
Journal of Algebra 425 (2015) 85–106
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The Chern class map on abelian surfaces

Toshiyuki Katsura 1

Faculty of Science and Engineering, Hosei University, Koganei-shi,
Tokyo 184-8584, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2014
Available online xxxx
Communicated by V. Srinivas

Keywords:
Algebraic geometry
Abelian variety
Positive characteristic

We examine the Chern class map c1 : NS(S)/p NS(S) →
H1(S, Ω1
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and give a basis of the kernel c1 for the superspecial abelian 
surface.
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1. Introduction

Let k be an algebraically closed field of characteristic p > 0, and S be a nonsingular 
complete algebraic surface over k. We denote by H2

dR(S) the second de Rham cohomol-
ogy group of S, and by NS(S) the Néron–Severi group of S. NS(S) is a finitely generated 
abelian group, and the rank ρ(S) of NS(S) is called the Picard number. We have the 
Chern class map NS(S)/p NS(S) → H2

dR(S) and this map is injective if the Hodge-to-de 
Rham spectral sequence of S degenerates at E1-term (cf. Ogus [9]). We also have the 
Chern class map c1 : NS(S)/p NS(S) → H1(S, Ω1

S). This map is not necessarily injec-
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tive, even if the Hodge-to-de Rham spectral sequence of S degenerates at E1-term (cf. 
Ogus [9]).

In this paper, we examine this map c1 in the case of abelian surfaces. For abelian 
surfaces, the Chern class map c1 is injective if and only if the abelian surface is not 
superspecial (for the definition, see Section 2). This fact was implicitly proved in Ogus 
[9] by using the notion of K3 crystal. We give here a down-to-earth proof of this fact and 
determine a basis of the kernel of the Chern class map c1 for the superspecial abelian 
surface. To calculate a basis of Ker c1, in Section 2 we examine the structure of the 
Néron–Severi group of the superspecial abelian surface. Using theory of quaternion alge-
bra, problems on divisors on superspecial abelian surfaces are translated into problems in 
matrix algebras over quaternion algebras. As an example, we give an explicit description 
of our theory in the case of characteristic 3. Finally, we examine the Chern class map 
for Kummer surfaces and show results similar to those for abelian surfaces.

The author would like to thank Professor Gerard van der Geer for useful advice and 
stimulating conversation. He is also grateful to the referee for his/her careful reading 
and many suggestions.

2. The Néron–Severi group

Let k be an algebraically closed field of characteristic p > 0. An abelian surface 
is said to be supersingular if it is isogenous to a product of two supersingular elliptic 
curves. An abelian surface is said to be superspecial if it is isomorphic to a product 
of two supersingular elliptic curves. By definition, if an abelian surface is superspecial, 
then the abelian surface is supersingular. But the converse does not necessarily hold (cf. 
Oort [11]). Note that a superspecial abelian surface is unique up to isomorphism (cf. 
Shioda [12]). In this section, we examine the structure of the Néron–Severi group of the 
superspecial abelian surface.

Let E be a supersingular elliptic curve defined over k, and we consider the superspecial 
abelian surface A = E1 ×E2 with E1 = E2 = E. We denote by OE the zero point of E. 
We take a divisor X = E1 × {OE2} + {OE1} × E2, which gives a principal polarization 
on A. We also denote E1 × {OE2} (resp. {OE1} × E2) by E1 (resp. by E2) for the sake 
of simplicity. We set O = End(E) and B = End0(E) = End(E) ⊗ Q. Then B is a 
quaternion division algebra over the rational number field Q with discriminant p, and 
O is a maximal order of B (cf. Mumford [8], Section 22 and Deuring [3], Section 2). For 
an element a ∈ B, we denote by ā the image under the canonical involution.

We have a natural identification of End(A) with the ring M2(O) of two-by-two ma-
trices with coefficients in O:

End(A) = M2(O).

Here, the action of 
(

α β
)
∈ M2(O) is given by
γ δ
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(
α β

γ δ

)
: A = E × E −→ A = E × E

(x, y) �→
(
α(x) + β(y), γ(x) + δ(y)

)
.

From here on, by a divisor L we often mean the divisor class represented by L in 
NS(A) if confusion is unlikely to occur. For a divisor L, we have a homomorphism

ϕL : A −→ Pic0(A)
x �→ T ∗

xL− L,

where Tx is the translation by x ∈ A (cf. Mumford [8]). We set

H =
{(

α β

γ δ

)
∈ M2(O)

∣∣∣ α, δ ∈ Z, γ, β ∈ O, γ = β̄

}
.

The main part of the following theorem may be known to specialists (cf. Mumford [8], 
and Ibukiyama, Katsura and Oort [6]), but since we cannot find a convenient reference, 
we give here a proof for it.

Theorem 2.1. The homomorphism

j : NS(A) −→ H

L �→ ϕ−1
X ◦ ϕL

is bijective. By this correspondence, we have

j(E1) =
(

0 0
0 1

)
, j(E2) =

(
1 0
0 0

)
.

For L1, L2 ∈ NS(A) such that

j(L1) =
(
α1 β1
γ1 δ1

)
, j(L2) =

(
α2 β2
γ2 δ2

)
,

the intersection number L1 · L2 is given by

L1 · L2 = α2δ1 + α1δ2 − γ1β2 − γ2β1.

In particular, for L ∈ NS(A) such that j(L) =
(

α β
γ δ

)
we have

L2 = 2 det
(
α β

γ δ

)

L · E1 = α, L ·E2 = δ.

We have also j(nD) = nj(D) for an integer n.
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The first and the final statements of this theorem are given in Mumford [8]. In par-
ticular, the final statement follows easily from the definition of ϕL. To prove the others, 
we need some lemmas.

Lemma 2.2. The restriction homomorphism

Res : Pic0(A) −→ Pic0(E1) × Pic0(E2)

L �→ (L|E1 , L|E2)

is an isomorphism, and the following diagram commutes:

A
ϕX−→ Pic0(A) � L

|| ↓ Res ↓
E1 × E2

ϕOE1
×ϕOE2−→ Pic0(E1) × Pic0(E2) � (L|E1 , L|E2)

Proof. The first statement is well-known (cf. Mumford [8]). For x = (x1, x2) ∈ A, we 
have

Res ◦ ϕX(x) = Res
(
T ∗
xX −X

)
=

(
T ∗
x1
OE1 −OE1 , T

∗
x2
OE2 −OE2

)
= (ϕOE1

× ϕOE2
)(x) �

We now examine the canonical involution of B. Since we have B = End(E) ⊗ Q, it 
suffices to define it for the elements of End(E). Then, for g ∈ End(E), the canonical 
involution is given by

ḡ = ϕ−1
OE

◦ g∗ ◦ ϕOE
,

which is the Rosati involution of End(E) ⊗ Q (cf. Mumford [8], Section 21, and Tate 
[13], Section 4). For the elliptic curve E, we have

ḡ ◦ g = ϕ−1
OE

◦ g∗ ◦ ϕOE
◦ g = (deg g)idE .

Lemma 2.3. Under the Rosati involution the element g =
(

α β
γ δ

)
∈ M2(B) maps to

g′ =
(
ᾱ γ̄

β̄ δ̄

)

Proof. We denote by ĝ the dual morphism of g. As the action on divisors, we have 
ĝ = g∗. The Rosati involution is given by g′ = ϕ−1

X ◦ ĝ ◦ϕX . We calculate the right-hand 
side term explicitly. We have a commutative diagram
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E1 ×E2
ϕOE1

×ϕOE2−→ Pic0(E1) × Pic0(E2)
↓ ϕX ||

Pic0(E1 × E2)
Res−→ Pic0(E1) × Pic0(E2)

↑ ĝ ↑ Res◦ĝ◦Res−1

Pic0(E1 × E2)
Res−→ Pic0(E1) × Pic0(E2)

↑ ϕX ||
E1 ×E2

ϕOE1
×ϕOE2−→ Pic0(E1) × Pic0(E2).

Using this diagram, for the point (x1, x2) ∈ E1 × E2 we have

g′
(
x1
x2

)
= ϕ−1

X ◦ ĝ ◦ ϕX

(
x1
x2

)

= (ϕOE1
× ϕOE2

)−1 ◦ Res ◦ ĝ ◦ Res−1 ◦ (ϕOE1
× ϕOE2

)
(
x1
x2

)

= (ϕOE1
× ϕOE2

)−1 ◦ Res ◦ ĝ ◦ Res−1

(
ϕOE1

(x1)
ϕOE2

(x2)

)

= (ϕOE1
× ϕOE2

)−1 ◦ Res ◦ ĝ
(
p∗1ϕO1(x1) + p∗2ϕOE2

(x2)
)

= (ϕOE1
× ϕOE2

)−1 ◦ Res
(
(p1 ◦ g)∗ϕOE1

(x1) + (p2 ◦ g)∗ϕOE2
(x2)

)
We denote by mi the addition of Ei (i = 1, 2). Then, we have

p1 ◦ g = m1 ◦ (α× β), p2 ◦ g = m2 ◦ (γ × δ).

We denote by qi (i = 1, 2) the i-th projection E1 ×E1 → E1. Then by Mumford [8], for 
L ∈ Pic0(E1) we have

m∗
1L ∼ q∗1L + q∗2L (linearly equivalent).

Therefore we have

(p1 ◦ g)∗ϕOE1
(x1) =

(
m1 ◦ (α× β)

)∗
ϕOE1

(x1)

= (α× β)∗m∗
1ϕOE1

(x1)

= (α× β)∗
(
q∗1ϕOE1

(x1) + q∗2ϕOE1
(x1)

)
=

{
q1 ◦ (α× β)

}∗
ϕOE1

(x1) +
{
q2 ◦ (α× β)

}∗
ϕOE1

(x1).

Since we have commutative diagrams

E1 × E2
α×β−→ E1 ×E1

↓ p1 ↓ q1

E1
α−→ E1,

E1 ×E2
α×β−→ E1 × E1

↓ p2 ↓ q2

E
β−→ E ,
1 1
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we have

(p1 ◦ g)∗ϕOE1 (x1) = p∗1α
∗ϕOE1 (x1) + p∗2β

∗ϕOE1 (x1).

In a similar way, we have

(p2 ◦ g)∗ϕOE2 (x2) = p∗1γ
∗ϕOE2 (x2) + p∗2δ

∗ϕOE2 (x2).

Therefore, we have

g′
(
x1
x2

)
= (ϕOE1

× ϕOE2
)−1 ◦ Res

(
p∗1α

∗ϕOE1
(x1) + p∗2β

∗ϕOE1
(x1)

+ p∗1γ
∗ϕOE2

(x2) + p∗2δ
∗ϕOE2

(x2)
)

= (ϕOE1
× ϕOE2

)−1

(
α∗ϕOE1

(x1) + γ∗ϕOE2
(x2)

β∗ϕOE1
(x1) + δ∗ϕOE2

(x2)

)

=
(
ϕ−1
OE1

α∗ϕOE1
(x1) + ϕ−1

OE1
γ∗ϕOE2

(x2)

ϕ−1
OE2

β∗ϕOE1
(x1) + ϕ−1

OE2
δ∗ϕOE2

(x2)

)

=
(
ϕ−1
OE1

α∗ϕOE1
ϕ−1
OE1

γ∗ϕOE2

ϕ−1
OE2

β∗ϕOE1
ϕ−1
OE2

δ∗ϕOE2

)(
x1
x2

)

Since E1 = E2 = E and ϕO1 = ϕO2 , we conclude

g′ =
(
α β

γ δ

)′

=
(
ᾱ γ̄

β̄ δ̄

)
�

Lemma 2.4. For a divisor L ∈ Pic(E1 × E2) with j(L) = g =
(

α β
γ δ

)
, we have

α = L · E1, δ = L · E2.

Proof. Since α is an integer, we have

g

(
x

OE2

)
=

(
α β

γ δ

)(
x

OE2

)
=

(
αx

γ(x)

)
. (1)

Now, we examine αx.

g

(
x

OE2

)
= ϕ−1

X ◦ ϕL

(
x

OE2

)
= ϕ−1

X

{
T ∗

(x,O2)L− L
}

= (ϕO1 × ϕO2)−1 ◦ Res
{
T ∗

(x,O )L− L
}

2
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We restrict the divisor L to E1 and denote it by e. Then, the divisor is expressed as

e ∼
λ∑

i=1
niPi

with integers ni and points Pi on E1 (i = 1, 2, · · · , λ). We have

L · E1 = deg e =
λ∑

i=1
ni.

We set n =
∑λ

i=1 ni. Then, we obtain the following form:

g

(
x

OE2

)
= (ϕOE1

× ϕOE2
)−1

(
T ∗
x e− e

∗

)
.

We denote by ⊕ the addition of E1, and by 
 the subtraction of E1. Then, we have

T ∗
x e ∼

λ∑
i=1

ni(Pi 
 x).

By Abel’s theorem, we see that

T ∗
x e− e ∼ n1(P1 
 x) ⊕ · · · ⊕ nλ(Pλ 
 x) 
 (n1P1 ⊕ · · · ⊕ nλPλ) −OE1

∼ (−n)x−OE1 = T ∗
nxOE1 −OE1 = ϕOE1

(nx).

Therefore, we have ϕ−1
OE1

((−nx) −OE1) = nx, and

g

(
x

OE2

)
=

(
nx

∗

)
. (2)

Hence, comparing (1) and (2), we have α = n = L · E1. In a similar way, we have 
δ = L ·E2. �
Lemma 2.5. We have j(E1) =

( 0 0
0 1

)
and j(E2) =

( 1 0
0 0

)
.

Proof. For a point (x1, x2) ∈ E1 ×E2, we have

ϕ−1
X ◦ ϕE1

(
x1
x2

)
= ϕ−1

X

{
T ∗

(x1,x2)E1 −E1
}

= (ϕOE1
× ϕOE2

)−1 ◦ Res
{
T ∗

(x1,x2)E1 − E1
}

= (ϕOE1
× ϕOE2

)−1

(
OE1 −OE1

(−x2) −OE

)
=

(
OE1

x2

)
.

2
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Therefore, we have

j(E1) = ϕ−1
X ◦ ϕE1 =

(
0 0
0 1

)
.

In a similar way, we obtain the second assertion. �
Lemma 2.6. For L ∈ NS(E1 × E2), we set j(L) = g =

(
α γ̄
γ δ

)
. Then,

L2 = 2 det g.

Proof. Since α, δ ∈ Z, we have

ϕ−1
X ◦ ϕ(L−αE2−δE1) = ϕ−1

X ◦ ϕL − αϕ−1
X ◦ ϕE2 − δϕ−1

X ◦ ϕE1

=
(
α γ̄

γ δ

)
−
(
α 0
0 0

)
−

(
0 0
0 δ

)

=
(

0 γ̄

γ 0

)
.

Since the right-hand side is contained in H, there exists a divisor Z such that

ϕ−1
X ◦ ϕZ =

(
0 γ̄

γ 0

)
.

If Z is zero, then we have γ = 0. Therefore, we have Z = αE2+δE1 and Z2 = 2αδ = det g.
Now, we assume Z �= 0. Since ϕX is an isomorphism, by the Riemann–Roch theorem 

on the abelian surface A, we have

deg
(
ϕ−1
X ◦ ϕZ

)
= degϕZ =

(
Z2/2

)2
.

On the other hand,

deg
(
ϕ−1
X ◦ ϕZ

)
= deg γ · deg γ̄ = (deg γ)2 = (γγ̄)2

By Lemma 2.4, we have

Z · E1 = Z · E2 = 0.

Therefore, we have Z · (E1 + E2) = 0. Since (E1 + E2)2 = 2 > 0, by the Hodge index 
theorem we see Z2 < 0. Therefore, we have, Z2/2 = −γγ̄.
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On the other hand, since ϕX is an isomorphism and ϕ−1
X ◦ ϕ(L−αE2−δE1−Z) = 0, we 

have ϕ(L−αE2−δE1−Z) = 0. Therefore, we have

0 ≡ L− αE2 − δE1 − Z,

where by ≡ we mean algebraic equivalence. Hence, we have

L2 = 2αδ + Z2 = 2(αδ − γγ̄) = 2 det g. �
For an automorphism g of A, we can regard g as an element of M2(O), and then we 

can consider tḡ.

Lemma 2.7. Let L1 and L2 be two divisors with j(L1) = g1 and j(L2) = g2. Let g be an 
automorphism of A. Then, g∗L1 ≡ L2 if and only if tḡg1g = g2.

Proof. We have

g∗L1 ≡ L2 ⇐⇒ ϕg∗L1 = ϕL2

⇐⇒ ĝ ◦ ϕL1 ◦ g = ϕL2

⇐⇒ ϕ−1
X ◦ ĝ ◦ ϕX ◦

(
ϕ−1
X ◦ ϕL1

)
◦ g = ϕ−1

X ◦ ϕL2

⇐⇒ g′ ◦ g1 ◦ g = g2. �
Let m : E × E → E be the addition of E, and we set

Δ = Kerm.

We have Δ = {(P, −P ) | P ∈ E}. Note that this Δ is different from the usual diagonal. 
For two endomorphisms a1, a2 ∈ End(E), we set

Δa1,a2 = (a1 × a2)∗Δ.

Using this notation, we have Δ = Δ1,1. We have the following theorem (cf. [7]).

Theorem 2.8.

j(Δa1,a2) =
(
ā1a1 ā1a2
ā2a1 ā2a2

)
.

In particular, we have

j(Δ) =
(

1 1
1 1

)
.
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Proof. Let α, β, γ be elements of O such that

ϕ−1
X ◦ ϕΔ =

(
α γ̄

γ δ

)
.

Then, since E1 · Δ = E2 · Δ = 1, we have α = δ = 1 by Lemma 2.4. Since we have

ϕ−1
X ◦ ϕΔ

(
x

−x

)
= ϕ−1

X

{
T ∗

(x,−x)Δ − Δ
}

= ϕ−1
X (0) =

(
O1
O2

)
,

we have γ(x) = x for any x ∈ E. Therefore, we have γ = 1.
By definition, we have

Δa1,a2 = (a1 × a2)∗Δ.

Therefore, we have

j(Δa1,a2) = t

(
a1 0
0 a2

)(
1 1
1 1

)(
a1 0
0 a2

)
=

(
ā1a1 ā1a2
ā2a1 ā2a2

)
�

3. Non-superspecial cases

In this section, we examine the injectivity of the Chern class map of abelian surfaces. 
Let αp be the local–local group scheme of rank p (cf. Oort [10] for the definition and 
properties). Then, we have End(αp) � k, and for an abelian variety X, Hom(αp, X) is a 
right vector space over End(αp) � k by composition of morphisms. The a-number of X
is defined by

a = dimk Hom(αp, X).

We denote by [p]X multiplication of p:

[p]X : X −→ X

x �→ px.

Then, the reduced part of Ker[p]X is of the form:

(
Ker[p]x

)
red � (Z/pZ)⊕r

with an integer r (0 ≤ r ≤ dimX). We call r the p-rank of X (cf. Mumford [8]). 
The following theorem follows essentially from the results in Ogus [9], but we give here 
a down-to-earth proof. For the definition and properties of the Cartier operator, see 
Cartier [2].
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Theorem 3.1. Let X be an abelian surface defined over k. Then, the Chern class map

c1 : NS(X)/pNS(X) −→ H1(X,Ω1
X

)
is injective if and only if X is not superspecial.

Proof. The only-if-part will be proved in Theorem 4.4. We prove here the if-part. We 
denote by r(X) the p-rank of X, and by a(X) the a-number of X. By Oort [11], X is 
superspecial if and only if a(X) = 2. Therefore, we assume a(X) �= 2. Take an affine 
open covering {Ui} of X, and suppose that there is a divisor D = {fij} which is not zero 
in NS(X)/p NS(X), such that c1(D) = {dfij/fij} ∼ 0 in H1(X, Ω1

X). Then, there exists 
ωi ∈ H0(Ui, Ω1

X) such that

dfij/fij = ωj − ωi.

(i) The first case: dωi = 0.
Applying the Cartier operator C, we obtain

dfij/fij = C(ωj) − C(ωi).

Therefore, we have

C(ωj) − ωj = C(ωi) − ωi on Ui ∩ Uj

and we have a regular 1-form ω′ on X which is defined by

C(ωi) − ωi on Ui.

Since C − id : H0(X, Ω1
X) → H0(X, Ω1

X) is surjective, there exists a regular 1-form 
ω ∈ H0(X, Ω1

X) such that (C − id)(ω) = ω′. Therefore, we have

C(ωi − ω) = ωi − ω.

By the property of the Cartier operator, there exists a regular function fi on Ui such 
that

ωi − ω = dfi/fi,

and we have

dfij/fij = dfj/fj − dfi/fi.

This means d(fijfi/fj) = 0. Therefore, there exists a regular function gij on Ui ∩ Uj

such that
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fijfi/fj = gpij on Ui ∩ Uj .

Since D = {fij} is a cocycle, we see that {gij} is also a cocycle and that this gives an 
element of NS(X). Therefore, we conclude D ∈ p NS(X), which contradicts D �= 0 in 
NS(X)/p NS(X).

(ii) The second case: dωi �= 0.
In this case we have dωi = dωj on Ui∩Uj and we get a non-zero regular 2-form on X. 

Since this regular 2-form is d-exact and is a basis of H0(X, Ω2
X), the Cartier operator 

acts on H0(X, Ω2
X) as the zero map. Therefore, X is not ordinary, that is, r(X) �= 2. 

Therefore, we have either r(X) = 1 and a(X) = 1, or r(X) = 0 and a(X) = 1.
Now, we consider the absolute Frobenius F : H1(X, OX) → H1(X, OX). Since 

a(X) = 1 in both cases, there exists a non-zero element β = {gij} in H1(X, OX) such 
that F (β) = 0. This means that there exists a regular function gi on Ui such that 
gpij = gj −gi. Since dgi = dgj on Ui∩Uj , we have a non-zero regular 1-form η on X given 
by dgi on Ui. Since dim H0(X, Ω1

X) = 2, in both cases there exists a nonzero regular 
1-form η′ such that {η, η′} gives a basis of H0(X, Ω1

X) with C(η′) �= 0. In fact, we can 
take η′ with C(η′) = η if r(X) = 0 and a(X) = 1, and we can take η′ with C(η′) = η′ if 
r(X) = 1 and a(X) = 1. Since we have H0(X, Ω2

X) =
∧2 H0(X, Ω1

X), η ∧ η′ gives a basis 
of H0(X, Ω2

X). Therefore, there exists a non-zero element a ∈ k such that

dωi = aη ∧ η′ = a
(
d
(
giη

′)).
We set θi = ωi − agiη

′. Then, θi is d-closed and we have

dfij/fij = agjη
′ − agiη

′ + θj − θi

= agpijη
′ + θj − θi

Applying the Cartier operator, we have

dfij/fij = a1/pgijC
(
η′
)

+ C(θj) − C(θi).

This means that

c1(D) ∼ a1/pβ ⊗ C
(
η′
)
∈ H1(X,OX) ⊗ H0(X,Ω1

X

) ∼= H1(X,Ω1
X

)
Since β �= 0 in H1(X, OX) and C(η′) �= 0 in H0(X, Ω1

X), we see β ⊗ C(η′) �= 0 in 
H1(X, Ω1

X). A contradiction.
Hence, if a(X) �= 2, we conclude that c1 is injective. �

4. Superspecial cases

Let k be an algebraically closed field of characteristic p ≥ 3. For an elliptic curve E
over k, we examine the action of endomorphisms of E on H0(E, Ω1

E) and H1(E, OE).
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Lemma 4.1. Let E be an elliptic curve and α ∈ End(E). Assume α acts on H1(E, OE)
as multiplication by β ∈ k (β �= 0). Then, α acts on H0(E, Ω1

E) as multiplication by 
degα/β.

Proof. Using the endomorphism α : E → E, we obtain a commutative diagram

NS(E)/pNS(E) α∗
−→ NS(E)/pNS(E)

↓ c1 ↓ c1

H1(E,Ω1
E) α∗

−→ H1(E,Ω1
E)

↓ ↓
H1(E,OE) ⊗ H0(E,Ω1

E) α∗⊗α∗
−→ H1(E,OE) ⊗ H0(E,Ω1

E).

Take a point Q ∈ E, and bases ω ∈ H0(E, Ω1
E), η ∈ H1(E, OE). Then, we have α∗(Q) =

(degα)Q, and (α∗ ⊗ α∗)(ω ⊗ η) = (βω) ⊗ α∗η. The result follows from the diagram. �
For an integer n, we have an endomorphism [n]E : E −→ E given by P �→ nP

(P ∈ E).

Lemma 4.2. The induced homomorphism

[n]∗E : H0(E,Ω1
E

)
−→ H0(E,Ω1

E

)
is multiplication by n, i.e., [n]∗Eω = nω for ω ∈ H0(E, Ω1

E).

Proof. This follows from the fact that [n]∗ is given as multiplication by n on the tangent 
space at the origin (Mumford [8]). �

Assume p �= 2. Following the theory of Ibukiyama (cf. [5]) to construct a quaternion 
division algebra over Q with discriminant p, we take a prime number q such that −q ≡ 5
(mod 8) and (−q

p ) = −1, and take an integer a such that a2 ≡ −p (mod q). Here, (−q
p ) is 

the Legendre symbol. Then, the quaternion division algebra B over Q with discriminant 
p and a maximal order O of B are given by

B = Q ⊕ QF ⊕ Qα⊕ QFα with

F 2 = −p, α2 = −q, Fα = −αF

O = Z + Z
(

1 + α

2

)
+ Z

(
F (1 + α)

2

)
+ Z

(
(a + F )α

q

)
.

Then, we know that there exists a supersingular elliptic curve E over k with End(E) = O
and End0(E) = B (cf. Deuring [3]).

We need the following well-known lemma.
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Lemma 4.3. For a non-singular complete algebraic curve X, the Chern class map

c1 : Pic(X)/pPic(X) ↪→ H1(X,Ω1
X

)
is injective.

Proof. Let L be a class of Pic(X)/pPic(X). Then, we can lift this class to Pic(X). We 
take an open affine covering {Ui} that trivializes the corresponding invertible sheaf, and 
let the invertible sheaf be given by {fij} with a regular function fij on Ui ∩ Uj . Then, 
we have c1(L) = {dfij/fij}.

Suppose {dfij/fij} ∼ 0. Then, there exists ωi ∈ Ω1
X(Ui) such that

dfij
fij

= ωj − ωi.

Since X is one-dimensional, ωi’s are d-closed. By the Cartier operator C, we have

dfij
fij

= C(ωj) − C(ωi).

Therefore, we have

C(ωi) − ωi = C(ωj) − ωj .

Hence, C(ωi) − ωi on Ui gives a global regular 1-form ω ∈ H0(X, Ω1
X). Since C − idX is 

surjective on H0(X, Ω1
X), there exists {ω̃} such that (C − idX)(ω̃) = ω. Replace ωi by 

ωi − ω̃, we may assume C(ωi) = ωi. Hence, there exists fi such that ωi = dfi
fi

. The result 
follows from this fact (cf. the proof of Theorem 3.1). �

We now compute the Chern class map explicitly for A, where A = E1 × E2 with 
E1 = E2 = E, the supersingular elliptic curve. The cup product induces a natural 
isomorphism

H1(A,Ω1
A

) ∼= H1(A,OA) ⊗ H0(A,Ω1
A

)
with

H1(A,OA) ∼= H1(E1,OE1) ⊕ H1(E2,OE2),

H0(A,Ω1
A

) ∼= H0(E1, Ω
1
E1

)
⊕ H0(E2, Ω

1
E2

)
.

Therefore, we have a decomposition

H1(A,Ω1
A

) ∼= (
H1(E1,OE1) ⊗ H0(E1,OE1)

)
⊕

(
H1(E1,OE1) ⊗ H0(E2, Ω

1
E2

))
⊕

(
H1(E2,OE2) ⊗ H0(E1, Ω

1
E

))
⊕

(
H1(E2,OE2) ⊗ H0(E2, Ω

1
E

))
. (∗)
1 2
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We have projections

pri : A −→ Ei (i = 1, 2).

Then, we have injective homomorphisms

pr∗i : H1(Ei, Ω
1
Ei

)
↪→ H1(A,Ω1

A

)
.

Note that

H1(E1, Ω
1
E1

) ∼= H1(E1,OE1) ⊗ H0(E1, Ω
1
E1

)
H1(E2, Ω

1
E2

) ∼= H1(E2,OE2) ⊗ H0(E2, Ω
1
E2

)
,

and we have the following commutative diagram

NS(A)/pNS(A) c1
↪−→ H1(A,Ω1

A)
↑ pr∗i ↑

Pic(Ei)/pPic(Ei)
c1
↪−→ H1(Ei, Ω

1
Ei

)
(∗∗)

The image of the homomorphism pr∗i is a one-dimensional subspace H1(Ei, OEi
) ⊗

H0(Ei, Ω1
Ei

) (i = 1, 2) in H1(A, Ω1
A).

Now, we consider the Chern class map

NS(A)/pNS(A) ∼= Pic(A)/pPic(A) c1−→ H1(A,Ω1
A

)
.

For the divisors E2 (resp. E1) on A, we set Ω1 = c1(E2) (resp. Ω4 = c1(E1)). Then, by the 
diagram (∗∗) Ω1 (resp. Ω4) is a basis of H1(E1, OE1) ⊗H0(E1, OE1) (resp. H1(E2, OE2) ⊗
H0(E2, Ω1

E2
)).

We set

Δa = Δid,a.

Here, id is the identity endomorphism of E. Then we have

j(Δa) =
(

1 ā
a āa

)

Since {id, 1+α
2 , F 1+α

2 , (a+F )α
q } is a basis of O = End(E), we see that

E1, E2,Δ = Δid,Δ 1+α
2
,ΔF 1+α

2
,Δ (a+F )α

q

is a basis of NS(A). Since α2 = −q, we see that α acts on H0(E, Ω1
E) as multiplication 

by ±√−q. We can choose α such that the action α on H0(E, Ω1
E) is multiplication 
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by
√−q. F acts on H0(E, Ω1

E) as the zero-map. Therefore, 1+α
2 , F 1+α

2 and (a+F )α
q act 

on H0(E, Ω1
E) respectively as multiplication by

1 +
√−q

2 , 0, a
√−q

q
.

Since H1(E, OE) is dual to H0(E, Ω1
E), by Lemma 4.1 the actions of 1+α

2 , F 1+α
2 and 

(a+F )α
q on H1(E, OE) are respectively given as multiplication by

1 −√−q

2 , 0, −a
√−q

q
.

Therefore, on the decomposition (∗) of the space H1(A, Ω1
A) the endomorphisms id× 1+α

2 , 
id × F 1+α

2 , id × (a+F )α
q of A act respectively as multiplication by

(
1, 1 +

√−q

2 ,
1 −√−q

2 ,
1 + q

4

)
, (1, 0, 0, 0),

(
1,

√−q

q
,−

√−q

q
,
a2

q

)

on each direct summand.
We consider the automorphism τ of A defined by

τ : A = E1 ×E2 −→ A = E1 × E2

(P1, P2) �→ (P2, P1).

We denote by Ω2 a basis of H1(E1, OE1) ⊗H0(E2, Ω1
E2

). We set Ω3 = τ∗Ω2. Then, Ω3 is 
a basis of H0(E1, Ω1

E1
) ⊗ H1(E2, OE2), and there exist coefficients αi ∈ k (i = 1, 2, 3, 4)

such that

c1(Δ) = c1(Δid) = α1Ω1 + α2Ω2 + α3Ω3 + α4Ω4

We consider inclusions

ε1 : E1 −→ E1 × E2 = A ε2 : E2 −→ E1 ×E2 = A

P �→ (P,OE2) P �→ (OE1 , P )

Then, we have the following diagram induced by εi.

Pic(Ei)/pPic(Ei)
c1−→ H1(Ei, Ω

1
Ei

)
↑ ↑

NS(A)/pNS(A) c1−→ H1(A,Ω1
A).

Using this diagram, by Δ ·E1 = 1 and Δ · E2 = 1 we see α1 = α4 = 1. Since τ∗Δ = Δ, 
we also have α2 = α3, which we denote by α.
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We show now α �= 0. We consider the natural inclusion φ : Δ ↪→ A = E1 × E2 and 
the diagram

Pic(Δ)/pPic(Δ) c1−→ H1(Δ, Ω1
Δ)

↑ ↑
NS(A)/pNS(A) c1−→ H1(A,Ω1

A).

Since Δ2 = 0, we have φ∗c1(Δ) = 0. On the other hand, since Δ · E1 = Δ · E2 = 1, we 
have φ∗c1(E1) = φ∗c1(E2) �= 0. Therefore, we see α �= 0. Replacing Ω2 by αΩ2, we may 
assume α = 1.

Summarizing these results, we have

c1(E1) = Ω4, c1(E2) = Ω1,

c1(Δ) = Ω1 + Ω2 + Ω3 + Ω4,

c1(Δ 1+α
2

) = Ω1 + 1 +
√−q

2 Ω2 + 1 −√−q

2 Ω3 + 1 + q

4 Ω4,

c1(ΔF 1+α
2

) = Ω1,

c1(Δ (a+F )α
q

) = Ω1 + a
√−q

q
Ω2 −

a
√−q

q
Ω3 + a2

q
Ω4.

Since 2q is prime to p, there exists an integer � such that � ≡ a
2q (mod p). Keeping these 

notations, we have the following theorem.

Theorem 4.4. The kernel Ker c1 is 2-dimensional over Fp, and a basis of Ker c1 is given 
by divisors

ΔF 1+α
2

− E2, Δ 2+Fα
q

− �Δ 1+α
2

+ 2�Δ − (� + 1)E2 − (1 − q + 2a)�E1.

Proof. With respect to the basis 〈Ω1, Ω2, Ω3, Ω4〉, the Chern classes c1(E1), c1(E2), 
c1(Δ), c1(Δ 1+α

2
), c1(ΔF 1+α

2
), c1(Δ (a+F )α

q
) are respectively represented as the following 

vectors:

u1 =

⎛
⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎠ , u2 =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ , u3 =

⎛
⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎠ ,

u4 =

⎛
⎜⎜⎜⎜⎝

1
1+

√−q
2

1−√−q
2

1+q

⎞
⎟⎟⎟⎟⎠ , u5 =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ , u6 =

⎛
⎜⎜⎜⎜⎜⎝

1
a
√−q
q

−a
√−q
q

a2

⎞
⎟⎟⎟⎟⎟⎠ .
4 q
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Since u1, u2, u3, u4 are linearly independent over Fp and we have

u5 = u2,

u6 = 2a
q

u4 −
a

q
u3 +

(
a

2q + 1
)
u2 +

(
a

2q − a

2 + a2

q

)
u1,

we see dimFp
Im c1 = 4. Since dimFp

NS(A)/p NS(A) = 6, we have dimFp
Ker c1 = 2. 

Since {E1, E2, Δ, Δ 1+α
2
, ΔF 1+α

2
, Δ (a+F )α

2
} is a basis of NS(A)/p NS(A), the latter part 

follows from our construction. �
Using this theorem, we have the following known corollary (cf. van der Geer and 

Katsura [4], for instance).

Corollary 4.5. Let A be a superspecial abelian surface. Then, H1(A, Ω1
A) is generated by 

algebraic cycles.

Proof. This follows from the fact that u1, u2, u3, u4 are linearly independent also 
over k. �
5. Example

We give here one concrete example. Assume characteristic p = 3. Then, there exists 
only one supersingular elliptic curve up to isomorphism and it is given by

E : y2 = x3 − x

We consider two automorphisms defined by

σ : x �→ x + 1, y �→ y,

τ : x �→ −x, y �→
√
−1y

We have a morphism defined by

π : E −→ P1

(x, y) �→ x

By the result of Ibukiyama [5], we have

End(E) = Z + Zτ + Zι ◦ τ + Zτ ◦ ι ◦ σ.

Here, ι is the involution of E.
Let P be the point on P1 given by the local equation x = 0, and P̃ a point on E such 

that π(P̃ ) = P . We consider an affine open covering {U0, U1} of P1 which is given by
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U0 =
{
x ∈ P1 ∣∣ x �= ∞

}
, U1 =

{
x ∈ P1 ∣∣ x �= 0

}
.

The divisor P is given by the functions

x on U0, 1 on U1.

Under the notation, we have the following diagram.

2P̃ ∈ Pic(E)/3Pic(E) c1
↪−→ H1(E,Ω1

E) ∼= k

↑ ↑ ↑
P ∈ Pic(P1)/3Pic(P1) c1

↪−→ H1(P1, Ω1
P1) ∼= k

In this diagram, we have c1(P ) = {dx
x }, and c1(P̃ ) = {dx

2x}.
We set A = E1 × E2 with E1 = E2 = E. We consider the Chern class map

c1 : NS(A)/3NS(A) −→ H1(A,Ω1
A

) ∼= H1(A,OA) ⊗ H0(A,Ω1
A

)
We also consider the natural inclusion defined by

ϕ : E −→ E1 × E2 = A

P �→ (P,OE2)

We have a commutative diagram

NS(A)/3NS(A) ϕ∗

−→ NS(E)/3NS(E)
↓ c1 ↓ c1

H1(A,Ω1
A) ϕ∗

−→ H1(E,Ω1
E)

Then, we have

ϕ∗(c1(Δ)
)

= c1
(
ϕ∗(Δ)

)
= c1(OE) =

{
dx

2x

}
�= 0.

We determine the action of End(E) on H0(E, Ω1
E). A basis of H0(E, Ω1

E) is given 
by dx

y and we have

(ι ◦ σ)∗ dx
y

= −dx

y
, τ∗

dx

y
= −

√
−1dx

y
, (τ ◦ ι ◦ σ)∗ dx

y
=

√
−1dx

y
.

Since H1(E, OE) is dual to H0(E, Ω1
E), the actions of ι ◦ σ, τ and τ ◦ ι are respectively 

given as multiplication by

−1,
√
−1, −

√
−1
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by Lemma 4.1. Since we have

H1(A,Ω1
A

) ∼= H1(A,OA) ⊗ H0(A,Ω1
A

)
∼=

(
H1(E1,OE1) ⊗ H0(E1,OE1)

)
⊕
(
H1(E1,OE1) ⊗ H0(E2, Ω

1
E2

))
⊕
(
H1(E2,OE2) ⊗ H0(E1, Ω

1
E1

))
⊕
(
H1(E2,OE2) ⊗ H0(E2, Ω

1
E2

))
,

the actions id× ι ◦ σ, id× τ and id× τ ◦ ι ◦ σ are respectively given as multiplication on 
each summand by

(1,−1,−1, 1)

(1,
√
−1,−

√
−1, 1)

(1,−
√
−1,

√
−1, 1).

By our general theory,

E1, E2,Δ,Δι◦σ,Δτ ,Δτ◦ι◦σ

gives a basis of NS(A) over Z. Therefore, Δ +Δι◦σ +E1 +E2 and Δτ +Δτ◦ι◦σ +E1 +E2
are linearly independent divisors in NS(A)/3 NS(A) over F3. Moreover, considering the 
actions of the endomorphisms id × ι ◦ σ, id × τ and id × τ ◦ ι ◦ σ on H1(A, Ω1

A) and the 
commutative diagram

NS(A) f∗

−→ NS(A)
↓ c1 ↓ c1

H1(A,Ω1
A) f∗

−→ H1(A,Ω1
A)

with f ∈ End(A), we conclude that the Chern classes of these two divisors are zero. 
Therefore, we see that

Δ + Δι◦σ + E1 + E2,Δτ + Δτ◦ι◦σ + E1 + E2

gives a basis of Ker c1 over F3.

6. An application to Kummer surfaces

Let A be an abelian surface defined over k, and ι be the involution x �→ 
x. We 
denote by Ã the surface made of 16 blowing-ups at 16 two-torsion points on A. Then, 
ι induces the action ι̃ on Ã and Km(A) = Ã/ι̃ is the Kummer surface. We denote by 
π : Ã → Km(A) the projection. A K3 surface X is called supersingular if the Picard 
number ρ(X) is equal to the second Betti number b2(X) = 22. For a supersingular K3 
surface, the discriminant of NS(X) is equal to the form −p2σ0 and σ0 is called an Artin 
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invariant. We know 1 ≤ σ0 ≤ 10 (cf. Artin [1]). A supersingular K3 surface with Artin 
invariant 1 is said to be superspecial. Such a K3 surface is unique up to isomorphism and 
is isomorphic to the Kummer surface Km(A) such that A is superspecial (cf. Ogus [9] and 
Shioda [12]). We also know that a supersingular K3 surface with σ0 = 2 is isomorphic 
to a Kummer surface Km(A) such that A is supersingular and non-superspecial (cf. 
Ogus [9]).

We have the following commutative diagram:

NS(Km(A))/pNS(Km(A)) c1−→ H1(Km(A), Ω1
Km(A))

↓ ↓
NS(Ã)/pNS(Ã) c1−→ H1(Ã, Ω1

Ã
).

Since we have 2NS(Ã) ⊂ π∗NS(Km(A)) ⊂ NS(Ã) by Shioda [12] and p �= 2, we see 
NS(Km(A))/p NS(Km(A)) ∼= NS(Ã)/p NS(Ã). Since ι acts on H1(A, OA) and H0(A, Ω1

A)
as multiplication by −1. Since H1(A, Ω1

A) ∼= H1(A, OA) ⊗ H0(A, Ω1
A), we see that ι acts 

as identity on H1(A, Ω1
A). Therefore, ι̃ acts as identity on H1(Ã, Ω1

Ã
). Hence, we have 

H1(Km(A), Ω1
Km(A)) ∼= H1(Ã, Ω1

Ã
). Summarizing these results, by Theorems 3.1 and 4.4

we have the following theorem.

Theorem 6.1. For a Kummer surface Km(A), let c1 be the Chern class map

c1 : NS
(
Km(A)

)
/pNS

(
Km(A)

)
−→ H1(Km(A), Ω1

Km(A)
)
.

Then, we have the following.

(i) If Km(A) is not superspecial, then c1 is injective.
(ii) If Km(A) is superspecial, then dimFp

Ker c1 = 2.

Remark 6.2. For a supersingular K3 surface X, it is known that the homomorphism

NS(X)/pNS(X) ⊗Fp
k −→ H1(X,Ω1

X

)
induced by c1 is not injective (cf. Ogus [9]). In particular, if Km(A) is supersingular,

NS
(
Km(A)

)
/pNS

(
Km(A)

)
⊗Fp

k −→ H1(Km(A), Ω1
Km(A)

)
is not injective even if Km(A) is not superspecial.
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