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Let R0 be a commutative and associative ring (not necessarily 
unital), G a group and α a partial action of G on ideals of R0, 
all of which have local units. We show that R0 is maximal 
commutative in the partial skew group ring R0 �α G if and 
only if R0 has the ideal intersection property in R0�αG. From 
this we derive a criterion for simplicity of R0 �αG in terms of 
maximal commutativity and G-simplicity of R0. We also pro-
vide two applications of our main results. First, we give a new 
proof of the simplicity criterion for Leavitt path algebras, as 
well as a new proof of the Cuntz–Krieger uniqueness theorem. 
Secondly, we study topological dynamics arising from partial 
actions on clopen subsets of a compact set.
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1. Introduction

Partial skew group rings arose as a generalization of skew group rings and as an 
algebraic analogue of C*-partial crossed products (see [5]). Much in the same way as 
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skew group rings, partial skew group rings provide a way to construct non-commutative 
rings, and recently Leavitt path algebras have been realized as partial skew group rings 
(see [10]), indicating that the theory of non-commutative rings may benefit from the 
theory of partial skew group rings. Still, when compared to the well-established theory 
of skew group rings, the theory of partial skew group rings is still in its infancy. In fact, 
to our knowledge, [3] and [4] are the only existing papers regarding the ideal structure 
of partial skew group rings, and [9] is a recent paper describing simplicity conditions for 
partial skew group rings of abelian groups.

Our main goal in this paper is to derive necessary and sufficient conditions for sim-
plicity of partial skew group rings. In general, this is still an open problem, even for 
skew group rings. In [12] and [14], Öinert has attacked this problem for skew group rings 
R0�αG, where either the group G, or the ring R0, is abelian. Recently, in [9], a criterion 
for simplicity of partial skew group rings of abelian groups has been described. In our 
case, we will extend results of [12] to partial skew group rings R0 �α G, where R0 is 
assumed to be commutative and associative (not necessarily unital) and α is a partial 
action on ideals of R0, all of which have local units. More specifically, we will show that 
R0�αG is simple if and only if R0 is G-simple and maximal commutative in R0�αG. In 
particular, our results can be applied to Leavitt path algebras, by realizing them as par-
tial skew group rings (see [10]), and to partial skew group rings associated with partial 
topological dynamics.

Our work is organized in the following way: In Section 2 we present our main results, 
preceded by a quick overview of the key concepts involved below. In Section 3 we apply 
the results of Section 2 to derive a new proof of the simplicity criterion for Leavitt path 
algebras, as well as a new proof of the Cuntz–Krieger uniqueness theorem for Leavitt 
path algebras. In Section 4 we show an application of the results of Section 2 to partial 
topological dynamics, namely to partial actions by clopen subsets of a compact set.

Recall that a partial action of a group G (with identity element denoted by e) on 
a set Ω, is a pair α = ({Dt}t∈G, {αt}t∈G), where for all s, t ∈ G, Dt is a subset of Ω
and αt : Dt−1 → Dt is a bijection such that De = Ω, αe is the identity map on Ω, 
αt(Dt−1 ∩Ds) = Dt ∩Dts and αt(αs(x)) = αts(x), for all x ∈ Ds−1 ∩Ds−1t−1 . In case Ω
is a ring (algebra) then, for each t ∈ G, the subset Dt should be an ideal and the map αt

should be a ring (algebra) isomorphism. In the topological setting, each Dt should be an 
open set and each αt a homeomorphism, and in the C*-algebra setting each Dt should 
be a closed ideal and each αt should be a *-isomorphism.

Associated with a partial action of a group G on a ring A, we have the partial skew 
group ring, A �α G, which is the set of all finite formal sums 

∑
t∈G atδt, where, for 

each t ∈ G, at ∈ Dt and δt is a symbol. Addition is defined in the usual way and 
multiplication is determined by (atδt)(bsδs) = αt(αt−1(at)bs)δts. An ideal I of A is said 
to be G-invariant if αg(I ∩ Dg−1) ⊆ I holds for all g ∈ G. If A and {0} are the only 
G-invariant ideals of A, then A is said to be G-simple.

For a =
∑

t∈G atδt ∈ A �α G, the support of a, which we denote by supp(a), is the 
finite set {t ∈ G : at �= 0}, and the cardinality of supp(a) is denoted by #supp(a). 



D. Gonçalves et al. / Journal of Algebra 420 (2014) 201–216 203
For g ∈ G, the projection map onto the g coordinate, Pg : A �α G → A, is given 
by Pg(

∑
t∈G atδt) = ag and the augmentation map T : A �α G → A is defined by 

T (
∑

t∈G atδt) =
∑

t∈G at.
Recall also that the centralizer of a nonempty subset S of a ring R, which we denote by 

CR(S), is the set of all elements of R that commute with each element of S. If CR(S) = S

holds, then S is said to be a maximal commutative subring of R. Notice that a maximal 
commutative subring is necessarily commutative. Following [13], a subring S of a ring R
is said to have the ideal intersection property in R, if S∩I �= {0} holds for each non-zero 
ideal I of R.

By abuse of notation, the identity element of an arbitrary group G will be denoted 
by 0.

2. Maximal commutativity, the ideal intersection property and simplicity

This is the key section of our paper. Recall from [2] that a ring S is said to have local 
units, if there exists a set U of idempotents in S such that, for every finite subset X
of S, there exists an f ∈ U such that X ⊆ fSf . From this it follows that x = fx = xf

holds for each x ∈ X. If such a set U exists, then it will be referred to as a set of local 
units for S and the idempotent f is then said to be a local unit for the subset X.

Throughout this section we will assume that R0 is a commutative and associative ring 
and that α = ({Rt}t∈G, {αt}t∈G) is a partial action of a group G on the ring R0 such 
that, for each t ∈ G, the ideal Rt, viewed as a ring, has a set of local units. In particular, 
this implies that Rt is an idempotent ring, for each t ∈ G, and thus, by [5, Corollary 3.2], 
we are ensured that the partial skew group ring R0 �α G is associative. We begin by 
showing the relationship between maximal commutativity of R0 and the ideal intersection 
property of R0 in R0 �α G.

Theorem 2.1. Let R0 be a commutative associative ring, G a group and α = ({Rt}t∈G,

{αt}t∈G) a partial action such that, for each t ∈ G, Rt has a set of local units. Then 
R0δ0 is maximal commutative in R0�αG if and only if I∩R0δ0 �= {0} for each non-zero 
ideal I of R0 �α G.

Proof. First suppose that R0δ0 is maximal commutative in R0 �α G and let I be a 
non-zero ideal of R0 �α G. We will show that I ∩R0δ0 �= {0}.

Let x =
∑

t∈F xtδt be a non-zero element in I such that #supp(x) is minimal among 
all the non-zero elements of I and assume that xt �= 0 for each t ∈ F ⊆ G. Pick an s ∈ F , 
let e ∈ Rs−1 be a local unit for αs−1(xs) and define y := x · eδs−1 ∈ I. Next we show 
that y ∈ R0δ0, but first notice that y �= 0 and #supp(y) ≤ #supp(x), since xs �= 0 and

y = x · eδs−1 = xsδs · eδs−1 +
∑

xtδt · eδs−1 = xsδ0 +
∑

xtδt · eδs−1 .

t∈F\{s} t∈F\{s}
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Now, let a ∈ R0 and z := aδ0 · y − y · aδ0 ∈ I. Notice that #supp(z) < #supp(x), 
since aδ0 · xsδ0 − xsδ0 · aδ0 = 0, and hence, from the minimality of #supp(x), we have 
that z = 0. But this implies that aδ0 · y = y · aδ0 for all a ∈ R0 and so, by the maximal 
commutativity of R0δ0, we obtain that y ∈ R0δ0 and I ∩R0δ0 �= {0} as desired.

Next we show that if R0δ0 is not maximal commutative in R0 �α G then there exists 
a non-zero ideal J of R0 �α G such that J ∩R0δ0 = {0}.

So, suppose that R0δ0 is not maximal commutative. This means that there exists an 
element a =

∑
t∈F atδt ∈ R0�αG \R0δ0 such that a ·bδ0 = bδ0 ·a for all b ∈ R0, which is 

equivalent to atδt ·bδ0 = bδ0 ·atδt for all t ∈ F and b ∈ R0. Evaluating the multiplications 
in this last equation we obtain that αt(αt−1(at)b)δt = batδt, for all t ∈ F and b ∈ R0
and hence

αt

(
αt−1(at)b

)
= bat = atb (1)

holds for all t ∈ F and b ∈ R0.
Now, fix a non-identity g ∈ F such that ag �= 0 and let J be the ideal of R0 �α G

generated by the element agδ0 − agδg.
Notice that each element of J is a finite sum of elements of the form btδt(agδ0 −

agδg)crδr, where btδt, crδr ∈ R0�αG. Moreover, J �= {0}, since if e is a local unit for ag, 
then eδ0(agδ0 − agδg)eδ0 is a non-zero element of J .

We will show that J has null intersection with R0δ0 by showing that T (J) = 0. In 
order to do so, notice that, for btδt, crδr ∈ R0 �αG, we may use Eq. (1) to conclude that

btδt(agδ0 − agδg)crδr = btδt · agδ0 · crδr − btδt · agδg · crδr
= btδt · agcrδr − btδt · αg

(
αg−1(ag)cr

)
δgr

= btδt · agcrδr − btδt · agcrδgr = dδtr − dδtgr,

where d = αt(αt−1(bt)agcr), and hence T (J) = 0. Since the restriction of T to R0δ0 is 
injective we conclude that J ∩R0δ0 = {0}, as desired. �

The above result generalizes [12, Theorem 3.5].

Remark 2.2. In this paper we are mainly interested in the situation when each ideal Rt, 
for t ∈ G, has a set of local units. Notice, however, that when it comes to Theorem 2.1
this assumption can be relaxed. In fact, it is enough to assume that Rt is non-degenerate
for each t ∈ G, in the sense that for each non-zero a ∈ Rt there is some b ∈ Rt such 
that ab �= 0 or ba �= 0. If Rt is non-degenerate for each t ∈ G, then one can easily adapt 
the proof of Theorem 2.1, replacing the local units by the elements arising from the 
non-degeneracy of the ideals, to show that maximal commutativity of R0 in R0 �α G

implies that R0 has the ideal intersection property (alternatively one can realize that 
the natural G-gradation on R0 �αG is non-degenerate in the sense of [13, Definition 2]). 
Conversely, non-degeneracy of each Rt, for t ∈ G, ensures that R0 �α G is associative, 
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see [5, Corollary 3.2], and this is all that is needed to show that the ideal intersection 
property of R0 in R0 �α G implies maximal commutativity of R0.

We can now prove the simplicity criterion for R0 �α G, and thereby generalize 
[12, Theorem 6.13].

Theorem 2.3. Let R0 be a commutative associative ring, G a group and α = ({Rt}t∈G,

{αt}t∈G) a partial action of G on R0 such that, for each t ∈ G, Rt has a set of local 
units. Then the partial skew group ring R0 �α G is simple if and only if R0 is G-simple 
and R0δ0 is maximal commutative in R0 �α G.

Proof. Suppose first that R = R0 �α G is simple. By Theorem 2.1, R0δ0 is maximal 
commutative. We show below that R0 is G-simple.

Let I be a G-invariant non-zero ideal of R0. Define J as the set of finite sums 
∑

t∈G atδt
such that at ∈ I ∩Rt for all t ∈ G, that is, J = {

∑
t∈G atδt ∈ R : at ∈ I ∩Rt, t ∈ G}.

Notice that J is a non-zero ideal of R. Indeed, if arδr ∈ R and at ∈ I ∩ Rt then 
arδr · atδt = αr(αr−1(ar)at)δrt. Since I is G-invariant, αr(αr−1(ar)at) ∈ I and by the 
definition of a partial action αr(αr−1(ar)at) ∈ Rrt so that arδr · atδt ∈ J . Similarly, J is 
a right ideal of R and so, by the simplicity of R we obtain that J = R. Now notice that, 
from the definition of J , P0(J) = I and from what was done above, P0(J) = P0(R) = R0. 
So I = R0 and R0 is G-simple.

Suppose now that R0 is G-simple and that R0δ0 is maximal commutative in R. Let I
be a non-zero ideal of R. By Theorem 2.1, I ∩R0δ0 �= {0}. Let J = I ∩R0δ0 and notice 
that P0(J) is a non-zero ideal of R0. Next we show that P0(J) is G-invariant.

Let at ∈ P0(J) ∩Rt and pick a local unit e for at in Rt. Since atδ0 ∈ J we have that 
αt−1(e)δt−1 · atδ0 · eδt = αt−1(at)δ0 is in J and hence αt−1(at) ∈ P0(J) and P0(J) is 
G-invariant.

Now, since R0 is G-simple we have that P0(J) = R0 and so J = R0δ0. In particular, 
R0δ0 ⊆ I. Take s ∈ G, as ∈ Rs and an arbitrary asδs ∈ R0 �α G. Then, letting e be a 
local unit for as in Rs, we have that asδs = eδ0 · asδs ∈ I. This shows that R0 �α G = I, 
as desired. �
Remark 2.4. Notice that the proof of the fact that simplicity of the partial skew group ring 
R0 �αG implies G-simplicity of R0 holds for any partial action α = ({Rt}t∈G, {αt}t∈G).

Inspired by [8, Example 3.4], we provide the following example.

Example 2.5. Let R0 = Ke1⊕Ke2⊕Ke3, where K is a field and e1, e2, e3 are orthogonal 
central idempotents of R0. Let C4 be the cyclic group of order 4 with generator g and 
define a partial action of C4 on R0 by α0 = idR0 ,
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αg : Ke2 ⊕Ke3 → Ke1 ⊕Ke2, αg(e2) = e1 and αg(e3) = e2;

αg2 : Ke1 ⊕Ke3 → Ke1 ⊕Ke3, αg2(e1) = e3 and αg2(e3) = e1;

αg3 : Ke1 ⊕Ke2 → Ke2 ⊕Ke3, αg3(e1) = e2 and αg3(e2) = e3.

There are exactly six proper (non-zero) ideals of R0, namely

Ke1, Ke2, Ke3, Ke1 ⊕Ke2, Ke1 ⊕Ke3 and Ke2 ⊕Ke3,

none of which is C4-invariant. One easily checks this using the definition of α. Thus, R0 is 
C4-simple. Moreover, a short calculation reveals that R0δ0 is maximal commutative in 
the partial skew group ring R0 �α C4. By Theorem 2.3, we conclude that R0 �α C4 is 
simple.

3. A new proof of the simplicity criterion for Leavitt path algebras

Recently, Leavitt path algebras have been described as partial skew group rings [10]. 
More precisely, the Leavitt path algebra associated with a graph E has been realized 
as a partial skew group ring of a commutative algebra by the free group on the edges 
of E and so we can apply the characterization of simplicity given in Section 2 to Leavitt 
path algebras. This will lead to a new proof of the simplicity criterion for Leavitt path 
algebras that rely solely on partial skew group ring theory. Before we proceed, for the 
convenience of the reader we shall recall some important notation and definitions.

A directed graph E = (E0, E1, r, s) consists of a set E0 of vertices, a set E1 of edges, 
a range map r : E1 → E0 and a source map s : E1 → E0 which may be used to 
read off the direction of an edge. Given a field K and a directed graph E, the so called 
Leavitt path algebra associated with E (see e.g. [1,11]) is denoted by LK(E). To be more 
precise, LK(E) is the universal K-algebra generated by a set {v, e, e∗ : v ∈ E0, e ∈ E1}
of elements satisfying the following five assertions:

(i) for all v, w ∈ E0, v2 = v, and vw = 0 if v �= w;
(ii) s(e)e = er(e) = e for all e ∈ E1;
(iii) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1;
(iv) for all e, f ∈ E1, e∗e = r(e), and e∗f = 0 if e �= f ;
(v) v =

∑
{e∈E1 : s(e)=v} ee

∗ for each vertex v ∈ E0 which satisfies 0 < #{e ∈ E1 :
s(e) = v} < ∞.

In [10], Gonçalves and Royer showed that each Leavitt path algebra can be realized 
as a partial skew group ring. We shall review their construction by first defining a partial 
action at the level of sets.

Let E = (E0, E1, r, s) be a directed graph. A path of length n in E is a sequence 
ξ1ξ2 . . . ξn of edges in E such that r(ξi) = s(ξi+1) for i ∈ {1, 2, . . . , n − 1}. If ξ is a 
path of length n, then we write |ξ| = n. The set of all finite paths in E is denoted 
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by W . An infinite path in E is an infinite sequence ξ1ξ2 . . . of edges in E such that 
r(ξi) = s(ξi+1) for i ∈ N. The set of all infinite paths in E is denoted by W∞. Notice 
that W (respectively W∞) is a subset of the set of all finite (respectively infinite) words 
in the alphabet E1. As usual, the range and source maps can be extended from E1 to 
W ∪ W∞ ∪ E0 by defining s(ξ) := s(ξ1) for ξ = ξ1ξ2 . . . ∈ W∞ or ξ = ξ1 . . . ξn ∈ W , 
r(ξ) := r(ξn) for ξ = ξ1 . . . ξn ∈ W and r(v) = s(v) = v for v ∈ E0. A finite path η is 
said to be an initial subpath of a (possibly infinite) path ξ, if there is a path ξ′ such that 
r(η) = s(ξ′) and ξ = ηξ′ hold.

The partial action that we are about to define, takes place on the set

X =
{
ξ ∈ W : r(ξ) is a sink

}
∪
{
v ∈ E0 : v is a sink

}
∪W∞

which is acted upon by F, the free group generated by the set E1.
Since F is generated by E1, the set of edges of E, some elements of F can be thought 

of as coming directly from W . More concretely, each element a ∈ W can be viewed as 
an element of F, and similarly a ∈ W defines an element a−1 ∈ F. Hence, given a, b ∈ W

we may view a as an element of F and b−1 as an element of F and their product ab−1

will be an element of F. These are three types of elements of F that will be of particular 
interest to our construction. Notice that not all elements of F arise in this way.

In order to have a partial action of F on X, for each c ∈ F we need to define a set Xc

and a map θc : Xc−1 → Xc, such that they comply with the definition of a partial action.
The first step towards the construction of our partial action, is to define the sets Xc, 

for c ∈ F. This is done as follows:

• X0 := X, where 0 is the neutral element of F.
• Xb−1 := {ξ ∈ X : s(ξ) = r(b)}, for all b ∈ W .
• Xa := {ξ ∈ X : ξ1ξ2 . . . ξ|a| = a}, for all a ∈ W .
• Xab−1 := {ξ ∈ X : ξ1ξ2 . . . ξ|a| = a} = Xa, for ab−1 ∈ F with a, b ∈ W , r(a) = r(b)

and ab−1 in its reduced form.
• Xc := ∅, for all other c ∈ F.

The second step towards the construction of our partial action, is to define the maps 
θc : Xc−1 → Xc, for c ∈ F.

Let θ0 : X0 → X0 be the identity map. For b ∈ W , θb : Xb−1 → Xb is defined by 
θb(ξ) = bξ, for ξ ∈ Xb−1 . Notice that θb(ξ) is well-defined. Indeed, using that s(ξ) =
r(b) we may form the path bξ which obviously contains b as an initial subpath. Hence, 
θb(ξ) ∈ Xb. For b ∈ W , we now define θb−1 : Xb → Xb−1 for η ∈ Xb−1 , by θb−1(η) =
η|b|+1η|b|+2 . . . if r(b) is not a sink and θb−1(b) = r(b), if r(b) is a sink. It is easy to see 
that θb is bijective with inverse θb−1 .

Finally, for a, b ∈ W with r(a) = r(b) and ab−1 in reduced form, θab−1 : Xba−1 →
Xab−1 is defined by θab−1(ξ) = aξ(|b|+1)ξ(|b|+2) . . . for ξ ∈ Xba−1 . This map is well-
defined. To see this, notice that ξ ∈ Xba−1 contains b as an initial subpath. Moreover, 
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r(a) = r(b) = s(ξ|b|+1) and hence we may form the path aξ(|b|+1)ξ(|b|+2) . . . which ob-
viously contains a as an initial subpath. Hence, θab−1(ξ) ∈ Xab−1 . It is not difficult to 
see that the inverse of this map is given by θba−1 : Xab−1 → Xba−1 which is defined by 
θba−1(η) = bη(|a|+1)η(|a|+2) . . . for η ∈ Xab−1 .

Notice that {{Xc}c∈F, {θc}c∈F} is a partial action on the level of sets and so it induces 
a partial action {{F (Xc)}c∈F, {αc}c∈F}, where, for each c ∈ F, F (Xc) denotes the algebra 
of all functions from Xc to K, and αc : F (Xc−1) → F (Xc) is defined by αc(f) = f ◦θc−1 . 
The partial skew group ring associated with this partial action is not LK(E) yet. For 
this one proceeds in the following way:

For each c ∈ F, and for each v ∈ E0, define the characteristic maps 1c := χXc
and 

1v := χXv
, where Xv = {ξ ∈ X : s(ξ) = v}. Notice that 1c is the multiplicative identity 

of F (Xc). Finally, let

D0 = span
{{

1p : p ∈ F \ {0}
}
∪
{
1v : v ∈ E0}}

(where span means the K-linear span) and, for each p ∈ F \ {0}, let Dp ⊆ F (Xp) be 
defined as 1pD0, that is,

Dp = span{1p1q : q ∈ F}.

Since αp(1p−11q) = 1p1pq (see [10]), consider, for each p ∈ F, the restriction of αp to 
Dp−1 . Notice that αp : Dp−1 → Dp is an isomorphism of K-algebras and, furthermore, 
{{αp}p∈F, {Dp}p∈F} is a partial action.

In [10] it was shown that the partial skew group ring D0 �α F is isomorphic to the 
Leavitt path algebra LK(E). More precisely, the map ϕ : LK(E) → D0 �α F defined by 
ϕ(e) = 1eδe, ϕ(e∗) = 1e−1δe−1 for all e ∈ E1 and ϕ(v) = 1vδ0 for all v ∈ E0, was shown 
to be a K-algebra isomorphism.

Recall, see [15], that a subset H ⊆ E0 is said to be hereditary if for any e ∈ E1 we 
have that s(e) ∈ H implies r(e) ∈ H. A hereditary subset H ⊆ E0 is called saturated if 
whenever 0 < #s−1(v) < ∞, then {r(e) ∈ H : e ∈ E1 and s(e) = v} ⊆ H implies v ∈ H. 
In [15] it is proved that LK(E) is simple if and only if the graph E satisfies condition (L), 
that is, each closed path in the graph E has an exit, and the only hereditary and saturated 
subsets of E0 are E0 and ∅. From now until the end of this section we will focus on the 
proof of the above simplicity criterion for D0 �α F via Theorem 2.3, thus giving a new 
proof of the simplicity criterion for Leavitt path algebras. On the way, we will obtain 
some useful results that we will also use, together with Theorem 2.1, in order to give a 
new proof of the Cuntz–Krieger uniqueness theorem for Leavitt path algebras.

Proposition 3.1. The set D0δ0 is maximal commutative in D0 �α F if and only if the 
graph E satisfies condition (L).

Proof. Suppose first that E satisfies condition (L). We will show that D0δ0 is maximal 
commutative by contradiction. For this, suppose that there exists an element at ∈ Dt, 
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with t �= 0 and at �= 0, such that atδt · a0δ0 = a0δ0 · atδt for each a0 ∈ D0, that is, such 
that

αt

(
αt−1(at)a0

)
= ata0 (2)

holds for all a0 ∈ D0.
Notice that at �= 0 implies that either t ∈ W or t = r−1, with r ∈ W , or t = ab−1, 

where a, b ∈ W . Furthermore, if in Eq. (2) we take a0 = 1t−1 we obtain that at = at1t−1

and hence the support of at is contained in Dt ∩Dt−1 and so t must be a closed path.
Now, taking appropriate functions for a0 in Eq. (2) and using induction we obtain 

that, for all n ∈ N, at = at1(tn)−1 and at1tn = at. For example, for a0 = 1t−1t−1 we 
obtain that at1t−1 = at1t−1t−1 and so at = at1t−1t−1 . On the other hand, for a0 = 1t1t−1

we get that αt(αt−1(at)1t1t−1) = at1t1t−1 and hence at1tt = at1t−1 = at.
Before we derive our contradiction, notice that if ξ ∈ Xt is such that at(ξ) �= 0 then, 

since at ∈ Dt, there exists an m ∈ N such that for each μ ∈ Xt with μ1 . . . μm = ξ1 . . . ξm
it holds that at(μ) = at(ξ). We now separate our argument into three cases.

Case 1. Suppose t ∈ W .

Since at = at1tm we have tm = ξ1 . . . ξm . . . ξm|t|. Let s be an exit for t and μ ∈ Xt

be such that μ1 . . . μm|t| . . . μk = tmt1 . . . tls. Then at(μ) = at(ξ) �= 0, but at(μ) =
at(μ)1tm+1(μ) = 0, a contradiction. So t is not an element of W .

Case 2. Suppose t = r−1, with r ∈ W .

This case follows as the previous one, by using the equality at = at1(tm)−1 instead of 
at = at1tm .

Case 3. Suppose t = ab−1, where a, b ∈ W .

We obtain a contradiction by proceeding as in Case 1 if |a| ≥ |b| and as in Case 2 if 
|a| < |b|. The details are left to the reader.

We conclude that there is no at ∈ Dt, with t �= 0, such that atδt commutes with each 
element of D0δ0 and hence D0δ0 is maximal commutative.

Suppose now that E does not satisfy condition (L), that is, there exists a closed path 
t = t1 . . . tm which has no exit. We will show that 1tδt commutes with all of D0δ0 and 
so D0δ0 is not maximal commutative.

Recall that D0 = span{{1p : p ∈ F \ {0}} ∪{1v : v ∈ E0}} and so it is enough to show 
that 1tδt commutes with 1vδ0 and with 1pδ0, for each v ∈ E0 and p ∈ F \ {0}.

Let v ∈ E0. Then 1tδt · 1vδ0 = αt(αt−1(1t)1v)δt = αt(1t−11v)δt which, by 
[10, Lemma 2.6(2)], is non-zero only if r(t) = v, in which case is equal to 1tδt. On 
the other hand, 1vδ0 · 1tδt = 1v1tδt, which is non-zero only if s(t) = v, in which case is 
equal to 1tδt. Since t is a closed path it follows that 1tδt commutes with 1vδ0.
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Now let r ∈ F \ {0}. Notice that, in order to check that 1tδt commutes with 1rδ0 it 
is enough to verify that αt(1t−11r) = 1t1r, which is equivalent to 1t1tr = 1t1r (since 
αt(1t−11r) = 1t1tr). As before, we now divide our proof into cases:

Case 1. r ∈ W .

If r = tnt1 . . . tk for some n ≥ 0 and 1 ≤ k ≤ m then, since t has no exit, Xr =
Xt = {tttt · · ·} and hence 1t1tr = 1t = 1t1r. If r ∈ W is not of the above form, then 
1t1tr = 0 = 1t1r.

Case 2. r = s−1 with s ∈ W .

Suppose first that r(s) = r(t). Then Xs−1 = Xt, since t is a closed path with no exit, 
and hence 1t1tr = 1t1ts−1 = 1t = 1t1s−1 = 1t1r. If r(s) �= r(t), then 1ts−1 = 0 = 1t1s−1 .

Case 3. r = ab−1 with a, b ∈ W and r(a) = r(b).

Since 1tr = 1tab−1 = 1ta and 1r = 1ab−1 = 1a this case reduces to Case 1.

Case 4. All other r ∈ F.

In this case 1r = 0 and hence both sides of the equation αt(1t−11r) = 1t1r are equal 
to zero.

We have proved that 1tδt is in the centralizer of D0δ0 and hence D0δ0 is not maximal 
commutative, as desired. �

Before we proceed to show the connection between F-simplicity of D0 and the nonex-
istence of proper hereditary and saturated subsets of E0, we shall prove two useful 
lemmas.

Lemma 3.2. Let x0δ0 be a non-zero element of D0δ0 and denote by I the principal ideal 
of D0 �α F generated by x0δ0. Then there exists a vertex v ∈ E0 such that 1vδ0 ∈ I.

Proof. We can write x0 as a linear combination of characteristic functions; x0 =∑n
i=1 λi1aib

−1
i

+
∑m

j=1 βj1vj , where ai ∈ W and bi ∈ W ∪ {0} (if ai = 0, then 1aib
−1
i

=
1b−1

i
= 1r(bi) since Xb−1

i
= Xr(bi)). Choose some v ∈ E0 such that 1vx0 �= 0. If v is a 

sink, then 1v1aib
−1
i

= 0 for each i, and then

0 �= 1vx0δ0 =
n∑

j=1
βj1v1vjδ0 =

∑
j : vj=v

βj1vδ0

which shows that 1vδ0 ∈ I.
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Now, suppose that v is not a sink. Let m = max{|ai| | 1 ≤ i ≤ n}. Recall that we 
can write Xv =

⋃
· c∈I Xc where the index set I consists of all c ∈ W such that s(c) = v

and |c| = m or s(c) = v, |c| < m and r(c) is a sink. If 1c1aib
−1
i

�= 0, then ai is an initial 
subpath of c, and then 1c1aib

−1
i

= 1c1ai
= 1c. Moreover, if 1c1vj �= 0, then 1c1vj = 1c. 

Using this, we obtain

0 �= 1cx0δ0 =
n∑

i=1
λi1c1aib

−1
i
δ0 +

m∑
j=1

βj1c1vjδ0

=
∑

i : 1c1aib
−1
i

�=0

λi1c1aib
−1
i
δ0 +

∑
j : 1c1vj

�=0

βj1c1vjδ0

=
∑

i : 1c1aib
−1
i

�=0

λi1cδ0 +
∑

j : 1c1vj
�=0

βj1cδ0

=
( ∑

i : 1c1aib
−1
i

�=0

λi +
∑

j : 1c1vj
�=0

βj

)
1cδ0,

which shows that 1cδ0 ∈ I \ {0}. Notice that 1r(c)δ0 = 1c−1δ0 = 1c−1δc−1 · 1cδ0 · 1cδc. 
Using that I is an ideal, we conclude that 1r(c)δ0 ∈ I which proves the lemma. �
Lemma 3.3. Let I be an F-invariant ideal of D0. Then, the set Z = {v ∈ E0 : 1v ∈ I} is 
hereditary and saturated.

Proof. Let e ∈ E1 be such that s(e) ∈ Z. Then 1e = 1s(e)1e ∈ I ∩ De and, by the 
F-invariance of I, αe−1(1e) = 1e−1 = 1r(e) ∈ I, so that r(e) ∈ Z.

Now, let v ∈ E0 be such that 0 < #s−1(v) < ∞ and r(e) ∈ Z for each e ∈ s−1(v). 
Notice that 1r(e) = 1e−1 and so, since I is F-invariant, we have that 1e = αe(1e−1) ∈ I. 
This implies that 1v =

∑
e∈s−1(v) 1e ∈ I and hence v ∈ Z as desired. �

The following proposition gives us a characterization of F-simplicity of D0.

Proposition 3.4. The algebra D0 is F-simple if and only if the only saturated and hered-
itary subsets of E0 are E0 and ∅.

Proof. Suppose first that D0 is F-simple. Let F be a nonempty saturated and hereditary 
subset of E0. We need to show that F = E0.

Consider the ideal I generated by {1vδ0 : v ∈ F} in D0 �α F, that is, I is the linear 
span of all the elements of the form arδr1vδ0bsδs, with v ∈ F , ar ∈ Dr, bs ∈ Ds and 
r, s ∈ F. Let J = P0(D0δ0∩I) and notice that J is a non-zero F-invariant ideal of D0 (J is 
F-invariant since if at ∈ J∩Dt, then atδ0 ∈ I, so αt−1(at)δ0 = 1t−1δt−1 ·atδ0 ·1tδt ∈ I and 
hence αt−1(at) ∈ J). Now, since D0 is F-simple we have that J = D0 and, in particular, 
1u ∈ J for each u ∈ E0. This means that for each u ∈ E0, 1uδ0 ∈ I, and so we can write
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1uδ0 =
∑
t

xtδt · 1vtδ0 · yt−1δt−1 =
∑
t

αt

(
α−1
t (xt)1vtyt−1

)
δ0,

where the above sum is finite and vt ∈ F for each t. Multiplying the above equation by 
1uδ0, we obtain

1uδ0 =
∑
t∈T

1uαt

(
α−1
t (xt)1vtyt−1

)
δ0,

where

T :=
{
t ∈ F : 1uαt

(
α−1
t (xt)1vtyt−1

)
�= 0

}
.

In particular, since 1uαt(α−1
t (xt)1vtyt−1) �= 0 for each t ∈ T , we have that 1u1t �= 0 and 

1vt1t−1 �= 0 for all t ∈ T .
Our aim is to show that each u ∈ E0 belongs to F . So, let u ∈ E0. If u = r(b) for some 

path b and s(b) ∈ F then u ∈ F , since F is hereditary. Moreover, if 0 < #s−1(u) < ∞
and r(e) ∈ F for each e ∈ s−1(u) then u ∈ F , since F is saturated. So, we are left with 
the cases when there is no path b with s(b) ∈ F and r(b) = u and either s−1(u) = ∅, 
#s−1(u) = ∞, or 0 < #s−1(u) < ∞ but r(e) /∈ F for some e ∈ s−1(u). We handle these 
three cases below.

Case 1. s−1(u) = ∅, and there is no path b with s(b) ∈ F and r(b) = u.

First notice that since there is no b ∈ W such that s(b) ∈ F and r(b) = u, for each 
b ∈ W , it holds that either 1u1b−1 = 0 or 1v1b = 0 for each v ∈ F . Then, by the statement 
right after the definition of T , we obtain that there is no t ∈ T of the form t = b−1 (with 
b ∈ W ). Now, for t of the form t = ab−1 ∈ F, with a ∈ W and b ∈ W ∪ {0}, we have 
that 1u1t = 0, since s(a) �= u, and hence t = ab−1 /∈ T . We conclude that T = {0}, and 
so 1u = 1ux01v0y0 and it follows that u = v0 ∈ F .

Case 2. #s−1(u) = ∞, and there is no path b with s(b) ∈ F and r(b) = u.

Here, as in Case 1, there is no t ∈ T of the form t = b−1 with b ∈ W . Suppose 
that 0 /∈ T . Then each t ∈ T is of the form t = ab−1, with a ∈ W and b ∈ W ∪ {0}. 
Since #s−1(u) = ∞, there is an element ξ ∈ X with s(ξ) = u and s(ξ) �= s(a) for each 
ab−1 ∈ T . Notice that 1t(ξ) = 0 for all t ∈ T and so

1 = 1u(ξ) =
∑
t∈T

1uαt

(
α−1
t (xt)1vtyt−1

)
(ξ) = 0,

which is a contradiction. So 0 ∈ T and 1ux01v0y0 �= 0, which implies that u = v0 ∈ F .

Case 3. 0 < #s−1(u) < ∞, and there is no path b with s(b) ∈ F and r(b) = u, and there 
is an edge e ∈ s−1(u) such that r(e) /∈ F .
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Again, as in Case 1, there is no t ∈ T of the form t = b−1 with b ∈ W . Suppose, as in 
Case 2, that 0 /∈ T . Then, as before, each t ∈ T is of the form t = ab−1, with a ∈ W and 
b ∈ W ∪ {0}.

Now, for each t ∈ T , let ct = 1uαt(α−1
t (xt)1vtyt−1). Since, for each t = ab−1 ∈ T , it 

holds that 1u1t �= 0 and 1vt1t−1 �= 0, we have that s(a) = u and s(b) = vt ∈ F . The 
heredity of F now implies that r(b) ∈ F and since r(a) = r(b) we have that r(a) ∈ F . 
So, we obtain that

1u =
∑
t∈T

ct =
∑

ab−1∈T

cab−1 ,

where u = s(a) and r(a) ∈ F for all ab−1 ∈ T .
Let z = z1 . . . zm be a path of maximum length such that |z| ≤ max{|a| : ab−1 ∈ T}

with s(z) = u and r(zi) /∈ F for each i ∈ {1, . . . , m}. By the hypothesis, such a z exists. 
Then multiplying the equation 1u =

∑
ab−1∈T cab−1 by 1z we obtain

1z =
∑

ab−1∈T : |z|<|a|,a1...am=z

cab−1 .

Since the sum on the right-hand side is finite, we have that 0 < #s−1(r(z)) < ∞. By 
the maximality of |z|, there is no edge e ∈ s−1(r(z)) such that r(e) /∈ F . Then, r(e) ∈ F

for all e ∈ s−1(r(z)) and, since F is saturated, we obtain that r(z) ∈ F , a contradiction 
(since r(z) = r(zm) /∈ F ).

We conclude that 0 ∈ T and, as in Case 2, it follows that u ∈ F as desired.
Suppose now, that the only saturated and hereditary subsets of E0 are E0 and ∅. 

Let I be a non-zero F-invariant ideal of D0. We need to show that I = D0.
Let J be the (non-zero) ideal of D0 �α F consisting of all finite sums 

∑
atδt, with 

at ∈ Dt ∩ I (J is an ideal since I is F-invariant) and let Z = {v ∈ E0 : 1v ∈ I}. By 
Lemma 3.2, there is some v ∈ E0 such that 1vδ0 ∈ J , so that 1v ∈ I (since J ∩D0δ0 =
Iδ0) and hence Z is nonempty. By Lemma 3.3, Z is hereditary and saturated, and 
therefore Z = E0. Thus, 1v ∈ I for each v ∈ E0 and hence I = D0, as desired. �

Propositions 3.1 and 3.4 above, enable us to translate the language of Leavitt path 
algebras into the language of partial skew group rings, and vice versa. Using this, we 
shall now give a new proof of the simplicity criterion for Leavitt path algebras.

Theorem 3.5. The partial skew group ring D0 �α F is simple if and only if the graph E
satisfies condition (L) and the only hereditary and saturated subsets of E0 are ∅ and E0.

Proof. By combining the results from Theorem 2.3, Proposition 3.1 and Proposition 3.4, 
the desired conclusion follows. �

We end this section by providing an alternative proof of the Cuntz–Krieger uniqueness 
theorem for Leavitt path algebras (cf. [10] and [15]).
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Theorem 3.6 (Cuntz–Krieger uniqueness theorem). Let E be a graph that satisfies con-
dition (L). If φ : D0 �α F → B is a K-algebra homomorphism such that φ(1vδ0) �= 0 for 
each v ∈ E0, then φ is injective.

Proof. Suppose that E satisfies condition (L) and that φ(1vδ0) �= 0 for each v ∈ E0. 
Let I denote the ideal ker(φ). Seeking a contradiction, suppose that I �= {0}. Proposi-
tion 3.1 and Theorem 2.1 now yield D0δ0 ∩ I �= {0}. Let x0δ0 ∈ D0δ0 ∩ I be a non-zero 
element. By Lemma 3.2, there is some v ∈ E0 such that 1vδ0 ∈ I = ker(φ), but this is a 
contradiction. Hence ker(φ) = {0}. �
4. Partial topological dynamics

In this final section we use the results of Section 2 to characterize partial actions on a 
compact space by clopen sets whose associated partial skew group ring is simple. More 
specifically, we will prove the following theorem.

Theorem 4.1. Let θ = ({Xt}t∈G, {ht}t∈G) be a partial action of a group G on a compact 
space X such that for each t ∈ G, Xt is a clopen set. Then the partial skew group ring 
C(X) �αG, where C(X) denotes the continuous complex-valued functions on X, is simple 
if, and only if, θ is topologically free and minimal.

Remark 4.2. Partial actions on the Cantor set by clopen subsets are exactly the ones for 
which the enveloping space is Hausdorff (see [6]).

Remark 4.3. Since the partial action acts on clopen sets, each Dt is unital. Hence, we 
can use Theorem 2.3 to prove the above theorem.

Remark 4.4. In light of Remark 2.2 and Remark 2.4, it follows that the first part of 
Theorem 4.1 holds for any topological partial action on a locally compact space X, that 
is, if C(X) �α G is simple then θ is topologically free and minimal.

Before we proceed, recall that there is a correspondence between partial actions on a 
locally compact Hausdorff space X and partial actions on the C*-algebra of continuous 
complex-valued functions vanishing at infinity, C0(X), (see e.g. [4,7]). Namely, if θ =
({Xt}t∈G, {ht}t∈G) is a partial action on X, then α = ({Dt}t∈G, {αt}t∈G), where Dt =
C0(Xt) and αt(f) := f ◦ ht−1 , is a partial action of G on C0(X). Simplicity of the 
associated C*-partial crossed product was studied in [7], and a version of the above 
theorem for partial actions of abelian groups was given in [9]. Below we will recall the 
relevant definitions and make the proper adaptations of the ideas in [9] to the case at 
hand.

Definition 4.5. A topological partial action θ = ({Xt}t∈G, {ht}t∈G) is topologically free
if for all t �= 0 the set Ft = {x ∈ Xt−1 : ht(x) = x} has empty interior and is minimal if 
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there is no proper open invariant subset of X (U ⊆ X is invariant if ht(U ∩Xt−1) ⊆ U

holds for all t ∈ G).

Proposition 4.6. A partial action θ = ({Xt}t∈G, {ht}t∈G) on a compact space X is min-
imal if, and only if, C(X) is G-simple.

Proof. The proof of this can be found in [7]. �
Proposition 4.7. Suppose that θ = ({Xt}t∈G, {ht}t∈G) is a topologically free partial ac-
tion. Then C(X)δ0 is maximal commutative in C(X) �α G.

Proof. Suppose that C(X)δ0 is not maximal commutative. Then there exists a non-zero 
function ft and t ∈ G, with t �= 0, such that ftδt ·fδ0 = fδ0 ·ftδt for all f ∈ C(X), which 
is equivalent to αt(αt−1(ft)f)δt = fftδt, for all f ∈ C(X), which in turn is equivalent to

ft(x)f
(
ht−1(x)

)
= f(x)ft(x), (3)

for all f ∈ C(X) and x ∈ Xt.
Now, since ft is non-zero, there exists x ∈ Xt such that ft(x) �= 0 and the continuity 

of ft implies that there exists an open set U ⊆ Xt such that ft is non-zero in U . Since 
the partial action is topologically free there exists y ∈ U such that ht−1(y) �= y. Let 
f ∈ C(X) be such that f(y) = 1 and f(ht−1(y)) = 0 (such a function exists by Urysohn’s 
lemma). But then Eq. (3) above implies that ft(y) = 0, a contradiction. �
Proposition 4.8. If C(X) �α G is simple, then θ = ({Xt}t∈G, {ht}t∈G) is topologically 
free.

Proof. The proof of this proposition is analogous to the proof of Proposition 4.7 in [9]. �
Remark 4.9. The three propositions above, combined with Theorem 2.3, provide the 
proof of Theorem 4.1.
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