(
f
(
S−1

H (g1)p
)) ⊗ g3h

)
(r # k)

= [
ψ( f ⊗ h)(r # k)

]
(p ⊗ g)

and

[
ψ

(
k( f ⊗ h)

)]
(p ⊗ g) = [

ψ(k1 ⇀ f ⊗ k2h)
]
(p ⊗ g)

= g2
(
(k1 ⇀ f )

(
S−1

H (g1)p
))

# g3k2h

= (g2k2)
(

f
(
S−1

H (k1)S−1
H (g1)p

))
# g3k3h

= (
(g1k1) ⇀ f

)
(p) ⊗ g2k2h

= [
ψ( f ⊗ h)

]
(p ⊗ gk)

= [
k · ψ( f ⊗ h)

]
(p ⊗ g).

So HomR(P , R) ⊗ H ∼= HomR # H (P # H, R # H) as H–R # H-bimodules when P is finitely generated
projective as an R-module. �
Proposition 2.3. Let H be a finite dimensional Hopf algebra and R a Noetherian braided Hopf algebra in the
category H

HYD. Then

Exti
R # H (H, R # H) ∼= Exti

R(k, R) ⊗ H

as H–R # H-bimodules for all i�0.

Proof. Since R is Noetherian and H is finite dimensional, R # H is also Noetherian. Then R # Hk admits
a projective resolution

· · · → Pn → ·· · → P1 → P0 → k → 0

such that each Pn is a finitely generated R # H-module. Because H is finite dimensional, each Pn is
also finitely generated as an R-module. Tensoring with H , we obtain a projective resolution of H over
R # H



X. Yu, Y. Zhang / Journal of Algebra 358 (2012) 189–214 199
· · · → Pn # H → ·· · → P1 # H → P0 # H → H → 0.

Applying the functor HomR # H (−, R # H) to this complex, we obtain the following complex

0 → HomR # H (P0 # H, R # H) → HomR # H (P1 # H, R # H) → ·· ·
→ HomR # H (Pn # H, R # H) → ·· · . (6)

This is a complex of H–R # H-bimodules, where the left H-module structure is defined as in (5). By
Proposition 2.2, one can check that it is isomorphic to the following complex of H–R # H-bimodules,

0 → HomR(P0, R) ⊗ H → HomR(P1, R) ⊗ H → ·· ·
→ HomR(Pn, R) ⊗ H → ·· · . (7)

After taking cohomologies of complex (6) and complex (7), we arrive at isomorphisms of H–R # H-
bimodules

Exti
R # H (H, R # H) ∼= Exti

R(k, R) ⊗ H

for all i�0. �
The algebra R can be viewed as an augmented right H-module algebra through the right H-action:

r · h := S−1
H (h) · r, for all r ∈ R and h ∈ H . The algebra H # R can be defined in a similar way. The

multiplication is given by

(h # s)(k # r) := hk2 # (s · k1)r = hk2 #
(
S−1

H (k1)(s)
)
r,

for all h # s and k # r ∈ H # R . The homomorphism ϕ : R # H → H # R defined by

ϕ(r # k) = k2 #S−1
H (k1)(r)

is an algebra isomorphism with its inverse ψ : H # R → R # H defined by

ψ(k # r) = k1(r)# k2.

In addition, ϕ is compatible with the augmentation maps of R # H and H # R respectively. Now
right R # H-modules can be treated as H # R-modules. Let M and N be two H # R-modules, then
HomR(M, N) is a right H-module defined by

( f ↼ h)(m) := f
(
mSH (h1)

)
h2,

for all h ∈ H , f ∈ HomR(M, N) and m ∈ M .
Similar to the left case, we have the following proposition.

Proposition 2.4. Let H be a finite dimensional Hopf algebra and R a Noetherian braided Hopf algebra in the
category H

HYD. Then

Exti
R # H (H R # H , R # H R # H ) ∼= H ⊗ Exti

R(kR , R R)

as R # H–H-bimodules for all i�0.
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Lemma 2.5. Let H be a Hopf algebra and R an H-module algebra. If the left global dimensions of R and H are
dR and dH respectively, then the left global dimension of A = R # H is not greater than dR + dH .

Proof. Let M and N be two A-modules. We have

HomA(M, N) ∼= HomH
(
k,HomR(M, N)

)
,

that is, the functor HomA(M,−) factors through as follows

Mod A
HomR (M,−)

HomA(M,−)

Mod H

HomH (k,−)

Modk

.

To apply the Grothendieck spectral sequence (see e.g. [19, Section 5.8]), we need to show that if N is
an injective A-module, then Extq

H (k,HomR(M, N)) = 0 for all q�1.
Let

· · · → Pi → Pi−1 → ·· · → P1 → P0 → k → 0

be a projective resolution of k over H . Ext∗H (k,HomR(M, N)) are the cohomologies of the complex
HomH (P•,HomR(M, N)). The following isomorphisms hold:

HomH
(

P•,HomR(M, N)
) ∼= HomH

(
k,Homk

(
P•,HomR(M, N)

))
∼= HomH

(
k,HomR(P• ⊗ M, N)

)
∼= HomR # H (P• ⊗ M, N).

Let Pi be a projective module in the complex P• . Note that the R # H-module structure on Pi ⊗ M is
given by

(r # h) · (p ⊗ h) = h2 ⊗ rh1m,

for all r # h ∈ R # H and p ⊗ m ∈ Pi ⊗ M . The complex P• is exact except at P0. Since the functors
HomR # H (−, N) and − ⊗ M are exact, the complex HomH (P•,HomR(M, N)) is also exact except at
HomH (P0,HomR(M, N)). It follows that

Extq
H

(
k,HomR(M, N)

) = 0

for all q�1.
Now we have

Extq
H

(
k,Extp

R(M, N)
) ⇒ Extp+q

R # H (M, N).

Because the left global dimensions of R and H are dR and dH , Exti
R # H (M, N) = 0 for all i�dR + dH .

Therefore, the left global dimension of R # H is not greater than dR + dH . �
Let H be an involutory CY Hopf algebra and R a p-Koszul CY algebra and a left H-module al-

gebra. As mentioned in the introduction, Liu, Wu and Zhu used the homological determinant of the



X. Yu, Y. Zhang / Journal of Algebra 358 (2012) 189–214 201
H-action to characterize the CY property of R # H in [13]. They defined an H-module structure on
the Koszul bimodule complex of R and computed the H-module structures on the Hochschild coho-
mologies. Then they proved that R # H is CY if and only if the homological determinant is trivial. If
H is not involutory or R is not a p-Koszul algebra, is it still true that R # H is a CY algebra when the
homological determinant is trivial?

We answer this question in the case where R is a braided Hopf algebra in the category H
HYD,

where H is a semisimple Hopf algebra. We use the homological determinant to discuss the homolog-
ical integral and the rigid dualizing complex of the algebra A = R # H . We then give a necessary and
sufficient condition for A to be a CY algebra. The result we will obtain is slightly different from what
was obtained by Liu, Wu and Zhu. We first need the following lemma.

Lemma 2.6. Let H be a Hopf algebra, and R a braided Hopf algebra in the category H
HYD. Then

S2
R # H (r) = SH (r(−1))

(
S2

R(r(0))
)
,

for any r ∈ R.

Proof. Set A = R # H . By Eq. (2), for any r ∈ R , we have

SA(r) = (
1 #SH (r(−1))

)(
SR(r(0))# 1

)
.

Therefore,

S2
A(r) = SA

((
1 #SH (r(−1))

)(
SR(r(0))# 1

))
= SA

(
SR(r(0))# 1

)
SA

(
1 #SH (r(−1))

)
= (

1 #SH
(
SR(r(0))(−1)

))(
SR

(
SR(r(0))(0)

)
# 1

)(
1 #S2

H (r(−1))
)

= (
1 #SH (r(0)(−1))

)(
S2

R(r(0)(0))# 1
)(

1 #S2
H (r(−1))

)
= (

1 #SH (r(−1)2)
)(
S2

R(r(0))# 1
)(

1 #S2
H (r(−1)1)

)
= SH (r(−1)3)

(
S2

R(r(0))
)

#SH (r(−1)2)S2
H (r(−1)1)

= SH (r(−1)2)
(
S2

R(r(0))
)

#SH
(
ε(r(−1)1)

)
= SH (r(−1))

(
S2

R(r(0))
)
. �

Proposition 2.7. Let H be a semisimple Hopf algebra and R a braided Hopf algebra in the category H
HYD. If R

is an AS-regular algebra of global dimension dR , then A = R # H is also AS-regular of global dimension dR .
In this case,

∫ l
A = kξ , where ξ : A → k is defined by

ξ(r # h) = ξR(r)hdet(h),

for all r # h ∈ R # H, where the algebra map ξR : R → k defines the left integral module of R, i.e.,
∫ l

R = kξR .
The rigid dualizing complex of A is isomorphic to ψ A[dR ], where ψ is the algebra automorphism [ξ ]S2

A . To be
precise, ψ is defined by

ψ(r # h) = ξR
(
r1) hdet

((
r2)

(−1)1h1
)
SH

((
r2)

(−1)2

)(
S2

R

((
r2)

(0)

))
#S2

H (h2),

for all r # h ∈ R # H.
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Proof. Let P• → H → 0 be a projective A-module resolution of H with each Pi finitely generated.
Since H is semisimple, k is projective as an H-module. It follows that k⊗H P• → k → 0 is a projective
A-module resolution of k. Now the following isomorphism of complexes holds:

HomA(k ⊗H P•, A) ∼= HomH
(
k,HomA(P•, A)

)
.

The fact that the trivial module k is a finitely generated projective H-module implies that

Exti
A(k, A) ∼= HomH

(
k,Exti

A(H, A)
)

∼= HomH (k, H) ⊗H Exti
A(H, A) (8)

for all i > 0. Following Proposition 2.3, we have
∫ l

A
∼= ∫ l

H ⊗H
∫ l

R ⊗H and

dim Exti
A(k, A A) =

{
0, i �= dR;
1, i = dR .

Let e be a non-zero element in
∫ l

R and h a non-zero element in
∫ l

H . Since H is semisimple, H is

unimodular. That is, we have
∫ l

H = k. Let η : H → k be an algebra homomorphism such that h · e =
η(h)e for all h ∈ H . Then the following equations hold

(h ⊗ e ⊗ 1) · (r # h) = ξR(r)h ⊗ e ⊗ h

= ξR(r)h ⊗ ε(h1)e ⊗ h2

= ξR(r)h ⊗ η
(
SH (h1)

)
η(h2)e ⊗ h3

= ξR(r)η
(
SH (h1)

)
h ⊗ h2 · (e ⊗ 1)

= ξR(r)η
(
SH (h1)

)
ε(h2)h ⊗ e ⊗ 1

= ξR(r)hdet(h)h ⊗ e ⊗ 1.

This implies that
∫ l

A
∼= kξ , where ξ is the algebra homomorphism defined in the proposition. Similarly,

by Proposition 2.4, we have

dim Exti
A(k, A A) =

{
0, i �= dR;
1, i = dR .

Because H is finite dimensional and R is Noetherian, the algebra A is Noetherian as well. Therefore,
the left and right global dimensions of A are equal. Since H is semisimple, the global dimension of H
is 0. Now it follows from Lemma 2.5 that the global dimension of A is dR . In conclusion, we have
proved that A is an AS-regular algebra.

By [5, Prop. 4.5], the rigid dualizing complex of A is isomorphic to [ξ ]S2
A

A[dR ]. For any r # h ∈ R # H ,

we have

[ξ ]S2
A(r # h)

(a)= S2
A[ξ ](r # h)

(b)= ξ
(
r1 #

(
r2)

(−1)
h1

)
S2

A

((
r2)

(0)
# h2

)
= ξR

(
r1)hdet

((
r2) h1

)
S2

A

((
r2) )

#S2
H (h2)
(−1) (0)
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(c)= ξR
(
r1)hdet

((
r2)

(−1)
h1

)
SH

((
r2)

(0)(−1)

)(
S2

R

((
r2)

(0)(0)

))
#S2

H (h2)

= ξR
(
r1)hdet

((
r2)

(−1)1h1
)
SH

((
r2)

(−1)2

)(
S2

R

((
r2)

(0)

))
#S2

H (h2).

Eqs. (a), (b) and (c) follow from [5, Lemma 2.5], Eq. (1) and Lemma 2.6 respectively. Thus the proof is
completed. �

Since ξ is an algebra homomorphism, the following equation holds

ξR(r)hdet(h) = ξR
(
h1(r)

)
hdet(h2).

We show how
∫ r

R # H looks like. Let e′ be a non-zero element in Extd
R(k, R). There is an algebra

homomorphism η′ : H → k satisfying e′ · h = η′(h)e′ for all h ∈ H . Applying a similar argument as
in the proof of Proposition 2.7, we have that if

∫ r
R = ξ ′

R
k, then

∫ r
A = ξ ′k, where ξ ′ is defined by

ξ ′(r # h) = ξ ′
R(S−1

H (h1)(r))η′(SH (h2)) for all r # h ∈ R # H .
Now we give the main theorem of this section.

Theorem 2.8. Let H be a semisimple Hopf algebra and R a Noetherian braided Hopf algebra in the category
H
HYD. Suppose that the algebra R is CY of dimension dR . Then R # H is CY if and only if the homological
determinant of R is trivial and the algebra automorphism φ defined by

φ(r # h) = SH (r(−1))
(
S2

R(r(0))
)
S2

H (h)

for all r # h ∈ R # H is an inner automorphism.

Proof. From Proposition 1.11, we have that R is AS-regular with
∫ l

R
∼= k. In addition, since H is finite

dimensional and semisimple, the algebra H is unimodular. Thus
∫ l

H = k. Set A = R # H . By Proposi-

tion 2.7, we obtain that A is AS-regular with
∫ l

A
∼= kξ , where ξ is the algebra homomorphism defined

by ξ(r # h) = ε(r)hdet(h) for all r # h ∈ R # H . Following from [8, Thm. 2.3], the algebra A is CY if and
only if ξ = ε and S2

A is an inner automorphism. On one hand, ξ = εH if and only if hdet = εH . On the
other hand, by Lemma 2.6, we have S2

A(r # h) = SH (r(−1))(S2
R(r(0)))S2

H (h), for any r # h ∈ R # H . �
In [13] it is proved that if R is p-Koszul CY and H is involutory, then R # H is CY if and only if

the homological determinant is trivial. Thus in Theorem 2.8, if the braided Hopf algebra R is p-Koszul
and the Hopf algebra H is involutory, then we have that the homological determinant is trivial implies
that the automorphism φ is inner. In the following Example 2.9, we see that the automorphism φ can
be expressed via the homological determinant of the H-action.

Example 2.9. Let

D
(
Γ, (gi)1�i�θ , (χi)1�i�θ , (aij)1�i, j�θ

)
be a datum of finite Cartan type (see [2] for terminology), where Γ is a finite abelian group and (aij)

is of type A1 × · · · × A1. Assume that V is a braided vector space with a basis {x1, . . . , xθ } whose
braiding is given by

c(xi ⊗ x j) = qijx j ⊗ xi, 1 � i, j � θ,

where qij = χ j(gi).
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Let R be the following algebra:

k〈x1, . . . , xθ | xi x j = qijx jxi, 1 � i < j � θ〉.

The algebra R is a braided Hopf algebra in the category Γ
Γ YD. Moreover, it is easy to see that R is a

Koszul algebra. Assume that K is the Koszul complex (cf. complex (6) in [17])

0 → R ⊗ R !∗
θ → ·· · → R ⊗ R !∗

j

d j−→ R ⊗ R !∗
j−1 → ·· · → R ⊗ R !∗

1 → R → 0.

Then we have that K → Rk → 0 is a projective resolution of k. Each R !∗
j is a left kΓ -module with

module structure defined by

[
g(β)

](
x∗

i1
∧ · · · ∧ x∗

i j

) = β
(

g−1(x∗
i1

∧ · · · ∧ x∗
i j

))
= β

(
g−1(x∗

i1

) ∧ · · · ∧ g−1(x∗
i j

))

=
( j∏

t=1

χit (g)

)
β
(
x∗

i1
∧ · · · ∧ x∗

i j

)
,

where β ∈ S !∗
j . Thus each R ⊗ R !∗

j is a left kΓ -module. It is not difficult to see that the differentials
in the Koszul complex are also left Γ -module homomorphisms. By [6, Prop. 5.0.7], we have that∫ l

R
∼= R !∗

θ . Therefore, hdet(g) = ∏θ
i=1 χi(g−1) for all g ∈ Γ .

Following from [18, Prop. 8.2 and Thm. 9.2], the algebra R has the rigid dualizing complex Rϕ[θ],
where ϕ is the algebra automorphism defined by ϕ(xi) = q1i · · ·q(i−1)iq

−1
i(i+1)

· · ·q−1
iθ xi , for 1 � i � θ .

By Corollary 1.8, the algebra R is a CY algebra if and only if for each 1 � i � θ , q1i · · ·q(i−1)i =
qi(i+1) · · ·qiθ . In this case,

hdet(g j) =
θ∏

i=1

χi
(

g−1
j

)

=
( j−1∏

i=1

χi
(

g−1
j

))
χ j

(
g−1

j

)( θ∏
k= j+1

χk
(

g−1
j

))

=
( j−1∏

i=1

qij

)
χ j

(
g−1

j

)( θ∏
k= j+1

q−1
jk

)

= χ j
(

g−1
j

)
.

The algebra automorphism φ given in Theorem 2.8 is defined by

φ(x j) = χ j
(

g−1
j

)
x j = hdet(g j)x j

for all 1 � j � θ and φ(g) = g for all g ∈ Γ . However, χ j(g j) �= 1 for all 1 � j � θ . The algebra R #kΓ

is not a CY algebra.
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Example 2.10. Let g be a finite dimensional Lie algebra, and U (g) the universal enveloping algebra
of g. Assume that there is a group homomorphism ν : Γ → AutLie(g), where AutLie(g) is the group of
Lie algebra automorphisms of g. Then it is known that U (g)#kΓ is a cocommutative Hopf algebra.

It is proved in [8, Cor. 3.6] that the smash product U (g)#kΓ is CY if and only if U (g) is CY and
Im(ν) ⊆ SL(g).

Let d be the dimension of g. By [8, Lemma 3.1], we have
∫ l

U (g)
∼= ∧d

g∗ as left Γ -modules, where

the left Γ -action on g∗ is defined by (g · α)(x) = α(g−1x) for all g ∈ Γ , α ∈ g∗ and x ∈ g, and Γ acts
on

∧d
g∗ diagonally. Let {x1, . . . , xd} be a basis of g. Then

g
(
x∗

1 ∧ · · · ∧ x∗
d

) = det
(
ν
(

g−1))(x∗
1 ∧ · · · ∧ x∗

d

)
,

for all g ∈ Γ . So hdet(g) = det(ν(g)). That is, if Im(ν) ⊆ SL(g), then the homological determinant
is trivial. The algebra U (g) is a braided Hopf algebra in the category Γ

Γ YD with trivial coaction. So
the automorphism φ defined in Theorem 2.8 is the identity. Therefore, if U (g) is a CY algebra and
Im(ν) ⊆ SL(g), by Theorem 2.8, the algebra U (g)#kΓ is a CY algebra. This coincides with the result
mentioned before.

3. Rigid dualizing complexes of braided Hopf algebras over finite group algebras

In this section, we further assume the characteristic of the base field k is 0. Let Γ be a finite
group and R a braided Hopf algebra in the category Γ

Γ YD of Yetter–Drinfeld modules over kΓ such
that R #Γ is a CY algebra. In this section, we answer the question when the algebra R is a CY algebra.

Let A be a Hopf algebra. By [15, Appendix, Lemma 11], A can be viewed as a subalgebra of Ae via
the algebra homomorphism ρ : A → Ae defined by

ρ(a) =
∑

a1 ⊗ S(a2). (9)

Then Ae is a right A-module via this embedding. We denote this right A-module by R(Ae). Actually,
R(Ae) is an Ae–A-bimodule. Similarly, Ae is also an A–Ae-bimodule, where the left A-module is
induced from the homomorphism ρ . Denote this bimodule by L(Ae).

From now on, let Γ be a finite group and R a braided Hopf algebra in the category Γ
Γ YD with

Γ -coaction δ. The biproduct A = R #kΓ is a usual Hopf algebra [16]. Let D be the subalgebra of Ae

generated by the elements of the form (r # g) ⊗ (s # g−1) with r, s ∈ R and g ∈ Γ .
Note that R is a Γ -graded module, i.e., R = ⊕

g∈Γ R g , where R g = {r ∈ R | δ(r) = g ⊗ r}. Therefore,
for any r ∈ R , it can be written as r = ∑

g∈Γ rg with rg ∈ R g . Then δ(r) = ∑
g∈Γ g ⊗ rg .

Lemma 3.1. The subalgebra D is a left (resp. right) A-submodule of L(Ae) (resp. R(Ae)).

Proof. For any r # h ∈ A, where h ∈ Γ , by Eqs. (1) and (2), we have

�(r # h) =
∑
g∈Γ

r1 # gh ⊗ (
r2)

g # h

and

SA(r # h) =
∑
g∈Γ

h−1 g−1SR(rg).

Any element in D can be written as a linear combination of elements of the form s # k ⊗ t # k−1 ∈ D
with s, t ∈ R and k ∈ Γ .
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(r # h) · (s # k ⊗ t # k−1) =
∑
g∈Γ

(
r1 # gh

)
(s # k) ⊗ (

t # k−1)SA
((

r2)
g # h

)

=
∑
g∈Γ

(
r1 # gh

)
(s # k) ⊗ (

t # k−1)h−1 g−1SR
((

r2)
g

)

=
∑
g∈Γ

(
r1(gh)(s) # ghk

) ⊗ (
t
(
k−1h−1 g−1)(SR

((
r2)

g

))
# k−1h−1 g−1)

∈ D .

This shows that D is a left A-submodule of L(Ae). Similarly, D is also a right A-submodule of
R(Ae). �

The following lemma is known, we include it for completeness.

Lemma 3.2.

(a) Both L(Ae) and R(Ae) are free as A-modules.
(b) R(Ae)⊗A k ∼= A as left Ae-modules and this isomorphism restricts to a left Re-isomorphism D ⊗A k ∼= R.
(c) If ξ : A → k is an algebra homomorphism, then there is an isomorphism kξ ⊗A L(Ae) ∼= A[ξ ]S2

A
of right

Ae-modules and the isomorphism restricts to a right Re-isomorphism kξ ⊗A D ∼= R([ξ ]S2
A )|R

.

Proof. (a) was proved in [5, Lemma 2.2]. The module L(Ae) defined in the same paper is isomorphic
to R(Ae) as right A-modules.

(b) This follows from [15, Appendix].
(c) It was proved in [5, Lemma 4.5] that kξ ⊗A L(Ae) ∼= A[ξ ]S2

A
as right Ae-modules. Here we give

another proof. We construct the isomorphism explicitly. Define a homomorphism Φ : kξ ⊗A L(Ae) →
A[ξ ]S2

A
by Φ(1 ⊗ a ⊗ b) = ξ(a1)bS2

A(a2) and a homomorphism Ψ : A[ξ ]S2
A

→ kξ ⊗A L(Ae) by Ψ (a) =
1 ⊗ 1 ⊗ a. Note that [ξ ]S2 = S2[ξ ] holds by Lemma 2.5 in [5]. For any x,a,b ∈ A, we have

Φ
(
1 ⊗ x1a ⊗ bS(x2)

) = ξ(x1)ξ(a1)bS(x3)S2(x2)S2(a2)

= ξ(x1)ξ(a1)bS
(
ε(x2)

)
S2(a2)

= ξ(x)ξ(a1)bS2(a2)

= ξ(x)Φ(1 ⊗ a ⊗ b).

This shows that Φ is well defined. Similar calculations show that Φ and Ψ are right Ae-module
homomorphisms and they are inverse to each other.

It is straightforward to check that the isomorphism kξ ⊗A L(Ae) ∼= A[ξ ]S2
A

restricts to the isomor-

phism kξ ⊗A D ∼= R([ξ ]S2
A )|R

. �
Lemma 3.3. HomRe (D, Re) ∼= D as A–Re-bimodules.

Proof. The algebra D is an A–Re-bimodule. Note that the A-module structure is induced from the
homomorphism ρ defined in (9). On the other hand, the A–Re-bimodule structure on HomRe (D, Re)

is induced from the right A-module structure on D and the right Re-module structure on Re . We
have r # g = (1 # g)(g−1(r)# 1) for any r # g ∈ R #kΓ . Therefore, an element in D can be expressed
of the form

∑
g∈Γ (1 # g−1)(rg # 1)⊗ sg # g with rg , sg ∈ R . For simplicity, we write gr for the element

(1 # g)(r # 1) with r ∈ R and g ∈ Γ . Let Ψ : D → HomRe (D, Re) be a homomorphism defined by
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[
Ψ

( ∑
g∈Γ

g−1r g ⊗ (
sg # g

))](
h ⊗ h−1) = rh ⊗ sh,

for
∑

g∈Γ g−1rg ⊗ sg # g ∈ D,h ∈ Γ . Next define a homomorphism Φ : HomRe (D, Re) → D as follows:

Φ( f ) =
∑
g∈Γ

(
g−1 ⊗ g

)
f
(

g ⊗ g−1)

for f ∈ HomRe (D, Re). It is clear that Φ is a right Re-homomorphism. On the other hand, we have

Φ
(
(r # h) f

) =
∑
g∈Γ

(
g−1 ⊗ g

)(
(r # h) f

)(
g ⊗ g−1)

=
∑
g∈Γ

∑
k∈Γ

(
g−1 ⊗ g

)
f
(

g
(
r1 # k

)
h ⊗ SA

((
r2)

k # h
)

g−1)

=
∑
g∈Γ

∑
k∈Γ

(
g−1 ⊗ g

)
f
(

g
(
r1 # k

)
h ⊗ h−1k−1SR

((
r2)

k

)
g−1)

=
∑
g∈Γ

∑
k∈Γ

(
g−1 ⊗ g

)
f
(

g
(
r1) # gkh ⊗ h−1k−1 g−1 g

(
SR

((
r2)

k

)))
,

and

(r # h)Φ( f ) =
(∑

k∈Γ

r1 # kh ⊗ h−1k−1SR(r2k)

) ∑
g∈Γ

(
g−1 ⊗ g

)
f
(

g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ

(
r1 # khg−1 ⊗ gh−1k−1SR

((
r2)

k

))
f
(

g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ

(
khg−1(gh−1k−1)(r1) ⊗ (

gh−1k−1)SR
((

r2)
k

)
gh−1k−1) f

(
g ⊗ g−1)

=
∑
k∈Γ

∑
g∈Γ

(
khg−1 ⊗ gh−1k−1) f

((
gh−1k−1)(r1) # g ⊗ g−1(gh−1k−1)(SR

((
r2)

k

)))

=
∑
g∈Γ

∑
k∈Γ

(
g−1 ⊗ g

)
f
(

g
(
r1) # gkh ⊗ h−1k−1 g−1 g

(
SR

((
r2)

k

)))
.

So Φ is an A–Re-bimodule homomorphism. It is easy to check that Φ and Ψ are inverse to each
other. Thus Φ is an isomorphism. �
Lemma 3.4. Let Γ be a finite group and R a braided Hopf algebra in the category Γ

Γ YD. If A = R #kΓ is

AS-Gorenstein with
∫ l

A
∼= kξ , where ξ : A → k is an algebra homomorphism, then we have R–R-bimodule

isomorphisms

Exti
Re

(
R, Re) ∼=

{
0, i �= d;
R([ξ ]S2

A)|R
, i = d.
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Proof. We have the following isomorphisms,

Exti
Re

(
R, Re) ∼= Exti

Re

(
D ⊗A k, Re)

∼= Exti
A

(
Ak,HomRe

(
D, Re))

∼= Exti
A(Ak,D)

∼= Exti
A(Ak, A) ⊗A D

∼=
{

0, i �= d;
kξ ⊗A D ∼= R([ξ ]S2

A)|R
, i = d.

The first, the third and the last isomorphisms follow from Lemma 3.2, Lemma 3.3 and Lemma 3.2
respectively. The fourth isomorphism follows from the fact that D is left A-projective. This is because
Ae is free as a left A-module by Lemma 3.2 and Ae is a direct sum of finite copies of D . Indeed,
Ae ∼= ⊕

h∈Γ Dh , where Dh is the left A-submodule of Ae generated by elements of the form (r # gh)⊗
(s # g−1) with r, s ∈ R and g ∈ Γ . Moreover, for every h ∈ Γ , Dh is isomorphic to D as a left A-
module. �
Lemma 3.5. If the global dimension of A = R #kΓ is finite and R is Noetherian, then R is homologically
smooth.

Proof. By assumption, the algebra A is Noetherian, and Ak has a finite projective resolution

0 → Pd → Pd−1 → ·· · → P1 → P0 → k → 0,

such that each Pi , 0 � i � d, is a finitely generated projective A-module. By a similar argument to
the one in the proof of Lemma 3.4, we have that D is projective as a right A-module. Therefore, the
functor D ⊗A − is exact. Now we obtain an exact sequence:

0 → D ⊗A Pd → D ⊗A Pd−1 → ·· · → D ⊗A P1 → D ⊗A P0 → D ⊗A k → 0. (10)

D is projective as left Re-module and D ⊗A k ∼= R as left Re-modules (Lemma 3.2). So the complex
(10) is a projective R–R-bimodule resolution of R . Because each Pi is a finitely generated A-module
and Γ is a finite group, each D ⊗A Pi is a finitely generated left Re-module. Therefore, we conclude
that R is homologically smooth. �

The homological integral of the skew group algebra R #kΓ was discussed by He, Van Oystaeyen
and Zhang in [8]. Based on their work, we use the homological determinant of the group action to
describe the homological integral of R #kΓ .

Lemma 3.6. Let Γ be a finite group and R a braided Hopf algebra in the category Γ
Γ YD. If R is an AS-Gorenstein

algebra with injective dimension d and
∫ l

R
∼= kξR , where ξR : R → k is an algebra homomorphism, then the

algebra A = R #kΓ is AS-Gorenstein with injective dimension d as well, and
∫ l

A
∼= kξ , where ξ : A → k is the

algebra homomorphism defined by ξ(r # h) = ξR(r)hdet(h) for any r # h ∈ R #kΓ .
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Proof. By [8, Props. 1.1 and 1.3], we have that A = R #kΓ is AS-Gorenstein of injective dimension d,∫ l
R is a 1-dimensional left Γ -module, and as right A-modules:

l∫
A

∼=
( l∫

R

⊗kΓ

)Γ

,

where the right A-module structure on
∫ l

R ⊗kΓ is defined by

(e ⊗ g) · (r # h) = e
(

g(r)
) ⊗ gh,

for g ∈ kΓ , r # h ∈ R #kΓ and e ∈ ∫ l
R , and the left Γ -action on

∫ l
R ⊗kΓ is the diagonal one. Let e be

a basis of
∫ l

R . It is not difficult to check that the element
∑

g∈Γ g(e) ⊗ g is a basis of (
∫ l

R #kΓ )Γ . Let
η : kΓ → k be an algebra homomorphism such that h · e = η(h)e for all h ∈ Γ . For any r # h ∈ R #kΓ ,
we have

( ∑
g∈Γ

g(e)# g

)
(r # h) =

∑
g∈Γ

g(e)g(r) # gh

=
∑
g∈Γ

g(er)# gh

= ξR(r)
∑
g∈Γ

g(e)# gh

= ξR(r)η
(
h−1) ∑

g∈Γ

(gh)(e)# gh

= ξR(r)η
(
h−1) ∑

g∈Γ

g(e)# g

= ξR(r)hdet(h)
∑
g∈Γ

g(e)# g

= ξ(r # h)
∑
g∈Γ

g(e) # g.

It implies that
∫ l

A
∼= kξ . �

The following proposition shows that the AS-regularity of R #kΓ depends strongly on the AS-
regularity of R .

Proposition 3.7. Let Γ be a finite group and R a braided Hopf algebra in the category Γ
Γ YD. Then R is AS-

regular if and only if A = R #kΓ is AS-regular.

Proof. Assume that R is AS-regular. By Lemma 3.6, the algebra A is AS-Gorenstein. To show that A is
AS-regular, it suffices to show that the global dimension of A is finite. Since the global dimension of
R is finite, there is a finite projective resolution of k over R ,

0 → Pd → Pd−1 → ·· · → P1 → P0 → k → 0.
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Note that A is projective as a right R-module. Tensoring this resolution with A ⊗R −, we obtain an
exact sequence

0 → A ⊗R Pd → A ⊗R Pd−1 → ·· · → A ⊗R P1 → A ⊗R P0 → A ⊗R k → 0.

It is clear that each A ⊗R Pi is projective. This shows that the projective dimension of A ⊗R k is finite.
But Ak is a direct summand of A ⊗R k as an A-module [3, Lemma III.4.8]. So the projective dimension
of Ak is finite. Since A is a Hopf algebra, the global dimension of A is finite.

Conversely, if A is AS-regular, then R is AS-regular by Lemma 3.4, Lemma 3.5 and Remark 1.12. �
We are ready to give the rigid dualizing complex of an AS-Gorenstein braided Hopf algebra.

Theorem 3.8. Let Γ be a finite group and R a braided Hopf algebra in the category Γ
Γ YD. Assume that R is an

AS-Gorenstein algebra with injective dimension d. If
∫ l

R
∼= kξR , for some algebra homomorphism ξR : R → k,

then R has a rigid dualizing complex ϕ R[d], where ϕ is the algebra automorphism defined by

ϕ(r) =
∑
g∈Γ

ξR
(
r1)hdet(g)g−1(S2

R

((
r2)

g

))
,

for any r ∈ R.

Proof. Let A be R #kΓ . By Lemma 3.6, A is AS-Gorenstein with
∫ l

A
∼= kξ , where ξ : A → k is the

algebra homomorphism defined by

ξ(r # h) = ξR(r)hdet(h)

for any r # h ∈ R #kΓ . By Lemma 3.4, there are R–R-bimodule isomorphisms

Exti
Re

(
R, Re) ∼=

{
0, i �= d;
R([ξ ]S2

A)|R
, i = d.

For any r ∈ R ,

[ξ ]S2
A(r) =

∑
g∈Γ

ξ
(
r1 # g

)
S2

A

((
r2)

g

)

=
∑
g∈Γ

ξR
(
r1)hdet(g)S2

A

((
r2)

g

)

=
∑
g∈Γ

ξR
(
r1)hdet(g)g−1(S2

R

((
r2)

g

))
.

Now the theorem follows from Lemma 1.7. �
Remark 3.9. The algebra A = R #kΓ has a rigid dualizing complex [ξ ]S2

A
A[d] [5, Prop. 4.5]. Observe

that the algebra automorphism ϕ given in Theorem 3.8 is just the restriction of [ξ ]S2
A on R .

Now we can characterize the CY property of R in case R #kΓ is CY.
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Theorem 3.10. Let Γ be a finite group and R a Noetherian braided Hopf algebra in the category Γ
Γ YD. Define

an algebra automorphism ϕ of R by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg)

)
,

for any r ∈ R. If R #kΓ is a CY algebra, then R is CY if and only if the algebra automorphism ϕ is an inner
automorphism.

Proof. Assume that A = R #kΓ is a CY algebra of dimension d. By Proposition 1.11, A is AS-regular
of global dimension d and

∫ l
A

∼= k. It follows from Lemma 3.5 that R is homologically smooth.

Since
∫ l

A
∼= k, by Lemma 3.4 there are R–R-bimodule isomorphisms

Exti
Re

(
R, Re) ∼=

{
0, i �= d;
RS2

A |R
, i = d.

Following Remark 1.12, we obtain that R is AS-regular. Suppose
∫ l

R
∼= kξR for some algebra homomor-

phism ξR : R → k. Then by Lemma 3.6,
∫ l

A
∼= kξ , where ξ : A → k is defined by ξ(r # h) = ξR(r)hdet(h)

for any r # h ∈ R #kΓ . But
∫ l

A
∼= k. Therefore, ξR = εR and hdet = εH . It follows from Theorem 3.8 that

the rigid dualizing complex of R is isomorphic to ϕ R[d], where ϕ is defined by

ϕ(r) =
∑
g∈Γ

ξR
(
r1) hdet(g)g−1(S2

R

((
r2)

g

))

=
∑
g∈Γ

g−1(S2
R(rg)

)

for any r ∈ R . Now the theorem follows from Corollary 1.8. �
Corollary 3.11. Let Γ be a finite group and R a braided Hopf algebra in the category Γ

Γ YD. Assume that R is
an AS-regular algebra. Then the following two conditions are equivalent:

(a) Both R and R #kΓ are CY algebras.
(b) The following three conditions are satisfied:

(i)
∫ l

R
∼= k;

(ii) the homological determinant of the group action is trivial;
(iii) the algebra automorphism ϕ defined by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg)

)

for all r ∈ R is an inner automorphism.

Proof. (a) ⇒ (b) Since R is a CY algebra, by Proposition 1.11 we have
∫ l

R
∼= k. Because both R and

R #kΓ are CY, (ii) and (iii) are satisfied by Theorem 2.8 and Theorem 3.10.
(b) ⇒ (a) Since R is AS-regular, R #kΓ is AS-regular by Proposition 3.7. Thus R is homologically

smooth (Lemma 3.5). By Theorem 3.8, if the three conditions in (b) are satisfied, then the rigid du-
alizing complex of R is isomorphic to R[d], where d is the injective dimension of R . So R is a CY
algebra. That the algebra R #kΓ is a CY algebra follows from Theorem 2.8. �
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Example 3.12. Keep the notations from Example 2.10. Assume that Γ is a finite group and that g is a
finite dimensional Γ -module Lie algebra. Suppose there is a group homomorphism ν : Γ → AutLie(g).
In Example 2.10, we use Theorem 2.8 to obtain that if U (g) is a CY algebra and Im(ν) ⊆ SL(g) then
U (g)#kΓ is a CY algebra. Now by Theorem 3.10, if U (g)#kΓ is a CY algebra, then U (g) is a CY
algebra as well. This is because U (g) is a braided Hopf algebra in Γ

Γ YD with trivial coaction, the
algebra automorphism ϕ in Theorem 3.10 is the identity.

By [5, Prop. 6.3], we have that
∫ l

U (g)
= kξ , where ξ(x) = tr(ad(x)) for all x ∈ g. We calculate in

Example 2.10 that hdet(g) = det(ν(g)) for g ∈ Γ . Therefore, both U (g) and U (g)#kΓ are CY algebras
if and only if tr(ad(x)) = 0 for all x ∈ g and Im(ν) ⊆ SL(g). This coincides with Corollary 3.5 and
Lemma 4.1 in [8].

We refer to [2] for the definition of a datum of finite Cartan type and the definition of the algebras
U (D, λ). The algebras U (D, λ) were constructed to classify finite dimensional pointed Hopf algebras
whose group-like elements form an abelian group.

Let

D
(
Γ, (gi)1�i�θ , (χi)1�i�θ , (aij)1�i, j�θ

)
be a datum of finite Cartan type for a finite abelian group Γ and λ a family of linking parameters
for D. Let {α1, . . . ,αθ } be a set of simple roots of the root system corresponding to the Cartan matrix
(aij). Assume that w0 = si1 · · · sip is a reduced decomposition of the longest element in the Weyl
group as a product of simple reflections. Then the positive roots are as follows

β1 = αi1 , β2 = si1(αi2), . . . , βp = si1 · · · sip−1(αip ).

If βi = ∑θ
i=1 miαi , then we define χβi = χ

m1
1 · · ·χmθ

θ .
The following proposition characterizes the CY property of the algebra U (D, λ).

Proposition 3.13. (a) The algebra A = U (D, λ) is AS-regular of global dimension p and
∫ l

A = kξ , where ξ is
the algebra homomorphism defined by ξ(g) = (

∏p
i=1 χβi )(g), for all g ∈ Γ and ξ(xi) = 0 for all 1 � i � θ .

(b) The algebra A is CY if and only if
∏p

i=1 χβi = ε and S2
A is an inner automorphism.

Proof. (a) can be obtained by applying [2, Thm. 3.3] and a similar argument as in the proof of Theo-
rem 2.2 in [22]. (b) follows from [8, Thm. 2.3]. �

Let R be the algebra generated by x1, . . . , xθ subject to the relations

(adc xi)
1−aij (x j) = 0, 1 � i, j � θ, i �= j.

Then U (D,0) = R #kΓ , where U (D,0) is the associated graded algebra of U (D, λ) with respect to
its coradical filtration.

Proposition 3.14. The algebra R is CY if and only if
∏p

i=1,i �= jk
χβi (gk) = 1 for each 1 � k � θ .

Proof. By Lemma 3.5 and Theorem 3.8, we have that R is homologically smooth, and that it has a
rigid dualizing complex ϕ R[p], where ϕ is the restriction of [ξ ]S2

A on R . That is, ϕ is defined by
ϕ(xk) = ∏p

i=1,i �= jk
χβi (gk)(xk), 1 � k � θ , where each 1 � jk � p is the integer such that β jk = αk .

Therefore, R is CY if and only if
∏p

i=1,i �= jk
χβi (gk) = 1 for each 1 � k � θ . �

One may compare these results with Theorem 2.3, Theorem 3.9 and Lemma 4.1 in [22].



X. Yu, Y. Zhang / Journal of Algebra 358 (2012) 189–214 213
Table 1

y1 y2

χ1 −1 1
χ2 −1 −1

In case the algebra U (D,0) = R #kΓ is CY, the algebra automorphism ϕ defined in Theorem 3.10
is ϕ(xi) = χi(g−1

i )(xi), 1 � i � θ . However, χi(gi) �= 1 for all 1 � i � θ . We conclude that when R #kΓ

is CY, the algebra R is not a CY algebra.
Now we give two examples of CY pointed Hopf algebra with a finite group of group-like elements.

Example 3.15. Let A be U (D, λ) with the datum (D, λ) given by

• Γ = 〈y1, y2〉 ∼= Z2 ×Z2;
• The Cartan matrix is of type A2;
• gi = yi , 1 � i � 2;
• χi , 1 � i � 2, are given in Table 1.
• λ = 0.

The algebra A is a CY algebra of dimension 3. Let R be the algebra generated by x1 and x2 subject to
relations

x2
1x2 − x2x2

1 = 0 and x2
2x1 − x1x2

2 = 0.

Then A = R #kΓ . The rigid dualizing complex of R is ϕ R[3], where ϕ = − id.

Remark 3.16. From the proof of Proposition 5.8 in [22], we can see that if A = U (D, λ) is a CY algebra
such that (D, λ) is a generic datum, then the Cartan matrix in D cannot be of type A2.

Example 3.17. Let A be U (D, λ) with the datum (D, λ) given by

• Γ = 〈y1, y2〉 ∼= Zn ×Zn;
• The Cartan matrix is of type A1 × A1;
• gi = yi , i = 1,2;
• χ1(yi) = q, χ2(yi) = q−1, i = 1,2, where q ∈ k is an n-th root of unity;
• λ = 1.

The algebra A is a CY algebra of dimension 2.
Let R be the algebra k〈x1, x2 | x1x2 = q−1x2x1〉. Then Gr A = U (D,0) = R #kΓ , where Gr A is

the associated graded algebra of A with respect to the coradical filtration of A. The rigid dualizing
complex of R is ϕ R[3], where ϕ is defined by ϕ(x1) = q−1x1 and ϕ(x2) = qx2.
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