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1. Introduction

The cotorsion pairs were first introduced by Salce in [17], and it has been deeply studied in the
representation theory during these years, especially in tilting theory and Cohen-Macaulay modules
[1] (see [7] for more recent examples). Recently, the cotorsion pair is also studied in triangulated cat-
egories [10], in particular, Nakaoka introduced the notion of hearts of cotorsion pairs and showed that
the hearts are abelian categories [14]. This is a generalization of the hearts of t-structure in triangu-
lated categories [3] and the quotient of triangulated categories by cluster tilting subcategories [13].
Moreover, he generalized these results to a more general setting called twin cotorsion pair [15].

The aim of this paper is to give similar results for cotorsion pairs on Quillen’s exact categories,
which plays an important role in representation theory [11]. We consider a cotorsion pair in an exact
category (see for example [12, A.1]), which is a pair (4,V) of subcategories of an exact category
B satisfying Extg(u, V) =0 (ie. Extlg(U, V)=0,VU €U and VV € V) and any B € B admits two
short exact sequences Vg — Up — B and B — VB — UB where Vg, VB €V and Up, UB e U (see
Definition 2.3 for more details). Let

BT :={BeB|UpeV}, B :={BeB|VEBecul.

We define the heart of (U, V) as the quotient category (see Definition 2.8 for more details)

H:=(BtnB7)/UNV).

An important class of exact categories is given by Frobenius categories, which gives most of important
triangulated categories appearing in representation theory. Now we state our first main result, which
is an analogue of [14, Theorem 6.4]. We will prove it in Section 4.

Theorem. Let (U4, V) be a cotorsion pair on an exact category I3 with enough projectives and injectives. Then
H is abelian.

Moreover, following Nakaoka, we consider pairs of cotorsion pairs (S,7) and (U4, V) in B such
that S C U, we also call such a pair a twin cotorsion pair (see Definition 2.5 for more details). The
notion of hearts is generalized to such pairs (see Definition 2.7 for more details), and our second
main result is the following, which is an analogue of [15, Theorem 5.4].

Theorem. Let (S, 7), (U, V) be a twin cotorsion pair on B. Then H is semi-abelian.

We will first prove H is preabelian in Section 3 and then show the theorem above in Section 5.

The notion of semi-abelian category (see Definition 5.1) was introduced by Rump [16], as a special
class of preabelian categories. An especially nice class of semi-abelian categories is called integral (see
Definition 6.1, and see [16, §2| for examples). Our third main theorem gives sufficient conditions for
hearts to be integral. We will show it in Section 6.

Theorem. Let (S, T), (U, V) be a twin cotorsion pair on BB satisfying
UCS*T, PCW or TCUx*V, ZCW.
Then H is integral.

Another nice class of semi-abelian categories is almost abelian categories. For example, any torsion
class associated with a tilting module is almost abelian [5]. Our fourth main theorem gives sufficient
conditions for hearts to be almost abelian. We will show it in Section 7.
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Theorem. Let (S, T), (U, V) be a twin cotorsion pair on B satisfying

UCT or TCU.

Then H is integral and almost abelian.

Finally, we consider a special twin cotorsion pair (S, 7), (7, V), note that this is an analog of TTF
theory and recollement. Then we have the following theorem which gives a more explicit description
of the heart and can be regarded as an analog of [4, Theorem 5.7]. We will prove it in Section 9.

Theorem. Let (S, T), (U, V) be a twin cotorsion pair on I3 such that T = U. Let R denote the class of regular
morphisms in B/T and (13/7T ) denote the localization of H = I3/T at R, then

(B/T)r ~mod(£2S/P)

where 28 consists of objects §2S such that there exists a short exact sequence

225—P—=S (PeP, Ses).

In Section 2, we collect basic material on twin cotorsion pairs on 3. In Sections 3-7 and 9, we
prove our main results. In Section 8, we consider the cases when the heart of a twin cotorsion pair
has enough projectives/injectives. In the last section we study some examples of twin cotorsion pairs.

2. Preliminaries

First we briefly review the important properties of exact categories. For more details, we refer
to [2]. Let A be an additive category, we call a pair of morphisms (i, d) a weak short exact sequence if
i is the kernel of d and d is the cokernel of i. Let £ be a class of weak short exact sequences of A,
stable under isomorphisms, direct sums and direct summands. If a weak short exact sequence (i, d)
is in £, we call it a short exact sequence and denote it by

X>;—Y‘»-Z_

We call i an inflation and d a deflation. The pair (A, £) (or simply .A) is said to be an exact category if
it satisfies the following properties:

(a) Identity morphisms are inflations and deflations.
(b) The composition of two inflations (resp. deflations) is an inflation (resp. deflation).

i d
(c) If XY % 7 is a short exact sequence, for any morphisms f:Z' — Z and
g:X — X/, there are commutative diagrams

y %z X— " sy

nEn

Y — 7 XY
d i’

/

where d’ is a deflation and i’ is an inflation, the left square being a pull-back and the right being
a push-out.
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We introduce the following properties of exact category, the proofs of which can be find in [2, §2]:

Proposition 2.1. Consider a commutative square

A>;-B

I

A>—— B’

in which i and i’ are inflations. The following conditions are equivalent:

(a) The square is a push-out.
()
_f (f/ il ) .
b) The sequence A= B@® A’ ——= B’ is short exact.

¢) The square is both a push-out and a pull-back.
d) The square is a part of a commutative diagram

!

(
(
(

AQB*»-C

|l

A>—> B — > (C
with short exact rows.

Proposition 2.2.

i d g f
Q) If X—>Y —>>Z and N>——= M ——> Y are two short exact sequences, then there is
a commutative diagram of short exact sequences

N

I

> M

|

where the lower-left square is both a push-out and a pull-back.

X< QO <<=

|

—— 7
f
— 7
d

i

i d g f
(b) If X=—=Y —== Z and Y>——= K ——== L are two short exact sequences, then there is a
commutative diagram of short exact sequences
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X>;—Y—d»-z

|

L
A

where the upper-right square is both a push-out and a pull-back.

—

Let A be an exact category, an object P is called projective in A if for any deflation f:X — Y
and any morphism g:P — Y, there exists a morphism h:P — X such that g = fh. A is said to
have enough projectives if for any object X € A, there is an object P which is projective in .4 and a
deflation p: P — X. Injective objects and having enough injectives are defined dually.

Throughout this paper, let B be a Krull-Schmidt exact category with enough projectives and injec-
tives. Let P (resp. Z) be the full subcategory of projectives (resp. injectives) of B.

Definition 2.3. Let I/ and V be full additive subcategories of B which are closed under direct sum-
mands. We call (i, V) a cotorsion pair if it satisfies the following conditions:

(a) Ext U, V) =0.
(b) For any object B € BB, there exits two short exact sequences

Vg—Ug =B, B—VE_UB
satisfying Ug, UB ef and V, VE e V.
By definition of a cotorsion pair, we can immediately conclude:
Lemma 2.4. Let (U4, V) be a cotorsion pair of I3, then
(a) B belongs to U if and only ifExt}g(B, V)=0.
(b) B belongs to V if and only ifExt}g(u, B) =0.
(

)
(c) U and V are closed under extension.
d PCUandZ C V.

Definition 2.5. A pair of cotorsion pairs (S, 7), (4, V) on B is called a twin cotorsion pair if it satisfies:

Scu.
By definition and Lemma 2.4 this condition is equivalent to Ext;g (§,V)=0,and alsoto VC T.
Remark 2.6.
(a) We also regard a cotorsion pair (U4,)) as a degenerated case of a twin cotorsion pair (U, V),

U, V).

(b) If (S,7), U,V) is a twin cotorsion pair on 3, then (V°P,U/°P), (T°P,SP) is a twin cotorsion
pair on B°P,
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Definition 2.7. For any twin cotorsion pair (S,7), 4, V), put

W:=TNU.

(a) Bt is defined to be the full subcategory of B, consisting of objects B which admits a short exact
sequence

Vg— U —»B

where Ug € W and Vg € V.
(b) B~ is defined to be the full subcategory of 3, consisting of objects B which admits a short exact
sequence

B—TB - 5B
where T2 €W and SB € S.
By this definition we get SCU/ C B~ and VC T C B™.

Definition 2.8. Let (S,7), (U,)) be a twin cotorsion pair of 13, we denote the quotient of 5 by W
as B:= B/W. For any morphism f € Homg(X, Y), we denote its image in Homp (X, Y) by f. And for
any subcategory C of B, we denote by C the subcategory of B consisting of the same objects as C.
Put

H:=B"NnB".
Since H 2 W, we have an additive full quotient subcategory
H:=H/W

which we call the heart of twin cotorsion pair (S, 7), (U, V). The heart of a cotorsion pair (U4, V) is
defined to be the heart of twin cotorsion pair U4, V), U, V).

We prove some useful lemmas for a twin cotorsion pair (S, 7), (4, V) in the following:
Lemma 2.9. Let (S, T), (U, V) be a twin cotorsion pair on I3, then
(a) B~ is closed under direct summands. Moreover, if X € B~ admits a short exact sequence
X—W—=U

where W € W and U € U, then any direct summand Xy of X admits a short exact sequence

X1 — WY

whereY e U.
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(b) B is closed under direct summands. Moreover, if X € BT admits a short exact sequence
V—W =X
where W € W and V €V, then any direct summand X, of X admits a short exact sequence
Z—W = Xy
where Z € V.

Proof. We only show (a), (b) is by dual.
Suppose X; @ X, admits a short exact sequence

(X1 X2)

X1 @ X2 w )

where U e and W € W. Then x; : X1 — W is also an inflation by the properties of exact category.
Let x; admit a short exact sequence

X
X1>;-W‘»-Y,

For any morphism f:X; — Vo where Vo € V, consider a morphism (f0):X; & X2 — Vp. Since
Extg(U, Vo) =0, (x1 x2) is a left V-approximation of W, there exists a morphism g: W — Vg such
that (f0) = (&x1 gx2).

X1 w Y
1
(X1 X2)
X1 X2 U
Vo < : g

Hence Homp(x1, Vo) : Homg (W, Vo) — Hompg (X1, Vo) is surjective. By the following exact sequence

Hi Vi
Homgs (W, Vo) C"EX YO Homp (X, vo)—°>1-:xt}3(y, Vo) — Ext(W, Vo) =0

we have Ext}(Y, Vo) =0, which implies Y et. O
Lemma 2.10.

f g
(a) If A== B ——>> U isashort exact sequence in B with U € U, then A € B~ implies B € B~.

f g
(b) If A>—— B ——= S isashort exact sequence in Bwith S € S, then B € B~ implies A€ B™.
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Proof. (b) Since B € 3™, by definition, there exists a short exact sequence

whB

B wB SB

Take a push-out of g and w®, by Proposition 2.2, we get a commutative diagram of short exact
sequences

Al op s
A Wk X
sB sB

We thus get X € S since S is closed under extension. This gives A € 5.
(a) Since A € B, it admits a short exact sequence

wA

A wA sA

where WA € W and $4 € S. Since Ext}S(S, T)=0, wh is a left T -approximation of A. Thus there
exists a commutative diagram of two short exact sequences

A wAa sA

I

B TB SB
tB

It suffices to show T8 e /.
Apply Ext}g(—, V) to the following commutative diagram

wA — > T8
since Ext}i= (U,V) =0, we obtain the following commutative diagram

Extg(TB, V) —— Exth (WA, 1) =0

l Extl(t8.V) J/
A

0=Ext}(U,V) — Extg(B,V) ——— Extj(A, V)
Ext(f.V)



Y. Liu / Journal of Algebra 394 (2013) 245-284
It follows that Ext};(ts, V) =0. Then from the following exact sequence
0= Exth (5. V) — Extl(1%.v) "B bl 8, v)
we get that Extj;(T%, V) =0, which implies that T® € /. Thus T® e W and Be B~. O
Dually, the following holds.

Lemma 2.11.

(@) If T=— A ——= B s ashort exact sequence in Bwith T € T, then B € B implies A € BT
(b) If V>——= A ——>> B isashort exact sequence in Bwith V €V, then A € BT implies B € B+

Now we give a proposition which is similar with [1, Proposition 1.10] and useful in our article

Proposition 2.12. Let T be a subcategory of I3 satisfying

(@) PcT.
(b) T is contravariantly finite.
(c) T is closed under extension.

Then we get a cotorsion pair (T, V) where

V= {X e B|Exty(T. X) =0}.

Proof. For any object B € I3, it admits a short exact sequence

B> — X

where I € Z. By (a) and (b), we can take two short exact sequences

t t
VxHTx—X»-X VBHTB—B»-B

where tyx (resp. tp) is a minimal right 7 -approximation of X (resp. B). Since 7T is closed under

extension, by Wakamatsu’s lemma, we obtain Vx € V (resp. Vg € V). Take a pull-back of f and tx,
we get the following commutative diagram

—~
>

X<
=<

253
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Since I,V €V and V is extension closed, we get Y € V. Thus B admits two short exact sequence

Vg — Tpg — B, B—Y —»Tx
satisfying Vg,Y €V and Tg, Tx € 7. Hence by definition (7, V) is a cotorsion pair. O
3. A is preabelian

In this section, we fix a twin cotorsion pair (S,7), U, V), we will show that the heart H of a
twin cotorsion pair is preabelian.

Definition 3.1. For any B € B3, define B™ and b*:B — B as follows:
Take two short exact sequences:

Vg — Up — B, Ug— TY - sY

where Ug e, Vg €V, TV € T and SV € S. By Proposition 2.2, we get the following commutative

diagram
Vp U B
Vg TV ' Bt 1)
SU —=sU

where the upper-right square is both a push-out and a pull-back.
We can easily get the following lemma.
Lemma 3.2. By Definition 3.1, B* € B*. Moreover, if B € B~, then BT ¢ H.

Proof. Since I/ is closed under extension, we get TV €/ N7 = W. Hence by definition B € B+. If
B e B~, by Lemma 2.10, B also lies in B~. Thus Bt e H. O

We give an important property of b™ in the following proposition.

Proposition 3.3. For any B € B and Y € B, Homg(b™, Y) :Homg(B™, Y) — Hompg(B, Y) is surjective
and Homg (b, Y) :Homg(B™, Y) — Hompg(B, Y) is bijective.

Proof. Let y € Hompg(B, Y) be any morphism. By definition, there exists a short exact sequence

Wy

Vy Wy Y.

Since Ext}S(UB, Vy) =0, wy is a right U{-approximation of Y. Thus any f € Homg(Ug,Y) factors
through Wy.
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Vy Wy Y

Ug TV su

which implies that Homp(u, Y) : Homg(TV, Y) — Homg(Ug, Y) is epimorphic. Hence when we apply
Hompg(—, Y) to the diagram (1), we obtain the following exact sequence

Hompg(bt,Y)

Homp(B*,Y) Homgp(B,Y) — Exty(S,Y) — ExtL(BT,Y)

\% \L
Hompg(u,Y) 0
Homz(TV, V) ———= """ . Homp(Ug, Y) —— Extp(SY,Y) —— Exti(TU,Y)

which implies that Homg(b™, Y) is an epimorphism. In particular, Homg(b", Y) is an epimorphism.
It remains to show that Homé(ﬂ, Y) is monomorphic. Suppose q € Homp(B*,Y) satisfies ﬂ =0,
it follows that gb™ factors through W. Since wy is a right Z/-approximation, there exists a morphism

a:B — Wy such that wya =gb™. Take a push-out of b* and a, we get the following commutative
diagram of short exact sequences

b+

B Bt su
al PO lc’
Wy>ﬁ- Q —— su

There exists a morphism d: Q — Y such that dc = wy and dc¢’ = q by the definition of push-out. But

Q €U by Lemma 2.4, and wy is a right I/-approximation, we have that d factors through Wy. Thus
q =dc’ also factors through Wy, and q= 0. O

We give an equivalent condition for a special case when B* =0 in B.

Lemma 3.4. For any B € B, the following are equivalent.



256 Y. Liu / Journal of Algebra 394 (2013) 245-284

Proof. Consider the diagram (1) in Definition 3.1. We first prove that (a) implies (b).

Suppose (b) holds. Since B € I, we get BT e . Thus Ext}g(Bﬂ Vp) =0, and then t splits. Hence
Bt is a direct summand of TV € W, which implies that B e W.

Obviously (a) implies (c), now it suffices to show that (c) implies (b).

Since b factors through W, and t is a right /-approximation of B*, we get that b™ factors
through t. Hence by the definition of pull-back, the first row of diagram (1) splits, which implies that
Beld. O

Now we give a dual construction.

Definition 3.5. For any object B € 3, we define b~ : B~ — B as follows Take the following two short
exact sequences

B TB — SB, Vi —Ur —» T8

where Ur e, Vr €V, TB ¢ T and SB € S. By Proposition 2.2, we get the following commutative
diagram:

V:V

By duality, we get:

Proposition 3.6. For any B € B, B~ € B~ and B € B* implies B~ € H. For any X € B~, Homg(X,b™):
Hompg (X, B~) — Homp(X, B) is surjective and Homg (X, b~) : Hompg (X, B~) — Homp(X, B) is bijective.

Definition 3.7. For any morphism f:A — B with A € B~, define Cy and cf:B — Cjy as follows:
By definition, there exists a short exact sequence

wh

A wA sA

Take a push-out of f and w#, we get the following commutative diagram of short exact sequences

A wA sA
fJ/ PO l (2)
B Cr sA

S
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By Lemma 2.10, B € B~ implies Cy € B~.
Dually, we have the following:

Definition 3.8. For any morphism f:A — B in B with B € BT, define K and k;:K; — A as follows:
By definition, there exists a short exact sequence

wp

Vg Wp B.

Take a pull-back of f and wpg, we get the following commutative diagram of short exact sequences

kg
Vs Ky A
l PB lf (3)
Vg Wp e B

By Lemma 2.11, A € BT implies Ky € B*.
The following lemma gives an important property of cy:

Lemma 3.9. Let f:A — B be any morphism in B with A € B~ take the notation of Definition 3.7, then
cf: B — Cj satisfies the following properties: For any C € B and any morphism g € Homp (B, C) satisfying
&f =0, there exists a morphism ¢: Cy — C such that ccy = g.

Moreover if C € B*, then c is unique in B. The dual statement also holds for k; in Definition 3.8.

Proof. Since gf =0, gf factors through W. As Ext};(SA, W4) =0, w? is a left W-approximation

of A. Hence there exists b: WA — C such that gf = bw?. Then by the definition of push-out, we get
the following commutative diagram

Now assume that C € Bt and there exists ¢’: Cy — C such that c’cy = g. Since (¢’ — c)cy =0, there
exists a morphism d: S4 — C such that ¢/ — c =ds. As C admits a short exact sequence
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wc

Ve Wc C

and wc is a right I{-approximation of C, we obtain that there exists a morphism e:S* — W¢ such
that wce =d. Hence ¢’ — ¢ factors through W¢, and c=¢’. O

Theorem 3.10. For any twin cotorsion pair (S, T), (U, V), its heart H is preabelian.

Proof. We only show the construction of the cokernel. For any A, B € H and any morphism f:A — B,
by Definition 3.7, since A, B € B, it follows c;f =0 and Cy € B~. By Proposition 3.3, there exists
cfT:Cp— CsT where Cy+ e # by Lemma 3.2. We claim that cy*cp:B — Cyt is the cokernel of f.

Let Q be any object in H, and let r: B — Q be any morphism satisfying rf =0, then by Lemma 3.9
and Proposition 3.3, there exists a commutative diagram

The uniqueness of b follows from Lemma 3.9 and Proposition 3.3. O

Corollary 3.11. Let f : A — B be a morphism in ‘H, the followings are equivalent:

(a) f is epimorphicin H.
(b) Crtew.
(c) Crel.

Proof. The equivalence of (b) and (c) is given by Lemma 3.4. By Theorem 3.10, cf*cy is the cokernel
of f in H. The equivalence of (a) and (b) follows immediately by this argument. O

4. Abelianess of the hearts of cotorsion pairs

In this section we fix a cotorsion pair I/, V). We will prove that the heart =BT NB~/UNYV of
a cotorsion pair is abelian.

Lemma 4.1. Let A, B € H, and let

C>$—A—»—B

be a short exact sequence in B. If f is epimorphic in H, then C belongs to B~.

Proof. As f is epimorphic in H, we get Cy € U by Corollary 3.11. By Definition 3.7, we get following
commutative diagram
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C C
gI h
wA
A w4 uA (4)
e
A
B G Cr u

The middle column shows that Ce B~. O
We need the following lemma to prove our theorem.

Lemma 4.2.

(a) Let f : A — B be amorphismin Bwith B € BY, then there exists a deflation = (f -wp):A® Wp — B
in B such that o = f.

(b) Let f: A— B be amorphismin Bwith A € 3~, then there exists an inflation « = (_&A) :A— Bowh
in B such thato’ = f.

Proof. We only show the first one, the second is dual.
As B € B*, it admits a short exact sequence

Wg

Vg Wpg B

Take a pull-back of f and wpg, we get a commutative diagram

Vg C A
Vg Wpg B
wpg

By dual of Proposition 2.1, we get a short exact sequence

a=(f —wg)
C>——ApWp ——>

and consequently « is a deflation and ¢ = f. O

Theorem 4.3. For any cotorsion pair (U, V) on B, its heart H is an abelian category.

Proof. Since H is preabelian, it remains to show the following:

(a) If f is epimorphic in A, then f is a cokernel of some morphism in H.
(b) If f is monomorphic in A, then f is a kernel of some morphism in H.

We only show (a), since (b) is dual.
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For any morphism f:A — B which is epimorphic in #, by Lemma 4.2, it is enough to consider
the case that f is a deflation.
Let f admit a short exact sequence:

g
C>~—A — B

By Lemma 4.1, we have C € B~. By Proposition 3.3, there exists
ct:c—ct

where C* lies in H by Lemma 3.2. As A € BY, there exists a:C™ — A such that act = g.

Since fact = fg =0, we have fa=0 by Proposition 3.3. We claim that f is the cokernel of a.

Let Q be any object in 7 and r: A — Q be any morphism. By Proposition 3.3, rg = 0 if and only
ifra=0.

So it is enough to show that any r satisfying rg = 0 factors through f. If rg =0, rg factors
through W. Consider the second column of diagram (4), since h is a left V-approximation of C,
there exists a morphism c: WA — Q such that rg = ch. Since h = wfg, we get that (r — cw?)g =0.
Thus r — cw” factors through f, which implies that r factors through f. O

5. H is semi-abelian

In the following sections, we fix a twin cotorsion pair (S, 7), U, V).

Definition 5.1. A preabelian category A is called left semi-abelian if in any pull-back diagram
A B

e
C

[ D
)
in A, o is an epimorphism whenever § is a cokernel. Right semi-abelian is defined dually. A is called
semi-abelian if it is both left and right semi-abelian. In this section we will prove that the heart H of
a twin cotorsion pair is semi-abelian.

o
- -

Lemma 5.2. If morphism 8 € Homy (B, C) is a cokernel of a morphism f € Homy (A, B), then B admits a
short exact sequence

B—C —S

where C' e H,C~C'inHand S € S.
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Proof. Let B be the cokernel of f:A — B. By Theorem 3.10, the cokernel of f is given by cf+cf.

Therefore Cﬁ ~ C in H. Consider diagram (4) and the diagram which induces (Cf)*™ by Defini-
tion 3.1:

Vo0oe——»U ——C

Cf+

Vo > T — > Cf+

]

s s

By Proposition 2.2, we obtain the following commutative diagram of short exact sequences

s

B C sA
cft I

B Cst Q
S ——9

From the third column we get Q € S. Hence we get the required short exact sequence. 0O

f g
Proposition 5.3. Let A= B ——= C be a short exact sequence in B with f in ‘H. If g factors
through U, then f is epimorphic in H.

Proof. By Corollary 3.11, it suffices to show that Cy e U.
By definition of c¢f: B — Cy, there is a commutative diagram of short exact sequences

A

wA sA

w

PO

SA

N~ =<—<>
(@)
-

Since Extls(W, V) =0, we get the following commutative diagram of exact sequence
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Exty(C,V) ———— Ext;(Cf, V) ———— Exth,(WA, V) =0

lExtIB(Cf,V) l

EXt};(C,V) - Ext}g(B,V) - Ext;g(A,V)
1 1
ExtB(g,V) ExtB(f,V)

Then Extj(cy, V) factors through Extj; (g, V). We have Extj(g, V) = 0 since g factors through I/, thus
we get Ext}g(c £, V) =0. Then from the following exact sequence

ExtL (cf,V)=0
0=Exts(S4, V) > Exts(C;, V) "5 Exth(B,V)

we obtain that Ext};(Cy, V) =0, which implies C; e/, O

Lemma 5.4. Suppose X € B~ admits a short exact sequence

where B € H and U € U. Then the unique morphism b € Homﬂ(X+, B) given by Proposition 3.3 which
satisfies bxt = x is epimorphic.

Proof. By Definition 3.1, there exists a short exact sequence

xt

X X+ S

where S € S. By Proposition 3.3, there exits b: XT — B such that bx™ = x. Since X € B~, we obtain
XT e H by Lemma 3.2. Hence X admits a short exact sequence

X+>$- W —==§

where W € W and S’ € S. Take a push-out of a and b, we get the following commutative diagram

Xt>—— s W — == §/

|

B C s’

which induces a short exact sequence

(%)

Xt > BpW —==C

by Proposition 2.1. By Proposition 2.2, we obtain the following commutative diagram
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X X+

-
]

i
|

Take a push-out of x and ¢

> W ——

X w

B>—— C
u u

from the second column we obtain that C' € i/ and we get the following short exact sequence

(%)

X>—BpW — ('

Q
Q

—

by Proposition 2.1. Thus we get the following commutative diagram

/\

B W

C/

Hence by Proposition 5.3, b is epimorphic. O

We introduce the following lemma which is an analogue of [15, Lemma 5.3].

Lemma 5.5. Let
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be a pull-back diagram in H. If there exists an object X € B~ and morphisms xg : X — B, xc : X — C which
satisfy the following conditions, then « is epimorphic in H.

(a) The following diagram is commutative.

XB
(b) There exists a short exact sequence X>——> B ——> U withU e U.

Proof. Take x":X — X* as in Definition 3.1. Then by Proposition 3.3, there exist fg:X" — B
and fc:Xt — C such that fgx* =xg and fcx' =xc. By Lemma 54, fp is epimorphic in #. As
yXp = dxc, we get y fpx™ =68 fcx™, it follows by Proposition 3.3 that yfg_: 8 fc. By the definition of
pull-back, there existsa—morphism n:Xt — A in 4 which makes the fﬁowing diagram commute.

Since fg is epimorphic, we obtain that « is also epimorphic. O
Theorem 5.6. For any twin cotorsion pair (S, T), (U, V), its heart H is semi-abelian.

Proof. By duality, we only show H is left semi-abelian. Assume we are given a pull-back diagram
A B

o
C

[ D
)
in H where § is a cokernel. It suffices to show that o becomes epimorphic.
By Lemma 5.2, replacing D by an isomorphic one if necessary, we can assume that there exists an
inflation d : C »— D satisfying § = d, which admits a short exact sequence

o
- -

d
C>—D —= 8§

where S € S. As D € BT, by Lemma 4.2 we can also assume that there exists a deflation c:B — D
such that y = c. By Proposition 2.2, we get the following commutative diagram of short exact se-

quences
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it follows by Lemma 2.10 that X € B~. Hence by Lemma 5.5 « is epimorphic in H. O

6. The case where H becomes integral

Definition 6.1. A preabelian category A is called left integral if in any pull-back diagram
A B

s
C

=D
s
in A, o is an epimorphism whenever § is an epimorphic. Right integral is defined dually. A is called
integral if it is both left and right integral.

o
—_—

In this section we give a sufficient condition where the heart 74 becomes integral.
Let C be a subcategory of 3, denote by $2C (resp. £2~C) the subcategory of B consisting of objects
£2C (resp. £27C) such that there exists a short exact sequence

2C—Pc—»C(PeP,CeC) (resp.C—I°—» R CUIeZ Cel)).

By definition we get P C £2C and Z C 27 C. By Lemma 2.9 we get that for any cotorsion pair (4, V)
on B, 22U and 27V are closed under direct summands.

Let B, B, be two subcategories of B3, recall that B * 3, is subcategory of 53 consisting of objects
X such that there exists a short exact sequence

B1— X — B
where B € By and B; € B;.

Theorem 6.2. If a twin cotorsion pair (S, T), (U, V) satisfies

UCSS*T, PCW or TCUxV, Icw
then H becomes integral.

Proof. According to [16, Proposition 6], a semi-abelian category is left integral if and only if it is right
integral. By duality, it suffices to show that &/ C S 7, P C W implies that H is left integral. Assume
we are given a pull-back diagram



266 Y. Liu / Journal of Algebra 394 (2013) 245-284
A B
o]
C

=D
)
in 2 where § is an epimorphism. It is sufficient to show that « is epimorphic.
Let d:C — D and c:B — D be morphisms satisfying § =d and y = c. Since § is epimorphic, if we
take c4: D — Cq4 as in Definition 3.7

o
.,

C w¢€ s¢
D Cq s¢

then C4 € U by Corollary 3.11. By assumption &/ € S« T, C4 admits a short exact sequence

So to
So>——=Cq —==To

with Sg €S, Tg € 7. Since B € B~ admits a short exact sequence
B— w58 . s8B
and S8 admits a short exact sequence

p
RSB — = P . B

there exists a commutative diagram

p
QS8 Py — s> SB
. l l (5)
B~ wh sB

As Extg(SB, To) =0, p is a left T-approximation of $2S8. Therefore there exists a morphism
f:Pgs — To such that tocgcsp = fp. As Pgs € P, there is a morphism h: Pgs — C4 such that f = toh.
Since to(cqcsg — hp) = 0, there exists a morphism g:£2Sp — So such that c4csg — hp = spg. Then we
get the following diagram
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p
sk Py — > SB
SB -
EN

B S h

C S0

l o z !

D —— (4

Take a push-out of p and g, we get the following commutative diagram

p
2sB Py — > SB
So Q sB

and a short exact sequence

(%)

88— " P ®So —= Q
by Proposition 2.1 where Q € S. As Q admits a short exact sequence

kq lo
22Q Py Q

we get the following commutative diagram of short exact sequences

kq lo
£2Q Pq Q

i

QSB~ o P @ So —= Q

(%)

Since cqcsg = hp + sog, we obtain the following commutative diagram of short exact sequences.

()
28 P ®Sog —= Q

|

D cdrsC

Cd

(6)
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Thus we get the following commutative diagram

kq lo
£2Q Pq Q
CSBqB l l"Q l
C
D . Cq . S

As P €W, we conclude that £2Q e B~. Since S admits a short exact sequence

kgc Isc

2S¢ Pgc s¢

where Pgc € P, hence we get the following commutative diagram of short exact sequence

k C 1 C
2565 pye — o €
i |

w¢ c c

C %% S
c
D o Cyq ; S
which induces the following diagram

kec lc
256" » poc — > SC
dqc \L l fgc

c
D o Cq . S

As Pq is projective, there exists a morphism t: Pq — Ps. such that [s.t =rnq.

nQ
Pg ——(Cy
t \Lr
Y
2s¢ Psc s¢
kSC lSC

Now it follows that Igctkq =rngokq = rcqcspqp = 0, thus there exists a morphism x:£2Q — £2Sc
such that kgcx =tkq.
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kQ
2Q —— Pq

X t
Y

2S¢ Pgc s¢

ks lsc

As rngct =lIgct =rng, there exists a morphism y:Pq — D such that ngct —nq = cqy. Therefore

cgdqcx =ngckscx =ngctkq = (cqy +nq)ko =ca(ykq +cspgp).

269

Then dqcx = ykq + csgqg, since ¢4 is monomorphic. Hence there exists a commutative diagram in B

SB

2Q ——

;]
B
Ml ic
C D
d

-

By Proposition 2.1, we get the following short exact sequences from (5) and (6):

(K (%)

Q20— > 2Sp® Py — = Ps, ® So 2sB— "2

Then by Proposition 2.2, we get the following commutative diagram of short exact sequences

qB

_kQ
Q> 2580 Pyg ——= Pss®So

(3)

2Q>——=B®Pgsp®Pg — M

o |

WB WB

B®Pg ——= W8

where 1 = spqp. From the third column we get that M € /. By Lemma 5.5, we obtain that o is

epimorphic. O

7. The case where H becomes almost abelian

Definition 7.1. A preabelian category A is called left almost abelian if in any pull-back diagram

o
-

A B
o]
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in A, o is a cokernel whenever § is a cokernel. Right almost abelian is defined dually. A is called
almost abelian if it is both left and right almost abelian.

In this section we give a sufficient condition when # becomes almost abelian.
We need the following proposition to show our result.

Proposition 7.2. (See [16, Proposition 2].) Let A —f> B2 Cbe morphisms in a right (resp. left) semi-abelian
category. If f and g are (co-)kernels, then gf is a (co-)kernel. If gf is a (co-)kernel, then f (resp. g) is a
(co-)kernel.

Using this proposition, we can prove the following lemma, which is an analogue of Lemma 5.5.

Lemma 7.3. Let

o

|

A B
s

C D
)

be a pull-back diagram in H. Let X € B~ and xp : X — B, Xc : X — C be morphisms which satisfy that xp is a
cokernel in the following commutative diagram

|

Then ifU{ C T, we obtain « is a cokernel in H.

Proof. Since U/ C T, we get H = B~. Take x*: X — X™T as in Definition 3.1. Then by Proposition 3.3,
there exist fg:X"T — B and fc: Xt — C such that fpxt =xp and fcx™ =xc. Since xp is a coker-
nel, by Proposition 7.2, fp is also a cokernel in H. As yxp = 8Xc, it follows by Proposition 3.3 that
y fg =8 fc. By the definition of pull-back, there exists a morphism 7 : X™ — A in 4 which makes the
following diagram commute.

Since fg is a cokernel, we obtain that « is also a cokernel by Proposition 7.2. O
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Theorem 74. Let (S, T), (U, V) be a twin cotorsion pair on B satisfying

UCT or TCU

then H is almost abelian.

Proof. By [16, Proposition 3], a semi-abelian category is left almost abelian if and only if it is right
almost abelian. By duality, it is enough to show that &/ C T implies # is left almost abelian. Assume
we are given a pull-back diagram

o
—_—

B

ly

- D
1)

A
d
c

in H where § is a cokernel. It suffices to show that & becomes a cokernel. Repeat the same argument
as in Theorem 5.6, we get the following diagram

Xp
X>—B ——= 8§

A \

C>—D — 8§

where X € B7, d =4 and ¢ = y. According to Lemma 7.3, it suffices to show that xp is a cokernel
in . By Definition 3.8 and Proposition 2.2, we get the following commutative diagram

Vg K

It follows that Kx, € B~ =H and ky,xg = 0. Now let r: X — Q be any morphism in A such that

rkyx, = 0, then rky, factors through W. Since Ext}3(8 ,T) =0, a is a left T-approximation of Ky,, thus
there exists a morphism b:Wpg — Q such that ab =rkg. By the definition of push-out, we get the
following commutative diagram
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kXB
Kyy — X

Since xp is epimorphic in H by Proposition 5.3, the above diagram implies that xp is the cokernel
of ky;. O

By Theorem 6.2, in the case of the above theorem, the heart A also becomes integral. Then by
[16, Theorem 2], H is equivalent to a torsionfree class of a hereditary torsion theory in an abelian
category induced by H. For more details, one can see [16, §4].

8. Existence of enough projectives/injectives

We call an object P € H (proper-)projective if for any epimorphism (resp. cokernel) o: X — Y
in H, there exists an exact sequence

omyy (P,

H )
Homy(P,X) —>  Homy(P,Y)—> 0.

A (proper-)injective object is defined dually.

H is said to have enough projectives if for any object X € H, there is a cokernel §: P — X such
that P is proper-projective. Having enough injectives is defined dually.

In this section we give sufficient conditions that the heart  of a twin cotorsion pair has enough
projectives and has enough injectives.

Lemma 8.1. If a twin cotorsion pair (S, T), (U, V) satisfies U C T, then we have 28 C H.

Proof. We first have P C U/ =W, then by definition 2S5 C B~. But we observe that ¢/ € 7 implies
Bt =B, hence RSCH. O

Proposition 8.2. Let (S, 7), (U, V) be a twin cotorsion pair satisfying U < T, then any object in 28 is
projective in H.

Proof. Let B and C be any objects in H and let p:2S — C be any morphism. Let g:B — C be
a morphism which is epimorphic in X, by Lemma 4.2 we can assume that it admits a short exact
sequence

f g

A—— B ——== C

Since B € A admits a short exact sequence B — W5 — SB, then according to Proposition 2.2, there
exists a commutative diagram
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g ¢
L
A wE . p

sB —— gB

By Lemma 2.10, we obtain D € B~ =%H. Since qg =0 and g is epimorphic in H, we have ¢ =0. By
definition §£2S admits a short exact sequence

25— 2 PS5 (PeP, ScS)

Since gp =0, gp factors through W. As Ext1B(S, T)=0, a is a left T-approximation of £2S. Thus
there exists a morphism s: P — D such that gp = sa. Since P is projective, there exists a morphism
t: P — W58 such that s =rt. Hence by the definition of pull-back, we get the following commutative
diagram

which implies that 2S5 is projective in H. O

Proposition 8.3. Let (S, T), (U, V) be a twin cotorsion pair satisfying U C T, then any object B € H admits
an epimorphism o : 2S — B in H.

Proof. Let B be any object in #, consider commutative diagram (5). By Proposition 2.1, the left square
is a push-out. Now it suffices to show sp is epimorphic in .

Let c: B — C be any morphism in # such that csg =0, then csp factors through W. Since p is
a left 7-approximation of £25, there exits a morphism d: Pgs — C such that csg =dp. Thus by the
definition of push-out we have a commutative diagram

p
QRSB — = P

|

B— > Wbk

which implies ¢ = 0. Hence sg is epimorphic in . O
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Moreover, we have

Proposition 84. Let (S, T), (U, V) be a twin cotorsion pair satisfying U C T, then an object B is projective
in H implies that B € 28.

Proof. Suppose B is projective in H, consider the commutative diagram (5). By Proposition 8.3, sg is
epimorphic in 7, thus B is a direct summand of 258 in #. Hence by Lemma 2.9 B lies in 2S. O

From the following proposition we can get that in the case ¢/ € 7 when the projectives in H is
enough.

Proposition 8.5. Let (S, T), (U, V) be a twin cotorsion pair satisfying U C T, then H has enough projectives
if and only if any indecomposable object B € H — U admits a short exact sequence

B S! — 52
where S1,52 € S.

Proof. We prove the “if” part first.

Since an object B € H isomorphic to an object B’ € H in # such that B’ does not have any direct
summand in I/, we can only consider the object B € H not having any direct summand in /. Thus by
assumption, B admits a short exact sequence

B S — 52

where S, 52 € S. As S% admits a short exact sequence

b
2s? P s?
T
B st 52

Then we get a short exact sequence

(%)

028%>— > B®Pg —— st
by Proposition 2.1. Since B @ P52 admits a short exact sequence

V>—U-—»B®Ps

where V € V and U € Y =WV, we obtain the following commutative diagram by Proposition 2.2
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1% 252

N (ES

VHU*»-B@PSZ

P

Sl S]

Thus Q € B~ =H and ca = 0. We claim that a is the cokernel of c in H.

If r: 25% — M is a morphism in 7{ such that rc factors through W, then there exists e: U — M
such that cr = ed, since d is a left 7 -approximation of Q. Hence by definition of push-out, we get
the following commutative diagram

Q%—QSZ

which implies that r factors through a. Since a is epimorphic in H by Proposition 8.3, we get that a
is the cokernel of c.

Now we assume that A has enough projectives.

By Proposition 8.4, all the projective objects in 7 lie in £2S. Let B be any indecomposable object
in H—U and B:2S — B be a cokernel in 7{. Then by Lemma 5.2, we get a short exact sequence

NRS>—> B ——==§

where B’ € H and B'~ B in H and S’ € S. Since 25 admits a short exact sequence

.QS>$— P ——== S

we take a push-out of f and p, then we get the following commutative diagram

RS>—> B ——= §

|
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From the second row we get Q' € S. Since B is indecomposable, it is a direct summand of B’. Hence
by Lemma 2.9, B admits a short exact sequence

B — Q/ — S//
where S €S. O
By duality, we have

Proposition 8.6. Let (S, T), (U, V) be a twin cotorsion pair satisfying T C U, then any object in H is injective
ifand only if it liesin 2~ V.

Proposition 8.7. Let (S, 7)), (U, V) be a twin cotorsion pair satisfying T C U, then any object B € H admits
a monomorphism 8:B — 27V in H where 2~V € 2~ V.

Proposition 8.8. Let (S,7T), (U, V) be a twin cotorsion pair satisfying T C U, then the heart has enough
injectives if and only if any object B € H — T admits a short exact sequence

Voy—Vi—B
where V1, Vo e V.

9. Localization on the heart of a special twin cotorsion pair

Let (S, 7), (U, V) be a twin cotorsion pair on B such that 7 =/, in this case we get Bt =B~ =83
and W =T, hence H = B/7T. According to Theorem 6.2, B/7 is integral. Moreover, By Proposition 8.2
(resp. Proposition 8.6), we obtain that any object in 25 (resp. £27V) is projective (resp. injective) in
B/T.

Let R be the class of regular morphisms in B/7, then by Theorem [16, p. 173], the localization
(B/T)r (if it exists) is abelian.

Till the end of this section we assume that B is skeletally small and k-linear over a field k and has
a twin cotorsion pair (S, 7), (T,V). We denote that by Proposition 2.12 it is equivalent to assume
that B has a cotorsion pair (S, 7) such that S €7 and 7 is contravariantly finite.

Let D be a category and R’ is a class of morphisms on D. If R’ admits both a calculus of right
fractions and a calculus of left fractions (for details, see [4, §4]), then the Gabriel-Zisman localization
Dy at R’ (if it exists) has a very nice description. The objects in Dy are the same as the objects
in D. The morphism from X to Y are of the form

r f

X<=—A——Y

denoted by [r, f] where r lies in R’. The localization functor from D to Dy takes a morphism f to
[id, f]. We denote this image by [f]. For r € R/, [r,id] is the inverse of [r]. We denote it x,. Thus,
every morphism has the form [r, f]1=[f]x.
By [4, Corollary 4.2], R admits both a calculus of right fractions and a calculus of left fractions.
For a subcategory C C I3, we denote by [C] the full subcategory of (8/7)r which has the same
objects as C.

Lemma 9.1. We have 25 /P = 28 ~ [2S5].
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Proof. We first show that a morphism f:£S — B factors through P if and only if it factors
through 7. Since P CU =T, we only need to show f factors through 7 implies it factors through P.
Suppose f factors through 7. By definition £2S admits the following short exact sequence

q
25— Ps ——==§
where Ps € P, S €S and B admits the following short exact sequence

wp

Vg Wp B.

As wp is a right U{-approximation of B, there exists a morphism a: 25 — Wp such that f = wga.
Since q is a left 7 -approximation of £2S, there exists a morphism b: P — Wp such that bq = a, hence
f = wgbgq. Thus by definition we have 2S5/P = 2S.

Let L: 258 — [£25] be the location of the localization functor from B/7 to (3/7)r. We claim
that it is an equivalence. Obviously it is dense, it is faithful by [4, Lemma 4.4] and full by [4,
Lemma 5.4]. O

Denote by ModC the category of contravariant additive functors from a category C to modk for
any category C. Let modC be the full subcategory of ModC consisting of objects A admitting an exact
sequence:

Home (—, C1) & Home (=, Co) % A— 0

where Cg, C1 €C.
Since 28 ~ [£2S5], we have mod(£2S/P) >~ mod[£2S].
We give the following proposition which is an analogue of [4, Lemma 5.5] (for more details, see

[4, 85]).

Proposition 9.2. If (S, T), (T, V) is a twin cotorsion pair on I3 which is skeletally small, and let R denote the
class of morphisms which are both monomorphic and epimorphic in B/7T, then

(a) The projectives in (B/7T )g are exactly the objects in 2S.
(b) The category (I3/T)r has enough projectives.

For convenience, for any objects X, Y e BB, we denote Homz;(X, Y) by [X, Y]. For any morphism
f:X—Y, we denote Homg)(—, [f]) by —o[f] and Homg)([f], —) by [f]o —.
Now we can prove the following theorem.

Theorem 9.3. Let I3 be a skeletally small, Krull-Schmidt, k-linear exact category with enough projectives and
injectives, containing a twin cotorsion pair

S, ), (T, V).

Let R denote the class of morphisms which are both monomorphic and epimorphicin B/7 and (/7 )r denote
the localization of B/T at R, then

(B/T)r ~mod(2S/P).
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Proof. It suffices to show (B/7T)r >~ mod[£2S]. From any object B € (3/7)g, there is a projective
presentation of B:

[d] do]
251 = 259 = B—0.

Let £2S be any object in [£2S5], we get the following exact sequence:

25So[dq] £25So[do]
[2S,251] — [£2S5,2S9] — [£2S5,B]—0
which induces an exact sequence in mod[£2S]:

—oldh] —oldo]
[—. £251] — [, £2S0] — [-,B]—0.

Now we can define a functor @ : (B/7)gr — mod[£2S] as follows:

Bi>[—Bl, [fl~ —olf].

e Let us prove that @ is faithful.
For any morphism [f]: B — B’ we have the following commutative diagram

[d1] [do]
25, 25So B 0
Lfi1] Lfol L1
v v
28] 25So B 0
[d}] [dp]

in (B/T)r which induces a commutative diagram in mod[£2S]

—oldi] —oldo]
[—. 2511 —= [, 2So] —= [~ B] —= 0
—ol fil —ol fol J/O[f]
Y Y
[ 28} —= [, 2S)] —= [, B] —= 0
eld) idy

Hence if — o [f]=0, we obtain — o [d, fo] = 0, which implies [d fo] = 0. Thus [f]=0.
e Let us prove that @ is full.
For any morphism « :[—, B] — [—, B'], we have the following commutative diagram

—old1] —oldol
[—, £251]] —= [, 2So] —— [-,B] ——=0
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in mod[£2S5]. By Yoneda’s lemma, there exists [fi]: £2S; — .QS,f such that «; = — o [fi]. Hence there
is a commutative diagram

—oldi] —oldo]
[— £251] — [, £250] [, B] 0

—olfi] J/ l —ol fol —o[f]
Y

[— 28] —[-,25] —=[-,B] ——10
—o[d;] dp]

o[dy —oldy

in (B/T)g, thus o = —o[f].

e Let us prove that @ is dense:

We first show that mod[£2S] is abelian. It is enough to show that [£2S] has pseudokernels. Let
o251 — 25 be a morphism in [£2S], then since (3/7T)g is abelian, there exists a kernel 8: K —
£2S1 in (B/T)g. By Proposition 9.2, there exists an epimorphism y : £2S — K. We observe that 8y is
a pseudokernel of «.

Let F € mod[£2S] which admits an exact sequence

[— 2511 < [-. 250]— F — 0

where y € [£251, £25¢]. Let B =Cokery then we get an exact sequence

2515 250> B—>0

in (B/T)g. Hence F~[—,B]. O
10. Examples

In this section we give several examples of twin cotorsion pair, and we also give some view of
the relation between the heart of a cotorsion pair and the hearts of its two components. First we
introduce some notations. Let C be a subcategory of B, we set
(a) Ctn = {X e B|Exti,(C.X) =0, 0 <i<n}.
(b) tnC ={X € B|Extis(X,C) =0, 0<i<n}.
(¢c) Ct ={X € B|Extlz(C, X) =0, Vi > 0}.
(d) C={X € B|Extiy(X,C) =0, ¥i>O0}.

According to [8, §7.2], we give the following definition.
Definition 10.1. A cotorsion pair (U/, V) is called a hereditary cotorsion pair if Ext% U,V)=0,i>0.

The following proposition can be easily checked by definition.

Proposition 10.2. For a cotorsion pair (U, V), the following conditions are equivalent.



280 Y. Liu / Journal of Algebra 394 (2013) 245-284

Remark 10.3. We can call a pair of subcategories (U4, V) a co-t-structure on B if it is a hereditary
cotorsion pair, since by the proposition above the hereditary cotorsion pair on B is just an analogue
of the co-t-structure on triangulated category.

Example 10.4. We introduce two trivial hereditary cotorsion pairs:

(P,B) and (B,1).

We observe that in these two cases the hearts are 0. These two cotorsion pairs also form a twin
cotorsion pair

(P, B), (B, D).
We observe that its heart is also 0.

Example 10.5. Let A be an Artin algebra and T be a cotilting module of finite injective dimension,
denote

X:=1T and Y:=(CT7)*,.

By [1, Theorem 5.4, Corollary 5.10, Proposition 3.3], (X, )) is a hereditary cotorsion pair. By [1, Propo-
sition 3.3, (c, iii)], we get

W C (mod A)T C Y.
Dually, by [1, Proposition 3.3, (d, iii)], we get
WC (modA)” CX.

Then H = (mod A)* N (mod A)~ € X NY =W, hence H = 0. By [1, Proposition 1.8], (11T, (11T)*1)
is a cotorsion pair. According to [1, §2], 11T, (11 T)11 is also a cotorsion pair. Hence by definition

(GG N G Gl )
form a twin cotorsion pair. We can also observe that its heart is trivial.
In fact, we have

Proposition 10.6. If one cotorsion pair in a twin cotorsion pair (S, T), (U, V) is hereditary, then this twin
cotorsion pair has a trivial heart, i.e. its heart is zero.

Proof. We prove that if (S, 7) is hereditary, then W =V NS = Bt N B~, another part is by dual. For
any object B € B~, there is a short exact category

B— W5 g8,
Since we have the following exact sequence

0=Exth (W5, T) — Ext(B. T) — Ext}(S®.7) =0
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which implies B € S. Hence B~ = &. Dually, Bt = V. Hence W C BT NB~ =V NS C W, this implies
H=0. O

Recall that M is n-cluster tilting [9] if it satisfies the following conditions

(a) M is contravariantly finite and covariantly finite in 5,
(b) Mt = M.
() " M= M.

A 2-cluster tilting subcategory is usually called cluster tilting subcategory. Let M be a cluster tilting
subcategory of 3. Remark that P € M and Z € M. For each object B € 3, we have two short exact
sequences

f g
B— M — N N>~——> M ——>= B

that f (resp. g) is a left (resp. right) M-approximation of B. We observe N € 11 M = M (resp.
N’ € M+ = M), therefore (M, M) is a cotorsion pair. In this case, W =M and Bt =B~ =5,
thus H = B = B/M, which is abelian also by [6]. Moreover, any object in 2M (resp. 2~ M) is
projective (resp. injective) in 3/M, and by Propositions 8.5, 8.8, B/M has enough projectives and
enough injectives.

Proposition 10.7. A subcategory M in B is cluster tilting if and only if (M, M) is a cotorsion pair on B5.
Proof. From the above discussion, we know that (M, M) is a cotorsion pair if M is cluster tilting,
so it remains to show the “only if” part. But it is just followed by the definition of cotorsion pair and

Lemma 24. O

In the following examples, we denote by “o” in a quiver the objects belong to a subcategory and

by “.” the objects do not.

Example 10.8. Let A be the path algebra of the following quiver

1= 2 3 4

then we obtain the AR-quiver I"(mod A) of mod A.
1 2 3 4
\ 2 / \ 3 / \ ) /
1 2 3
N 3 /N ) /
2 3

1 2

Let M = {X e mod A | Extjz(X, A) =0}, then by [1, Propositions 1.10, 1.9], (M, M*1) is a cotorsion
pair on mod A. But

M= o . . o
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which consisting of all the direct sums of indecomposable projectives and indecomposable injectives.
We observe that in fact M = M1 and hence it is a cluster tilting subcategory. And the quiver of the
quotient category (mod A)/ M is

2 3

NS

3
2

which is equivalent to the AR-quiver of Aj.

Example 10.9. Take the notion of the former example. Let

then by [1, Propositions 1.10, 1.9], (M’, M'11) is a cotorsion pair and

1
M=o . o o

hence it contains A. Obviously it is closed under extension and contravariantly finite, then by
[1, Propositions 1.10, 1.9], (/\/l’“, (/\/l’“)ll) is also a cotorsion pair on mod A and

(./\/l/J_l)J‘1 = O . . o)

Thus we get a twin cotorsion pair
(./\/l/ M/ll) (M/l] (M/l1)l1).

Then the quiver of (mod A)//\/t/ll is 23 5 The quiver of quotient category 2 M'/P is just 2.
Hence we get ((mod A)/M/ll)R ~ mod(2M'/P).

From Example 10.9, we see that there exist two cotorsion pairs which have non-trivial hearts form
a twin cotorsion pair also having a non-trivial heart. From the following example, we see that even
two components of a twin cotorsion pair have non-trivial hearts, the heart of the twin cotorsion pair
itself can be zero.



Y. Liu / Journal of Algebra 394 (2013) 245-284 283

Example 10.10. Let A be the k-algebra given by the quiver

and bound by o8 =0 and By« = 0. Then its AR-quiver I"(mod A) is given by
1 2 3 1
NSNS NS
1 2 3
N/ N/
2 3
1 2

Here, the first and the last columns are identified. Let

S= . o . . T = . . o
o o o o
o o o o
and
U= o o o Y=
o o o o
o o o o

The heart of cotorsion pair (S,7) is add(1) and the heart of cotorsion pair (U/,)) is add(3). But
when we consider the twin cotorsion pair (S,7), U4, V), we get W =YV and

(mod A)~/W=add(1 @ 2) and (mod A)"/W =add(3)
hence its heart is zero.
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